Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
Properties of Soils and Tree Wood Tissue Across a Lake States Sulfate Deposition Gradient

Lewis F. Ohmann and David F. Grigal
Contents

Methods .. 1
Plot Selection ... 1
Field Sampling ... 2
Laboratory Analyses .. 3
Atmospheric Deposition ... 5
Statistical Analyses ... 5
Results and Discussion ... 6
Sulfate Deposition .. 6
Total Mean-Weighted Soil ... 6
Forest Floor ... 6
Mineral Soil (0 to 25 cm depth) ... 7
Mineral Soil (25 to 100 cm depth) .. 7
Tree Wood Tissue .. 7
Acknowledgments .. 8
Literature Cited .. 8
Tables ... 10
Properties of Soils and Tree Wood Tissue Across a Lake States Sulfate Deposition Gradient

Lewis F. Ohmann and David F. Grigal

There is general concern that atmospheric pollutants may be affecting the health of forests in the USA (Barnard 1986). In response to that concern, in 1985 we began a program of research on the relations between forest condition and atmospheric deposition across the Great Lakes region. Because widespread forest damage or decline is not visibly evident in this region, the research was aimed at detecting subtle regional trends related to acidic deposition in general and to sulfate deposition in particular. The hypotheses tested were that the wet sulfate deposition gradient across the Lake States (Harris and Verry 1985, Verry and Harris 1988): (1) is reflected in the amount of accumulated sulfur in the forest floor-soil system and tree woody tissue and (2) is related to differences in tree radial increment. We also hypothesized that these relations can be distinguished from those related to site and climatic variation across the region (Ohmann et al. 1987, 1988; Holdaway 1989; Shifley 1988; David et al. 1988; Grigal and Ohmann 1989; Ohmann and Grigal 1990).

An earlier report (Ohmann et al. 1989) detailed the physical characteristics of 171 study plots that were established across the acidic deposition gradient to test the general hypotheses. That report included particle-size analyses of soils by zone and forest type and may be useful in interpreting some of the soil chemical data in this bulletin. Here we present the properties of the soil and tree woody tissue (mostly chemical) on the study plots. Knowledge of the properties of soil and woody tree tissue is needed for understanding and interpreting relations between sulfate deposition, sulfur accumulation in the ecosystem, soil and tree chemistry, and tree growth and climatic variation. This report provides a summary of those data for study, analysis, and interpretation.

METHODS

Plot Selection

The data were collected across the forested portions of Minnesota, Wisconsin, and Michigan. Plot selection has been documented in detail (David et al. 1988, Grigal and Ohmann 1989). Briefly, a stratified random sample of 171 USDA Forest Service inventory plots within the three States was selected (fig. 1). The sample was stratified to balance the plots geographically and among five forest types: balsam fir (Abies balsamea (L.) Mill.) (n=26), northern hardwoods dominated by sugar maple (Acer saccharum Marsh.) (n=41), jack pine (Pinus banksiana Lamb.) (n=39), red pine (Pinus resinosa Alt.) (n=27), and aspen (Populus tremuloides Michx.) (n=38). Although 171 plots were sampled, two balsam fir plots were dropped from most of the analyses because high organic content of the soils indicated that they did not meet the plot selection criterion of being located on well-drained upland mineral soil. In most cases, data from those two plots were outliers. The sampled plots occurred on a variety of landforms; about one-fourth were on soil mapping units dominated by Alfisols, one-fourth on Entisols, one-fourth on Spodosols, one-sixth on Inceptisols, and one-tenth on other soil orders or on unmapped soils (Ohmann et al. 1989).
Forest Service inventory plots are clusters of 10 subplots arranged in roughly an elliptic configuration; measured (tally) trees are selected with a probability proportional to their size (Doman et al. 1981). Total area of the 10 subplots is about 0.4 ha. At every other subplot (total = 5), we selected a dominant or codominant (non-tally) tree of the most prevalent species on the plot and used it to define a location for soil and tree wood tissue sampling.

Field Sampling

One forest floor sample was collected at 1.5 m from the selected trees at each of three azimuths—45°, 135°, and 225°. At each location, a stainless steel ring (12 cm diameter) was forced through the forest floor, and the forest floor thickness was measured (to 5 mm) at four points within the ring. All organic material was collected down to the mineral soil surface. This sample therefore included all O horizons, as well as sticks and roots within those horizons. In mull humus types, the forest floor was nearly exclusively the Oi horizon; in mor types, it contained Oi, Oe, and Oa horizons. The collected material was placed in Whirl-pak\(^1\) plastic bags, cooled immediately, and frozen in the laboratory (usually within 48 hours).

Because this study was an extensive survey of many sites rather than an intensive study of a few sites, we sampled mineral soils by uniform depth increments rather than by description.

\(^1\) Use of trade names does not constitute endorsement of the product by the USDA, Forest Service.
and sampling of pedogenic horizons exposed in excavated pits. The only data available that provides information on soil morphology are the descriptions of the soil mapping units upon which each plot fell and the description of the major soils in those mapping units (see Ohmann et al. 1989). Our rationale for this approach to soil sampling was based on four reasons: (1) We used a bucket auger to sample soils because of the plot sampling design that included a large number of soil samples on each plot to capture soil property variation. Excavating the equivalent number of pits would have been too costly and time consuming. The auger significantly disturbs the soil morphology, making separation of pedogenic horizons difficult. (2) Several crews were used for sampling, raising a concern that soil descriptions would not be uniform among crews. Differences in resulting descriptions and sample analysis results could have been attributed to a "lumper" versus "splitter" approach to soil description and sampling, with the possibility that one crew would recognize many more soil horizons than another. (3) Budgeting required a good estimate of the number of samples to be analyzed, and we developed our budget and laboratory capability in anticipation of that number. Because of the variety of soils that occur across the gradient and the potential variation in personnel as described above, sampling by pedogenic horizon would have yielded an unknown number of samples. (4) A major objective of the study was an inventory of the total amount of sulfur and other elements in the soil. This objective necessitates analysis of all soil horizons. Some horizons are very thin or discontinuous. In sampling by pedogenic horizon, samples from such horizons are very often either not collected or they are added to a sample from the horizon above or below. Either the omission of a sample or bulking violates the concept of analysis by pedogenic horizon.

At each point where forest floor samples were collected, the upper 25 cm of mineral soil was sampled with a bucket auger. Depending on the morphology of the soil, this sample may have included material from A, E, and even the upper B horizons. Each sample was thoroughly mixed on a polyethylene sheet using a plastic spatula; and a quartered subsample of the original sample, or around 500 g, was placed in a Whirl-pak plastic bag, cooled, transported, and frozen as with the forest floor samples.

At one of the forest floor sample locations at three randomly selected sample trees, augering was continued to 1 meter, and samples were collected from the 26 to 50 cm, 51 to 75 cm, and 76 to 100 cm depths. These samples were composited in the field to yield one sample for each 25 cm depth from each inventory plot. These samples were treated in the same way as the surface mineral soil samples.

Mineral soil bulk density was sampled using the irregular-hole method (Howard and Singer 1981) at 1.5 m from each sample tree at a 315° azimuth. Forest floor was removed from the surface and two determinations of bulk density were made, one of the upper 12.5 cm of soil and the second of the 12.6 to 25 cm depth. Excavated samples were treated in the same way as the other mineral soil samples.

Increment core samples were collected from each sample tree to measure radial growth increment and to determine chemical concentration in woody tissues. The dominant or codominant (non-tally) tree that was selected was required to have a diameter at breast height within 2.5 cm of the current plot mean diameter and to be representative of the topographic position of the plot. At least nine cores from each sample tree (a minimum of 45 cores per plot) were collected with a stainless-steel or teflon-coated increment borer at breast height to determine nitrogen (three cores), sulfur (three cores), and other elements (three cores). The cores included a minimum of 30 years of annual growth rings. Cores were placed in plastic straws labeled by tree and stand, and were kept frozen until processed.

Laboratory Analyses

Soils

After thawing in the laboratory, the three forest floor samples associated with each tree were bulked and macerated in a commercial stainless-steel food processor to < 5 mm. This procedure also homogenized the sample. One
subsampl was removed, oven-dried (75°C), and ground to pass a 40-mesh screen, using a stainless-steel Wiley mill; another was kept moist at 4°C.

When thawed, the three mineral soil samples associated with each sample tree were also bulked and sieved while moist through a 3-mm sieve. We used a 3-mm sieve to separate fine earth because we were sieving field-moist samples. Most soil analyses are based on a fine-earth fraction less than 2 mm in diameter. Our exploratory work demonstrated that it would be difficult to pass moist fine-textured material through a 2-mm sieve because of the presence of structural peds. In evaluating the difference between analytical results based on a 3-mm definition versus a 2-mm definition of fine-earth, the critical question is the amount of material that falls in the narrow size range of 2 to 3 mm. Material in this range would be slightly larger than material defined as very coarse sand (1 to 2 mm). This class of large material contributes virtually nothing to either soil chemical properties (i.e., it has very low cation exchange capacity, nitrogen, etc.) or to hydraulic properties. It primarily acts as a diluant of the traditionally defined fine-earth fraction.

Three approaches can be used to estimate the material present in the size range of 2 to 3 mm. First, the amount of material in the very coarse sand size class may provide a maximum limit for the material from 2 to 3 mm. The Soil Survey Laboratory data base at the University of Minnesota contains records of 20,300 soil samples collected throughout the State. Less than 4 percent of the samples contained more than 10 percent very coarse sand. Of the 14,800 samples in which very coarse sand was measured, the average amount found was 2.7 percent.

Second, the amount of material in the samples that is larger than 3 mm can be examined. In the samples that we collected along the gradient, we weighed the mass of rock greater than 3 mm (up to around 20 mm); that material averaged 3.7 percent by weight. The fraction of material from 2 to 3 mm would likely be much less than the 3.7 percent that was larger than that size class.

Third, we have limited data on the actual amount of the soil material in the range of 2 to 3 mm. In a random subset of our samples (n=20), ranging from 43 to 92 percent sand with a mean of 69 percent, the average amount in the 2 to 3 mm size range was 0.8 percent by weight. About one-third of those samples had more than 1 percent in the 2 to 3 mm size class, and the maximum was 2.5 percent.

All three approaches indicate that the difference between the traditional definition of fine earth as material less than 2 mm compared to our definition of less than 3 mm is on the order of 1 percent by weight. Based on that reasoning, dilution would reduce the values that we have determined for chemical and physical properties by around 1 percent compared to values that would be based on the traditional definition of fine earth. Although this is a systematic bias, it is much less than the spatial variation in soil properties that occurs within a forest stand (Grigal et al. In press).

After sieving, soils were mixed by quartering and a subsample was oven-dried (105°C) and ground to pass a 40-mesh screen; the moist remainder was retained at 4°C. The oven-dried samples were used for analysis of nitrogen (N), sulfur (S), carbon (C), loss on ignition (LOI) (David et al. 1988), and total elemental analysis of the forest floor (Grigal and Ohmann 1989). The moist samples were used for analyses of exchangeable calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), exchangeable acidity (Ac), cation exchange capacity (CEC), and pH. In all cases, results were adjusted to an oven-dry weight basis with moisture data from dried subsamples.

The samples of both forest floor and surface mineral soil were analyzed for total S using a LECO SC-132 automated analyzer, for total N by semi-micro Kjeldahl, for LOI by ashing at 450°C, and for total C on 20 percent of the samples using a LECO CR-12 analyzer (David et al. 1988). Exchangeable cations were extracted using 1 M NH₄NO₃, and Ca, Mg, K, and Na were determined by atomic absorption spectroscopy. Exchangeable acidity was determined by titration (Stuanes et al. 1984). Solution concentrations were converted to soil concentrations. Determination of pH was in 0.01 M CaCl₂ with a
dry weight soil:volume of solution ratio of approximately 1:2 for mineral soil samples and 1:10 for forest floor samples. Coefficients of variation for soil sample data have been reported in Grigal et al. (In press).

Excavated mineral soil samples for bulk density were dried at 105°C, weighed, and sieved through a 2-mm sieve; dry weight of material greater than 2 mm (rock) was determined; and sample volume was corrected for rock by assuming rock density as 2.6 Mg m\(^{-3}\). After computing the bulk density of fine earth from the corrected weight and volume, we computed a mass-weighted mean density at each sample tree from the densities of the two increments (Grigal et al. 1989).

We calculated a mass per unit area of S, C, N, and exchangeable Ca, Mg, K, and Na, for forest floor and mineral soil from bulk density, concentration, and thickness data (corrected for volume of stone) for both layers. Values for both layers were summed and divided by total mass of those layers to arrive at a mass-weighted mean concentration for each plot.

Wood tissue

The tree cores were thawed, and the 1956-1985 growth was divided into three 10-year growth periods. Length of each increment was measured; and then increments were grouped with others of the same growth period from each tree (i.e., all 1956-1965 segments aggregated), and oven-dried at 65°C.

We analyzed for total S by inductively coupled plasma atomic emission spectrometry (ICP-ARL model 34000), using a digestion procedure originally adapted from Johnson and Ulrich (1959); and we analyzed for nitrogen (N) by semi-micro Kjeldahl (Ohmann and Grigal 1990).

Wood tissue samples were analyzed for total elemental concentration by ashing (around 1 g) overnight in a muffle furnace at 485°C. After cooling, ash weight was determined and recorded. Five milliliters of 2 M HCl was added to the ash, and the crucibles were covered and placed on a hot-plate at near-boiling of the acidic solution for 30 minutes. Acid was added to the solutions in the crucibles after cooling, to restore them to original weight. An additional 5 mL of HCl was then added, and the covered crucibles were allowed to stand overnight. Solutions were then transferred to tubes for analysis of Al, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, and Zn by inductively coupled plasma atomic emission spectrometry (ICP, ARL model 137). We evaluated our analytical accuracy by comparing results of samples from the National Bureau of Standards (NBS). We evaluated our precision by both carrying a standard check sample of wood tissue through the analytical procedure with every batch of samples and by analyzing duplicate samples.

Atmospheric Deposition

Mean annual precipitation was estimated for each plot from 30-year normal precipitation data (1951-1980) for the nearest weather station. Wet sulfate concentration for each plot was estimated by using an equation relating sulfate concentrations from the 1983 National Atmospheric Deposition Program (NADP) to latitude and longitude (Shifley 1988). The year 1983 was chosen for analysis because a complete set of data for wet deposition was available for that year. Although deposition differs from year to year, west-east trends were similar in other years for which partial data were available (Shifley 1988). Plot-specific deposition was considered to be the product of the estimated precipitation and concentration (David et al. 1988).

Statistical Analyses

For all statistical analyses reported in this bulletin, plot means were calculated for forest floor, mineral soil layers, and 10-year growth increments of wood tissue for each element measured. Analysis of variance (ANOVA) was used to test means among zones and forest types, and for each forest type among zones across the gradient. Where ANOVA P values were <0.10, least significant difference at the 0.95 percent probability level was used to test for differences among means.
RESULTS AND DISCUSSION

Sulfate Deposition

Estimated atmospheric wet sulfate deposition increased consistently from west to east (zone 1 = 7.5, zone 2 = 10.0, zone 3 = 11.8, zone 4 = 16.3, and zone 5 = 18.3 kg ha\(^{-1}\) year\(^{-1}\)). The difference among zones in sulfate deposition was highly significant (F = 354.5, df = 4,168) with a Bayes Least Significant Difference among means of 0.5 kg ha\(^{-1}\) year\(^{-1}\) (Ohmann and Grigal 1990).

Total Mean-Weighted Soil

Tables 1.1, 1.2, and 2.1 detail the properties of the forest floor and the 0 to 25 cm mineral soil combined on a mean-weighted basis across the sulfate deposition gradient. Base saturation, pH, cation exchange capacity, and exchangeable Ca, Mg, and K all decreased significantly from west to east across the gradient. The other properties—C, N, S, loss-on-ignition, and exchangeable Na—did not show any general pattern related to the gradient, although some of the differences among the zones are statistically significant (table 1.1). All the measured properties exhibit a significant difference among the five forest types (table 1.2). In general, mean values are lower for the soils of two of the conifer forest types, jack pine and red pine, than for the soils of the two deciduous forest types, sugar maple and aspen. For most properties, the mean soil values for the balsam fir type are more similar to those for the aspen type than to those for the conifer types; and in some cases, the balsam fir soil values exceed those for the deciduous types, for example, C, N, and S (table 1.2). Balsam fir forest type soil particle size distribution was also reported to be more similar to the deciduous than to the conifer forest types (Ohmann et al. 1989). When the properties are tested by individual forest types, there are many fewer statistically significant differences among the zones. This is probably due to the reduced number of observations for each forest type in each zone. In general, the two forest types with the most observations, sugar maple and jack pine, also show the largest number of significant differences among zones (table 2.1). The trend of magnitude of most soil properties decreasing from west to east across the zones of the deposition gradient is also evident when the data are presented by individual forest type, even where the differences among zones are not statistically significant. Differences in soil properties among naturally occurring forest types are also obvious (table 2.1); such differences are not always recognized by those less familiar with forest soils.

Forest Floor

Tables 3.1, 3.2, 4.1, 5.1, 5.2, and 6.1 detail the forest floor as a single unit. All but one of the measured forest floor properties are significantly different among zones across the gradient (table 3.1). Most of the values decrease from west to east across the gradient: base saturation, pH, cation exchange capacity, exchangeable Ca, Mg, and K. A few show a bimodal trend, either higher (bulk density) or lower (LOI and N) values in the middle zone of the gradient. Sulfur shows a higher value only in zone five on the eastern end of the gradient (table 3.1). All the measured forest floor properties are significantly different among forest types, and the relationships among the data (table 3.2) are similar to those discussed previously for the weighted data. More of the values for individual forest types are significantly different among zones for the forest floor alone (table 4.1) than were significant for the total mean-weighted forest floor plus upper mineral soil; the trend of a decrease in magnitude of forest floor values from west to east across the deposition gradient is similar to those in table 2.1. Total elemental concentrations, except for Cd, Cu, and Zn, are all significantly different among zones across the gradient (table 5.1) and among forest types (table 5.2). The pattern of distribution of the elemental concentrations in relation to the sulfate deposition gradient has been described and interpreted by Grigal and Ohmann (1989). Based on results from other studies on the association of aluminum with soil acidification processes, one might expect to find forest floor elemental Al concentrations to increase with sulfate deposition across the zones of the gradient. The trend in our data is the opposite, one of decreasing Al concentrations from west to east for all five forest types (tables 5.1 and 6.1). Some metals—Cd and Pb—did generally increase across the gradient for most forest...
types; others did not—Cr, Fe, Mn, Ni, and Zn (table 6.1). The concentration of major elemental nutrients in the forest floor generally decreased from west to east across the gradient for each forest type (table 6.1) as described for the general case of all five forest types (table 5.1) by Grigal and Ohmann (1989).

The high base saturation values for the forest floor and for forest floor - mineral soil combined require additional comment. High base saturation but relatively low pH in the forest floor is indicative of the nature of the exchangeable acidity in that layer. In mineral soils, most of the exchange acidity is in the form of exchangeable aluminum; but in the forest floor, it is almost exclusively associated with the hydrogen ion. In addition, we used the effective (neutral salt) cation exchange capacity (CEC) to calculate base saturation. This yields much lower CEC than do buffered methods, especially in the high-organic forest floor. In our data, as forest floor pH approaches 6.2 (in 0.01 M CaCl₂), exchangeable acidity is at the detection limit and base saturation is 100 percent. Although not presented in this report, pH of the forest floor in water is about 0.6 units higher than that in calcium chloride; values of 100 percent base saturation are therefore near pH 7.

Mineral soil (0 to 25 cm depth)

Properties of only the upper mineral soil are shown in tables 7.1, 7.2, and 8.1. Differences in mineral soil among zones across the gradient are less frequently statistically significant than either those for the forest floor or those for the total mean-weighted forest floor and upper mineral soil combined; however, the trends across the gradient are similar (table 7.1). The differences in mineral soil properties among forest types are consistent with the patterns for forest floor and the mean-weighted forest floor plus upper mineral soil (tables 7.2 and 8.1).

Mineral soil (25 to 100 cm depth)

Properties of the deeper mineral soil are presented by 25 cm depths to 100 cm in tables 9 through 14. The patterns among zones across the deposition gradient, among forest types, and among individual types across the gradient as described for the forest floor and the surface mineral soil are consistently repeated for depths to 100 cm (tables 9 through 14). Changes occur with depth as expected; for example, base saturation, pH, cation exchange capacity, and exchangeable base cations increase and exchangeable acidity decreases with depth, and the changes with depth are consistent among the zones across the gradient.

Tree wood tissue

Tables 15 through 18 show the growth, ash content, and elemental concentrations for three 10-year increments of wood tissue, 1976-1985, 1966-1975, and 1956-1965 by forest type across the zones of the sulfate deposition gradient. Length of the growth increment and its ash content are not significantly different among zones across the gradient (tables 15.1, 16.1, and 17.1), but are significantly different among forest types (tables 15.2, 16.2, and 17.2). Both are also different among growth periods (shown in table 18, but not tested statistically). Many of the differences in elemental concentrations are significant across the zones of the gradient, but the trends often show little pattern (Al, Cr, Fe, Ni, Na). A few elements do show a trend; for example, Mn concentrations increase and N and P concentrations decrease across the gradient. There is also a pattern of increase in concentration of some elements from the outer (most recent) growth increment to the oldest inner increment (Ca, Mg, and Mn) and a decrease in others (P, Na, Ni). These patterns are most evident in table 18, where means are displayed for each increment by each forest type across the zones of the gradient. This pattern has also been reported by Tendel and Wolf (1988), using four decades of pine wood tissue. They described one group of elements that decreased in concentration from older to younger wood (Ca, Mg, Mn, Zn, Al, Pb, and Cd) and a second group that increased in concentration (K, P, S, Fe, Cu, and N). They attributed the changes in concentrations to increased deposition of certain elements and the progressive leaching of other elements by sulfur-dioxide, although “natural” elemental translocation within woody tissue should not be disregarded (Kohno et al. 1988, Lovestam et al. 1990). In our study, for those elements reported by Tendel and Wolf (1988) to decrease in
concentration from older to younger wood, only Al and Pb do not follow the pattern; their concentrations are opposite in direction. For elements reported to increase in concentration from older to younger wood, only K follows the opposite pattern. When we consider concentrations only within pine, Al and Pb still do not conform to the pattern described by Tendel and Wolf (1988), but K does conform to the pattern. The failure of concentrations of Al and Pb in our study to conform to the patterns found in pine wood in Germany may be due to the differences in cumulative acid sulfate influence in the two countries.

Ratios of elements can also be examined in tree wood tissue. Patterns of ratios can be enlightening. For example, Ohmann and Grigal (1990) showed an association of S to N molar ratios in the most recent decade of wood tissue with that of S to N ratios in the soil and of sulfate deposition as represented by the zones across the gradient. Elemental ratios can also be examined by way of the Diagnosis and Recommendation Integrated System (DRIS) (Beaufils 1973). Although designed to develop indices of plant nutritional status from foliar nutrient analyses in agronomic applications, this system has been used in forestry applications (Rüters 1990). DRIS was used to describe the variation of 12 elements in tree wood tissue of the five species in this study (Rüters et al. in press). It indicated that the older wood of most species was relatively depleted of N, P, K, S, Fe, Cu, and Al; and relatively enriched in Ca, Mg, Mn, B, and Zn. Sulfur in the older wood was relatively less depleted from west to east across the deposition gradient; the trend was most apparent for hardwood species (Rüters et al. in press).

ACKNOWLEDGMENTS

Funding was provided by the USDA Forest Service Forest Response Program, National Vegetation Survey, under the National Acid Precipitation Assessment Program, and by the Minnesota Agriculture Experiment Station under project 25-54. This paper is published as No. 18731 of the scientific journal series of that station. We thank the many people who assisted in the sample collection and in the many chemical analyses.

LITERATURE CITED

Table 1.1.—Properties of the total mean-weighted forest floor and upper mineral soil of 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>F</th>
<th>P</th>
<th>MSE<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAT</td>
<td>94 a<sup>4</sup></td>
<td>85 a</td>
<td>74 b</td>
<td>55 c</td>
<td>66 b</td>
<td>19.8</td>
<td>0.00</td>
<td>1.460</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(31)</td>
<td>(39)</td>
<td>(41)</td>
<td>(34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>21 a</td>
<td>26 ab</td>
<td>30 b</td>
<td>22 a</td>
<td>25 ab</td>
<td>2.4</td>
<td>0.05</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
<td>(39)</td>
<td>(42)</td>
<td>(34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC</td>
<td>10.0 a</td>
<td>8.9 ab</td>
<td>6.9 bc</td>
<td>5.8 c</td>
<td>6.2 c</td>
<td>3.5</td>
<td>0.01</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
<td>(39)</td>
<td>(41)</td>
<td>(34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>8.0 a</td>
<td>6.1 ab</td>
<td>4.2 bc</td>
<td>2.8 c</td>
<td>4.3 bc</td>
<td>6.5</td>
<td>0.00</td>
<td>0.327</td>
</tr>
<tr>
<td>Mg</td>
<td>1.3 ab</td>
<td>1.4 a</td>
<td>1.1 ab</td>
<td>0.7 b</td>
<td>0.9 ab</td>
<td>2.2</td>
<td>0.07</td>
<td>0.095</td>
</tr>
<tr>
<td>K</td>
<td>.31 a</td>
<td>.28 ab</td>
<td>.23 b</td>
<td>.16 c</td>
<td>.11 c</td>
<td>11.1</td>
<td>0.00</td>
<td>0.010</td>
</tr>
<tr>
<td>Na</td>
<td>.03</td>
<td>.06</td>
<td>.06</td>
<td>.04</td>
<td>.05</td>
<td>1.4</td>
<td>0.23</td>
<td>0.004</td>
</tr>
<tr>
<td>LOI</td>
<td>40 a</td>
<td>48 ab</td>
<td>54 b</td>
<td>42 a</td>
<td>46 ab</td>
<td>2.2</td>
<td>0.07</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
<td>(39)</td>
<td>(42)</td>
<td>(34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.1</td>
<td>1.1</td>
<td>1.9</td>
<td>0.11</td>
<td>0.005</td>
</tr>
<tr>
<td>pH</td>
<td>5.5 a</td>
<td>4.8 b</td>
<td>4.5 c</td>
<td>4.4 c</td>
<td>4.7 bc</td>
<td>12.6</td>
<td>0.00</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
<td>(39)</td>
<td>(40)</td>
<td>(34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>.16</td>
<td>.17</td>
<td>.18</td>
<td>.16</td>
<td>.17</td>
<td>.7</td>
<td>.59</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
<td>(39)</td>
<td>(42)</td>
<td>(34)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity (Ac + Ca + Mg + K + Na), and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); LOI = loss on ignition, carbon, nitrogen, sulfur (g kg⁻¹); pH in 0.01 M CaCl₂.

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

³ ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 1.2.—Properties of the total mean-weighted forest floor and upper mineral soil of 169 plots by forest type across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property<sup>1</sup></th>
<th>Forest Type<sup>2</sup></th>
<th>Anova<sup>3</sup></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
<td>Jp</td>
<td>Rp</td>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>BSAT</td>
<td>76 a<sup>4</sup></td>
<td>79 a</td>
<td>63 b</td>
<td>61 b</td>
<td>81 a</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(39)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>45 a</td>
<td>28 b</td>
<td>16 c</td>
<td>15 c</td>
<td>26 b</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>CEC</td>
<td>11.2 a</td>
<td>8.5 b</td>
<td>3.5 c</td>
<td>3.1 c</td>
<td>10.3 ab</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(40)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>6.9 a</td>
<td>6.0 a</td>
<td>1.9 b</td>
<td>1.6 b</td>
<td>7.1 a</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(40)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>2.0 a</td>
<td>1.0 b</td>
<td>.4 c</td>
<td>.3 c</td>
<td>1.7 a</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>.25 a</td>
<td>.26 a</td>
<td>.12 b</td>
<td>.11 b</td>
<td>.29 a</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>.07 a</td>
<td>.04 b</td>
<td>.04 b</td>
<td>.04 b</td>
<td>.06 a</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>32 a</td>
<td>52 b</td>
<td>29 c</td>
<td>28 c</td>
<td>50 b</td>
<td>25.7</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2.0 a</td>
<td>1.5 b</td>
<td>.7 c</td>
<td>.7 c</td>
<td>1.5 b</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.8 a</td>
<td>4.9 a</td>
<td>4.4 b</td>
<td>4.4 b</td>
<td>5.0 a</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(40)</td>
<td>(39)</td>
<td>(27)</td>
<td>(37)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>.25 a</td>
<td>.20 b</td>
<td>.10 c</td>
<td>.10 c</td>
<td>.19 b</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
</tbody>
</table>

¹ BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity (Ac + Ca + Mg + K + Na), and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); LOI = loss on ignition, carbon, nitrogen, sulfur (g kg⁻¹); pH in 0.01 M CaCl₂.
³ ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 2.1.—Properties of the total mean-weighted forest floor and upper mineral soil of five forest types across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone<sup>1</sup></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Anova<sup>2</sup></th>
<th>F</th>
<th>P</th>
<th>MSE<sup>0.8</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Saturation (percent)<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td>77</td>
<td>66</td>
<td>70</td>
<td>71</td>
<td>97</td>
<td></td>
<td>2.1</td>
<td>0.12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>99 a<sup>4</sup></td>
<td>92 ab</td>
<td>81 bc</td>
<td>55 d</td>
<td>73 c</td>
<td></td>
<td>11.0</td>
<td>.00</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>91 a</td>
<td>80 ab</td>
<td>70 b</td>
<td>41 c</td>
<td>34 c</td>
<td></td>
<td>22.9</td>
<td>.00</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>—</td>
<td>80</td>
<td>61</td>
<td>52</td>
<td>61</td>
<td></td>
<td>1.2</td>
<td>.32</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>96 a</td>
<td>96 a</td>
<td>85 a</td>
<td>55 b</td>
<td>80 a</td>
<td></td>
<td>8.4</td>
<td>.00</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td></td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon (g kg<sup>-1</sup>)</td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td>19</td>
<td>35</td>
<td>60</td>
<td>32</td>
<td>61</td>
<td></td>
<td>2.2</td>
<td>.11</td>
<td>0.491</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>24 a</td>
<td>29 a</td>
<td>42 b</td>
<td>24 a</td>
<td>20 a</td>
<td></td>
<td>4.0</td>
<td>.01</td>
<td>.182</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>19 ab</td>
<td>21 a</td>
<td>11 c</td>
<td>13 c</td>
<td>15 bc</td>
<td></td>
<td>5.0</td>
<td>.00</td>
<td>.081</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>—</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td></td>
<td>.8</td>
<td>.50</td>
<td>.078</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>21</td>
<td>29</td>
<td>29</td>
<td>24</td>
<td>28</td>
<td></td>
<td>1.0</td>
<td>.44</td>
<td>.145</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td></td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cation Exchange Capacity (cmol(+ kg<sup>-1</sup>)<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td>5.0</td>
<td>11.5</td>
<td>10.6</td>
<td>8.6</td>
<td>17.2</td>
<td></td>
<td>1.4</td>
<td>.27</td>
<td>1.436</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>14.1 a</td>
<td>9.1 b</td>
<td>9.0 bc</td>
<td>6.6 bc</td>
<td>4.6 c</td>
<td></td>
<td>4.9</td>
<td>.00</td>
<td>.698</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>5.4 a</td>
<td>5.1 a</td>
<td>2.8 b</td>
<td>2.3 b</td>
<td>2.0 b</td>
<td></td>
<td>13.8</td>
<td>.00</td>
<td>.194</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>—</td>
<td>3.7</td>
<td>2.9</td>
<td>3.6</td>
<td>2.4</td>
<td></td>
<td>1.2</td>
<td>.34</td>
<td>.265</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>12.2</td>
<td>13.2</td>
<td>9.9</td>
<td>7.6</td>
<td>9.1</td>
<td></td>
<td>.7</td>
<td>.59</td>
<td>1.241</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td></td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Calcium (cmol(+ kg<sup>-1</sup>))</td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td>3.0</td>
<td>5.8</td>
<td>5.8</td>
<td>5.0</td>
<td>13.0</td>
<td></td>
<td>2.1</td>
<td>.12</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>10.9 a</td>
<td>7.0 b</td>
<td>6.2 bc</td>
<td>2.7 c</td>
<td>3.2 c</td>
<td></td>
<td>6.5</td>
<td>.00</td>
<td>.578</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>4.0 a</td>
<td>3.1 a</td>
<td>1.5 b</td>
<td>.6 bc</td>
<td>.4 c</td>
<td></td>
<td>24.3</td>
<td>.00</td>
<td>.142</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>—</td>
<td>2.4</td>
<td>1.4</td>
<td>1.9</td>
<td>1.3</td>
<td></td>
<td>.7</td>
<td>.56</td>
<td>.263</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>10.1</td>
<td>10.0</td>
<td>6.2</td>
<td>3.4</td>
<td>7.0</td>
<td></td>
<td>1.6</td>
<td>.19</td>
<td>1.021</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td></td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table 2.1 continued on next page)
<table>
<thead>
<tr>
<th>Forest type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td>MSE°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Magnesium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.6</td>
<td>2.6</td>
<td>1.3</td>
<td>1.4</td>
<td>3.6</td>
<td>1.0</td>
<td>0.42</td>
<td>0.473</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1.8 a</td>
<td>1.1 bc</td>
<td>1.1 b</td>
<td>.5 cd</td>
<td>.4 d</td>
<td>7.2</td>
<td>.00</td>
<td>.096</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.8 a</td>
<td>.6 a</td>
<td>.3 b</td>
<td>.2 c</td>
<td>.1 c</td>
<td>27.0</td>
<td>.00</td>
<td>.026</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.4</td>
<td>.3</td>
<td>.2</td>
<td>.2</td>
<td>.8</td>
<td>.52</td>
<td>.037</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1.5</td>
<td>2.4</td>
<td>2.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>.37</td>
<td>.270</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Potassium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.25 ab</td>
<td>0.38 a</td>
<td>0.31 ab</td>
<td>0.18 b</td>
<td>0.19 b</td>
<td>2.4</td>
<td>0.09</td>
<td>0.026</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.44 a</td>
<td>.28 b</td>
<td>.26 b</td>
<td>.17 bc</td>
<td>.09 c</td>
<td>9.7</td>
<td>.00</td>
<td>.021</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.18 a</td>
<td>.20 a</td>
<td>.10 b</td>
<td>.08 b</td>
<td>.07b</td>
<td>14.8</td>
<td>.00</td>
<td>.007</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.17 a</td>
<td>.10 b</td>
<td>.11 b</td>
<td>.08 b</td>
<td>3.3</td>
<td>.04</td>
<td>.009</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.27</td>
<td>.38</td>
<td>.38</td>
<td>.24</td>
<td>.14</td>
<td>1.8</td>
<td>.16</td>
<td>.033</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Sodium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.008</td>
<td>0.074</td>
<td>0.054</td>
<td>0.053</td>
<td>0.123</td>
<td>1.3</td>
<td>0.32</td>
<td>0.013</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.030</td>
<td>.030</td>
<td>.036</td>
<td>.049</td>
<td>.063</td>
<td>.8</td>
<td>.51</td>
<td>.007</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.019</td>
<td>.039</td>
<td>.028</td>
<td>.041</td>
<td>.049</td>
<td>.5</td>
<td>.76</td>
<td>.008</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.072 a</td>
<td>.044 ab</td>
<td>.058 a</td>
<td>.010 b</td>
<td>2.4</td>
<td>.09</td>
<td>.008</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.060 ab</td>
<td>.082 ab</td>
<td>.108 a</td>
<td>.030 b</td>
<td>.027 b</td>
<td>3.3</td>
<td>.03</td>
<td>.009</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss On Ignition (g kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>34</td>
<td>64</td>
<td>106</td>
<td>60</td>
<td>111</td>
<td>2.2</td>
<td>.10</td>
<td>.841</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>46 a</td>
<td>53 a</td>
<td>76 b</td>
<td>46 a</td>
<td>38 a</td>
<td>3.8</td>
<td>.01</td>
<td>.328</td>
</tr>
<tr>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>34 ab</td>
<td>38 a</td>
<td>21 c</td>
<td>25 c</td>
<td>28 bc</td>
<td>4.5</td>
<td>.01</td>
<td>.149</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>27</td>
<td>26</td>
<td>32</td>
<td>27</td>
<td>1.0</td>
<td>.43</td>
<td>.147</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>40</td>
<td>54</td>
<td>54</td>
<td>46</td>
<td>52</td>
<td>1.0</td>
<td>.43</td>
<td>.280</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table 2.1 continued on next page)
(Table 2.1 continued)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Zone²</th>
<th>Zone³</th>
<th>Zone⁴</th>
<th>Zone⁵</th>
<th>Anova²</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.8</td>
<td>1.6</td>
<td>2.6</td>
<td>1.5</td>
<td>2.6</td>
<td>1.7</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1.6</td>
<td>1.6 a</td>
<td>2.1 a</td>
<td>1.4 b</td>
<td>1.1 b</td>
<td>2.3</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.8 ab</td>
<td>.9 a</td>
<td>.6 b</td>
<td>.6 b</td>
<td>.6 b</td>
<td>3.9</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.7</td>
<td>.6</td>
<td>.7</td>
<td>.6</td>
<td>0.8</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1.3</td>
<td>1.7</td>
<td>1.6</td>
<td>1.3</td>
<td>1.4</td>
<td>0.6</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitrogen (g kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Zone²</th>
<th>Zone³</th>
<th>Zone⁴</th>
<th>Zone⁵</th>
<th>Anova²</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>4.5</td>
<td>4.3 a</td>
<td>4.4 a</td>
<td>4.7 a</td>
<td>6.1 b</td>
<td>6.8</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>5.9</td>
<td>5.1 b</td>
<td>4.7 bc</td>
<td>4.3 c</td>
<td>4.5 bc</td>
<td>8.9</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>4.9</td>
<td>4.6 ab</td>
<td>4.5 bc</td>
<td>4.2 cd</td>
<td>3.9 d</td>
<td>11.9</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>4.6</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>0.3</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>5.9</td>
<td>5.2 ab</td>
<td>4.7 bc</td>
<td>4.4 c</td>
<td>5.0 bc</td>
<td>4.5</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH (CaCl₂)³

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Zone²</th>
<th>Zone³</th>
<th>Zone⁴</th>
<th>Zone⁵</th>
<th>Anova²</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.11</td>
<td>0.18</td>
<td>0.31</td>
<td>0.22</td>
<td>0.35</td>
<td>1.7</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.21</td>
<td>.21</td>
<td>.26</td>
<td>.18</td>
<td>.16</td>
<td>1.5</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.10</td>
<td>.12</td>
<td>.09</td>
<td>.10</td>
<td>.10</td>
<td>1.6</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.10</td>
<td>.09</td>
<td>.11</td>
<td>.09</td>
<td>1.3</td>
<td>.31</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.17</td>
<td>.21</td>
<td>.18</td>
<td>.19</td>
<td>.23</td>
<td>.4</td>
<td>.79</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sulfur (g kg⁻¹)

¹ Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
² ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
³ Base Saturation = [(Ca + Mg + K + Na) / CEC] * 100; Cation Exchange Capacity = (Ac + Ca + Mg + K + Na); pH in 0.01 M CaCl₂.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 3.1.—Properties of the forest floor of 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property¹</th>
<th>Zone²</th>
<th>Anova³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BSAT</td>
<td>100 a⁴</td>
<td>98 a</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(31)</td>
</tr>
<tr>
<td>BD</td>
<td>.14 ab</td>
<td>.29 c</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>CEC</td>
<td>54.3 a</td>
<td>38.6 b</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(31)</td>
</tr>
<tr>
<td>Ca</td>
<td>43.7 a</td>
<td>31.1 b</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>Mg</td>
<td>7.2 a</td>
<td>5.3 b</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>K</td>
<td>2.01 a</td>
<td>1.61 b</td>
</tr>
<tr>
<td>Na</td>
<td>.14</td>
<td>.16</td>
</tr>
<tr>
<td>LOI</td>
<td>500 ab</td>
<td>450 a</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>N</td>
<td>10.6 abc</td>
<td>9.1 a</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>pH</td>
<td>5.8 a</td>
<td>5.4 b</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
<tr>
<td>S</td>
<td>1.1 a</td>
<td>1.0 a</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(31)</td>
</tr>
</tbody>
</table>

1 BSAT = percent base saturation ([Ca + Mg + K + Na] / CEC) * 100; BD = bulk density (Mg m⁻³); CEC = cation exchange capacity (Ac + Ca + Mg + K + Na), and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); LOI = loss on ignition, nitrogen, and sulfur (g kg⁻¹); pH in 0.01 M CaCl₂.

2 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

3 ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 3.2.—Property of the forest floor of 169 plots by five forest types across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property 1</th>
<th>Forest type 2</th>
<th>Anova 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
</tr>
<tr>
<td>BSAT</td>
<td>98 a<sup>4</sup></td>
<td>98 a</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(39)</td>
</tr>
<tr>
<td>BD</td>
<td>.20 ab</td>
<td>.28 a</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
<tr>
<td>CEC</td>
<td>43.2 ab</td>
<td>41.0 a</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(39)</td>
</tr>
<tr>
<td>Ca</td>
<td>34.7 ab</td>
<td>33.8 a</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(40)</td>
</tr>
<tr>
<td>Mg</td>
<td>5.7 a</td>
<td>4.7 ab</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(40)</td>
</tr>
<tr>
<td>K</td>
<td>1.8 ab</td>
<td>1.6 bc</td>
</tr>
<tr>
<td>Na</td>
<td>.13 ab</td>
<td>.10 b</td>
</tr>
<tr>
<td>LOI</td>
<td>610 a</td>
<td>470 b</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
<tr>
<td>N</td>
<td>12.0 a</td>
<td>10.5 a</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
<tr>
<td>pH</td>
<td>5.1 a</td>
<td>5.4 a</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(40)</td>
</tr>
<tr>
<td>S</td>
<td>1.4 a</td>
<td>1.2 b</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
</tbody>
</table>

1 BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; BD = bulk density (Mg m⁻³); CEC = cation exchange capacity (Ac + Ca + Mg + K + Na), and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); LOI = loss on ignition, nitrogen, and sulfur (g kg⁻¹); pH in 0.01 M CaCl₂.

3 ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 4.1.—Properties of the forest floor of 169 plots for five forest types by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>Anova</th>
<th>F</th>
<th>P</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Base Saturation (percent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>100</td>
<td>97</td>
<td>98</td>
<td>97</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>100 a</td>
<td>99 a</td>
<td>98 ab</td>
<td>96 bc</td>
<td>96 c</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>97 a</td>
<td>98 a</td>
<td>94 a</td>
<td>89 b</td>
<td>77 c</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>96</td>
<td>92</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>100 a</td>
<td>99 a</td>
<td>95 b</td>
<td>99 ab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
<tr>
<td>Bulk Density (Mg m⁻³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.17 ab</td>
<td>0.14 b</td>
<td>0.40 a</td>
<td>0.13 b</td>
<td>0.13 b</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.13 a</td>
<td>.66 b</td>
<td>.37 ab</td>
<td>.11 a</td>
<td>.15 a</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.15 a</td>
<td>.14 ab</td>
<td>.06 c</td>
<td>.10 bc</td>
<td>.14 ab</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.27 a</td>
<td>.10 b</td>
<td>.07 b</td>
<td>.14 b</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
<tr>
<td>Cation Exchange Capacity (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>56.5</td>
<td>39.1</td>
<td>34.9</td>
<td>41.3</td>
<td>56.7</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>55.6 a</td>
<td>40.9 ab</td>
<td>36.1 b</td>
<td>37.5 b</td>
<td>36.5 b</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>34.2 a</td>
<td>32.1 a</td>
<td>30.3 a</td>
<td>21.4 b</td>
<td>14.4 b</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>20.7 ab</td>
<td>21.3 ab</td>
<td>28.6 a</td>
<td>16.2 b</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>79.1 a</td>
<td>50.9 b</td>
<td>43.5 b</td>
<td>39.9 b</td>
<td>43.3 b</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
<tr>
<td>Exchangeable Calcium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>47.6</td>
<td>30.1</td>
<td>28.6</td>
<td>33.1</td>
<td>45.8</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>42.9</td>
<td>35.4</td>
<td>29.5</td>
<td>30.6</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>26.8 a</td>
<td>25.3 a</td>
<td>22.0 a</td>
<td>14.6 b</td>
<td>7.9 b</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>15.6</td>
<td>14.9</td>
<td>20.5</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>66.7 a</td>
<td>40.2 b</td>
<td>33.9 b</td>
<td>30.6 b</td>
<td>35.7 b</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

(Table 4.1 continued on next page)
(Table 4.1 continued)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Anova²</th>
<th>Anova²</th>
<th>Anova²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
<td>P</td>
<td>MSE²</td>
</tr>
<tr>
<td>Exchangeable Magnesium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>7.0</td>
<td>5.6</td>
<td>4.0</td>
<td>5.2</td>
<td>8.4</td>
<td>2.2</td>
<td>0.11</td>
<td>0.520</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>7.5 a</td>
<td>4.0 b</td>
<td>4.5 b</td>
<td>3.9 b</td>
<td>3.5 b</td>
<td>6.6</td>
<td>.00</td>
<td>.283</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>5.1 a</td>
<td>4.6 a</td>
<td>5.0 a</td>
<td>3.1 b</td>
<td>1.7 a</td>
<td>9.8</td>
<td>.00</td>
<td>.213</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>3.2 ab</td>
<td>3.5 ab</td>
<td>4.4 b</td>
<td>2.3 a</td>
<td>4.2</td>
<td>.02</td>
<td>.219</td>
</tr>
<tr>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>9.8</td>
<td>8.3</td>
<td>7.5</td>
<td>5.7</td>
<td>5.9</td>
<td>1.3</td>
<td>.29</td>
<td>.632</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Potassium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1.8</td>
<td>2.3</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>0.8</td>
<td>.56</td>
<td>.145</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>2.3 a</td>
<td>1.2 b</td>
<td>1.6 b</td>
<td>1.6 b</td>
<td>1.2 b</td>
<td>4.0</td>
<td>.01</td>
<td>.106</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
<td>1.2</td>
<td>.5</td>
<td>.70</td>
<td>.070</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>1.1 ab</td>
<td>1.1 ab</td>
<td>1.4 a</td>
<td>.9 b</td>
<td>2.6</td>
<td>.08</td>
<td>.079</td>
</tr>
<tr>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>2.4 a</td>
<td>2.1 a</td>
<td>1.7 ab</td>
<td>2.1 a</td>
<td>1.3 b</td>
<td>2.3</td>
<td>.08</td>
<td>.109</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Sodium (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.04</td>
<td>0.13</td>
<td>0.09</td>
<td>0.15</td>
<td>0.18</td>
<td>0.5</td>
<td>.75</td>
<td>.023</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.13 ab</td>
<td>.16 a</td>
<td>.05 c</td>
<td>.07 bc</td>
<td>.09 abc</td>
<td>3.2</td>
<td>.02</td>
<td>.011</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.07</td>
<td>.06</td>
<td>.04</td>
<td>.08</td>
<td>.11</td>
<td>.6</td>
<td>.66</td>
<td>.015</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.12</td>
<td>.11</td>
<td>.12</td>
<td>.04</td>
<td>1.0</td>
<td>.42</td>
<td>.019</td>
</tr>
<tr>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.27 a</td>
<td>.28 a</td>
<td>.19 ab</td>
<td>.11 ab</td>
<td>.04 b</td>
<td>2.5</td>
<td>.06</td>
<td>.028</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss On Ignition (g kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>470</td>
<td>590</td>
<td>510</td>
<td>610</td>
<td>760</td>
<td>1.4</td>
<td>.28</td>
<td>3.803</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>440 ab</td>
<td>330 a</td>
<td>460 ab</td>
<td>570 b</td>
<td>500 b</td>
<td>3.3</td>
<td>.02</td>
<td>2.211</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>500 a</td>
<td>510 ab</td>
<td>620 c</td>
<td>650 c</td>
<td>610 bc</td>
<td>3.3</td>
<td>.02</td>
<td>1.674</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>390 a</td>
<td>600 b</td>
<td>780 c</td>
<td>440 a</td>
<td>11.4</td>
<td>.00</td>
<td>2.577</td>
</tr>
<tr>
<td>—</td>
<td>(4)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>590 ab</td>
<td>480 bc</td>
<td>440 c</td>
<td>620 a</td>
<td>470 bc</td>
<td>2.8</td>
<td>.04</td>
<td>2.203</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Table 4.1 continued on next page)
(Table 4.1 continued)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Anova2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen (g kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>12.2</td>
<td>10.6</td>
<td>10.2</td>
<td>12.5</td>
<td>14.5</td>
<td>0.9</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>8.4 a</td>
<td>8.1 a</td>
<td>9.6 ab</td>
<td>13.1 b</td>
<td>12.7 b</td>
<td>3.5</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>9.8 a</td>
<td>10.4 ab</td>
<td>12.0 b</td>
<td>11.5 ab</td>
<td>9.8 a</td>
<td>2.6</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>6.2 a</td>
<td>8.1 a</td>
<td>11.2 b</td>
<td>7.2 a</td>
<td>8.3</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>14.5 a</td>
<td>9.7 bc</td>
<td>9.3 c</td>
<td>12.7 ab</td>
<td>10.9 ab</td>
<td>2.8</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>pH (CaCl$_2$)3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>6.0</td>
<td>4.9</td>
<td>4.9</td>
<td>5.1</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>6.2 a</td>
<td>5.8 a</td>
<td>5.1 b</td>
<td>4.7 b</td>
<td>4.9 b</td>
<td>9.5</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>4.9 a</td>
<td>4.9 a</td>
<td>4.5 a</td>
<td>4.0 b</td>
<td>3.4 c</td>
<td>17.3</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>4.7</td>
<td>4.4</td>
<td>4.2</td>
<td>4.4</td>
<td>.8</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>6.6 a</td>
<td>6.0 b</td>
<td>5.7 b</td>
<td>4.8 c</td>
<td>5.4 bc</td>
<td>10.2</td>
</tr>
<tr>
<td>(8)</td>
<td>(6)</td>
<td>(9)</td>
<td>(8)</td>
<td>(8)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Sulfur (g kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.5</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.9 a</td>
<td>1.0 a</td>
<td>1.0 a</td>
<td>1.4 b</td>
<td>1.5 b</td>
<td>4.2</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>1.0 a</td>
<td>1.1 a</td>
<td>1.2 ab</td>
<td>1.3 b</td>
<td>1.2 ab</td>
<td>2.4</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.6 a</td>
<td>.8 ab</td>
<td>1.2 c</td>
<td>.9 b</td>
<td>10.3</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1.6 a</td>
<td>1.0 b</td>
<td>1.0 b</td>
<td>1.5 ab</td>
<td>1.5 ab</td>
<td>2.8</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
</tr>
</tbody>
</table>

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
2 ANOVA: F = F value, P = probability, MSE$^{0.50} = \text{square root of mean square error.}$
3 Base Saturation = [(Ca + Mg + K + Na) / CEC] * 100; Cation Exchange Capacity = (Ac + Ca + Mg + K + Na); pH in 0.01 M CaCl$_2$.
4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 5.1.—Ash and carbon content (g kg⁻¹) and total elemental chemical concentrations (mg kg⁻¹) of the forest floor of 169 plots by zone across a Lake States sulfate deposition gradient

<table>
<thead>
<tr>
<th>Element</th>
<th>Zone¹</th>
<th>Anova²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ash</td>
<td>48 ab³</td>
<td>54 a</td>
</tr>
<tr>
<td>Aluminum</td>
<td>4,980 a</td>
<td>5,210 a</td>
</tr>
<tr>
<td>Boron</td>
<td>19.2 a</td>
<td>12.3 bc</td>
</tr>
<tr>
<td>Calcium</td>
<td>1,530 a</td>
<td>9,750 b</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Carbon</td>
<td>31 ab</td>
<td>28 a</td>
</tr>
<tr>
<td>Chromium</td>
<td>10 a</td>
<td>12 a</td>
</tr>
<tr>
<td>Copper</td>
<td>7.5</td>
<td>6.9</td>
</tr>
<tr>
<td>Iron</td>
<td>5,490 a</td>
<td>7,270 b</td>
</tr>
<tr>
<td>Lead</td>
<td>33 a</td>
<td>45 b</td>
</tr>
<tr>
<td>Magnesium</td>
<td>2,080 a</td>
<td>1,860 a</td>
</tr>
<tr>
<td>Manganese</td>
<td>1,300 abc</td>
<td>1,640 a</td>
</tr>
<tr>
<td>Nickel</td>
<td>11 a</td>
<td>13 a</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>934 a</td>
<td>849 ab</td>
</tr>
<tr>
<td>Potassium</td>
<td>1,360 a</td>
<td>1,340 b</td>
</tr>
<tr>
<td>Sodium</td>
<td>105 a</td>
<td>126 b</td>
</tr>
<tr>
<td>Zinc</td>
<td>107</td>
<td>122</td>
</tr>
</tbody>
</table>

¹ Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

² ANOVA: F = F value, P= probability, MSE⁰.⁵ = square root of mean square error.

³ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 5.2.—Ash and carbon content (g kg⁻¹) and total elemental chemical concentrations (mg kg⁻¹) of the forest floor of 169 plots by forest type across a Lake States sulfate deposition gradient

<table>
<thead>
<tr>
<th>Element</th>
<th>Bf</th>
<th>Sm</th>
<th>Jp</th>
<th>Rp</th>
<th>A</th>
<th>Anova²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td>MSE⁰.⁵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>39 a³</td>
<td>52 b</td>
<td>41 c</td>
<td>40 ac</td>
<td>47 bc</td>
<td>4.1</td>
</tr>
<tr>
<td>Aluminum</td>
<td>4,280 a</td>
<td>4,310 a</td>
<td>3,980 a</td>
<td>2,950 b</td>
<td>4,490 a</td>
<td>3.6</td>
</tr>
<tr>
<td>Boron</td>
<td>13.5 a</td>
<td>15.1 a</td>
<td>9.5 b</td>
<td>8.3 b</td>
<td>15.2 a</td>
<td>9.5</td>
</tr>
<tr>
<td>Calcium</td>
<td>10,060 a</td>
<td>11,160 a</td>
<td>5,970 b</td>
<td>5,440 b</td>
<td>13,270 c</td>
<td>22.8</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.2 a</td>
<td>1.3 a</td>
<td>.9 b</td>
<td>.8 b</td>
<td>1.4 a</td>
<td>7.0</td>
</tr>
<tr>
<td>Carbon</td>
<td>36 a</td>
<td>29 b</td>
<td>35 ac</td>
<td>35 ac</td>
<td>32 bc</td>
<td>4.2</td>
</tr>
<tr>
<td>Chromium</td>
<td>10 a</td>
<td>11 a</td>
<td>7 b</td>
<td>7 b</td>
<td>11 a</td>
<td>8.3</td>
</tr>
<tr>
<td>Copper</td>
<td>8.9 a</td>
<td>9.6 a</td>
<td>6.1 b</td>
<td>5.5 b</td>
<td>9.2 a</td>
<td>8.4</td>
</tr>
<tr>
<td>Iron</td>
<td>7,200 a</td>
<td>6,260 a</td>
<td>4,540 b</td>
<td>3,410 b</td>
<td>6,900 a</td>
<td>10.2</td>
</tr>
<tr>
<td>Lead</td>
<td>61 a</td>
<td>47 b</td>
<td>65 a</td>
<td>45 b</td>
<td>42 b</td>
<td>8.9</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1,780 a</td>
<td>1,610 a</td>
<td>1,180 b</td>
<td>920 b</td>
<td>2,370 c</td>
<td>18.3</td>
</tr>
<tr>
<td>Manganese</td>
<td>1,550 ab</td>
<td>1,720 a</td>
<td>1,110 b</td>
<td>1,020 c</td>
<td>1,200 bc</td>
<td>5.3</td>
</tr>
<tr>
<td>Nickel</td>
<td>11 ab</td>
<td>11 ab</td>
<td>8 c</td>
<td>9 ac</td>
<td>13 b</td>
<td>5.5</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>868 a</td>
<td>882 a</td>
<td>784 b</td>
<td>634 c</td>
<td>974 d</td>
<td>13.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>1,070 ab</td>
<td>1,100 a</td>
<td>960 b</td>
<td>750 c</td>
<td>1,280 d</td>
<td>10.6</td>
</tr>
<tr>
<td>Sodium</td>
<td>106 a</td>
<td>98 a</td>
<td>78 b</td>
<td>57 c</td>
<td>108 a</td>
<td>9.6</td>
</tr>
<tr>
<td>Zinc</td>
<td>142 a</td>
<td>114 b</td>
<td>88 c</td>
<td>69 c</td>
<td>144 a</td>
<td>16.3</td>
</tr>
<tr>
<td>No. plots</td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
<td>(38)</td>
<td></td>
</tr>
</tbody>
</table>

² ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
³ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 6.1—Ash and carbon content (g kg$^{-1}$) and total elemental chemical concentrations (mg kg$^{-1}$) of the forest floor of 169 plots for five forest types across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE$^{0.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ash Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>49</td>
<td>42</td>
<td>48</td>
<td>38</td>
<td>25</td>
<td></td>
<td>1.2</td>
<td>0.33</td>
<td>3.774</td>
</tr>
<tr>
<td>(4)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>53 ab3</td>
<td>66 b</td>
<td>52 ab</td>
<td>42 a</td>
<td>48 a</td>
<td></td>
<td>3.3</td>
<td>0.02</td>
<td>2.266</td>
</tr>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>48 a</td>
<td>49 a</td>
<td>37 b</td>
<td>34 b</td>
<td>40 ab</td>
<td></td>
<td>3.2</td>
<td>0.02</td>
<td>1.670</td>
</tr>
<tr>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>58 a</td>
<td>38 b</td>
<td>22 c</td>
<td>55 a</td>
<td></td>
<td>11.5</td>
<td>0.00</td>
<td>2.454</td>
</tr>
<tr>
<td>(4)</td>
<td>(7)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>40 ab</td>
<td>52 bc</td>
<td>56 ac</td>
<td>37 a</td>
<td>52 bc</td>
<td></td>
<td>3.1</td>
<td>0.03</td>
<td>2.193</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>5,730</td>
<td>4,590</td>
<td>4,850</td>
<td>3,940</td>
<td>3,630</td>
<td></td>
<td>0.5</td>
<td>0.71</td>
<td>379</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>4,900 ab</td>
<td>5,840 a</td>
<td>3,570 bc</td>
<td>4,080 bc</td>
<td>3,200 c</td>
<td></td>
<td>5.2</td>
<td>0.00</td>
<td>207</td>
</tr>
<tr>
<td>Jack pine</td>
<td>4,870 a</td>
<td>5,200 a</td>
<td>3,880 b</td>
<td>3,220 bc</td>
<td>2,880 c</td>
<td></td>
<td>8.5</td>
<td>0.00</td>
<td>153</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>3,990 a</td>
<td>3,250 ab</td>
<td>2,660 bc</td>
<td>2,350 c</td>
<td></td>
<td>4.1</td>
<td>0.02</td>
<td>158</td>
</tr>
<tr>
<td>Aspen</td>
<td>5,100</td>
<td>5,500</td>
<td>4,460</td>
<td>3,760</td>
<td>3,680</td>
<td></td>
<td>1.1</td>
<td>0.38</td>
<td>341</td>
</tr>
<tr>
<td>Boron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>24.3 a</td>
<td>8.6 b</td>
<td>19.2 a</td>
<td>10.0 b</td>
<td>14.1 ab</td>
<td></td>
<td>2.7</td>
<td>0.06</td>
<td>1.410</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>23.8 a</td>
<td>16.2 b</td>
<td>13.8 b</td>
<td>11.0 b</td>
<td>11.3 b</td>
<td></td>
<td>7.5</td>
<td>0.00</td>
<td>0.860</td>
</tr>
<tr>
<td>Jack pine</td>
<td>11.0</td>
<td>10.9</td>
<td>10.0</td>
<td>8.6</td>
<td>7.1</td>
<td></td>
<td>1.2</td>
<td>0.36</td>
<td>0.700</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>9.3</td>
<td>9.1</td>
<td>8.0</td>
<td>7.3</td>
<td></td>
<td>0.5</td>
<td>0.69</td>
<td>0.640</td>
</tr>
<tr>
<td>Aspen</td>
<td>23.2 a</td>
<td>12.8 b</td>
<td>14.3 b</td>
<td>13.5 b</td>
<td>14.4 b</td>
<td></td>
<td>2.4</td>
<td>0.07</td>
<td>1.140</td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>16,640 a</td>
<td>7,870 b</td>
<td>8,200 b</td>
<td>8,740 b</td>
<td>14,830 a</td>
<td></td>
<td>3.9</td>
<td>0.02</td>
<td>752</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>17,640 a</td>
<td>10,620 b</td>
<td>9,360 b</td>
<td>8,750 b</td>
<td>9,710 b</td>
<td></td>
<td>6.5</td>
<td>0.00</td>
<td>636</td>
</tr>
<tr>
<td>Jack pine</td>
<td>7,740 a</td>
<td>7,970 a</td>
<td>6,920 ab</td>
<td>5,020 b</td>
<td>2,450 c</td>
<td></td>
<td>8.6</td>
<td>0.00</td>
<td>351</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>5,190</td>
<td>5,270</td>
<td>6,800</td>
<td>4,210</td>
<td></td>
<td>1.7</td>
<td>0.20</td>
<td>434</td>
</tr>
<tr>
<td>Aspen</td>
<td>23,680 a</td>
<td>13,670 b</td>
<td>10,680 b</td>
<td>9,520 b</td>
<td>11,810 b</td>
<td></td>
<td>9.2</td>
<td>0.00</td>
<td>782</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1.92 a</td>
<td>0.84 b</td>
<td>1.45 a</td>
<td>0.95 bc</td>
<td>1.41 ac</td>
<td></td>
<td>3.6</td>
<td>0.02</td>
<td>0.079</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.88 a</td>
<td>1.32 ab</td>
<td>1.30 ab</td>
<td>1.69 b</td>
<td>1.28 ab</td>
<td></td>
<td>2.3</td>
<td>0.08</td>
<td>0.086</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.81</td>
<td>.94</td>
<td>.90</td>
<td>.84</td>
<td>.90</td>
<td></td>
<td>0.2</td>
<td>0.93</td>
<td>0.049</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.59</td>
<td>.76</td>
<td>.84</td>
<td>1.11</td>
<td></td>
<td>0.4</td>
<td>.75</td>
<td>0.155</td>
</tr>
<tr>
<td>Aspen</td>
<td>1.40</td>
<td>1.02</td>
<td>1.34</td>
<td>1.63</td>
<td>1.56</td>
<td></td>
<td>1.0</td>
<td>0.40</td>
<td>0.106</td>
</tr>
</tbody>
</table>

(Table 6.1 continued on next page)
Forest Type

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Zone</th>
<th>Carbon</th>
<th>Anova 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>30</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>28 ab</td>
<td>21 a</td>
<td>28 ab</td>
</tr>
<tr>
<td>Jack pine</td>
<td>31 a</td>
<td>32 a</td>
<td>37 b</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>24 a</td>
<td>36 b</td>
</tr>
<tr>
<td>Aspen</td>
<td>36 a</td>
<td>29 ab</td>
<td>27 b</td>
</tr>
</tbody>
</table>

Chromium

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Zone</th>
<th>Carbon</th>
<th>Anova 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>12.9 ab</td>
<td>13.1 a</td>
<td>13.5 a</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>9.7</td>
<td>12.2</td>
<td>13.8</td>
</tr>
<tr>
<td>Jack pine</td>
<td>10.1 a</td>
<td>9.9 a</td>
<td>6.5 b</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>9.4 a</td>
<td>8.4 ab</td>
</tr>
<tr>
<td>Aspen</td>
<td>9.6 ac</td>
<td>13.1 ab</td>
<td>15.5 b</td>
</tr>
</tbody>
</table>

Copper

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Zone</th>
<th>Carbon</th>
<th>Anova 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>7.1</td>
<td>7.4</td>
<td>10.1</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>7.2 a</td>
<td>6.1 a</td>
<td>9.4 ab</td>
</tr>
<tr>
<td>Jack pine</td>
<td>5.4</td>
<td>5.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>5.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Aspen</td>
<td>10.8</td>
<td>8.9</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Iron

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Zone</th>
<th>Carbon</th>
<th>Anova 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>6,050 ab</td>
<td>8,920 ab</td>
<td>11,380 a</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>5,570 ab</td>
<td>7,400 ac</td>
<td>9,720 c</td>
</tr>
<tr>
<td>Jack pine</td>
<td>5,370 ab</td>
<td>6,490 a</td>
<td>4,270 bc</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>4,790 a</td>
<td>4,010 a</td>
</tr>
<tr>
<td>Aspen</td>
<td>5,450 a</td>
<td>8,230 bc</td>
<td>8,740 a</td>
</tr>
</tbody>
</table>

Lead

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Zone</th>
<th>Carbon</th>
<th>Anova 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>53.5 ab</td>
<td>60.9 ab</td>
<td>51.8 a</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>17.2 a</td>
<td>37.5 ab</td>
<td>45.8 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>41.4 a</td>
<td>66.7 abc</td>
<td>51.6 b</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>36.5 ab</td>
<td>32.6 a</td>
</tr>
<tr>
<td>Aspen</td>
<td>41.0 ab</td>
<td>30.6 a</td>
<td>33.4 a</td>
</tr>
</tbody>
</table>

Magnesium

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Zone</th>
<th>Carbon</th>
<th>Anova 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>2,150</td>
<td>1,720</td>
<td>2,210</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>2,060 a</td>
<td>1,700 ab</td>
<td>2,120 a</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1,680 a</td>
<td>1,540 a</td>
<td>1,370 a</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>1,060 a</td>
<td>1,060 a</td>
</tr>
<tr>
<td>Aspen</td>
<td>2,660 ab</td>
<td>2,780 ab</td>
<td>3,120 a</td>
</tr>
</tbody>
</table>

(Table 6.1 continued on next page)
(Table 6.1 continued)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manganese

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nickel

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phosphorus

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potassium

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sodium

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zinc

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>Zone</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
2 ANOVA: F = F value, P = probability, MSE^{5.6} = square root of mean square error.
3 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 7.1.—Properties of the mineral soil (0 to 25 cm depth) of 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Zone²</th>
<th>Anova³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BSAT</td>
<td>93 a⁴</td>
<td>83 a</td>
</tr>
<tr>
<td>BD</td>
<td>1.09 ab</td>
<td>1.04 a</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>CEC</td>
<td>9.1 a</td>
<td>8.0 ab</td>
</tr>
<tr>
<td>Ca</td>
<td>7.3 a</td>
<td>5.4 ab</td>
</tr>
<tr>
<td>Mg</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>K</td>
<td>.28 a</td>
<td>.25 ab</td>
</tr>
<tr>
<td>Na</td>
<td>.03</td>
<td>.06</td>
</tr>
<tr>
<td>LOI</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>pH</td>
<td>5.5 a</td>
<td>4.8 b</td>
</tr>
<tr>
<td>S</td>
<td>.14</td>
<td>.15</td>
</tr>
</tbody>
</table>

1 BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; BD = bulk density (Mg m⁻³); CEC = cation exchange capacity (Ac + Ca + Mg + K + Na) and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); LOI = loss on ignition, carbon, nitrogen, and sulfur (g kg⁻¹); pH in 0.01 M CaCl₂.

2 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

3 ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 7.2.—Properties of the mineral soil (0 to 25 cm depth) of 169 plots by forest type across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Forest type²</th>
<th>Anova³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
</tr>
<tr>
<td>BSAT</td>
<td>71 a⁴</td>
<td>77 a</td>
</tr>
<tr>
<td>BD</td>
<td>.81 a</td>
<td>1.04 b</td>
</tr>
<tr>
<td>C</td>
<td>34 a</td>
<td>21 b</td>
</tr>
<tr>
<td>CEC</td>
<td>10.2 a</td>
<td>7.6 b</td>
</tr>
<tr>
<td>Ca</td>
<td>6.0 a</td>
<td>5.1 a</td>
</tr>
<tr>
<td>Mg</td>
<td>1.9 a</td>
<td>.9 b</td>
</tr>
<tr>
<td>K</td>
<td>.20 a</td>
<td>.22 a</td>
</tr>
<tr>
<td>Na</td>
<td>.07 a</td>
<td>.04 ab</td>
</tr>
<tr>
<td>LOI</td>
<td>62 a</td>
<td>41 b</td>
</tr>
<tr>
<td>N</td>
<td>1.6 a</td>
<td>1.3 b</td>
</tr>
<tr>
<td>pH</td>
<td>4.8 a</td>
<td>4.9 a</td>
</tr>
<tr>
<td>S</td>
<td>.22 a</td>
<td>.17 b</td>
</tr>
</tbody>
</table>

¹ BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; BD = bulk density (Mg m⁻³); CEC = cation exchange capacity (Ac + Ca + Mg + K + Na), and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); LOI = loss on ignition, and carbon, nitrogen, and sulfur (g kg⁻¹); pH in 0.01 M CaCl₂.

³ ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 8.1.—Properties of the mineral soil (0 to 25 cm depth) of 169 plots for five forest types across a Lake States deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>68</td>
<td>62</td>
<td>62</td>
<td>68</td>
<td>96</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>99 ab</td>
<td>89 bc</td>
<td>77 bc</td>
<td>55 d</td>
<td>67 cd</td>
</tr>
<tr>
<td>Jack pine</td>
<td>89 ab</td>
<td>77 ab</td>
<td>68 b</td>
<td>36 c</td>
<td>27 c</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>77</td>
<td>59</td>
<td>49</td>
<td>56</td>
</tr>
<tr>
<td>Aspen</td>
<td>95 ab</td>
<td>95 a</td>
<td>83 ab</td>
<td>51 c</td>
<td>73 b</td>
</tr>
</tbody>
</table>

Base Saturation (percent)³

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1.12 a</td>
<td>0.88 a</td>
<td>0.61 b</td>
<td>0.92 a</td>
<td>0.78 ab</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1.07 ab</td>
<td>.88 ac</td>
<td>.87 c</td>
<td>1.11 b</td>
<td>1.25 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1.19 ab</td>
<td>1.14 a</td>
<td>1.36 bc</td>
<td>1.40 c</td>
<td>1.33 bc</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>1.35</td>
<td>1.44</td>
<td>1.35</td>
<td>1.38</td>
</tr>
<tr>
<td>Aspen</td>
<td>.96</td>
<td>1.06</td>
<td>1.04</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

Bulk Density (Mg m⁻³)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>12</td>
<td>26</td>
<td>42</td>
<td>28</td>
<td>48</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>22 ab</td>
<td>20 b</td>
<td>30 a</td>
<td>20 b</td>
<td>14 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>13 a</td>
<td>15 a</td>
<td>9 b</td>
<td>9 b</td>
<td>9 b</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>22</td>
</tr>
</tbody>
</table>

Carbon (g kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>3.7</td>
<td>10.8</td>
<td>8.9</td>
<td>8.0</td>
<td>15.8</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>12.8 a</td>
<td>7.2 b</td>
<td>7.6 b</td>
<td>6.4 b</td>
<td>3.9 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>4.9 a</td>
<td>4.5 a</td>
<td>2.6 b</td>
<td>2.1 b</td>
<td>1.7 b</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>3.3</td>
<td>2.8</td>
<td>3.4</td>
<td>2.2</td>
</tr>
<tr>
<td>Aspen</td>
<td>10.8 a</td>
<td>12.7</td>
<td>9.3</td>
<td>7.2</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Cation Exchange Capacity (cmol (+) kg⁻¹)³

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1.9</td>
<td>5.2</td>
<td>4.2</td>
<td>4.5</td>
<td>11.9</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>10.5 a</td>
<td>5.3 b</td>
<td>5.0 b</td>
<td>2.7 b</td>
<td>2.6 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>3.6 a</td>
<td>2.6 b</td>
<td>1.4 c</td>
<td>.5 d</td>
<td>.3 d</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>2.1</td>
<td>1.2</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Aspen</td>
<td>8.9</td>
<td>9.5</td>
<td>5.7</td>
<td>3.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Exchangeable Calcium (cmol (+) kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.4</td>
<td>2.6</td>
<td>1.1</td>
<td>1.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1.8 a</td>
<td>.9 bc</td>
<td>1.0 b</td>
<td>.6 bc</td>
<td>.3 c</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.7 a</td>
<td>.5 a</td>
<td>.3 b</td>
<td>.1 c</td>
<td>.1 c</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td>.3</td>
<td>2</td>
<td>2</td>
<td>.2</td>
</tr>
<tr>
<td>Aspen</td>
<td>1.3</td>
<td>2.3</td>
<td>2.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Exchangeable Magnesium (cmol (+) kg⁻¹)

(Table 8.1 continued on next page)
Table 8.1 continued

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Anova2</th>
<th>F</th>
<th>P</th>
<th>MSE5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Exchangeable Potassium (cmol (+) kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.21</td>
<td>0.33</td>
<td>0.22</td>
<td>0.15</td>
<td>0.14</td>
<td>1.8</td>
<td>0.17</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.45 a</td>
<td>.23 b</td>
<td>.21 b</td>
<td>.16 bc</td>
<td>.07 c</td>
<td>11.3</td>
<td>.00</td>
<td>.019</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.16 a</td>
<td>.17 a</td>
<td>.09 b</td>
<td>.07 b</td>
<td>.05 b</td>
<td>15.9</td>
<td>.00</td>
<td>.006</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.15 a</td>
<td>.10 b</td>
<td>.10 ab</td>
<td>.07 b</td>
<td>3.5</td>
<td>.03</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.23</td>
<td>.35</td>
<td>.35</td>
<td>.21</td>
<td>.11</td>
<td>1.8</td>
<td>.14</td>
<td>.034</td>
<td></td>
</tr>
<tr>
<td>Exchangeable Sodium (cmol (+) kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.01</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.12</td>
<td>1.3</td>
<td>0.32</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.03</td>
<td>.06</td>
<td>.04</td>
<td>.04</td>
<td>.05</td>
<td>.5</td>
<td>.75</td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.02</td>
<td>.04</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td>.5</td>
<td>.76</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.07 a</td>
<td>.04 ab</td>
<td>.06 a</td>
<td>.01 b</td>
<td>2.5</td>
<td>.09</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.06 ab</td>
<td>.08 ab</td>
<td>.11 a</td>
<td>.03 b</td>
<td>.03 b</td>
<td>3.2</td>
<td>.02</td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>Loss On Ignition (g kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>23</td>
<td>50</td>
<td>77</td>
<td>50</td>
<td>88</td>
<td>1.5</td>
<td>0.25</td>
<td>0.745</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>42 ab</td>
<td>38 b</td>
<td>58 a</td>
<td>39 b</td>
<td>28 b</td>
<td>2.6</td>
<td>.05</td>
<td>.294</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>26 a</td>
<td>28 a</td>
<td>17 b</td>
<td>18 b</td>
<td>17 b</td>
<td>3.6</td>
<td>.01</td>
<td>.127</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>19</td>
<td>21</td>
<td>26</td>
<td>20</td>
<td>1.6</td>
<td>.22</td>
<td>.139</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>28</td>
<td>49</td>
<td>47</td>
<td>38</td>
<td>41</td>
<td>1.4</td>
<td>.26</td>
<td>.301</td>
<td></td>
</tr>
<tr>
<td>Nitrogen (g kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.5</td>
<td>1.3</td>
<td>2.1</td>
<td>1.3</td>
<td>2.2</td>
<td>1.1</td>
<td>0.37</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1.5</td>
<td>1.2</td>
<td>1.8</td>
<td>1.2</td>
<td>.9</td>
<td>2.1</td>
<td>.11</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.6 ab</td>
<td>.7 a</td>
<td>.5 bc</td>
<td>.4 bc</td>
<td>.4 c</td>
<td>3.1</td>
<td>.03</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.6</td>
<td>.5</td>
<td>.7</td>
<td>.5</td>
<td>1.0</td>
<td>.39</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1.0</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>.9</td>
<td>.47</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>pH3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>4.4 a</td>
<td>4.2 a</td>
<td>4.4 a</td>
<td>4.7 a</td>
<td>6.1 b</td>
<td>7.2</td>
<td>0.00</td>
<td>0.127</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>5.9 a</td>
<td>5.1 b</td>
<td>4.7 bc</td>
<td>4.3 c</td>
<td>4.5 bc</td>
<td>8.9</td>
<td>.00</td>
<td>.094</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>4.9 a</td>
<td>4.6 ab</td>
<td>4.5 bc</td>
<td>4.2 cd</td>
<td>3.9 d</td>
<td>11.3</td>
<td>.00</td>
<td>.051</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>4.6</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>.3</td>
<td>.81</td>
<td>.077</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>5.9 a</td>
<td>5.2 ab</td>
<td>4.6 bc</td>
<td>4.4 c</td>
<td>5.0 bc</td>
<td>4.7</td>
<td>.00</td>
<td>.118</td>
<td></td>
</tr>
<tr>
<td>Sulfur (g kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.08</td>
<td>0.15</td>
<td>0.25</td>
<td>0.20</td>
<td>0.30</td>
<td>1.3</td>
<td>0.32</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.20</td>
<td>.16</td>
<td>.21</td>
<td>.16</td>
<td>.13</td>
<td>1.2</td>
<td>.33</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.08</td>
<td>.10</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>1.3</td>
<td>.29</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.09</td>
<td>.08</td>
<td>.10</td>
<td>.08</td>
<td>1.7</td>
<td>.19</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
2 ANOVA: F = F value, P = probability, MSE5,6 = square root of mean square error.
3 Base Saturation = [(Ca + Mg + K + Na) / CEC] * 100; Cation Exchange Capacity = (Ac + Ca + Mg + K + Na); pH in 0.01 M CaCl$_2$.
4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 9.1.—Properties of the mineral soil (26 to 50 cm depth) of 169 plots by zone across a Lake States sulfate deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Zone</th>
<th>Anova</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BSAT</td>
<td>92 a<sup>4</sup></td>
<td>79 b</td>
</tr>
<tr>
<td>(23)</td>
<td>(28)</td>
<td>(36)</td>
</tr>
<tr>
<td>CEC</td>
<td>6.0</td>
<td>7.7</td>
</tr>
<tr>
<td>(23)</td>
<td>(29)</td>
<td>(36)</td>
</tr>
<tr>
<td>Ac</td>
<td>.2 a</td>
<td>.7 b</td>
</tr>
<tr>
<td>(23)</td>
<td>(29)</td>
<td>(36)</td>
</tr>
<tr>
<td>Ca</td>
<td>4.3 a</td>
<td>4.6 a</td>
</tr>
<tr>
<td>(23)</td>
<td>(28)</td>
<td>(37)</td>
</tr>
<tr>
<td>Mg</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>(23)</td>
<td>(28)</td>
<td>(37)</td>
</tr>
<tr>
<td>K</td>
<td>.14 a</td>
<td>.13 ab</td>
</tr>
<tr>
<td>(23)</td>
<td>(28)</td>
<td>(37)</td>
</tr>
<tr>
<td>Na</td>
<td>.05</td>
<td>.08</td>
</tr>
<tr>
<td>(23)</td>
<td>(28)</td>
<td>(37)</td>
</tr>
<tr>
<td>pH</td>
<td>5.5 a</td>
<td>5.0 b</td>
</tr>
</tbody>
</table>

¹ BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na), Ac = exchangeable acidity, and cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); pH in 0.01 M CaCl₂.

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

³ ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 9.2.—Properties of the mineral soil (26 to 50 cm depth) of 169 plots by forest type across a Lake States sulfate deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Forest type</th>
<th>Anova<sup>3</sup></th>
<th>F</th>
<th>P</th>
<th>MSE<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
<td>Jp</td>
<td>Rp</td>
<td>A</td>
</tr>
<tr>
<td>BSAT</td>
<td>72 a<sup>4</sup> (23)</td>
<td>72 a (39)</td>
<td>59 b (38)</td>
<td>57 b (24)</td>
<td>77 a (36)</td>
</tr>
<tr>
<td>CEC</td>
<td>6.2 a (23)</td>
<td>5.2 a (39)</td>
<td>1.7 b (38)</td>
<td>1.9 b (24)</td>
<td>9.7 c (36)</td>
</tr>
<tr>
<td>Ac</td>
<td>1.0 a (23)</td>
<td>1.1 a (40)</td>
<td>0.5 b (38)</td>
<td>.7 ab (26)</td>
<td>.9 a (36)</td>
</tr>
<tr>
<td>Ca</td>
<td>3.2 a (23)</td>
<td>3.0 a (40)</td>
<td>0.8 b (38)</td>
<td>0.9 ab (25)</td>
<td>5.9 c (36)</td>
</tr>
<tr>
<td>Mg</td>
<td>1.9 ab (23)</td>
<td>0.9 ac (39)</td>
<td>0.2 c (38)</td>
<td>0.2 c (25)</td>
<td>2.6 c (36)</td>
</tr>
<tr>
<td>K</td>
<td>.09 a (23)</td>
<td>.13 a (39)</td>
<td>.06 b (38)</td>
<td>.05 b (25)</td>
<td>.12 a (36)</td>
</tr>
<tr>
<td>Na</td>
<td>.06 ab (23)</td>
<td>.04 b (39)</td>
<td>.04 b (38)</td>
<td>.04 b (25)</td>
<td>.09 a (36)</td>
</tr>
<tr>
<td>pH</td>
<td>5.0 ab (23)</td>
<td>4.8 b (39)</td>
<td>4.7 b (38)</td>
<td>4.7 b (25)</td>
<td>5.1 a (36)</td>
</tr>
</tbody>
</table>

1 BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na), Ac = exchangeable acidity, and cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); pH in 0.01 M CaCl₂.

3 ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 10.1.—Properties of the mineral soil (26 to 50 cm depth) of 169 plots by forest type for five zones across a Lake States sulfate deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Anova²</th>
<th>MSE°.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Saturation (percent)³

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Anova²</th>
<th>MSE°.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cation Exchange Capacity (cmol (+) kg⁻¹)³

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Anova²</th>
<th>MSE°.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exchangeable Acidity (cmol (+) kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Anova²</th>
<th>MSE°.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exchangeable Calcium (cmol (+) kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>Anova²</th>
<th>MSE°.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Forest type	Zone	Anova2	Exchangeable Magnesium (cmol(-) kg$^-1$)	Exchangeable Potassium (cmol (+) kg$^-1$)	Exchangeable Sodium (cmol (+) kg$^-1$)	pH3
Balsam fir | 0.3 | 4.4 | 2.4 | 0.8 | 1.4 | 0.6 | 0.67 | 0.857
Sugar maple | 2.2 a | 0.6 b | 0.8 b | 0.8 b | 0.2 b | 5.6 | 0.00 | 0.144
Jack pine | 0.4 a | 0.3 ab | 0.2 b | 0.1 c | 0.1 c | 15.3 | 0.00 | 0.20
Red pine | 1.5 | 4.4 | 4.1 | 1.9 | 0.8 | 1.1 | 0.40 | 0.693
Aspen | 0.09 ab | 0.19 b | 0.09 ab | 0.08 a | 0.03 a | 4.047 | 0.016 | 0.013
Sugar maple | 0.02 | 0.05 | 0.06 | 0.05 | 0.03 | .7 | .60 | .007
Jack pine | .04 | .04 | .03 | .03 | .06 | .5 | .75 | .008
Red pine | .10 | .10 | .09 | .08 | .08 | .1 | .98 | .017
Aspen | 4.4 a | 4.6 a | 4.9 a | 4.8 a | 6.1 b | 3.2 | 0.04 | 0.143
Sugar maple | 5.7 a | 4.7 b | 4.7 b | 4.4 b | 4.5 b | 17.0 | 0.00 | 0.057
Jack pine | 5.0 a | 4.9 ab | 4.6 bc | 4.5 c | 4.4 c | 6.9 | 0.00 | 0.047
Red pine | 1.5 | 4.4 | 4.5 | 4.6 | 4.8 | 1.2 | .34 | .071
Aspen | 5.9 | 5.5 | 4.7 | 4.7 | 4.9 | 2.1 | .11 | .160

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

2 ANOVA: F = F value, P = probability, MSE$^{0.5}$ = square root of mean square error.

3 Base Saturation = [(Ca + Mg + K + Na) / CEC] * 100; Cation Exchange Capacity = (Ac + Ca + Mg + K + Na); pH in 0.01 M CaCl$_2$.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 11.1.—Properties of the mineral soil (51 to 75 cm depth) of 169 plots by zone across a Lake States sulfate deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Property<sup>1</sup></th>
<th>Zone<sup>2</sup></th>
<th>Anova<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BSAT</td>
<td>94 a<sup>4</sup></td>
<td>85 a</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(25)</td>
</tr>
<tr>
<td>CEC</td>
<td>10.1 a</td>
<td>7.9 ab</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(25)</td>
</tr>
<tr>
<td>Ac</td>
<td>.2 a</td>
<td>.5 abc</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(25)</td>
</tr>
<tr>
<td>Ca</td>
<td>7.6 a</td>
<td>5.8 ab</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(26)</td>
</tr>
<tr>
<td>Mg</td>
<td>2.1 ab</td>
<td>2.7 a</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(26)</td>
</tr>
<tr>
<td>K</td>
<td>.12 a</td>
<td>.10 ab</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(26)</td>
</tr>
<tr>
<td>Na</td>
<td>.10</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(26)</td>
</tr>
<tr>
<td>pH</td>
<td>5.7 a</td>
<td>5.2 b</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(25)</td>
</tr>
</tbody>
</table>

¹ BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na), Ac = exchangeable acidity, and cations - calcium, magnesium, potassium, and sodium (cmol (+) kg⁻¹); pH in 0.01 M CaCl₂.
² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
³ ANOVA: F = F value, P = probability, MSE^{.5} = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 11.2.—Properties of the mineral soil (51 to 75 cm depth) of 169 plots by forest type across a Lake States sulfate deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Forest type2</th>
<th>Anova3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
<td>Jp</td>
<td>Rp</td>
<td>A</td>
</tr>
<tr>
<td>BSAT</td>
<td>84 a<sup>4</sup></td>
<td>76 a</td>
<td>64 b</td>
<td>59 b</td>
<td>82 a</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(39)</td>
<td>(37)</td>
<td>(26)</td>
<td>(34)</td>
</tr>
<tr>
<td>CEC</td>
<td>6.6 a</td>
<td>7.7 a</td>
<td>1.6 b</td>
<td>1.7 b</td>
<td>12.9 c</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(40)</td>
<td>(38)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
<tr>
<td>Ac</td>
<td>.5</td>
<td>.7</td>
<td>.3</td>
<td>.7</td>
<td>.6</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(39)</td>
<td>(38)</td>
<td>(26)</td>
<td>(34)</td>
</tr>
<tr>
<td>Ca</td>
<td>5.3 ab</td>
<td>5.1 a</td>
<td>.9 c</td>
<td>.8 c</td>
<td>8.9 b</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(39)</td>
<td>(38)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
<tr>
<td>Mg</td>
<td>.3 ab</td>
<td>.2 b</td>
<td>2.4 c</td>
<td>1.7 c</td>
<td>3.2 a</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(39)</td>
<td>(38)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
<tr>
<td>K</td>
<td>.11 a</td>
<td>.12 a</td>
<td>.04 b</td>
<td>.04 b</td>
<td>.09 a</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(39)</td>
<td>(37)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
<tr>
<td>Na</td>
<td>.11 ab</td>
<td>.07 bc</td>
<td>.04 c</td>
<td>.04 c</td>
<td>.14 a</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(39)</td>
<td>(38)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
<tr>
<td>pH</td>
<td>5.7 a</td>
<td>5.0 b</td>
<td>4.9 b</td>
<td>4.8 b</td>
<td>5.6 a</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(40)</td>
<td>(36)</td>
<td>(27)</td>
<td>(34)</td>
</tr>
</tbody>
</table>

1 BSAT = percent base saturation [\(\frac{(Ca + Mg + K + Na)}{CEC}\) * 100; CEC = cation exchange capacity = \(\frac{(Ac + Ca + Mg + K + Na)}{Ac\) exchangeable acidity, and cations - calcium, magnesium, potassium, and sodium (cmol (+) kg\(^{-1}\)); pH in 0.01 \(M\ CaCl_2\).

3 ANOVA: F = F value, P = probability, MSE^{.95} = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 12.1.—Properties of the mineral soil (51 to 75 cm depth) of 169 plots by forest type for five zones across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone¹</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Anova²</th>
<th>MSE⁵.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>73</td>
<td>59</td>
<td>81</td>
<td>81</td>
<td>100</td>
<td></td>
<td>0.8</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(1)</td>
<td>(5)</td>
<td>(6)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>99 a</td>
<td>83 ab</td>
<td>79 ab</td>
<td>60 b</td>
<td>63 b</td>
<td></td>
<td>3.5</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>89 a</td>
<td>89 a</td>
<td>62 b</td>
<td>39 c</td>
<td>43 c</td>
<td></td>
<td>18.1</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>81</td>
<td>56</td>
<td>50</td>
<td>62</td>
<td></td>
<td>1.4</td>
<td>.27</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>99 a</td>
<td>91 ab</td>
<td>87 abc</td>
<td>71 bc</td>
<td>68 c</td>
<td></td>
<td>2.9</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Saturation (percent)³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1.9</td>
<td>1.6</td>
<td>10.0</td>
<td>5.6</td>
<td>6.2</td>
<td></td>
<td>0.7</td>
<td>0.60</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>17.2 a</td>
<td>8.5 b</td>
<td>6.3 bc</td>
<td>5.2 bc</td>
<td>1.4 c</td>
<td></td>
<td>7.5</td>
<td>.00</td>
</tr>
<tr>
<td>Jack pine</td>
<td>3.6 a</td>
<td>2.1 ab</td>
<td>1.4 b</td>
<td>.6 b</td>
<td>.5 b</td>
<td></td>
<td>3.7</td>
<td>.01</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>2.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.3</td>
<td></td>
<td>.7</td>
<td>.58</td>
</tr>
<tr>
<td>Aspen</td>
<td>10.8</td>
<td>16.3</td>
<td>17.6</td>
<td>11.7</td>
<td>8.1</td>
<td></td>
<td>.5</td>
<td>.75</td>
</tr>
<tr>
<td>Cation Exchange Capacity (cmol (+) kg⁻¹)³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.0</td>
<td></td>
<td>0.7</td>
<td>0.63</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.2 a</td>
<td>.7 ab</td>
<td>1.0 b</td>
<td>1.1 b</td>
<td>.5 ab</td>
<td></td>
<td>2.6</td>
<td>.06</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.2 a</td>
<td>.2 a</td>
<td>.5 b</td>
<td>.4 ab</td>
<td>.3 ab</td>
<td></td>
<td>2.7</td>
<td>.05</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.5</td>
<td>.8</td>
<td>.8</td>
<td>.4</td>
<td></td>
<td>.6</td>
<td>.70</td>
</tr>
<tr>
<td>Aspen</td>
<td>.1</td>
<td>.6</td>
<td>.5</td>
<td>1.2</td>
<td>.6</td>
<td></td>
<td>1.0</td>
<td>.42</td>
</tr>
<tr>
<td>Exchangeable Acidity (cmol (+) kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.8</td>
<td>9.8</td>
<td>7.8</td>
<td>3.4</td>
<td>4.0</td>
<td></td>
<td>0.9</td>
<td>0.52</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>13.0 a</td>
<td>5.7 b</td>
<td>3.4 b</td>
<td>3.0 b</td>
<td>.7 b</td>
<td></td>
<td>7.8</td>
<td>.00</td>
</tr>
<tr>
<td>Jack pine</td>
<td>2.5 a</td>
<td>1.4 ab</td>
<td>.6 b</td>
<td>.1 b</td>
<td>.1 b.</td>
<td></td>
<td>4.6</td>
<td>.01</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>1.6 a</td>
<td>.6 b</td>
<td>.6 b</td>
<td>.6 b.</td>
<td></td>
<td>3.3</td>
<td>.04</td>
</tr>
<tr>
<td>Aspen</td>
<td>8.2</td>
<td>11.0</td>
<td>11.0</td>
<td>8.0</td>
<td>6.2</td>
<td></td>
<td>.2</td>
<td>.93</td>
</tr>
</tbody>
</table>

(Table 12.1 continued on next page)
(Table 12.1 continued)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>F</th>
<th>P</th>
<th>MSE*<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>0.4</td>
<td>10.2</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>2.0</td>
<td>0.15</td>
<td>0.976</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>3.6 a</td>
<td>2.1 ab</td>
<td>1.6 bc</td>
<td>1.0 bc</td>
<td>2 c</td>
<td>5.5</td>
<td>.00</td>
<td>.253</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.8 a</td>
<td>.4 ab</td>
<td>.2 b</td>
<td>.1 b</td>
<td>.1 b</td>
<td>2.9</td>
<td>.04</td>
<td>.082</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.3</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>3.3</td>
<td>.80</td>
<td>.034</td>
</tr>
<tr>
<td>Aspen</td>
<td>2.3</td>
<td>4.5</td>
<td>5.7</td>
<td>2.3</td>
<td>1.1</td>
<td>1.5</td>
<td>.22</td>
<td>.661</td>
</tr>
</tbody>
</table>

Exchangeable Magnesium (cmol (+) kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>F</th>
<th>P</th>
<th>MSE*<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>0.07</td>
<td>0.17</td>
<td>0.19</td>
<td>0.07</td>
<td>0.03</td>
<td>0.8</td>
<td>0.53</td>
<td>0.035</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.22 a</td>
<td>.13 ab</td>
<td>.12 b</td>
<td>.09 bc</td>
<td>.03 c</td>
<td>6.4</td>
<td>.00</td>
<td>.013</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.07 a</td>
<td>.07 a</td>
<td>.05 b</td>
<td>.03 b</td>
<td>.02 c</td>
<td>8.6</td>
<td>.00</td>
<td>.004</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.06 a</td>
<td>.05 a</td>
<td>.03 b</td>
<td>.03 b</td>
<td>2.9</td>
<td>.05</td>
<td>.004</td>
</tr>
<tr>
<td>Aspen</td>
<td>.08</td>
<td>.10</td>
<td>.12</td>
<td>.09</td>
<td>.07</td>
<td>.6</td>
<td>.70</td>
<td>.012</td>
</tr>
</tbody>
</table>

Exchangeable Potassium (cmol (+) kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>F</th>
<th>P</th>
<th>MSE*<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>0.13</td>
<td>0.30</td>
<td>0.15</td>
<td>0.04</td>
<td>0.07</td>
<td>1.2</td>
<td>0.35</td>
<td>0.037</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.11</td>
<td>.09</td>
<td>.06</td>
<td>.04</td>
<td>.04</td>
<td>1.2</td>
<td>.35</td>
<td>.068</td>
</tr>
<tr>
<td>Jack pine</td>
<td>.05</td>
<td>.04</td>
<td>.03</td>
<td>.04</td>
<td>.05</td>
<td>.3</td>
<td>.91</td>
<td>.008</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.08</td>
<td>.03</td>
<td>.05</td>
<td>.03</td>
<td>1.7</td>
<td>.19</td>
<td>.008</td>
</tr>
<tr>
<td>Aspen</td>
<td>.15</td>
<td>.14</td>
<td>.20</td>
<td>.12</td>
<td>.09</td>
<td>.4</td>
<td>.83</td>
<td>.027</td>
</tr>
</tbody>
</table>

Exchangeable Sodium (cmol (+) kg⁻¹)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>F</th>
<th>P</th>
<th>MSE*<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>4.6</td>
<td>5.0</td>
<td>5.4</td>
<td>5.5</td>
<td>6.9</td>
<td>2.0</td>
<td>0.16</td>
<td>0.243</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>5.8 a</td>
<td>4.7 b</td>
<td>4.8 b</td>
<td>4.8 b</td>
<td>4.9 b</td>
<td>2.9</td>
<td>.04</td>
<td>.122</td>
</tr>
<tr>
<td>Jack pine</td>
<td>5.4 a</td>
<td>5.1 ab</td>
<td>4.7 b</td>
<td>4.6 b</td>
<td>4.6 b</td>
<td>5.5</td>
<td>.00</td>
<td>.071</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>4.9 ab</td>
<td>4.6 a</td>
<td>4.7 a</td>
<td>5.1 b</td>
<td>2.6</td>
<td>.08</td>
<td>.071</td>
</tr>
<tr>
<td>Aspen</td>
<td>6.1</td>
<td>5.9</td>
<td>5.9</td>
<td>5.4</td>
<td>5.2</td>
<td>5.7</td>
<td>.72</td>
<td>.233</td>
</tr>
</tbody>
</table>

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

2 ANOVA: F = F value, P = probability, MSE*^{0.5} = square root of mean square error.

3 Base Saturation = [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na); pH in 0.01 M CaCl₂.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 13.1.—Properties of the mineral soil (76 to 100 cm depth) of 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
<th>Zone 5</th>
<th>F</th>
<th>P</th>
<th>MSE0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAT</td>
<td>96 a4</td>
<td>89 a</td>
<td>76 b</td>
<td>67 b</td>
<td>66 b</td>
<td>9.2</td>
<td>0.00</td>
<td>1.901</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(26)</td>
<td>(27)</td>
<td>(35)</td>
<td>(30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC</td>
<td>11.1 a</td>
<td>11.0 a</td>
<td>7.0 ab</td>
<td>6.1 b</td>
<td>2.3 b</td>
<td>3.4</td>
<td>0.01</td>
<td>.780</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(26)</td>
<td>(27)</td>
<td>(36)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac</td>
<td>.1 a</td>
<td>.4 b</td>
<td>.4 ab</td>
<td>.6 b</td>
<td>.1 a</td>
<td>2.9</td>
<td>0.02</td>
<td>.088</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(26)</td>
<td>(27)</td>
<td>(36)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>8.3 a</td>
<td>7.5 ab</td>
<td>4.6 abc</td>
<td>4.0 bc</td>
<td>1.8 c</td>
<td>2.7</td>
<td>0.03</td>
<td>.611</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(26)</td>
<td>(27)</td>
<td>(36)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>2.4 a</td>
<td>2.8 a</td>
<td>1.7 ab</td>
<td>1.2 bc</td>
<td>.5 c</td>
<td>4.2</td>
<td>0.00</td>
<td>.188</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(26)</td>
<td>(29)</td>
<td>(36)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>.10 a</td>
<td>.10 a</td>
<td>.07 b</td>
<td>.06 b</td>
<td>.02 c</td>
<td>10.9</td>
<td>0.00</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(26)</td>
<td>(29)</td>
<td>(36)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>.14 a</td>
<td>.13 a</td>
<td>.10 ab</td>
<td>.07 b</td>
<td>.05 b</td>
<td>3.0</td>
<td>0.02</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(25)</td>
<td>(29)</td>
<td>(36)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.2 a</td>
<td>5.4 b</td>
<td>5.1 b</td>
<td>5.2 b</td>
<td>5.3 b</td>
<td>6.2</td>
<td>0.00</td>
<td>.076</td>
</tr>
</tbody>
</table>

1 BSAT = percent base saturation ([Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na), Ac = exchangeable acidity, and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol(+)/kg); pH in 0.01 M CaCl₂.

2 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

3 ANOVA: F = F value, P = probability, MSE0.5 = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 13.2.—Properties of the mineral soil (76 to 100 cm depth) of 169 plots by forest type across a Lake States sulfate deposition gradient. Number of plots in parentheses.

<table>
<thead>
<tr>
<th>Property</th>
<th>Bf</th>
<th>Sm</th>
<th>Jp</th>
<th>Rp</th>
<th>A</th>
<th>F</th>
<th>P</th>
<th>MSE<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAT</td>
<td>91 a<sup>4</sup></td>
<td>81 a</td>
<td>66 b</td>
<td>65 b</td>
<td>91 a</td>
<td>7.8</td>
<td>0.00</td>
<td>1.901</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(34)</td>
<td>(37)</td>
<td>(25)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC</td>
<td>9.1 a</td>
<td>9.9 a</td>
<td>1.3 b</td>
<td>1.5 b</td>
<td>14.9 a</td>
<td>11.4</td>
<td>.00</td>
<td>.780</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(35)</td>
<td>(37)</td>
<td>(26)</td>
<td>(31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac</td>
<td>.2</td>
<td>.6</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
<td>1.0</td>
<td>.38</td>
<td>.088</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(36)</td>
<td>(37)</td>
<td>(27)</td>
<td>(32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>5.5 ab</td>
<td>6.7 b</td>
<td>.8 c</td>
<td>1.0 ac</td>
<td>10.8 d</td>
<td>9.8</td>
<td>.00</td>
<td>.611</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(36)</td>
<td>(37)</td>
<td>(26)</td>
<td>(32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>3.2 a</td>
<td>2.2 a</td>
<td>.2 b</td>
<td>.3 b</td>
<td>3.1 a</td>
<td>10.8</td>
<td>.00</td>
<td>.188</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(35)</td>
<td>(37)</td>
<td>(27)</td>
<td>(32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>.08 ab</td>
<td>.11 a</td>
<td>.04 c</td>
<td>.04 c</td>
<td>.08 b</td>
<td>10.0</td>
<td>.00</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(36)</td>
<td>(37)</td>
<td>(27)</td>
<td>(32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>.13 ab</td>
<td>.11 a</td>
<td>.04 c</td>
<td>.04 c</td>
<td>.16 b</td>
<td>6.6</td>
<td>.00</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(36)</td>
<td>(36)</td>
<td>(26)</td>
<td>(32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.0 a</td>
<td>5.4 b</td>
<td>5.0 b</td>
<td>5.0 b</td>
<td>6.0 a</td>
<td>8.3</td>
<td>.00</td>
<td>.076</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>(36)</td>
<td>(36)</td>
<td>(26)</td>
<td>(32)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ BSAT = percent base saturation [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na), Ac = exchangeable acidity, and exchangeable cations - calcium, magnesium, potassium, and sodium (cmol(+)/kg); pH in 0.01 M CaCl₂.

³ ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 14.1.—Properties of the mineral soil (76 to 100 cm depth) of 169 plots by forest type for five zones across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Zone</th>
<th>Anova</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>86</td>
<td>85</td>
<td>98</td>
<td>85</td>
<td>100</td>
<td>.3</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
<td>.85</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>100 a</td>
<td>87 a</td>
<td>81 ab</td>
<td>81 a</td>
<td>57 b</td>
<td>4.1</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(4)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td>.01</td>
</tr>
<tr>
<td>Jack pine</td>
<td>92 a</td>
<td>88 ab</td>
<td>69 bc</td>
<td>32 d</td>
<td>50 cd</td>
<td>12.7</td>
</tr>
<tr>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td>.00</td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>87</td>
<td>64</td>
<td>55</td>
<td>66</td>
<td>1.3</td>
</tr>
<tr>
<td>(4)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td>(6)</td>
<td></td>
<td>.30</td>
</tr>
<tr>
<td>Aspen</td>
<td>99</td>
<td>94</td>
<td>90</td>
<td>87</td>
<td>83</td>
<td>.5</td>
</tr>
<tr>
<td>(5)</td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
<td>.73</td>
</tr>
</tbody>
</table>

Base Saturation (percent)³

Forest type	Zone	Zone	Zone	Zone	Zone	Anova
Balsam fir	1.3	20.4	18.0	5.6	3.8	1.4
(1)	(2)	(2)	(5)	(3)		.32
Sugar maple	17.9 a	12.0 a	7.6 ab	8.9 ab	1.9 b	3.0
(8)	(7)	(4)	(8)	(3)		.03
Jack pine	.1	.2	.2	.3	.2	1.0
(8)	(6)	(8)	(7)	(8)		.42
Red pine	—	.3	.5	.0	.0	1.5
(4)	(7)	(8)	(7)	(8)		.24
Aspen	.1	.5	.3	.3	.1	1.3
(5)	(7)	(6)	(8)	(5)		.29

Cation Exchange Capacity (cmol (+) kg⁻¹)³

Forest type	Zone	Zone	Zone	Zone	Zone	Anova
Balsam fir	.2	.3	.2	.4	.0	0.3
(1)	(2)	(2)	(5)	(3)		.85
Sugar maple	.1 a	.7 ab	.9 b	1.0 b	.4 ab	2.8
(8)	(7)	(4)	(8)	(3)		.04
Jack pine	.1	.2	.2	.3	.2	1.0
(8)	(6)	(8)	(7)	(8)		.42
Red pine	—	.3	.5	.0	.0	1.5
(4)	(7)	(8)	(7)	(8)		.24
Aspen	.1	.5	.3	.3	.1	1.3
(5)	(7)	(6)	(8)	(5)		.29

Exchangeable Acidity (cmol (+) kg⁻¹)

Forest type	Zone	Zone	Zone	Zone	Zone	Anova
Balsam fir	.8	10.2	13.2	3.3	2.3	1.6
(1)	(2)	(2)	(5)	(3)		.26
Sugar maple	13.4 a	8.4 ab	4.2 b	5.6 ab	1.1 b	2.9
(8)	(7)	(5)	(8)	(8)		.04
Jack pine	2.1 a	1.2 b	.4 c	.1 c	.1 c	10.0
(8)	(6)	(8)	(7)	(8)		.00
Red pine	—	1.5	.5	.8	1.5	1.2
(4)	(8)	(8)	(8)	(6)		.33
Aspen	11.6	14.5	13.1	8.8	5.9	.4
(5)	(7)	(6)	(9)	(5)		.78

Exchangeable Calcium (cmol (+) kg⁻¹)

Forest type	Zone	Zone	Zone	Zone	Zone	Anova
Balsam fir	0.8	10.2	13.2	3.3	2.3	1.6
(1)	(2)	(2)	(5)	(3)		.26
Sugar maple	13.4 a	8.4 ab	4.2 b	5.6 ab	1.1 b	2.9
(8)	(7)	(5)	(8)	(8)		.04
Jack pine	2.1 a	1.2 b	.4 c	.1 c	.1 c	10.0
(8)	(6)	(8)	(7)	(8)		.00
Red pine	—	1.5	.5	.8	1.5	1.2
(4)	(8)	(8)	(8)	(6)		.33
Aspen	11.6	14.5	13.1	8.8	5.9	.4
(5)	(7)	(6)	(9)	(5)		.78
(Table 14.1 continued)

<table>
<thead>
<tr>
<th>Forest type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>P</th>
<th>MSE<sup>0.5</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchangeable Magnesium (cmol (+) kg<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.2</td>
<td>9.5</td>
<td>4.2</td>
<td>1.8</td>
<td>1.4</td>
<td>1.2</td>
<td>0.40</td>
<td>1.340</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>4.1</td>
<td>2.6</td>
<td>2.5</td>
<td>1.7</td>
<td>0.3</td>
<td>3.8</td>
<td>0.01</td>
<td>0.333</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(5)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.7</td>
<td>.3</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>4.0</td>
<td>0.01</td>
<td>0.061</td>
</tr>
<tr>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.2</td>
<td>.2</td>
<td>.3</td>
<td>.6</td>
<td>0.7</td>
<td>0.58</td>
<td>0.117</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>3.1</td>
<td>4.8</td>
<td>4.4</td>
<td>2.2</td>
<td>.9</td>
<td>1.9</td>
<td>.14</td>
<td>0.511</td>
</tr>
<tr>
<td>(5)</td>
<td>(7)</td>
<td>(6)</td>
<td>(9)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Potassium (cmol (+) kg<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.05</td>
<td>0.18</td>
<td>0.10</td>
<td>0.07</td>
<td>0.02</td>
<td>2.0</td>
<td>0.18</td>
<td>0.018</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.18</td>
<td>.14</td>
<td>.12</td>
<td>.08</td>
<td>.03</td>
<td>5.8</td>
<td>0.00</td>
<td>0.012</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(5)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.06</td>
<td>.07</td>
<td>.03</td>
<td>.02</td>
<td>.01</td>
<td>12.0</td>
<td>0.00</td>
<td>0.003</td>
</tr>
<tr>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.06</td>
<td>.05</td>
<td>.04</td>
<td>.03</td>
<td>1.5</td>
<td>0.24</td>
<td>0.005</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.07</td>
<td>.09</td>
<td>.11</td>
<td>.07</td>
<td>.04</td>
<td>1.3</td>
<td>.30</td>
<td>0.010</td>
</tr>
<tr>
<td>(5)</td>
<td>(7)</td>
<td>(6)</td>
<td>(9)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable Sodium (cmol (+) kg<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>0.01</td>
<td>0.26</td>
<td>0.37</td>
<td>0.03</td>
<td>0.10</td>
<td>1.9</td>
<td>0.21</td>
<td>0.047</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>.17</td>
<td>.17</td>
<td>.09</td>
<td>.07</td>
<td>.03</td>
<td>1.5</td>
<td>0.21</td>
<td>0.023</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(5)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>.05</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
<td>.05</td>
<td>3.</td>
<td>.88</td>
<td>0.009</td>
</tr>
<tr>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>.07</td>
<td>.02</td>
<td>.05</td>
<td>.02</td>
<td>2.0</td>
<td>.14</td>
<td>0.007</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>.27</td>
<td>.17</td>
<td>.22</td>
<td>.12</td>
<td>.07</td>
<td>1.5</td>
<td>.22</td>
<td>.027</td>
</tr>
<tr>
<td>(5)</td>
<td>(7)</td>
<td>(6)</td>
<td>(9)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>5.2</td>
<td>5.5</td>
<td>6.6</td>
<td>5.6</td>
<td>6.8</td>
<td>1.006</td>
<td>0.458</td>
<td>0.300</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>6.6</td>
<td>5.1</td>
<td>4.8</td>
<td>5.1</td>
<td>5.0</td>
<td>4.446</td>
<td>0.006</td>
<td>0.154</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(5)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>5.4</td>
<td>5.1</td>
<td>4.8</td>
<td>4.7</td>
<td>4.8</td>
<td>4.237</td>
<td>0.008</td>
<td>0.070</td>
</tr>
<tr>
<td>(8)</td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>—</td>
<td>4.9</td>
<td>4.8</td>
<td>4.7</td>
<td>5.5</td>
<td>3.022</td>
<td>0.051</td>
<td>0.108</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>7.1</td>
<td>6.0</td>
<td>5.8</td>
<td>5.7</td>
<td>5.5</td>
<td>1.102</td>
<td>0.376</td>
<td>0.239</td>
</tr>
<tr>
<td>(5)</td>
<td>(7)</td>
<td>(6)</td>
<td>(9)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
2 ANOVA: F = F value, P = probability, MSE^{0.5} = square root of mean square error.
3 Base Saturation = [(Ca + Mg + K + Na) / CEC] * 100; CEC = cation exchange capacity = (Ac + Ca + Mg + K + Na); pH in 0.01 M CaCl₂.
4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 15.1.—Mean growth (mm), ash content (g kg⁻¹), and elemental concentration (mg kg⁻¹) in the 1976-1985 increment of woody tissue of five tree species on 169 plots by zone across a Lake States deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Element</th>
<th>Zone¹</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Anova²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td></td>
<td>15.2</td>
<td>15.8</td>
<td>17.0</td>
<td>17.3</td>
<td>15.3</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(23)</td>
<td>(31)</td>
<td>(39)</td>
<td>(42)</td>
<td>(34)</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7</td>
<td>.57</td>
<td>.42</td>
<td>.42</td>
<td>.42</td>
<td>MSE⁰.⁵</td>
</tr>
<tr>
<td>Ash</td>
<td></td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(32)</td>
<td>(30)</td>
<td>(24)</td>
<td>.98</td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
<td>7.0 a³</td>
<td>8.8 bc</td>
<td>9.8 c</td>
<td>9.1 c</td>
<td>7.3 ab</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.01</td>
</tr>
<tr>
<td>Boron</td>
<td></td>
<td>3.4 ab</td>
<td>3.5 ab</td>
<td>6.9 b</td>
<td>2.4 a</td>
<td>2.3 a</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.24</td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td>.28</td>
<td>.20</td>
<td>.33</td>
<td>.25</td>
<td>.21</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.76</td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
<td>742</td>
<td>813</td>
<td>712</td>
<td>718</td>
<td>785</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.24</td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td>.31 a</td>
<td>.47 ab</td>
<td>.36 a</td>
<td>.64 b</td>
<td>.49 ab</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.26</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.38</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td>100 ab</td>
<td>95 ab</td>
<td>59 b</td>
<td>101 a</td>
<td>67 ab</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.24</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td>.33</td>
<td>.64</td>
<td>.50</td>
<td>.52</td>
<td>.45</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.11</td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td>127</td>
<td>134</td>
<td>135</td>
<td>138</td>
<td>150</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.38</td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
<td>16.6 a</td>
<td>30.1 ab</td>
<td>37.4 c</td>
<td>52.2 c</td>
<td>75.6 d</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.00</td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td>.50 ab</td>
<td>.57 b</td>
<td>.41 ab</td>
<td>.52 ab</td>
<td>.31 a</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.08</td>
</tr>
<tr>
<td>Nitrogen</td>
<td></td>
<td>710 a</td>
<td>654 ab</td>
<td>688 a</td>
<td>624 b</td>
<td>619 b</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.02</td>
</tr>
<tr>
<td>Phosphorus</td>
<td></td>
<td>108 a</td>
<td>100 ab</td>
<td>95 ab</td>
<td>90 b</td>
<td>91 b</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.03</td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
<td>616</td>
<td>629</td>
<td>556</td>
<td>594</td>
<td>679</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.38</td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td>5.6 a</td>
<td>7.8 ab</td>
<td>11.5 bc</td>
<td>13.0 c</td>
<td>6.3 a</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.02</td>
</tr>
<tr>
<td>Sulfur</td>
<td></td>
<td>86</td>
<td>81</td>
<td>83</td>
<td>78</td>
<td>82</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.14</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>10.5 a</td>
<td>12.5 ab</td>
<td>14.6 bc</td>
<td>17.0 c</td>
<td>11.2 a</td>
<td>5.485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16)</td>
<td>(26)</td>
<td>(33)</td>
<td>(31)</td>
<td>(25)</td>
<td>.00</td>
</tr>
</tbody>
</table>

1 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

2 ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.

3 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 15.2.—Mean growth (mm), ash content (g kg⁻¹), and elemental concentration (mg kg⁻¹) in the 1976-1985 increment of woody tissue of five tree species on 169 plots by forest type across a Lake States deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Element</th>
<th>Forest type</th>
<th>Anova²</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
<td>Jp</td>
<td>Rp</td>
</tr>
<tr>
<td>Growth</td>
<td>12.1 a³</td>
<td>12.5 a</td>
<td>13.3 a</td>
<td>25.5 b</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
</tr>
<tr>
<td>Ash</td>
<td>17 a</td>
<td>12 b</td>
<td>12 b</td>
<td>14 c</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(28)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>10.6 a</td>
<td>4.0 b</td>
<td>12.1 a</td>
<td>13.7 c</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Boron</td>
<td>6.3 ab</td>
<td>3.7 abc</td>
<td>1.8 c</td>
<td>6.6 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(28)</td>
<td>(27)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>.17</td>
<td>.18</td>
<td>.29</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(28)</td>
<td>(27)</td>
</tr>
<tr>
<td>Calcium</td>
<td>792 a</td>
<td>604 a</td>
<td>546 b</td>
<td>631 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Chromium</td>
<td>.63 ab</td>
<td>.41 a</td>
<td>.38 a</td>
<td>.72 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Copper</td>
<td>1.4 ab</td>
<td>1.3 a</td>
<td>.9 c</td>
<td>1.1 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Iron</td>
<td>177 a</td>
<td>77 b</td>
<td>71 b</td>
<td>82 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Lead</td>
<td>.74 a</td>
<td>.48 bc</td>
<td>.53 abc</td>
<td>.58 ab</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>152 a</td>
<td>118 b</td>
<td>125 b</td>
<td>144 a</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Manganese</td>
<td>54.3 a</td>
<td>55.7 a</td>
<td>39.0 a</td>
<td>82.5 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Nickel</td>
<td>.55 b</td>
<td>.55 b</td>
<td>.32 a</td>
<td>.64 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>711 ab</td>
<td>774 a</td>
<td>662 bc</td>
<td>626 c</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td>(39)</td>
<td>(39)</td>
<td>(27)</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>81 a</td>
<td>118 b</td>
<td>76 a</td>
<td>86 a</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Potassium</td>
<td>1,200 a</td>
<td>731 b</td>
<td>455 c</td>
<td>413 c</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Sodium</td>
<td>8.4 ab</td>
<td>8.2 a</td>
<td>9.9 ab</td>
<td>14.0 b</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(30)</td>
<td>(29)</td>
<td>(27)</td>
</tr>
<tr>
<td>Sulfur</td>
<td>81 a</td>
<td>102 b</td>
<td>75 c</td>
<td>78 ac</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
<td>(27)</td>
</tr>
<tr>
<td>Zinc</td>
<td>14.0 a</td>
<td>5.6 b</td>
<td>15.2 a</td>
<td>13.6 a</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td>(39)</td>
<td>(39)</td>
<td>(27)</td>
</tr>
</tbody>
</table>

² ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
³ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 16.1.—Mean growth (mm), ash content (g kg⁻¹), and elemental concentration (mg kg⁻¹) in the 1966-1975 increment of woody tissue of five tree species on 169 plots by zone across a Lake States deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Element</th>
<th>Zone</th>
<th>Anova²</th>
<th>F</th>
<th>P</th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Growth</td>
<td>18.4</td>
<td>22.1</td>
<td>22.2</td>
<td>21.4</td>
<td>20.2</td>
</tr>
<tr>
<td>Ash</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Aluminum</td>
<td>5.5 a³</td>
<td>6.7 b</td>
<td>7.1 b</td>
<td>6.5 b</td>
<td>5.6 a</td>
</tr>
<tr>
<td>Boron</td>
<td>4.5 ab</td>
<td>3.3 a</td>
<td>6.6 b</td>
<td>2.3 a</td>
<td>2.2 a</td>
</tr>
<tr>
<td>Cadmium</td>
<td>.20</td>
<td>.38</td>
<td>.31</td>
<td>.31</td>
<td>.27</td>
</tr>
<tr>
<td>Calcium</td>
<td>905</td>
<td>967</td>
<td>904</td>
<td>892</td>
<td>955</td>
</tr>
<tr>
<td>Chromium</td>
<td>.27 a</td>
<td>.26 a</td>
<td>.25 a</td>
<td>.42 b</td>
<td>.35 ab</td>
</tr>
<tr>
<td>Copper</td>
<td>.84 ab</td>
<td>.87 ab</td>
<td>.88 b</td>
<td>.76 a</td>
<td>.78 ab</td>
</tr>
<tr>
<td>Iron</td>
<td>58 ab</td>
<td>46 ac</td>
<td>36 c</td>
<td>68 b</td>
<td>38 ac</td>
</tr>
<tr>
<td>Lead</td>
<td>.38</td>
<td>.55</td>
<td>.65</td>
<td>.43</td>
<td>.40</td>
</tr>
<tr>
<td>Magnesium</td>
<td>128</td>
<td>165</td>
<td>174</td>
<td>171</td>
<td>194</td>
</tr>
<tr>
<td>Manganese</td>
<td>20.3 a</td>
<td>45.7 b</td>
<td>51.1 b</td>
<td>59.0 b</td>
<td>90.0 c</td>
</tr>
<tr>
<td>Nickel</td>
<td>.38</td>
<td>.50</td>
<td>.41</td>
<td>.38</td>
<td>.23</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>529 a</td>
<td>480 b</td>
<td>480 b</td>
<td>451 bc</td>
<td>434 c</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>57</td>
<td>47</td>
<td>49</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td>Potassium</td>
<td>449</td>
<td>611</td>
<td>539</td>
<td>609</td>
<td>531</td>
</tr>
<tr>
<td>Sodium</td>
<td>4.2 ab</td>
<td>6.1 b</td>
<td>6.1 b</td>
<td>5.1 ab</td>
<td>3.5 a</td>
</tr>
<tr>
<td>Sulfur</td>
<td>75 a</td>
<td>71 abc</td>
<td>73 ab</td>
<td>67 c</td>
<td>69 bc</td>
</tr>
<tr>
<td>Zinc</td>
<td>9.0 a</td>
<td>11.0 ab</td>
<td>12.7 b</td>
<td>15.1 c</td>
<td>12.2 b</td>
</tr>
</tbody>
</table>

¹ Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
² ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
³ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 16.2.—Mean growth (mm), ash content (g kg\(^{-1}\)), and elemental concentration (mg kg\(^{-1}\)) in the 1966-1975 increment of woody tissue of five tree species on 169 plots by forest type across a Lake States deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Element</th>
<th>Forest type(^1)</th>
<th>Anova(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bf</td>
<td>Sm</td>
</tr>
<tr>
<td>Growth</td>
<td>18.3 a(^3)</td>
<td>15.6 a</td>
</tr>
<tr>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
</tr>
<tr>
<td>Ash</td>
<td>18 a</td>
<td>11 b</td>
</tr>
<tr>
<td>(16)</td>
<td>(33)</td>
<td>(31)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>8.3 ab</td>
<td>3.6 c</td>
</tr>
<tr>
<td>(18)</td>
<td>(36)</td>
<td>(31)</td>
</tr>
<tr>
<td>Boron</td>
<td>4.2 ab</td>
<td>4.1 ab</td>
</tr>
<tr>
<td>Cadmium</td>
<td>.19</td>
<td>.20</td>
</tr>
<tr>
<td>Calcium</td>
<td>1,220 a</td>
<td>866 b</td>
</tr>
<tr>
<td>Chromium</td>
<td>.51 a</td>
<td>.24 b</td>
</tr>
<tr>
<td>Copper</td>
<td>.81 a</td>
<td>.81 a</td>
</tr>
<tr>
<td>Iron</td>
<td>87 a</td>
<td>38 bc</td>
</tr>
<tr>
<td>Lead</td>
<td>.42 ab</td>
<td>.33 a</td>
</tr>
<tr>
<td>Magnesium</td>
<td>253 a</td>
<td>121 b</td>
</tr>
<tr>
<td>Manganese</td>
<td>67.5 a</td>
<td>50.5 a</td>
</tr>
<tr>
<td>Nickel</td>
<td>.48 ab</td>
<td>.33 b</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>418 a</td>
<td>614 c</td>
</tr>
<tr>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
</tr>
<tr>
<td>Potassium</td>
<td>1,640 a</td>
<td>580 b</td>
</tr>
<tr>
<td>Sodium</td>
<td>6.0</td>
<td>5.3</td>
</tr>
<tr>
<td>(18)</td>
<td>(36)</td>
<td>(31)</td>
</tr>
<tr>
<td>Sulfur</td>
<td>66 ad</td>
<td>92 b</td>
</tr>
<tr>
<td>(24)</td>
<td>(41)</td>
<td>(39)</td>
</tr>
<tr>
<td>Zinc</td>
<td>11.6 a</td>
<td>5.6 b</td>
</tr>
</tbody>
</table>

\(^2\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^3\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 17.1.—Mean growth (mm), ash content (g kg\(^{-1}\)) and elemental concentration (mg kg\(^{-1}\)) in the 1956-1965 increment of woody tissue of five tree species on 169 plots by zone across a Lake States deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Anova(^2)</th>
<th>MSE(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zone(^1)</td>
<td>F</td>
<td>P</td>
<td>MSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td>21.3</td>
<td>21.9</td>
<td>23.2</td>
<td>21.8</td>
<td>19.2</td>
<td>1.8</td>
<td>0.12</td>
</tr>
<tr>
<td>Ash</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>.9</td>
<td>.45</td>
</tr>
<tr>
<td>Aluminum</td>
<td>6.1 ab(^3)</td>
<td>6.7 bc</td>
<td>6.8 bc</td>
<td>7.6 c</td>
<td>5.5 a</td>
<td>2.5</td>
<td>.04</td>
</tr>
<tr>
<td>Boron</td>
<td>4.8 a</td>
<td>3.4 ab</td>
<td>4.7 a</td>
<td>2.4 ab</td>
<td>2.2 b</td>
<td>3.2</td>
<td>.02</td>
</tr>
<tr>
<td>Cadmium</td>
<td>.26</td>
<td>.30</td>
<td>.30</td>
<td>.34</td>
<td>.32</td>
<td>.1</td>
<td>.97</td>
</tr>
<tr>
<td>Calcium</td>
<td>1,220 a</td>
<td>1,160 ab</td>
<td>1,060 bc</td>
<td>1,040 bc</td>
<td>1,010 c</td>
<td>4.5</td>
<td>.00</td>
</tr>
<tr>
<td>Chromium</td>
<td>.23 a</td>
<td>.24 a</td>
<td>.24 a</td>
<td>.39 b</td>
<td>.30 ab</td>
<td>2.8</td>
<td>.03</td>
</tr>
<tr>
<td>Copper</td>
<td>.9 a</td>
<td>.8 ab</td>
<td>.9 a</td>
<td>.7 bc</td>
<td>.6 c</td>
<td>3.6</td>
<td>.01</td>
</tr>
<tr>
<td>Iron</td>
<td>53 ab</td>
<td>43 bc</td>
<td>33 c</td>
<td>58 a</td>
<td>36 bc</td>
<td>3.6</td>
<td>.01</td>
</tr>
<tr>
<td>Lead</td>
<td>.33</td>
<td>.39</td>
<td>.46</td>
<td>.43</td>
<td>.46</td>
<td>1.2</td>
<td>.30</td>
</tr>
<tr>
<td>Magnesium</td>
<td>201</td>
<td>208</td>
<td>197</td>
<td>205</td>
<td>193</td>
<td>1.0</td>
<td>.44</td>
</tr>
<tr>
<td>Manganese</td>
<td>33.8 a</td>
<td>49.2 ab</td>
<td>45.7 ab</td>
<td>64.7 b</td>
<td>87.5 c</td>
<td>3.3</td>
<td>.01</td>
</tr>
<tr>
<td>Nickel</td>
<td>.39 ab</td>
<td>.40 a</td>
<td>.31 abc</td>
<td>.24 bc</td>
<td>.18 c</td>
<td>2.6</td>
<td>.04</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>508 a</td>
<td>451 bc</td>
<td>463 b</td>
<td>420 c</td>
<td>419 c</td>
<td>4.5</td>
<td>.00</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>34</td>
<td>35</td>
<td>31</td>
<td>31</td>
<td>36</td>
<td>.5</td>
<td>.71</td>
</tr>
<tr>
<td>Potassium</td>
<td>648 ab</td>
<td>785 a</td>
<td>631 b</td>
<td>732 ab</td>
<td>597 b</td>
<td>2.7</td>
<td>.03</td>
</tr>
<tr>
<td>Sodium</td>
<td>2.8 a</td>
<td>5.8 c</td>
<td>5.6 bc</td>
<td>4.7 abc</td>
<td>3.7 ab</td>
<td>2.0</td>
<td>.09</td>
</tr>
<tr>
<td>Sulfur</td>
<td>79 a</td>
<td>75 ab</td>
<td>77 a</td>
<td>70 c</td>
<td>71 bc</td>
<td>3.8</td>
<td>.01</td>
</tr>
<tr>
<td>Zinc</td>
<td>11.9 a</td>
<td>12.3 a</td>
<td>14.4 bc</td>
<td>15.9 c</td>
<td>13.6 ab</td>
<td>6.7</td>
<td>.00</td>
</tr>
</tbody>
</table>

\(^1\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^2\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^3\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 17.2.—Mean growth (mm), ash content (g kg⁻¹), and elemental concentration (mg kg⁻¹) in the 1956-1965 increment of woody tissue of five tree species on 169 plots by forest type across a Lake States deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Element</th>
<th>Forest type¹</th>
<th>Anova²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sm</td>
<td>Jp</td>
</tr>
<tr>
<td>Growth</td>
<td>23.2 ac³</td>
<td>16.4 b</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
<tr>
<td>Ash</td>
<td>20 a</td>
<td>12 b</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td>(36)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>8.5 a</td>
<td>4.2 b</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(37)</td>
</tr>
<tr>
<td>Boron</td>
<td>3.5 ab</td>
<td>4.3 a</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(37)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>.17</td>
<td>.27</td>
</tr>
<tr>
<td>Calcium</td>
<td>1,420 a</td>
<td>1,010 b</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(36)</td>
</tr>
<tr>
<td>Chromium</td>
<td>.47 a</td>
<td>.22 b</td>
</tr>
<tr>
<td>Copper</td>
<td>.8 a</td>
<td>.8 a</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(37)</td>
</tr>
<tr>
<td>Iron</td>
<td>71 a</td>
<td>36 b</td>
</tr>
<tr>
<td>Lead</td>
<td>.41 ab</td>
<td>.37 b</td>
</tr>
<tr>
<td>Magnesium</td>
<td>299 a</td>
<td>142 b</td>
</tr>
<tr>
<td>Manganese</td>
<td>78.3 a</td>
<td>57.3 a</td>
</tr>
<tr>
<td>Nickel</td>
<td>.35</td>
<td>.30</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>369 a</td>
<td>623 b</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>7 a</td>
<td>61 b</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(37)</td>
</tr>
<tr>
<td>Potassium</td>
<td>1,930 a</td>
<td>610 b</td>
</tr>
<tr>
<td>Sodium</td>
<td>1.1 a</td>
<td>.7 ab</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(37)</td>
</tr>
<tr>
<td>Sulfur</td>
<td>66 a</td>
<td>100 b</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>(41)</td>
</tr>
<tr>
<td>Zinc</td>
<td>12.1 a</td>
<td>6.2 b</td>
</tr>
</tbody>
</table>

² ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
³ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1.—Mean growth (mm) of three decades of woody tissue for five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15.0</td>
<td>11.7</td>
<td>12.8</td>
</tr>
<tr>
<td>2</td>
<td>16.5</td>
<td>17.4</td>
<td>18.3</td>
</tr>
<tr>
<td>3</td>
<td>22.6</td>
<td>25.5</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11.2</td>
<td>10.9</td>
<td>11.7</td>
</tr>
<tr>
<td>2</td>
<td>14.6</td>
<td>13.8</td>
<td>15.0</td>
</tr>
<tr>
<td>3</td>
<td>15.1</td>
<td>17.7</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.7 a(^4)</td>
<td>15.0 a</td>
<td>15.0 a</td>
</tr>
<tr>
<td>2</td>
<td>18.4 ab</td>
<td>18.7 ab</td>
<td>19.2 ab</td>
</tr>
<tr>
<td>3</td>
<td>24.2 a</td>
<td>21.3 ab</td>
<td>24.6 a</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>22.6</td>
<td>26.2</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>43.2</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>19.8</td>
<td>34.8</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21.4</td>
<td>20.1</td>
<td>18.2</td>
</tr>
<tr>
<td>2</td>
<td>23.6</td>
<td>25.4</td>
<td>22.6</td>
</tr>
<tr>
<td>3</td>
<td>25.6</td>
<td>25.4</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

2 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

3 ANOVA: \(F = F\) value, \(P = \) probability, MSE\(^{0.5}\) = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA \(p<0.10\).
Table 18.1 Continued.—Mean ash content (g kg\(^{-1}\)) in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5</td>
<td>F P MSE(^{0.5})</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 —</td>
<td>18 17 14 18</td>
<td>1.1 0.43 0.90</td>
<td></td>
</tr>
<tr>
<td>2 —</td>
<td>19 20 17 16</td>
<td>.9 .49 .87</td>
<td></td>
</tr>
<tr>
<td>3 19 ab</td>
<td>23 b 19 ab 18 a 19 ab</td>
<td>2.5 .08 .58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) (4) (5) (8) (3)</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 12</td>
<td>11 11 13 12</td>
<td>.7 .62 .45</td>
<td></td>
</tr>
<tr>
<td>2 12</td>
<td>11 11 12 11</td>
<td>1.0 .45 .33</td>
<td></td>
</tr>
<tr>
<td>3 14</td>
<td>12 12 13 10</td>
<td>1.5 .23 .47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (8) (8) (8) (8)</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 12</td>
<td>11 12 13 13</td>
<td>.2 .91 .68</td>
<td></td>
</tr>
<tr>
<td>2 12</td>
<td>13 13 12 13</td>
<td>.6 .68 .29</td>
<td></td>
</tr>
<tr>
<td>3 12</td>
<td>12 12 11 11</td>
<td>1.3 .31 .26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) (6) (8) (7) (7)</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 —</td>
<td>15 15 13 13</td>
<td>1.1 .38 .45</td>
<td></td>
</tr>
<tr>
<td>2 —</td>
<td>14 16 15 14</td>
<td>1.3 .31 .54</td>
<td></td>
</tr>
<tr>
<td>3 —</td>
<td>14 16 15 16</td>
<td>.4 .72 .70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) (3) (7) (4)</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 14</td>
<td>14 12 13 12</td>
<td>.6 .69 .43</td>
<td></td>
</tr>
<tr>
<td>2 14</td>
<td>13 15 13 14</td>
<td>.9 .48 .45</td>
<td></td>
</tr>
<tr>
<td>3 15</td>
<td>15 15 14 15</td>
<td>.3 .88 .33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (8) (8) (9) (6)</td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability value, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of aluminum in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
<th>MSE(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>11 a(^4)</td>
<td>9 a</td>
<td>8 ab</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
<td>(4)</td>
</tr>
<tr>
<td>3</td>
<td>15 a</td>
<td>12 ab</td>
<td>8 bc</td>
<td>8 c</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>5 a</td>
<td>4 a</td>
<td>4 a</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td>3</td>
<td>6 a</td>
<td>4 ab</td>
<td>4 ab</td>
<td>5 a</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>13 ab</td>
<td>14 ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 a</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>9</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>9</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.
\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of boron in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Anova(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>—</td>
<td>1.96</td>
<td>12.43</td>
<td>2.38</td>
<td>2.20</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.84</td>
<td>9.21</td>
<td>2.03</td>
<td>2.09</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.10</td>
<td>2.01</td>
<td>7.94</td>
<td>2.29</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>5.37 a</td>
<td>3.67 b</td>
<td>3.98 ab</td>
<td>3.43 b</td>
<td>3.04 b</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
<td>(8)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.46 a</td>
<td>3.09 b</td>
<td>3.43 b</td>
<td>2.90 b</td>
<td>2.81 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>12.70 a</td>
<td>3.22 b</td>
<td>4.00 b</td>
<td>3.13 b</td>
<td>2.66 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>1.62</td>
<td>1.75</td>
<td>1.92</td>
<td>1.81</td>
<td>1.82</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.57 a</td>
<td>1.58 a</td>
<td>1.80 b</td>
<td>1.70 ab</td>
<td>1.50 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>.62 ab</td>
<td>1.67 abc</td>
<td>1.90 c</td>
<td>1.81 bc</td>
<td>1.54 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>8.26 ab</td>
<td>14.37 a</td>
<td>2.05 b</td>
<td>1.85 b</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9.18</td>
<td>11.30</td>
<td>2.19</td>
<td>2.17</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>4.44</td>
<td>2.60</td>
<td>3.25</td>
<td>2.25</td>
<td>2.26</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.60</td>
<td>2.12</td>
<td>3.16</td>
<td>2.25</td>
<td>2.35</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.32</td>
<td>2.85</td>
<td>3.68</td>
<td>2.38</td>
<td>2.59</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of cadmium in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth¹ period</th>
<th>Zone²</th>
<th>Anova³</th>
<th>MSE⁵,⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>—</td>
<td>.08 a⁴</td>
<td>.21 b</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>.11</td>
<td>.21</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.17</td>
<td>.16</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>.05</td>
<td>.40</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.14</td>
<td>.40</td>
<td>.14</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.57</td>
<td>.13</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>.51</td>
<td>.14</td>
<td>.22</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.28</td>
<td>.20</td>
<td>.34</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.17</td>
<td>.50</td>
<td>.25</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>.17</td>
<td>.85</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>.27</td>
<td>.50</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>.22</td>
<td>.70</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>.14</td>
<td>.16</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.14</td>
<td>.77</td>
<td>.31</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.17</td>
<td>.44</td>
<td>.38</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

³ ANOVA: F = F value, P = probability, MSE⁵,⁶ = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of calcium in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth¹ period</th>
<th>Zone²</th>
<th>Anova³</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td>665</td>
<td>629</td>
<td>919</td>
<td>1,120</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,570</td>
<td>1,110</td>
<td>1,080</td>
<td>1,200</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3,010</td>
<td>1,740</td>
<td>1,320</td>
<td>1,200</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>889</td>
<td>836</td>
<td>812</td>
<td>756</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
<td>(8)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,010</td>
<td>900</td>
<td>802</td>
<td>803</td>
<td>852</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,040</td>
<td>1,140</td>
<td>930</td>
<td>1,000</td>
<td>953</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>536</td>
<td>562</td>
<td>564</td>
<td>518</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>665</td>
<td>679</td>
<td>687</td>
<td>721</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>692</td>
<td>717</td>
<td>701</td>
<td>697</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>599</td>
<td>622</td>
<td>635</td>
<td>654</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>841</td>
<td>918</td>
<td>903</td>
<td>934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>1,010</td>
<td>1,070</td>
<td>1,080</td>
<td>969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
<td>(4)</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>914</td>
<td>1,130</td>
<td>945</td>
<td>803</td>
<td>1,010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,120</td>
<td>1,050</td>
<td>1,070</td>
<td>947</td>
<td>1,120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,710</td>
<td>1,360</td>
<td>1,360</td>
<td>1,160</td>
<td>1,330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

³ ANOVA: F = F value, P = probability, MSE⁵ = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of chromium in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth¹ period</th>
<th>Zone²</th>
<th>Anova³</th>
<th></th>
<th></th>
<th>MSE⁰.⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>0.53</td>
<td>0.20</td>
<td>1.42</td>
<td>0.81</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>0.35</td>
<td>0.14</td>
<td>0.93</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>5</td>
<td>5</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.58</td>
<td>0.42</td>
<td>0.30</td>
<td>0.61</td>
<td>0.47</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>0.38</td>
<td>0.30</td>
<td>0.22</td>
<td>0.41</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.37</td>
<td>0.25</td>
<td>0.13</td>
<td>0.22</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.31</td>
<td>0.18</td>
<td>0.16</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>0.25</td>
<td>0.46</td>
<td>0.40</td>
<td>0.36</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.20</td>
<td>0.28</td>
<td>0.28</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.16</td>
<td>0.17</td>
<td>0.21</td>
<td>0.39</td>
<td>0.32</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>1.03</td>
<td>0.41</td>
<td>1.10</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>0.35</td>
<td>0.36</td>
<td>0.62</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>0.34</td>
<td>0.30</td>
<td>0.45</td>
<td>0.39</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.26</td>
<td>0.14</td>
<td>0.22</td>
<td>0.20</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.20</td>
<td>0.21</td>
<td>0.26</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td></td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

³ ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.

⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of copper in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth period</th>
<th>Zone²</th>
<th>Anova³</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>0.96</td>
<td>1.61</td>
<td>1.22</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.80</td>
<td>0.92</td>
<td>0.73</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.87</td>
<td>0.72</td>
<td>1.04</td>
<td>0.76</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>1.20</td>
<td>1.69</td>
<td>1.33</td>
<td>.99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.95 a</td>
<td>1.07 a</td>
<td>.78 bc</td>
<td>.64 c</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.35 a</td>
<td>.95 ab</td>
<td>.81 b</td>
<td>.54 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>.84</td>
<td>.97</td>
<td>.85</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.58</td>
<td>.63</td>
<td>.59</td>
<td>.56</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.49</td>
<td>.51</td>
<td>.45</td>
<td>0.60</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>1.12</td>
<td>1.12</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>.90</td>
<td>.77</td>
<td>.65</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>.66</td>
<td>.77</td>
<td>.58</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>1.36</td>
<td>1.45</td>
<td>1.66</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.06</td>
<td>.92</td>
<td>1.35</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.27</td>
<td>1.12</td>
<td>1.46</td>
<td>.94</td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
³ ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of iron in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Anova(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>352</td>
<td>32</td>
<td>252</td>
<td>216</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>77 ab(^4)</td>
<td>27 a</td>
<td>164 b</td>
<td>78 ab</td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>94 ab</td>
<td>86 b</td>
<td>23 a</td>
<td>87 b</td>
<td>81 b</td>
<td></td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>113</td>
<td>78</td>
<td>48</td>
<td>75</td>
<td>84</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>34</td>
<td>19</td>
<td>45</td>
<td>36</td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>50 ab</td>
<td>24 a</td>
<td>25 a</td>
<td>52 b</td>
<td>36 ab</td>
<td></td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>86</td>
<td>69</td>
<td>66</td>
<td>81</td>
<td>52</td>
<td></td>
<td></td>
<td>.9</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>57</td>
<td>46</td>
<td>55</td>
<td>26</td>
<td></td>
<td></td>
<td>.8</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>45</td>
<td>34</td>
<td>65</td>
<td>26</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>97</td>
<td>59</td>
<td>127</td>
<td>49</td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>50</td>
<td>43</td>
<td>83</td>
<td>41</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>41</td>
<td>48</td>
<td>67</td>
<td>34</td>
<td></td>
<td></td>
<td>.6</td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>108 a</td>
<td>63 bc</td>
<td>78 ab</td>
<td>75 ab</td>
<td>33 c</td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>59 a</td>
<td>28 b</td>
<td>37 b</td>
<td>31 b</td>
<td>19 b</td>
<td></td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>60 a</td>
<td>39 bc</td>
<td>42 ab</td>
<td>28 bc</td>
<td>19 c</td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of lead in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
<th>MSE(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>—</td>
<td>0.97</td>
<td>0.92</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>.34 a(^4)</td>
<td>.56 b</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.26</td>
<td>.51</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>.26 a</td>
<td>.88 b</td>
<td>.23 a</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.29</td>
<td>.42</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.34</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>.29</td>
<td>.52</td>
<td>.66</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.34</td>
<td>.82</td>
<td>.54</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.35</td>
<td>.30</td>
<td>.46</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>.88</td>
<td>.46</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>.87</td>
<td>.85</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>.63</td>
<td>.41</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>.47</td>
<td>.36</td>
<td>.34</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.54</td>
<td>.35</td>
<td>.96</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.32 a</td>
<td>.31 a</td>
<td>.61 b</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of magnesium in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2) 1</th>
<th>Zone(^2) 2</th>
<th>Zone(^2) 3</th>
<th>Zone(^2) 4</th>
<th>Zone(^2) 5</th>
<th>Anova(^3) F</th>
<th>Anova(^3) P</th>
<th>MSE(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>—</td>
<td>120</td>
<td>101</td>
<td>188</td>
<td>251</td>
<td>3.1</td>
<td>0.11</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>288</td>
<td>232</td>
<td>239</td>
<td>262</td>
<td>0.4</td>
<td>0.73</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>582 a(^4)</td>
<td>318 b</td>
<td>261 b</td>
<td>281 b</td>
<td>294 b</td>
<td>5.4</td>
<td>0.01</td>
<td>14</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>137 a</td>
<td>109 ab</td>
<td>107 b</td>
<td>113 ab</td>
<td>134 a</td>
<td>2.3</td>
<td>0.09</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>115 a</td>
<td>112 a</td>
<td>100 a</td>
<td>109 a</td>
<td>174 b</td>
<td>7.5</td>
<td>0.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>184</td>
<td>155</td>
<td>109</td>
<td>133</td>
<td>150</td>
<td>1.7</td>
<td>0.17</td>
<td>8</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>125</td>
<td>113</td>
<td>136</td>
<td>122</td>
<td>124</td>
<td>1.4</td>
<td>0.27</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>138</td>
<td>135</td>
<td>145</td>
<td>153</td>
<td>125</td>
<td>0.8</td>
<td>0.52</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>154</td>
<td>144</td>
<td>157</td>
<td>138</td>
<td>137</td>
<td>1.7</td>
<td>0.17</td>
<td>3</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>133</td>
<td>146</td>
<td>145</td>
<td>147</td>
<td>0.3</td>
<td>0.85</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>204</td>
<td>235</td>
<td>216</td>
<td>248</td>
<td>0.4</td>
<td>0.75</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>225</td>
<td>259</td>
<td>236</td>
<td>246</td>
<td>0.5</td>
<td>0.66</td>
<td>9</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>122</td>
<td>172</td>
<td>163</td>
<td>149</td>
<td>155</td>
<td>1.3</td>
<td>0.30</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>128</td>
<td>156</td>
<td>170</td>
<td>163</td>
<td>154</td>
<td>1.1</td>
<td>0.40</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>212</td>
<td>246</td>
<td>261</td>
<td>237</td>
<td>215</td>
<td>0.7</td>
<td>0.62</td>
<td>11</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of manganese in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>—</td>
<td>69</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>118 a(^4)</td>
<td>70 ab</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>217 a</td>
<td>122 a</td>
<td>59 b</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>20 a</td>
<td>33 a</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>21 a</td>
<td>29 ab</td>
<td>37 ab</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>28 a</td>
<td>39 ab</td>
<td>40 ab</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>24 a</td>
<td>37 a</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>33 a</td>
<td>48 ab</td>
<td>45 ab</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>36 a</td>
<td>54 ab</td>
<td>49 ab</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>47 a</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>71 a</td>
<td>103 a</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>79 a</td>
<td>134 ab</td>
<td>112 a</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(3)</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>3 a</td>
<td>4 a</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>3 a</td>
<td>4 a</td>
<td>6 ab</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>4 a</td>
<td>5 a</td>
<td>7 ab</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of nickel in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parenthesis.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1)</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>period</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>0.78</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(2)</td>
<td>(4)</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>0.56</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>3</td>
<td>0.23</td>
<td>0.47</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.72</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(6)</td>
</tr>
<tr>
<td>2</td>
<td>.39</td>
<td>.41</td>
<td>.18</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>3</td>
<td>.39</td>
<td>.41</td>
<td>.36</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.29</td>
<td>.26</td>
<td>.31</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td>2</td>
<td>.40</td>
<td>.28</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>3</td>
<td>.44</td>
<td>.59</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>1.28 a(^4)</td>
<td>.76 ab</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>1.15</td>
<td>.96</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>.36</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(3)</td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.40</td>
<td>.26</td>
<td>.39</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>2</td>
<td>.36</td>
<td>.39</td>
<td>.33</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>3</td>
<td>.34</td>
<td>.23</td>
<td>.31</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

2 Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

3 ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

4 Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of nitrogen in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
<th>MSE(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>781</td>
<td>730</td>
<td>774</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>504</td>
<td>428</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>889</td>
<td>798</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>725 (^a)</td>
<td>632 ab</td>
<td>614 b</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>629 ab</td>
<td>620 ab</td>
<td>792 c</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>631</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>463</td>
<td>472</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>440</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(5)</td>
<td>(7)</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>598</td>
<td>515</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>427</td>
<td>408</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>435</td>
<td>400</td>
<td>387</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of phosphorus in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth¹ period</th>
<th>Zone²</th>
<th>Anova³</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>—</td>
<td>88</td>
<td>84</td>
<td>88</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>15 a ⁴</td>
<td>15 a ⁴</td>
<td>11 ab</td>
<td>5 b</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>156 a</td>
<td>127 ab</td>
<td>116 b</td>
<td>100 b</td>
<td>110 b</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>80 a</td>
<td>69 ab</td>
<td>72 a</td>
<td>59 b</td>
<td>71 ab</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>60</td>
<td>68</td>
<td>63</td>
<td>53</td>
<td>62</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>76</td>
<td>75</td>
<td>83</td>
<td>77</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40</td>
<td>42</td>
<td>40</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21</td>
<td>19</td>
<td>12</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>88</td>
<td>79</td>
<td>94</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>54</td>
<td>54</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>21</td>
<td>28</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>115</td>
<td>106</td>
<td>113</td>
<td>85</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>56</td>
<td>46</td>
<td>55</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>37</td>
<td>42</td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
³ ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg\(^{-1}\)) of potassium in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth(^1) period</th>
<th>Zone(^2)</th>
<th>Anova(^3)</th>
<th>MSE(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Balsam fir</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>909 a(^4)</td>
<td>703 b</td>
<td>748 b</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>732 a</td>
<td>600 ab</td>
<td>604 ab</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>915 a</td>
<td>673 b</td>
<td>594 b</td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>476</td>
<td>467</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>296</td>
<td>290</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>260 a</td>
<td>264 a</td>
<td>199 b</td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>466</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>334</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>254</td>
<td>255</td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>569</td>
<td>708</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>370</td>
<td>471</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>603</td>
<td>824</td>
<td>721</td>
</tr>
</tbody>
</table>

\(^2\) Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.

\(^3\) ANOVA: F = F value, P = probability, MSE\(^{0.5}\) = square root of mean square error.

\(^4\) Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of sodium in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth¹ period</th>
<th>Zone²</th>
<th>Anova³</th>
<th>MSE⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.04</td>
<td>10.10</td>
<td>6.97</td>
<td>6.41</td>
</tr>
<tr>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
<td>(4)</td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.63 a⁴</td>
<td>9.66 b</td>
<td>4.09 a</td>
<td>4.99 a</td>
</tr>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(9)</td>
<td>(7)</td>
</tr>
<tr>
<td>3</td>
<td>5.12</td>
<td>7.88</td>
<td>4.70</td>
<td>3.21</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.60 a</td>
<td>3.67 a</td>
<td>16.92 b</td>
<td>15.52 b</td>
</tr>
<tr>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td>2</td>
<td>3.22</td>
<td>3.16</td>
<td>8.02</td>
<td>6.90</td>
</tr>
<tr>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td>3</td>
<td>1.65</td>
<td>2.04</td>
<td>3.97</td>
<td>5.91</td>
</tr>
<tr>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6.30</td>
<td>5.51</td>
<td>12.79</td>
<td>6.15</td>
</tr>
<tr>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(6)</td>
</tr>
<tr>
<td>2</td>
<td>5.10</td>
<td>2.70</td>
<td>5.72</td>
<td>3.82</td>
</tr>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
<tr>
<td>3</td>
<td>2.02 a</td>
<td>4.37 ab</td>
<td>7.71 b</td>
<td>4.16 ab</td>
</tr>
<tr>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
³ ANOVA: F = F value, P = probability, MSE⁵ = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of sulfur in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth period</th>
<th>Zone</th>
<th>Anova³</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>Balsam fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
<td>75.0</td>
<td>86.7</td>
<td>84.5</td>
<td>79.2</td>
<td>77.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>64.4</td>
<td>74.6</td>
<td>69.1</td>
<td>62.8</td>
<td>62.2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>69.7 abc</td>
<td>73.8 b</td>
<td>69.3 bc</td>
<td>63.4 ac</td>
<td>59.8 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>109.1</td>
<td>99.6</td>
<td>99.7</td>
<td>98.8</td>
<td>102.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>99.5 a</td>
<td>94.5 ab</td>
<td>94.2 ab</td>
<td>88.8 b</td>
<td>84.6 b</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>109.2a</td>
<td>102.6 a</td>
<td>102.4 a</td>
<td>97.8 ab</td>
<td>89.2 b</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>74.5 ab</td>
<td>67.7 b</td>
<td>83.9 a</td>
<td>73.1 ab</td>
<td>77.2 ab</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>57.4</td>
<td>52.7</td>
<td>59.6</td>
<td>55.3</td>
<td>58.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>52.3 ab</td>
<td>49.1 a</td>
<td>54.1 b</td>
<td>48.3 a</td>
<td>54.3 b</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.8</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>83.6</td>
<td>80.4</td>
<td>75.3</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>68.4</td>
<td>79.5</td>
<td>67.9</td>
<td>69.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>71.7</td>
<td>87.0</td>
<td>71.1</td>
<td>71.9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(5)</td>
<td>(7)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>1</td>
<td>71.8</td>
<td>70.0</td>
<td>70.5</td>
<td>64.1</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>67.0</td>
<td>63.8</td>
<td>64.3</td>
<td>59.5</td>
<td>68.6</td>
<td>.7</td>
</tr>
<tr>
<td>3</td>
<td>74.2</td>
<td>73.1</td>
<td>73.9</td>
<td>66.3</td>
<td>77.1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(9)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
³ ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Table 18.1 Continued.—Mean concentration (mg kg⁻¹) of zinc in three decades of woody tissue of five tree species on 169 plots by zone across a Lake States sulfate deposition gradient. Number of observations in parentheses.

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth¹ period</th>
<th>Zone²</th>
<th></th>
<th>Anova³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zone 1</td>
<td>Zone 2</td>
<td>Zone 3</td>
<td>Zone 4</td>
<td>Zone 5</td>
<td>F</td>
<td>P</td>
<td>MSE⁰.⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balsam fir</td>
<td>1</td>
<td>—</td>
<td>8 a</td>
<td>9 a</td>
<td>28 b</td>
<td>15 c</td>
<td>137.5</td>
<td>0.00</td>
<td>0.360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(2)</td>
<td>(4)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>10</td>
<td>1.3</td>
<td>0.30</td>
<td>1.239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(5)</td>
<td>(5)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>.4</td>
<td>.82</td>
<td>1.136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(4)</td>
<td>(5)</td>
<td>(8)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar maple</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>1.0</td>
<td>0.45</td>
<td>0.506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1.2</td>
<td>0.32</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(9)</td>
<td>(7)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>1.4</td>
<td>0.26</td>
<td>0.474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack pine</td>
<td>1</td>
<td>10 a</td>
<td>14 ab</td>
<td>20 c</td>
<td>19 bc</td>
<td>15 abc</td>
<td>5.8</td>
<td>0.00</td>
<td>0.836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7)</td>
<td>(6)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11 a</td>
<td>14 ab</td>
<td>17 b</td>
<td>22 c</td>
<td>17 b</td>
<td>7.6</td>
<td>0.00</td>
<td>0.626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(7)</td>
<td>(8)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12 a</td>
<td>14 ab</td>
<td>16 bc</td>
<td>20 d</td>
<td>19 cd</td>
<td>6.1</td>
<td>0.00</td>
<td>0.606</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>(6)</td>
<td>(8)</td>
<td>(7)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pine</td>
<td>1</td>
<td>—</td>
<td>11 ab</td>
<td>14 ab</td>
<td>18 b</td>
<td>10 a</td>
<td>2.5</td>
<td>.09</td>
<td>1.116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>2.3</td>
<td>.10</td>
<td>.602</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>11 a</td>
<td>16 b</td>
<td>16 b</td>
<td>15 ab</td>
<td>3.7</td>
<td>.04</td>
<td>.548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(4)</td>
<td>(3)</td>
<td>(7)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>1</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>15</td>
<td>.7</td>
<td>.63</td>
<td>1.482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
<td>(8)</td>
<td>(7)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11 a</td>
<td>14 ab</td>
<td>16 bc</td>
<td>19 c</td>
<td>16 abc</td>
<td>3.2</td>
<td>.03</td>
<td>.741</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>20</td>
<td>1.9</td>
<td>.14</td>
<td>.950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>(8)</td>
<td>(8)</td>
<td>(9)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

² Zones: Sampling zones 1 through 5 from northwestern Minnesota to southeastern Michigan.
³ ANOVA: F = F value, P = probability, MSE⁰.⁵ = square root of mean square error.
⁴ Values in the same row followed by the same letter are not significantly different by 95 percent LSD multiple range analysis. Test applied only where ANOVA p<0.10.
Ohmann, Lewis F.; Grigal, David F.

Presents the soil and tree wood tissue properties (mostly chemical) of the plots that were remeasured and sampled for a study of the relation between forest condition and wet sulfate deposition along the Lake States acidic deposition gradient.

KEY WORDS: Forest soils, soil sulfur, soil chemistry, tree wood chemistry, forest floor.
Our job at the North Central Forest Experiment Station is discovering and creating new knowledge and technology in the field of natural resources and conveying this information to the people who can use it. As a new generation of forests emerges in our region, managers are confronted with two unique challenges: (1) Dealing with the great diversity in composition, quality, and ownership of the forests, and (2) Reconciling the conflicting demands of the people who use them. Helping the forest manager meet these challenges while protecting the environment is what research at North Central is all about.