Thermal Sinusoidal Vibration and Transient Response of Magnetostrictive Functionally Graded Material Plates without Shear Effects

C.C. Hong

Department of Mechanical Engineering, Hsiuping University of Science and Technology, Taichung, 412 Taiwan, ROC
cchong@mail.hust.edu.tw

Abstract

The study of laminated magnetostrictive functionally graded material (FGM) plate without shear deformation under thermal sinusoidal vibration and transient response is calculated by using the generalized differential quadrature (GDQ) method. In the thermoelastic stress-strain relations that containing a power-law function of a two-material FGM plate, the linear temperature rise and the magnetostrictive coupling terms with velocity feedback control. Four edges of rectangular laminated Terfenol-D FGM plate with simply supported boundary conditions are considered. The suitable product value of coil constant and control gain can be used to reduce the amplitude of center displacement into a smaller value.

Keywords

Magnetostrictive; FGM; Shear Deformation; Thermal Vibration; GDQ; Velocity Feedback Control

Introduction

Typical functionally graded material (FGM) is usually made of different phases constituent materials, for example, the ceramic and metal used in the engine combustion chamber to withstand ultra-high-temperature and to reduce the stress singularities, respectively. Chi and Chung (2006) presented the mechanical analysis of FGM plates subjected to transverse load. There were several studies in the transverse displacements for the laminated plate including the shear deformation effect. Amabili and Farhadi (2009) made the research of the shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates. The over-prediction of natural frequencies in the solution without shear deformation was found. Ray and Shivakumar (2009) analyzed the effect of shear deformation on the piezoelectric fiber-reinforced composite plate by using the finite element method (FEM). Nguyen et al. (2008) obtained the static numerical results for the FGM plate with the effect of shear deformation.

Magnetostrictive material Terfenol-D has the magneto-electric coupling property under the action of magnetism and mechanism. Hong (2009) used the computational generalized differential quadrature (GDQ) method to study the transient responses of magnetostrictive plates under thermal vibration. Thermal stresses and center displacement with and without shear effect were calculated in the thin and thick plate, respectively. Ramirez et al. (2006) obtained the free vibration solution for magneto-electro-elastic laminates through the Ritz approach. Lee and Reddy (2005) analyzed the non-linear response of laminated plate of magnetostrictive material under thermo-mechanical loading by using the FEM. Lee et al. (2004) obtained the transient vibration values of displacement for the Terfenol-D plate including the effect of shear deformation by using the FEM. Hong (2007) used the GDQ method to make the thermal vibration study for the Terfenol-D magnetostrictive laminated plate with the first-order shear deformation. Hong (2012) used the GDQ method to make the Terfenol-D FGM plate analyses under rapid heating induced vibration with the shear deformation effect. It is interesting to study thermal vibration of the transverse center displacement and thermal stress in the Terfenol-D FGM plate without the shear deformation effect by using the GDQ method.

Formulation

FGM

Most materials of FGM can be used in the environment of higher temperature and can be
expressed in series form as follows by Chi and Chung (2006).

$$P_{fgm} = \sum_{i=1}^{n_m} PV_i.$$

(1)

where P_{fgm} is the material properties of FGM, n_m is the number of materials mixed to form the FGM, V_i is the volume fractions, and $\sum_{i=1}^{n_m} V_i = 1$ for all constituent materials, P_i is the individual constituent material properties, usually with the form as follows.

$$P_i = P_0 (P_1 T^{-1} + P_2 T + P_3 T^2 + P_4 T^3).$$

(2)

in which P_0, P_1, P_2 and P_3 are the temperature coefficients, T is the temperature of environment.

We denote the parameters for a two-material ($n_m = 2$) FGM plate as follows. a and b is the length in the x, y direction of the plate, h^* is the total thickness of magnetostrictive layer and FGM plate, h_3 is the thickness of magnetostrictive layer, h_1 and h_2 are the thickness of FGM material 1 and FGM material 2, respectively, p_1 and p_2 are the in-plane distributed forces, q is the applied pressure load. The sum of volume fractions is in the form: $V_1 + V_2 = 1$, the variation form of V_2 used in the power-law function is $V_2 = (z + h / 2)^{R_n} / h$, where z is the thickness coordinate, h is the thickness of FGM plate, R_n is the power-law index. And the material properties for equation (1) can be assumed for the simple calculation and expressed as follows by Hong (2012).

$$E_{fgm} = (E_2 - E_1) (\frac{z + h / 2}{h}) R_n + E_1,$$

(3a)

$$\nu_{fgm} = (\nu_2 + \nu_1) / 2,$$

(3b)

$$\rho_{fgm} = (\rho_2 + \rho_1) / 2,$$

(3c)

$$\alpha_{fgm} = (\alpha_2 + \alpha_1) / 2,$$

(3d)

shear stresses and shear strains in the laminate

$$\kappa_{fgm} = (\kappa_2 + \kappa_1) / 2.$$

(3e)

where E is the Young’s modulus, ν is the Poisson’s ratio, ρ is the density, α is the thermal expansion coefficients, κ is the thermal conductivity, the subscript fgm represents the FGM plate, the subscripts 1 and 2 represent the constituent material 1 and 2, respectively. The property terms $E_1, E_2, \nu_1, \nu_2, \rho_1, \rho_2, \alpha_1, \alpha_2, \kappa_1, \kappa_2$ are expressed corresponding to term P_i in equation (2).

GDQ Method

The GDQ method approximates the derivative of function, and the first-order and the second-order derivatives of function $f^*(x,y)$ at coordinates (x_i, y_j) of grid point (i, j) can be discretized in series forms by Shu and Du (1997) and rewritten as follows:

$$\frac{\partial f^*}{\partial x} |_{i,j} \approx \sum_{l=1}^{N} \hat{A}_{ij}^{(1)} f^{*l}_{i,j},$$

(4a)

$$\frac{\partial f^*}{\partial y} |_{i,j} \approx \sum_{m=1}^{M} \hat{B}_{ij}^{(1)} f^{*m}_{i,j},$$

(4b)

$$\frac{\partial^2 f^*}{\partial x^2} |_{i,j} \approx \sum_{l=1}^{N} \hat{A}_{ij}^{(2)} f^{*l}_{i,j},$$

(4c)

$$\frac{\partial^2 f^*}{\partial y^2} |_{i,j} \approx \sum_{m=1}^{M} \hat{B}_{ij}^{(2)} f^{*m}_{i,j},$$

(4d)

$$\frac{\partial^2 f^*}{\partial x \partial y} |_{i,j} \approx \sum_{l=1}^{N} \hat{A}_{ij}^{(m)} \sum_{m=1}^{M} \hat{B}_{ij}^{(m)} f^{*m}_{i,j}.$$

(4e)

where $A_{ij}^{(m)}$ and $B_{ij}^{(m)}$ denote the weighting coefficients for the m th-order derivative of the function $f^*(x,y)$ with respect to x and y directions.

Thermo Elastic Stress-Strain Relations with Magnetostrictive Effect

We consider a rectangular laminated magnetostrictive FGM plate of the length a, b in the x, y direction, respectively, under uniformly distributed load and thermal effect. There are no without shear effect assumption. The plane stresses
in a laminated FGM plate with magnetostrictive effect for the k^{th} layer are in the following equations by Lee and Reddy (2005):

\[
\begin{align*}
\sigma_x &= \begin{bmatrix} \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}\end{bmatrix} \begin{bmatrix} \varepsilon_x - \alpha_x \Delta T \\
\varepsilon_y - \alpha_y \Delta T \\
\varepsilon_{xy} - \alpha_{xy} \Delta T \end{bmatrix} \\
\end{align*}
\]

where α_x and α_y are the coefficients of thermal expansion, α_{xy} is the coefficient of thermal shear, \bar{Q}_{ij} is the stiffness of magnetostrictive FGM plate, the simpler forms of \bar{Q}_{ij} for FGM are given as follows.

\[
\begin{align*}
\bar{Q}_{11} &= \frac{E_{fgm}}{1 - \nu_{fgm}^2}, \\
\bar{Q}_{12} &= \frac{v_{fgm} E_{fgm}}{1 - \nu_{fgm}^2}, \\
\bar{Q}_{44} &= \bar{Q}_{55} = \bar{Q}_{66} = \frac{E_{fgm}}{2(1 + \nu_{fgm})}.
\end{align*}
\]

\[\Delta T = T_0(x,y,t) + \frac{z}{h^*} T_1(x,y,t)\]

The simpler forms of magnetostrictive loads are expressed in the following matrix forms by Hong (2009):

\[
\begin{align*}
\begin{bmatrix} \frac{\partial^2 u^0}{\partial x^2} & \frac{\partial^2 u^0}{\partial x \partial y} & \frac{\partial^2 u^0}{\partial y^2} & \frac{\partial^2 v^0}{\partial x^2} & \frac{\partial^2 v^0}{\partial x \partial y} & \frac{\partial^2 v^0}{\partial y^2} & \frac{\partial^2 w}{\partial x^2} & \frac{\partial^2 w}{\partial x \partial y} & \frac{\partial^2 w}{\partial y^2} \end{bmatrix}' \\
\end{align*}
\]

\[
= \begin{bmatrix} f_1 \\
f_2 \\
f_3 \end{bmatrix} + \rho \begin{bmatrix} 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{\partial^2 u^0}{\partial t^2} \\
\frac{\partial^2 v^0}{\partial t^2} \\
\frac{\partial^2 w}{\partial t^2} \end{bmatrix} + H \begin{bmatrix} 0 & 0 & \frac{\partial^2 u^0}{\partial t^2} \\
0 & 0 & \frac{\partial^2 v^0}{\partial t^2} \\
1 & 1 & \frac{\partial^2 w}{\partial t^2} \end{bmatrix}
\]

Where f_1, f_2, f_3 are the expressions of thermal loads (\bar{N}, \bar{M}), mechanical loads (p_1, p_2, q) and magnetostrictive loads (\bar{N}, \bar{M}).
\[
\begin{align*}
\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} + p_1 + \frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} = & \quad f_1, \\
\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} + p_2 + \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} = & \quad f_2, \\
\frac{\partial M_x}{\partial x} + 2\frac{\partial M_{xy}}{\partial y} + \frac{\partial M_y}{\partial y} + q = & \quad f_3, \\
\frac{\partial M_{xy}}{\partial x} + 2\frac{\partial M_{xy}}{\partial y} + \frac{\partial M_y}{\partial y} = & \quad f_4,
\end{align*}
\]

\[
\begin{align*}
(\bar{N}_x, \bar{M}_x) = & \int \frac{h}{2} (\bar{Q}_{11}a_x + \bar{Q}_{12}a_y + \bar{Q}_{16}a_{xy})(T_0, z = h) dz, \\
(\bar{N}_y, \bar{M}_y) = & \int \frac{h}{2} (\bar{Q}_{12}a_x + \bar{Q}_{22}a_y + \bar{Q}_{26}a_{xy})(T_0, z = h) dz, \\
(\bar{N}_{xy}, \bar{M}_{xy}) = & \int \frac{h}{2} (\bar{Q}_{16}a_x + \bar{Q}_{26}a_y + \bar{Q}_{66}a_{xy})(T_0, z = h) dz, \\
(A_{ij}, B_{ij}, D_{ij}) = & \int \frac{h}{2} \bar{Q}_{ij} (l, z^2) dz, \\
(\rho, H) = & \int \frac{h}{2} \rho_0 (l, z) dz.
\end{align*}
\]

where the term \(\omega_{mn} \) is the natural frequency of plate, \(\gamma \) is the frequency of applied heat flux.

We apply the weighting coefficients of discretized equations (4) in the two-dimensional GDQ method to discrete the differential equations (7). And we use the following non-dimensional parameters under sinusoidal temperature

\[
(T_0 = 0, T_1 = \bar{T}_1 \sin(\pi x / a) \sin(\pi y / b)).
\]

Thus, we can obtain the dynamic discretized matrix equations as in the paper by Hong (2009).

Some Numerical Results and Discussions

We like to consider the FGM plate consisting of two materials, of which the FGM material 1 is SUS304 (Stainless Steel), the FGM material 2 is \(43\text{NSi} \) (Silicon Nitride). The temperature-dependent coefficients \(P_0, P_1, P_2 \) and \(P_3 \) used to calculate material property terms, and \(E_1, E_2, \nu_1, \nu_2, \rho_1, \rho_2, \alpha_1, \alpha_2 \) and \(\kappa_1, \kappa_2 \) of these two typical constituent materials are listed in Table 1 by Shariyat (2008). The upper surface magnetostrictive layer of the three-layer \((0^{m}/0^{b}/0^{c}) \) laminates FGM plate under four sides simply supported is considered, the superscript of \(m \) denotes magnetostrictive layer. The elastic modules, material conductivity and specific heat of the Terfenol-D magnetostrictive material are used the same value as in the paper by Hong (2007). We use the grid points for the GDQ computation as in the following coordinates:

\[
W = w(x, y) \sin(\omega_{mn} t),
\]

\[
\Delta T = [\bar{T}_0 (x, y) + \frac{z}{h} \bar{T}_1 (x, y)] \sin(\gamma t).
\]
\[x_i = 0.5[1 - \cos\left(\frac{j - 1}{N - 1}\right)]a_i, i = 1, 2, \ldots, N, \]
\[y_j = 0.5[1 - \cos\left(\frac{j - 1}{M - 1}\right)]b_j, j = 1, 2, \ldots, M. \]

The dynamic convergence results are obtained for center displacement amplitude \(w(a/2, b/2) \) without shear effects in the thermal vibration of sinusoidal temperature only \((T_0 = 0, \ T_i = 100^°K, \ p_i = p_2 = q = 0) \) at time \(t = 6s, \) mode shape \(m = n = 1, \) with control gain value \(k_c(t) = 0, \) aspect ratio \(a/b = 0.5, 1, \) and 2, side-to-thickness ratio \(a/h^* = 100, 50, 20, 10 \) and 5, \(h^* = 1.2 \) mm, \(h_3 = 1 \) mm, \(h_1 = h_2 = 0.1 \) mm, \(R_n = 1, \)
\(T = 300^°K. \) Table 2 shows the \(w(a/2, b/2) \) (unit mm) in the grid point \(N \times M = 17 \times 17, \) \(21 \times 21, \) \(25 \times 25, \) \(29 \times 29, \) \(33 \times 33 \) and \(33 \times 33 \) of GDQ method for the laminated Terfenol-D FGM plate at time \(t = 6s. \) We find the \(N \times M = 33 \times 33 \) grid point have the good \(w(a/2, b/2) \) convergence result and use further in the GDQ analyses of time responses for displacement and stress for \(a/h^* = 5, \) 20 and 100.

We obtain the lowest frequency \(\gamma \) of applied heat flux and vibration frequency \(\omega_{h_i} \) of Terfenol-D FGM plate \((m = n = 1), \) at time \(t = 0.001s, 1s, \) 2s, ..., and 9s, \(N \times M = 33 \times 33, \) \(h^* = 1.2 \) mm, \(h_3 = 1 \) mm, \(h_1 = h_2 = 0.1 \) mm, \(a/b = 1, \) \(q = 0, \)
\(R_n = 1, \) \(T = 653^°K, \ T_i = 100^°K, \) as shown in Table 3. For the magnetic coil constant \(k_c \) effect on the \(w(a/2, b/2) \) (unit mm) of vibration under the constant gain value \(c(t) = 1, \) time \(t = 6s, \) \(a/h^* = 5 \) without shear, we obtain the sketch of \(w(a/2, b/2) \) vs. \(k_c \) as shown in Fig. 1. The suitable product value of \(k_c \) and \(c(t) \) can be used to reduce the amplitude of \(w(a/2, b/2) \) into a smaller value near 0.00, there is an amplitude peak value at \(k_c(t) = 7.16E08, \) we find \(k_c(t) = 1.56E09 \) for \(a/h^* = 5 \) thick plate can be chosen as the best suitable product values.

Firstly, thermal sinusoidal vibration is investigated with time step equal to 0.1s, the suitable chosen product \(k_c(t) \) of coil constant and controlled gain values versus time \(t \) for \(R_n = 1, \) thick plate \(a/h^* = 5 \) and thin plate \(a/h^* = 20, 100 \) at \(T = 653^°K, \) as shown in Table 4.

Fig. 2 shows the \(w(a/2, b/2) \) (unit mm) versus time \(t \) of GDQ method for the laminated Terfenol-D FGM plate \(a/h^* = 5, \) 20 and 100, respectively without shear effects. At time \(t = 0.001s, \) there is a great amplitude value of displacement with uncontrolled value \((k_c(t) = 0), \) \(w(a/2, b/2) = -0.156E29 \) mm for thick plate \(a/h^* = 5, \)
\(w(a/2, b/2) = -4.31174 \) mm for thin plate \(a/h^* = 20, \)
\(w(a/2, b/2) = -0.22975 \) mm for thin plate \(a/h^* = 100. \) We find the amplitudes of \(w(a/2, b/2) \) with controlled \(k_c(t) \) values are smaller than the amplitudes of \(w(a/2, b/2) \) with uncontrolled value \((k_c(t) = 0), \) generally by using the GDQ method. We can use the suitable product values of controlled \(k_c(t) \) to reduce the amplitude of \(w(a/2, b/2) \) into a smaller value near 0.00.

Fig. 3 shows the time response of the dominated dimensional stress \(\sigma_x \) (unit GPa) at center position of upper surface \(Z = 0.5h^* \) with respective to time for the laminated Terfenol-D FGM plate \(a/h^* = 5, \) 20 and 100, respectively without shear effects \(\alpha_{xy} = 0 \) and \(\sigma_{xy} = 0. \) We find the maximum response values of \(\sigma_x = -9.13E-04 \) GPa for \(a/h^* = 5, \) 20 and \(\sigma_x = -9.12E-04 \) GPa for \(a/h^* = 100 \) with controlled \(k_c(t) \) case are almost equal to the response values of \(\sigma_x = -9.12E-04 \) GPa with uncontrolled case \((k_c(t) = 0), \) generally by using the GDQ method.

Fig. 4 shows the compared non-dimensional \(W(X, b/2, 6) \) versus \(X \) of \(a/h^* = 5, \) 20 and 100 without / with shear effects, for Terfenol-D FGM plate, at time \(t = 6s, m = n = 1, \) \(N \times M = 33 \times 33 \) for the case of without shear and \(17 \times 17 \) for the case of with shear, \(h^* = 1.2 \) mm, \(h_3 = 1 \) mm, \(h_1 = h_2 = 0.1 \) mm, \(a/b = 1, \) \(q = 0, \) \(R_n = 1, \)
\(T = 653^°K, \ T_i = 100^°K, k_c(t) = 0. \) In the shear effect case, we use the YNS first-order shear deformation theory for the time dependent of displacement field, the value for shear correction
coefficients \(k_a = k_p = 5/6 \) used in the dynamic equilibrium differential equations by Hong (2012). For the thick plate \(a/h^* = 5 \), the values of displacement \(W(X, b/2, 6) \) versus \(X \) without shear case are smaller than that with shear case. The maximum value \(W(X, b/2, 6) = 0.0821655 \) occurs at \(X = 0.5 \) of the with shear case, and \(W(X, b/2, 6) = 0.0325304 \) occurs at \(X = 0.691342 \) of the without shear case. For the thin plate \(a/h^* = 20 \), the values of displacement \(W(X, b/2, 6) \) versus \(X \) without shear case are greater than that with shear case. The maximum value \(W(X, b/2, 6) = 0.0013522 \) occurs at \(X = 0.777785 \) of the without shear case, meanwhile \(W(X, b/2, 6) = 0.0003384 \) occurs at \(X = 0.5 \) of the with shear case. For the thick plate \(a/h^* = 100 \), the values of displacement \(W(X, b/2, 6) \) versus \(X \) without shear case are greater than that with shear case. The maximum value \(W(X, b/2, 6) = 0.000138781 \) occurs at \(X = 0.0380602 \) of the without shear case, while \(W(X, b/2, 6) = 0.00000541036 \) occurs at \(X = 0.5 \) of the with shear case. The values of displacement \(W(X, b/2, 6) \) are decreasing with \(a/h^* \) values increasing for square plate \(a/b = 1 \) with and without shear deformation effects. The deflection of center position versus \(a/h^* \) at \(t = 6 \) sec in Fig. 4d shows the deflection of thick plate \(a/h^* = 5 \), and the case of deflection value with shear effect is much greater than the case of without shear effect. The deflections with and without shear effects are almost in the same values for the thin plate \(a/h^* = 100 \).

Secondly, transient response is investigated with time step equal to 0.001s and use the fixed frequency \(\gamma = 523.599/s \) of applied heat flux. The suitable chosen product \(k_c(t) \) of coil constant and controlled gain values versus time \(t \) for \(R_n = 1 \), thick plate \(a/h^* = 5 \) and thin plate \(a/h^* = 100 \) at \(T = 653^\circ K \), as shown in Table 5. We find the more thin plate is easier to control the displacement with less values of \(k_c(t) \).

Fig. 5 shows the transient value \(W(a/2, b/2) \) (unit mm) versus time \(t \) of GDQ method for the laminated Terfenol-D FGM plate \(a/h^* = 5 \) and 100, respectively without shear effects. At time \(t = 0.001s \), there is a great amplitude value of displacement with uncontrolled value \((k_c(t) = 0) \), from \(W(a/2, b/2) = -0.156429 \) mm converges to small value for thick plate \(a/h^* = 5 \), from \(W(a/2, b/2) = -0.22975 \) mm converges to small value for thin plate \(a/h^* = 100 \). We find the amplitudes of \(W(a/2, b/2) \) with controlled \(k_c(t) \) values are smaller than the amplitudes of \(W(a/2, b/2) \) with uncontrolled value \((k_c(t) = 0) \), generally by using the GDQ method. We can use the suitable product values of controlled \(k_c(t) \) to reduce the amplitude of \(W(a/2, b/2) \) into a smaller value near 0.00.

Fig. 6 shows the transient value of the dominated dimensional stress \(\sigma_z \) (unit GPa) at center position of upper surface \(Z = 0.5h^* \) versus time for the laminated Terfenol-D FGM plate \(a/h^* = 5 \) and 100, respectively without shear effects \(\alpha_{xy} = 0 \) and \(\sigma_{xy} = 0 \). We find the transient values \(\sigma_z \) oscillate between -9.12E-04GPa and 9.12E-04GPa for \(a/h^* = 5 \) and 100. The transient values \(\sigma_z \) with controlled \(k_c(t) \) case are almost equal to the values with uncontrolled case \((k_c(t) = 0) \), generally by using the GDQ method.

Conclusions

The GDQ calculation provides a method to compute the controlled displacement and stress in the \((0^\circ / 0^\circ /0^\circ)\) ply Terfenol-D FGM plate subjected to thermal vibration and transient response of sinusoidal temperature without shear deformation effect. The computation provides the following results. (a) The suitable controlled product values of coil constant and control gain \(k_c(t) \) can be used to reduce the amplitude of center displacement \(W(a/2, b/2) \) into a smaller value near zero. (b) The amplitudes of stresses \(\sigma_z \) of plates are almost in the same values under the two cases: with and without \(k_c(t) \) values. (c) The values of non-dimensional displacement \(W(X, b/2, 6) \) are decreasing with \(a/h^* \) values increasing for square plate \(a/b = 1 \) under the two cases: with and without shear deformation effects. (d) The deflection values of center position versus \(a/h^* \) at \(t = 6 \) sec are investigated, which found that the value with
shear effect is much greater than the case of without shear effect for the thick plate \(a/h^* = 5 \), as well the deflections with and without shear effects are almost in the same values for the thin plate \(a/h^* = 100 \).

REFERENCES

\[w(a/2, b/2) \]
FIG. 2a $w(a/2,b/2)$ vs. t for $a/h^* = 5$

FIG. 2b $w(a/2,b/2)$ vs. t for $a/h^* = 20$

FIG. 2c $w(a/2,b/2)$ vs. t for $a/h^* = 100$

FIG. 3a σ_x vs. t for $a/h^* = 5$

FIG. 3b σ_x vs. t for $a/h^* = 20$

FIG. 3c σ_x vs. t for $a/h^* = 100$

FIG. 2 $w(a/2,b/2)$ vs. t for $a/h^* = 5, 20$ AND 100 WITHOUT SHEAR

FIG. 3 σ_x vs. t for $a/h^* = 5, 20$ AND 100 WITHOUT SHEAR
FIG. 4a $W(X, b/2, 6)$ vs. X for $a/h^* = 5$

FIG. 4b $W(X, b/2, 6)$ vs. X for $a/h^* = 20$

FIG. 4c $W(X, b/2, 6)$ vs. X for $a/h^* = 100$

FIG. 4d CENTER DEFLECTION vs. a/h^* AT $t=6$ sec
FIG. 4 COMPARED $W(X, b/2, 6)$ vs. X for $a/h^* = 5$, 20 AND 100

FIG. 5a TRANSIENT VALUE OF $w(a/2, b/2)$ vs. t FOR $a/h^* = 5$

FIG. 5b TRANSIENT VALUE OF $w(a/2, b/2)$ vs. t FOR $a/h^* = 100$

FIG. 5 TRANSIENT VALUE OF $w(a/2, b/2)$ vs. t FOR $a/h^* = 5$ AND 100 WITHOUT SHEAR
FIG. 6a TRANSIENT VALUE OF σ_x vs. t FOR $a/h^* = 5$

FIG. 6b TRANSIENT VALUE OF σ_x vs. t FOR $a/h^* = 100$

FIG. 6 TRANSIENT VALUE OF σ_x vs. t FOR $a/h^* = 5$ AND 100 WITHOUT SHEAR

<table>
<thead>
<tr>
<th>Materials</th>
<th>P_0</th>
<th>P_{-1}</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS304</td>
<td>$E_1 (P_a)$</td>
<td>201.04E09</td>
<td>0</td>
<td>3.079E-04</td>
<td>-6.534E-07</td>
</tr>
<tr>
<td></td>
<td>ν_1</td>
<td>0.3262</td>
<td>0</td>
<td>-2.002E-04</td>
<td>3.797E-07</td>
</tr>
<tr>
<td></td>
<td>$\rho_1 (Kg/m^3)$</td>
<td>8166</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\alpha_1 (°K^{-1})$</td>
<td>12.33E-06</td>
<td>0</td>
<td>8.086E-04</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\kappa_1 (W/m°K)$</td>
<td>15.379</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$C_{v1} (J/Kg°K)$</td>
<td>496.56</td>
<td>0</td>
<td>-1.151E-03</td>
<td>1.636E-06</td>
</tr>
<tr>
<td>Si$_3$N$_4$</td>
<td>$E_2 (P_a)$</td>
<td>348.43E09</td>
<td>0</td>
<td>-3.70E-04</td>
<td>2.16E-07</td>
</tr>
<tr>
<td></td>
<td>ν_2</td>
<td>0.24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\rho_2 (Kg/m^3)$</td>
<td>2370</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\alpha_2 (°K^{-1})$</td>
<td>5.8723E-06</td>
<td>0</td>
<td>9.095E-04</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\kappa_2 (W/m°K)$</td>
<td>13.723</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$C_{v2} (J/Kg°K)$</td>
<td>555.11</td>
<td>0</td>
<td>1.016E-03</td>
<td>2.92E-07</td>
</tr>
</tbody>
</table>
TABLE 1 DYNAMIC CONVERGENCE OF TERFENOL-D FGM PLATE WITHOUT SHEAR

<table>
<thead>
<tr>
<th>a/h</th>
<th>$N \times M$</th>
<th>$w(a/2, b/2)$ (unit mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$a/b = 0.5$</td>
</tr>
<tr>
<td>100</td>
<td>17 x 17</td>
<td>$0.634165E-04$</td>
</tr>
<tr>
<td></td>
<td>21 x 21</td>
<td>$0.563600E-04$</td>
</tr>
<tr>
<td></td>
<td>25 x 25</td>
<td>$0.518107E-04$</td>
</tr>
<tr>
<td></td>
<td>29 x 29</td>
<td>$0.494592E-04$</td>
</tr>
<tr>
<td></td>
<td>33 x 33</td>
<td>$0.483320E-04$</td>
</tr>
<tr>
<td>50</td>
<td>17 x 17</td>
<td>$0.202713E-03$</td>
</tr>
<tr>
<td></td>
<td>21 x 21</td>
<td>$0.191526E-03$</td>
</tr>
<tr>
<td></td>
<td>25 x 25</td>
<td>$0.187638E-03$</td>
</tr>
<tr>
<td></td>
<td>29 x 29</td>
<td>$0.186286E-03$</td>
</tr>
<tr>
<td></td>
<td>33 x 33</td>
<td>$0.186190E-03$</td>
</tr>
<tr>
<td>20</td>
<td>17 x 17</td>
<td>$0.999116E-03$</td>
</tr>
<tr>
<td></td>
<td>21 x 21</td>
<td>$0.987938E-03$</td>
</tr>
<tr>
<td></td>
<td>25 x 25</td>
<td>$0.981546E-03$</td>
</tr>
<tr>
<td></td>
<td>29 x 29</td>
<td>$0.990436E-03$</td>
</tr>
<tr>
<td></td>
<td>33 x 33</td>
<td>$0.990760E-03$</td>
</tr>
<tr>
<td>10</td>
<td>17 x 17</td>
<td>$0.214265E-02$</td>
</tr>
<tr>
<td></td>
<td>21 x 21</td>
<td>$0.241384E-02$</td>
</tr>
<tr>
<td></td>
<td>25 x 25</td>
<td>$0.241515E-02$</td>
</tr>
<tr>
<td></td>
<td>29 x 29</td>
<td>$0.241165E-02$</td>
</tr>
<tr>
<td></td>
<td>33 x 33</td>
<td>$0.240542E-02$</td>
</tr>
<tr>
<td>5</td>
<td>17 x 17</td>
<td>$0.340208E-02$</td>
</tr>
<tr>
<td></td>
<td>21 x 21</td>
<td>$0.340130E-02$</td>
</tr>
<tr>
<td></td>
<td>25 x 25</td>
<td>$0.340583E-02$</td>
</tr>
<tr>
<td></td>
<td>29 x 29</td>
<td>$0.340369E-02$</td>
</tr>
<tr>
<td></td>
<td>33 x 33</td>
<td>$0.339761E-02$</td>
</tr>
</tbody>
</table>

TABLE 2 Y AND ω_{11} OF TERFENOL-D FGM PLATE WITHOUT SHEAR

<table>
<thead>
<tr>
<th>a/h</th>
<th>$t = 0.001$ s</th>
<th>$t = 1$ s</th>
<th>$t = 2$ s</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>523.599</td>
<td>$0.569829E02$</td>
<td>1.57800</td>
</tr>
<tr>
<td>20</td>
<td>523.599</td>
<td>$0.567729E02$</td>
<td>1.57800</td>
</tr>
<tr>
<td>5</td>
<td>523.599</td>
<td>$0.196036E01$</td>
<td>1.57800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a/h</th>
<th>$t = 3$ s</th>
<th>$t = 4$ s</th>
<th>$t = 5$ s</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.523599</td>
<td>$0.569830E02$</td>
<td>0.392699</td>
</tr>
<tr>
<td>20</td>
<td>0.523599</td>
<td>$0.567730E02$</td>
<td>0.392699</td>
</tr>
<tr>
<td>5</td>
<td>0.523599</td>
<td>$0.538112E02$</td>
<td>0.392701</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a/h</th>
<th>$t = 6$ s</th>
<th>$t = 7$ s</th>
<th>$t = 8$ s</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.261799</td>
<td>$0.569830E02$</td>
<td>0.224400</td>
</tr>
<tr>
<td>20</td>
<td>0.261799</td>
<td>$0.567730E02$</td>
<td>0.224400</td>
</tr>
<tr>
<td>5</td>
<td>0.261800</td>
<td>$0.538113E02$</td>
<td>0.224401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a/h</th>
<th>$t = 9$ s</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.174532</td>
</tr>
<tr>
<td>20</td>
<td>0.174532</td>
</tr>
<tr>
<td>5</td>
<td>0.174534</td>
</tr>
<tr>
<td>a/h^*</td>
<td>$k_c(t)$</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>$t = 0.001$</td>
<td>$t = 0.1$</td>
</tr>
<tr>
<td>5</td>
<td>-10^9</td>
</tr>
<tr>
<td></td>
<td>10^9</td>
</tr>
<tr>
<td>20</td>
<td>10^6</td>
</tr>
<tr>
<td></td>
<td>10^9</td>
</tr>
<tr>
<td>100</td>
<td>10^7</td>
</tr>
<tr>
<td></td>
<td>$t = 5.5$ to 7.5</td>
</tr>
</tbody>
</table>