Pflanzen-Pathologie.

Lehre von dem kranken Leben und Bilden der Pflanzen

von

E. J. F. Meyen,
Doctor der Philosophie, der Medizin und Chirurgie, außerordentlichem Professor an der Königl. Friedrich-Wilhelms Universität zu Berlin etc.

Nach dem Tode des Verfassers zum Druck besorgt

von

Dr. Chr. Gottfr. Nees v. Esenbeck.
Professor zu Breslau, Präsident der Academie der Naturforscher, etc. etc.

Berlin 1841.

Haude und Spener'sche Buchhandlung
(S. J. Joseephy.)
Handbuch
der
Pflanzen-Pathologie
und
Pflanzen-Teratologie.

Herausgegeben
von
Dr. Chr. Gottfr. Nee's v. Esenbeck.
Professor zu Breslau, Präsident der Academie der Naturforscher,
etc. etc.

Erster Band.
(Pflanzen-Pathologie.)

Berlin 1841.
Haude und Spener'sche Buchhandlung
(S. J. Josephy.)
Vorerinnerung.


Obwohl ich nun mit manchen eignen Arbeiten beschäftigt bin und mich zu eifrigster Vollendung derselben angetrieben fühle, so würde ich doch die Pflicht der Freundschaft zu verläugnen geglaubt haben, wenn ich nicht der Aufforderung des würdigen Verlegers, ihm bei der Herausgabe dieses seinem Verlage hinterlassenen Manuskripts behülflich zu sein, bereitwillig und gern hätte folgen wollen.

Mein Verfahren war mir bei dieser Arbeit theils durch die schuldige Pietät gegen einen Verstorbenen, theils und hauptsächlich durch den schriftstellerischen Charakter des Verewigten vorgezeichnet. Die Freunde der früheren Werke Meyens konnten sein letztes Werk nur so zu erhalten wünschen, wie sie ihn aus seinen früheren Arbeiten kannten,
wie sie seine Schriften für sich nützlich und be-lehrend gefunden hatten.

Meyen liebte nicht, nach mühsamer Disposition zu arbeiten. Rasch, wie er war, scharfen und sichern Blicks, mehr zum subtilsten Unterscheiden geneigt als auf Feststellung allgemeiner Ansichten und streng abgewogener Theorien bedacht, daher im Beobachten und Darstellen populär, wie aus dem Leben heraus über Geschehnes und Gelesenes leicht und frei berichtend, historisch und kritisch dabei, gleichsam in einem Atem, — so hat Meyen durch seine Schriften der Wissenschaft gedient und sich ein nicht kleines Publicum gewonnen. So mußte auch sein kleiner schriftstellerischer Nachlaß bleiben.


Es war also auch nicht möglich, auf eine Ver-vollständigung der Lehre von den krankhaften Zu-ständen der Pflanzen im Geiste des Verfassers hinzuarbeiten und sich Rechenschaft zu geben von
dem, was er etwa möchte übersehen haben, oder was er mit Vorbedacht ausschloss.


So ist freilich mein Verdienst bei dieser Arbeit nur gering, und der Lohn, den ich dadurch empfange, daß ich die letzte Frucht der literarischen Thätigkeit eines mir so werthen Mannes dem Publicum überreichen darf, ist, verglichen mit jenem, als unermüdeslich groß zu betrachten.

Vielleicht könnte man erwarten, daß ich diese Veranlassung benutzen würde, um eine Biographie des Verfassers, oder doch eine Würdigung seiner Leistungen auf dem Gebiete der Naturkunde zu liefern.

Noch fehlt aber ein wesentlicher Theil der pathologischen Metamorphosen des Gewächsreichs, nämlich die Lehre von den Monstrositäten. Meyen wollte diesen Theil, als die andere Hälfte seiner Pflanzenpathologie, ausarbeiten, hat aber nichts Schriftliches darüber hinterlassen.


Dieses schätzbare Werk wird demnach in einer Uebersetzung von Herrn Dr. C. Schauer als zweiter Theil der Pathologie erscheinen, und wo es etwa nöthig wäre, von dem Uebersetzer mit Zusätzen u. s. w. versehen werden.


Nees v. Esenbeck.
# Inhalt

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Aeßtere Krankheiten.</strong></td>
<td>1</td>
</tr>
<tr>
<td>I. Verwundung, Wunde</td>
<td>4</td>
</tr>
<tr>
<td>II. Verwundungen durch Säugethiere</td>
<td>25</td>
</tr>
<tr>
<td>III. Das Laubstreifen</td>
<td>29</td>
</tr>
<tr>
<td>IV. Verletzungen und Verwundungen durch Insekten</td>
<td>32</td>
</tr>
<tr>
<td>I. Von einigen der wichtigsten Blattfresser</td>
<td>34</td>
</tr>
<tr>
<td>II. Von einigen der schädlichsten Insekten, welche die Stämme und Äste der Bäume zerstören</td>
<td>42</td>
</tr>
<tr>
<td>Der große Kiefernborenkäfer, Bostrichus stenographus Duftschm. (B. Pinastri Bechst.)</td>
<td>46</td>
</tr>
<tr>
<td>Die Blattläuse, Aphis-Arten</td>
<td>48</td>
</tr>
<tr>
<td>Die Schildläuse, Coccus-Arten</td>
<td>54</td>
</tr>
<tr>
<td>Die Acariden</td>
<td>55</td>
</tr>
<tr>
<td>Von den Verletzungen der Pflanzen, welche die Insekten Behufs der Fortpflanzung ausführen</td>
<td>58</td>
</tr>
<tr>
<td>1. Verkrüppelungen (Peromata)</td>
<td>61</td>
</tr>
<tr>
<td>2. Anschwellungen (Oedema)</td>
<td>63</td>
</tr>
<tr>
<td>3. Blasenförmige Auftreibungen (Empyema)</td>
<td>65</td>
</tr>
<tr>
<td>4. Fleischgewächse (Sacoma)</td>
<td>66</td>
</tr>
<tr>
<td>5. Gallen oder Galläpfel (Gallae)</td>
<td>68</td>
</tr>
<tr>
<td>V. Aussatz, Baumkrätze, Baumraude. Lebbra im Italienischen nach Ré. Cryptogamische Schmarotzer-Gewächse</td>
<td>71</td>
</tr>
<tr>
<td>VI. Phanerogamische Schmarotzer-Gewächse und deren Wirkung auf ihre Mutterpflanze</td>
<td>78</td>
</tr>
<tr>
<td>Maserbildung, Maser, Maserholz, Flader, Tuber lignosum</td>
<td>86</td>
</tr>
<tr>
<td>Ueberwallung</td>
<td>94</td>
</tr>
<tr>
<td>Wasserreiser, Wasserloden, Sommerloden, Räuber, Wasserschoss, Wasseräste, Nebenschoss u. s. w.</td>
<td>97</td>
</tr>
<tr>
<td>VII. Der Brand, Ustilago</td>
<td>98</td>
</tr>
<tr>
<td>1. Der Flugbrand, Staubbbrand, Rufbrand, Ruf u. s. w. Uredo segetum Pers. Uredo Carbo DeC. etc.</td>
<td>100</td>
</tr>
</tbody>
</table>
3. Der Stengelbrand im Roggen .................................. 119
4. Der Stengel-Staubbrand einiger großer Grasarten. Ustilago hypodytes Fr. Caema hypodytes Schlechtend. 121

VIII. (Durch einen Druckfehler XI.) Der Rost (Rubigo der alten Autoren) .................................................. 125
1. Uredo Pers. .......................................................... 125
2. Uromyces Link ..................................................... 136
3. Puccinia Pers. und Link ........................................... 138
4. Phragmidium Link .................................................. 140

IX. (XII.) Der Spelzenrost, Weizenrost, Kappenrost, Rubigo glumarum (Kappenbrand und Balgbrand unrichtig benannt) .................................................. 140

X. Accidimum Pers. .................................................. 144

XI. (XIV.) Die Protomycesbildung .................................. 150

XII. (XVII.) Die schimraelartigen Entophyten .............. 154
Die Botrytis-Schimmel (Botrytis Mich.) ....................... 155
Cylindrospora Grev. ............................................... 160
Der weisse Rotz ..................................................... 164
Der schwarze Rotz, eine Sklerotienbildung ................... 168
Der Mehlthau, Albigo Ehrh. ....................................... 173
Der Wurzeltöchter .................................................. 182

Der Rostthau, Cladosporium Fumago Link, Torula Fumago Chev. .................................................. 184

XIII. (XVI.) Der Rindenausschlag der Birn bäume .......... 189

XIV. (XVII.) Das Mutterkorn, Clavus ......................... 191

XV. (XVIII.) Die Schwindpockenkrankheit .................. 204


Innere Krankheiten .................................................. 213

I. Saftausfluss und Thränen der Bäume ......................... 215
II. Der Honigthau, Melligo, Mel aëris, Ros melliës ............ 217
III. Manna-Fluss ..................................................... 226
IV. Gummi-Fluss ..................................................... 229
V. Kienholz, Kienkrankheit und Harzfluss .................... 236
VI. Filzkrankheit der Blätter, Erineum Pers .................. 241
VII. Die safranfarbige Filzkrankheit ............................ 249
VIII. Kraussucht der Blätter ....................................... 250
IX. Die Unfruchtbarkeit, Sterilitas .............................. 254
X. Blätterfall oder das krankhafte Abfallen der Blätter .... 271
XI. Brandflecken auf den Blättern der Pflanzen ............. 272
XII. Steinkrankheit der Birnen. Steinigwerden der Birnen, der Mispeln, der Quitten. Holzartige Concretionen in den Früchten, Fitoliti del fruto nach Ré .......................... 274
XIII. Verholzen des Fleisches der Wurzeln, Fitoliti di Radice nach Ré ................................................................. 280
XIV. Fleckenkrankheit, Sprenkelkrankheit. Panachures. Gelbsucht, Icterus und Bleichsucht, Chlorosis ................. 282
   I. Weißgesprenkelte Pflanzen ........................................ 282
      1. Weißgesprenkelte, 2. weißgebänderte Pflanzen .......... 283
   II. Gelbgesprenkelte Pflanzen ..................................... 284
      1. Gelbgesprenkelte Pflanzen ................................... 284
      2. Gelbgebänderte Pflanzen .................................... 285
      4. Bleichsucht, Chlorosis ...................................... 290
   III. Buntgesprenkelte Pflanzen .................................... 290
XV. Die Ringelkrankheit, die Ringsucht, Ringelsucht, das Feuer, Hyacinthen-Pest ..................................................... 295
   XVI. Der Brand, Mortificatio, Sphacelus und Necrosis ........ 300
      1. Der feuchte Brand, Sphacelus humidus, Putrificatio mali- gia ............................................................. 301
      2. Der trockne Brand, Sphacelus siccus, seu Mumificatio et Necrosis ...................................................... 301
      I. Der trockne Brand des Holzkörpers, Necrosis .......... 304
      II. Der schwarze trockne Brand, Mumificatio ............... 313
XVII. Von der Wirkung der Kälte oder niedriger Wärmegrade auf die Pflanzen und den daraus hervorgehenden Krankheiten derselben ...................................................... 313
      Wassersucht, Hydrops ........................................... 323
Druckfehler.

S. 71. Z. 4. v. o. steht unciformis statt nuciformis.
- 125. - 1. setze statt XI. VIII.
- 140. - 10. v. u. setze statt XII. IX.
- 141. - 20. setze vor Accidium X.
- 150. - 3. v. u. setze statt XIV. XI.
- 154. - 5. v. u. - - XV. XII.
- 189. - 5. v. u. - - XVI. XIII.
- 191. - 12. v. u. - - XVII. XIV.
- 204. - 14. v. u. - - XVIII. XV.
Meyen's

Pflanzen-Pathologie.

Verlag der Haude und Spenerschen Buchhandlung in Berlin.
Aeussere Krankheiten.

Die Verletzungen des Gefüges der Pflanzen können sich darstellen, als Quetschung, als Verwundung und als Bruch; die wichtigste dieser Krankheiten ist die Verwundung, mit deren Betrachtung wir beginnen.
Verwundung, Wunde, Vulneratio, Vulnus.

Unter Wunden versteht man die plötzliche Trennung des Gefüges einer Pflanze, welche durch mechanisch eindringende Gewalt verursacht wird. Da die Körper, welche diese mechanisch eindringende Gewalt ausübten, sowohl ihrer Natur, als ihrer Form nach überaus verschieden sind, so sind es auch die Verwundungen und deren Folgen.

Die Verwundungen, welche bei den Pflanzen vorkommen, werden gewöhnlich nur durch folgende Ursachen bewirkt:

1) durch schneidende Werkzeuge. Diese Verletzungen, welche sich als Hieb- oder Schnittwunden darstellen, werden von dem Menschen entweder absichtlich zu irgend einem Zwecke ausgeführt, oder aus bloßem Muthwillen.

2) durch Säugethiere, welche theils die Rinde der jungen Stämme annagen, theils noch grössere Wunden den Bäumen verursachen und

3) durch Stich und Bifs von Insekten.

Wir werden jetzt die Verwundungen nach ihren ursächlichen Momenten der Reihe nach näher kennen lernen.

I. Verwundungen durch schneidende Werkzeuge.

Die Verwundungen der Gewächse durch schneidende Werkzeuge können natürlich sehr verschieden sein, besonders diejenigen, welche aus bloßem Muthwillen ausgeführt werden, diese können daher auch nicht speziell ausgeführt werden, sondern wir beschränken uns hierin nur auf diejenigen Verwundungen, welche in unseren Gärten und Wäldern ganz gewöhnlich vorkommen und größtenteils absichtlich zur Erreichung irgend eines besonders Zweckes ausgeführt werden; als solche führen wir folgende auf:

1) Das Anhauen der Bäume. Diese Verwundung geschieht an den Bäumen unserer Wälder gar nicht selten absichtlich, indem man dadurch irgend eine Bezeichnung zu einem besonders Zwecke verursacht; da diese Wunden aber nicht sehr groß ausgeführt werden, und auch die
Erhaltung dieser Waldbäume von keinem so hohen Werthe ist, so kommen sie wohl niemals zur Behandlung behufs der Heilung. Sind dergleichen Stämme sehr dick, so schadet die Verwundung dem Wachsthum derselben fast gar nicht und nur nach Verlauf von vielen Jahren kann die- selbe dem Baume nachtheilig werden.


3) Das Abhauen der Baumwurzeln, welche in Wäldern und an Wegen nicht selten auf die Oberfläche des Bodens kommen. Diese Verletzungen werden zuweilen absichtlich ausgeführt, und meistens sind sie auch ganz ohne allen Nachtheil für das Leben des Baumes, sie können aber Veranlassung zur Verderbnis der Wurzeln geben, indem dieselben theils vertrocknen, theils verfaulen, ja nachdem der Boden feucht oder trocken ist.

was wir bald nachher, wenn von der Heilung der Wunden die Rede sein wird, näher erörtern werden.


Die nächste Folge des Ringelns ist eine Stauung des herabsteigenden Bildungssaftes oberhalb des Schnittes und es bildet sich an dem obern Wundrande der Rinde eine wulstige Verdickung; welche theils aus einer Verdickung des neuen Holzringes, theils aus dem übermäßig wuchernden innern Zellengewebe der Rinde besteht. War das Ringeln ohne Substanzverlust der Rinde ausgeführt, bestand es also in dem bloßen Durchschneiden der Rinde, so bildet sich zwar jene Wulst an der Schnittlinie, aber es wird die Bildung der neuen Holz- und Rindenschichten unterhalb der Wunde nicht verhindert, wenngleich diese in dem ersten Jahre auch nur sehr schwach auftreten; in den folgenden Jahren gleicht sich wieder Alles aus, wenn die Wulst an dem oberen Wundrande nicht zu
bedeutend war, und deshalb kann man diese Operation meistens ohne allen Nachtheil an den Obstbäumen ausführen.

War aber der Ringelschnitt mit Entrindung begleitet, so daß der Holzkörper ganz bloßgelegt wurde, und alle Communication zwischen Rinde oberhalb und unterhalb der geringelten Stelle aufgehoben war, so wird die Wulst an dem oberen Wundrande sehr bedeutend und die neue Holzschieht bildet sich, von den Zweigen und Aesten ausgehend, nur bis zu diesem oberen Wundrande, während unterhalb der entrindeten Stelle keine Spur von neuer Holzlage zum Vorschein kommt. Da sich dieses nun auch im nächsten und in allen darauf folgenden Jahren wiederholt, so lange als der Baum noch lebt, so wird der Stamm stets oberhalb der geringelten Stelle dicker und unterhalb derselben behält er das frühere Volumen.

Die tödlichen Folgen eines solchen Ringelschnittes mit Entrindung zeigen sich nun bei verschiedenen Stämmen und Aesten verschieden schnell, und dieses richtet sich einmal nach der Dicke des geringelten Stengels und nach den obwaltenden äußeren Verhältnissen; nämlich nach dem Feuchtigkeitszustande der umgebenden Luft und dem Zutritte der Sonne. Sind nämlich die Stengel, welche durch das Ringeln entrindet sind, sehr dünn, und ist die entrindete Stelle dem Sonnenschein ausgesetzt, so stirbt der Stengel in Folge der zu starken Verdunstung des freigelegten Holzkörpers schon in den ersten Monaten an Vertriekung, und nimmt man die Entrindung zu der Zeit vor, wenn der Saft steigt, so kommt es in diesen Fällen nur sehr selten noch zur neuen Holzbildung. Ist jedoch der entrindete Stengel dicker, ist er mehrjährig und geschützt gegen die austrocknende Wirkung der Sonnenstrahlen, so wird sich derselbe mehrere Jahre, oft 6, 7 und 8 Jahre lang und darüber erhalten können, aber endlich dennoch absterben.

Die Ursache des endlichen Absterbens des Stengels in Folge der Ringelung mit Entrindung, liegt aber nicht
nur in dem Absterben des entblößten Holzes in Folge der zu starken Verdunstung, denn man könnte diese Verdunstung aufzuheben suchen, und der Tod der Pflanze würde dennoch erfolgen. Die Physiologie lehrt nämlich und beweist es auch, daß jener herabsteigende Saft in der innern Rindenschicht nicht nur die Substanz zur Bildung der neuen Holzschicht darbietet, sondern daß sich aus demselben auch die Wurzeln zu erzeugen scheinen, und demnach wird also die Bildung der neuen Wurzelzasern u. s. w. ebenfalls verhindert, wenn man das Herabsteigen jenes Saftes durch die ringförmige Entrindung aufhebt. Wenn man dergleichen geringelte Stellen eines Baumes gegen Verdunstung schützt und sie, was sich am besten dazu eignet, mit Gläsern überzieht und diese hermetisch anschließt, so wird man fast jedesmal sehen können, daß sich, innerhalb der Röhre und oberhalb der entrindeten Stelle die Adventivwurzeln entwickeln und in die Tiefe der Röhre hinabsteigen, woselbst sie wegen der darin enthaltenen Feuchtigkeit sehr wohl vegetiren; oft ist die Menge dieser Wurzeln sehr groß und meistens sind dieselben röthlich gefärbt. Aus der Rinde unterhalb der entrindeten Stelle, kommen keine Wurzeln zum Vorschein, dagegen treten hier um so häufiger accessorische Knospen auf, und wenn diese sich entwickeln, so wird die Bildung der neuen Holzlage auch unterhalb der geringelten Stelle ausgeführt und der Baum lebt unbeschadet weiter fort. Wir wissen noch nicht genau, wie es sich mit der Bildung der Wurzelzasern und der Wurzelhärchen und deren Reproduction in Bezug auf das Wachsthum der Bäume in verschiedenen Jahreszeiten verhält, ob sich nämlich die Wurzelhärchen vielleicht regelmäßig alljährlich erneuern, und ob nicht vielleicht auch alljährlich die Bildung neuer Wurzelzasern nöthig ist, denn neue Wurzelhaare können nur aus neuen Wurzelzasern oder aus der erneuerten Oberfläche derselben hervorgehen; wenn nun aber die Bildung jener neuen Wurzelzasern durch aufgehobenes Herabsteigen des Bildungssaftes in Folge der Ringelung unterbleibt, so
werden sich auch die Wurzelhaare nicht bilden können, welche aber gerade diejenigen Organe der Pflanze sind, die fast einzig und allein die Aufnahme des rohen Nahrungssafes bewirken und so wird es denn erklärlich, daß die Bäume in Folge solcher starken und vollständigen Entrindung endlich absterben.

Die Heilung der Verletzungen richtet sich nach sehr verschiedenen Nebenumständen; vor Allem ist die Natur des Gewächses zu berücksichtigen, denn z. B. bei zarten krautartigen Gewächsen sind meistens schon die kleinsten Verletzungen des Stengels hinreichend, um den Tod der selben durch Verrottung herbeizuführen, während an den Stämmen der dikotyledonischen Bäume ganz außerordentliche umfangreiche Wunden des Holzkörpers ohne allen Nachtheil ertragen werden. Ueberhaupt sind nur die Verletzungen der Achse der Pflanzen, also des Stengels und der Wurzel besonders zu beachten, denn die Verletzungen der appendikulären Theile, als der Blätter u. s. w. führen gewöhnlich nur das Absterben des verletzten Organes herbei; ist aber die Anzahl dieser verletzten Theile zu groß, ja sind sie sämtlich zerstört, wie z. B. die Blätter durch starken Raupenfraß, so ist dieses für die Pflanze oft recht sehr nachtheilig, und krautartige Gewächse sterben hiernach sehr häufig vollständig ab, doch wie in allen Fällen von Verletzungen, wird der Feuchtigkeitszustand der Atmosphäre auf die nächsten Folgen von größten Einflusses sein.

Die meisten Verletzungen der Gewächse heilen entweder ganz von selbst, ohne irgend eine künstliche Nachhilfe, oder sie bleiben in ihrem Zustande, entweder gar keinen oder doch nur sehr geringen Einflufs auf die Gesundheit der Pflanze ausübend. In den meisten Fällen hält man es auch nicht einmal der Mühe werth, die verletzten Pflanzen durch besondere Behandlung zu heilen, und ein Baum muß schon sehr edel oder sehr nützlich sein, wenn man bei zufällig entstandenen Verletzungen etwas zu seiner Heilung vornimmt; daher sieht man denn auch in
unsern Gärten gar nicht selten, ganz besonders bei Obstbäumen, die schrecklichsten Entstellungen der Stämme, als große Auswüchse, breite Spalten, tiefe Löcher, welche zuweilen den größten Theil des Holzkörpers eines Stammes einnehmen u. s. w., und es wäre ein Leiches gewesen den größten Theil dieser Verletzungen in der Art wenigstens zu heilen, daß die Form des Stammes nicht entstellt, die Dauer desselben noch weit länger erhalten worden wäre.

Bei der Heilung der Wunden der Pflanzen, können wir, ganz ebenso wie bei denen der Thiere, nichts weiter thun, als die bildende Thätigkeit in dem verletzten Organe nach gewissen Richtungen hinleiten, und vor Allem die äußern Verhältnisse dem Reproductions-Prozesse unschädlich machen. An den Wunden der Stämme dikotyledoner Pflanzen kann die Heilung in doppelter Weise stattfinden, und die Vorgänge dabei sollen hier der Gegenstand ausführlicherer Darstellung sein.

Weder der Holzkörper noch die Rinde reproduiren sich; von dem Holzkörper ist dieses auch allgemein bekannt, dagegen ist man sehr allgemein geneigt zu der Annahme, daß sich die Rinde reproduicir, doch was hiervon zu halten ist, werde ich später auseinandersetzen. Da sich das Holz nicht wiedererzeugt, so können die Wunden des Holzkörpers, welche mit Substanzverlust begleitet sind, nur in der Art geheilt werden, daß man die Bildung der neuen Holzschichten unmittelbar über die Wunde in den älteren Holzschichten zu treten veranlafst. Ist die Wunde von geringem Umfange und nicht tief, so wird sie gewöhnlich von der jungen Holzmasse des darauf folgenden Jahrringes ausgefüllt und es bleiben nur geringe Narben, denn die Rinde schließt sich ebenfalls allmählich, indem sie sich an den obern und den seitlichen Rändern der Wunde mit der Bildung des neuen Holzringes nach und nach vergrößert. Ist aber die Wunde in dem Holzkörper sehr groß und tief, so kann eine Schließung derselben durch-Ausfüllung nicht stattfinden. Die übelsten dieser
tiefe Wunden sind die sogenannten Frostspalten, welche im Winter bei hoher Kälte entstehen und zuweilen so weit auseinanderklaffen, daß die Schließung derselben ohne künstliche Hilfe nicht stattfinden kann; ebenso Verletzungen, welche durch das Einschlagen des Blitzes entstanden sind. Ueberläßt man solche Verletzungen ohne alle Nachhilfe, so werden sie oft dem Baume sehr schädlich, indem sich das Wasser in denselben ansammeln und zur tödlichen Fäulnisse Veranlassung geben kann. Geschieht dieses aber nicht, oder wenigstens nicht so bald, so werden die oberen wie die seitlichen Ränder dieser Verletzungen mit einer mehr oder weniger dicken Wulst umschlossen. Ist die Verletzung schmal, so kann sie durch diese dicken Wundränder sehr bald geschlossen werden und es bleibt dann nur eine Narbe zurück, welche den früheren Verlauf der Verletzung anzeigt und zwar so lange, als der Stamm am Leben bleibt. Man sieht solche Narben sehr häufig an den Bäumen, besonders in Folge von Frostspalten u. s. w. Sind aber die Wunden zu breit, so dafs die Wulst an den Rändern der Rinde in den nächsten 2 oder 3 Jahren zur Schließung derselben nicht hinreichend ist, so muß man gleich im ersten Jahre und zwar noch vor der Bildung des ersten neuen Holzringes künstliche Hilfe anwenden, und diese besteht darin, dafs man die Hülle der Wunde durch ein passend geschnittenes Stück trockenes Holz schließt, dessen Oberfläche ganz genau in der Fläche der Ränder des verwundeten Holzkörpers liegt. Sobald die Bildung der neuen Holzlage begonnen, wird jene eingelegte Holzplatte fest umschlossen, indem sich die neue Holzschicht mehr oder weniger bedeutend über die oberen und seitlichen Ränder der Wunde ergießt und sich auf diese Weise alljährlich immer mehr und mehr über die Fläche des eingelegten Holzes ausbreitet, bis sich endlich die Ränder der sich schließenden Wunde berühren und sich mit Hinterlassung einer Narbe vereinigen. Diese Narbe wird stets um so bedeutender sein, je mehr Zeit die Wunde zu ihrer Schließung bedurfte, aber auch
hier kann die Kunst viel thun, wenn sie, noch kurz vorher, ehe sich die seitlichen Wülste berühren, die Rinde derselben an den Seitenflächen abtrennt und durch Einlage schmaler Holzstückchen so weit in die Höhe hebt, daß dadurch die Wunde gleichmäßig geschlossen wird. Die Operation ist im Frühlinge, gerade wenn sich die Rinde vom Holze gelöst hat, vorzunehmen. Die eingelegten fremden Holzstücke sind dem Baume durchaus unschädlich; sie werden von den neuen Holzlagen umschlossen und selbst wenn sie auch allmählich in dieser Lage vermodern, darin, so lange der Baum lebt, zurückbehalten. Auf diese Weise können also Wunden und Verletzungen des Holzkörpers anderer Art so weit geheilt werden, daß sie äußerlich mit Rinde bedeckt und gegen eindringende Feuchtigkeit geschützt werden, doch der Substanzverlust des Holzes kann nur in sehr geringer Menge wiederersetzt werden und zwar nur durch sich darüber ergießende neue Holzlagen.


Um die Art der Heilung einfacher Rindenwunden näher zu beobachten, machte du Hamel an verschiedenen Bäumen dergleichen Wunden von verschiedener Form, von verschiedener Größe und verschiedener Richtung und es ist auch sehr leicht dergleichen Versuche nachzumachen, besonders da sie dem Baume, an welchem die Versuche

*) Naturgeschichte der Bäume. II. pag. 31. etc.

Die du Hamel'schen Versuche und Beobachtungen über die Reproduction der Rinde am entblößten Splinte sind in dieser Hinsicht ebenfalls sehr interessant und im Sommer 1839 von mir wiederholt worden. Es ist bekannt, sagt du Hamel, daß bei Abnahme der Rinde eines Baumes das entblößte Holz vertrocknet, und sich nicht erzeugt, wobei sich die Wunde der Rinde von den Rändern aus allmählich schließt; er sah aber auch zugleich sehr wohl ein, daß nur das Vertrocknen der äußern Holzlagen daran Schuld habe, was er denn bei seinen Versuchen zu verhindern suchte. Zu diesem Zwecke wurden an jungen Stämmchen von Ulmen, Pflaumen u. s. w., 3 bis 4 Zoll breite Ringe von der Rinde abgelöst; die Stämmchen wurden in weite Gläser gesteckt, so daß die entmindete Stelle umschlossen wurde und, nachdem die Enden der Gläserdüsen mit gewöhnlichem Fensterkitte luftdicht verschlossen waren, dadurch die Ausdünstung des entmindeten Holzes aufgehoben oder vielmehr gegen die atmosphärische Luft abgeschlossen. Nach einigen Tagen bildeten sich im
Innern dieser Glasröhren kleine Nebel, diese kondensierten sich zu Tröpfchen, und endlich erschien an dem obern Rande der Wunde und gerade zwischen Holz und Rinde eine granulöse Masse, ja auch gallertartige Wärzchen kamen zwischen den, der Länge nach laufenden Fasern des Splintes zum Vorschein und hingen mit jener Wulst am obern Rande der Wunde nicht zusammen. Diese dem Anscheine nach sulzige Substanz wurde graulich und nahm gegen Ende des Monats eine grünliche Farbe an. Im Verlaufe des Sommers nahmen alle diese Auswüchse an Größe zu, nur die Wulst am untern Wundrande nicht. Sie verbreiteten sich von Oben nach Unten immer mehr und mehr und überzogen endlich die ganze Wunde. Diese neue Substanz, welche du Hamel für die reproducirte Rinde hielt, war sehr höckerig und an einigen Stellen des Holzes hatte sie sich sogar gereiht erzeugt. Während dieses Vorganges schienen die Bäume meistens etwas zu schmachten, später aber trieben sie sehr gut. Was du Hamel bei diesen kleineren Rindenwunden beobachtete, das sah er später auch an großen Kirscbäumen, welche er im Frühjahre, als sie in vollem Saft waren, in der ganzen Länge ihres Stammes entrindete; die entblößte Holzfläche dieser Stämme wurde mit Stroh umwickelt, um die zu starke Verdunstung zu verhindern, ja überhaupt gegen die Einwirkung der Sonne zu schützen, und bei diesen Vorsichtsmaßregeln überzog sich der entblößte Holzkörper mit jener neuen Rinde, wobei sich die Bäumchen nach Verlauf von drei Jahren erholten. Du Hamel ging ferner noch auf die Untersuchung jener sulzigen Substanz ein, welche sich auf der entblößten Fläche des Holzkörpers erzeugt und die Substanz zur Rinde darbietet; er wandte hiebei das Mikroskop nicht an und gelangte auch nur zu dem Resultate, daß jene Substanz nicht etwa ein bloßer Schleim sein könne.

Diese interessanten Versuche du Hamel’s habe ich kürzlich vielfach wiederholt und bin dabei zu einigen auffallenden Resultaten gelangt, welche ich hier spezieller mit-
theilen muß. Auch ich machte die Versuche um die Zeit, wenn die Rinde mit Leichtigkeit vom Holzkörper abzuziehen war; ich nahm zu den Versuchen die Stämmchen oder einzelne große Äste von Haselnuss (Corylus Avel-lana), Schneebeere (Viburnum Opulus), Spanischem Flieder (Syringa vulgaris) und von Salix pentandra. Die entrindeten Stellen, meistens 6, auch bis 12 Zoll lang, wurden mit dicken Glasröhren überzogen, welche ich auf der gesunden Rinde mit Fensterkitt verschloß und dann sorgfältig theils mit nasser Blase, theils mit Kautschuck-Lappen verband, so daß dieser Verband fast in allen Fällen ganz luftdicht war. Als ich diese Versuche während eines warmen Sonnenscheins am 30. April 1839 machte, wurden die Glasröhren, gleich nach ihrer Befestigung auf der innern Fläche mit einem Nebel bedeckt, welcher sich später zu Wasser condensirte, so daß schon 2 Tage darauf einige dieser Röhren mehr oder weniger stark mit Wasser gefüllt waren, und zu meinem Erstaunen waren zwei dieser Glasröhren, deren Wände über 2 1/2 Linien dick waren, nicht nur zersprungen, sondern in sehr viele kleine Stücke zer- schmettert; zwei andere Röhren zersprangen erst nach Verlauf von einigen Wochen, aber alle in der Art, daß man sich überzeugen konnte, daß nicht etwa eine Ausdehnung des Stengels die Ursache davon war, denn meistens wurde die Mitte der Röhre ganz erschmettert, während die Enden unverletzt auf dem Stengel befestigt blieben. Zur Vorsicht waren die Glasröhren äußerlich noch mit Papier bewickelt, um die Einwirkung der Sonnenstrahlen abzuhalten, obgleich die Versuche an stark bebuschten Stellen gemacht wurden.

BeieinigenStengeln zeigte sich auf dem entrindeten Holzkörper, schon einige Tage nach der Entrindung, ein Ausschwitzen einzelner gallertartiger Tröpfchen, welche stets an denjenigen Stellen hervortraten, wo die Markstrahlen auf der Oberfläche des Holzes zum Vorschein kommen. In zwei Fällen hatte ich den entrindeten Holzkörper, ehe er mit der Glasröhre verschlossen wurde, ganz
trocken abgewischt, so dafß auch nicht eine Spur des sogenaunten Cambium's daran sitzen blieb; die Folge davon war, dafß der Holzkörper in diesem Falle fast ganz glatt blieb, und nur an einigen sehr kleinen Stellen ganz geringe Quantitäten jener gallertartigen Tröpfchen ausschwitzte. Ich untersuchte diese Ausschwitzungen bald nach ihrem ersten Auftreten und es zeigte sich, dafß sie aus einem sehr zartwandigen Zellengewebe bestanden, dessen Zellen nur mit einem gummiartigen Schleime gefüllt waren, worin sich mitunter sehr kleine Moleküle befanden. Nach mehrmaliger Beobachtung des Zellengewebes dieser neuen sulzigen Bildungen auf der Oberfläche des entriindeten Holzkörpers, zeigte es sich als ein zartwandiges und ziemlich lockeres Parenchym, welches sich durch den neuen gummihaltigen Saft immer mehr und mehr vergrößerte, der durch die Markstrahlen-Zellen ausgeschieden wurde. Wenn man unter Cambium nichts weiter als denjenigen Saft versteht, aus welchem sich unmittelbar Zellen bilden, so war diese Ausssonderung ein solches Cambium, und da es nicht als gebildete Zellen ausgesondert wird, sondern zuerst als ein noch strukturloser Schleim, so mögen wir hieraus nochmals den Beweis nehmen, dafß organische Flüssigkeiten den Grund oder die Kraft zur Bildung ihrer fernern Organisation enthalten müssen; auf einem andern Wege können wir uns wenigstens die sulzigen Zellenbildungen auf dem entriindeten Holzkörper nicht erklären. Allmählich vergrößert sich die Masse dieses Zellengewebes, indem aus der hinzuströmenden Saftmasse immer neue Zellen aus dem Innern herausgebildet werden und der Oberfläche ein ganz unebenes krauses Ansehen geben. Die Masse verbreitete sich zuweilen über Flächen von einem Quadratzoll Umfang, saß aber immer nur an den einzelnen Punkte fest, wo sich der Saft aus den Markstrahlen-Zellen ergossen hatte. Im Anfange erschien dieses sulzige Zellengewebe opalisierend, dann wurde es trüber und nicht selten nahm es eine grünliche Farbe an, welche durch die grüngefärbten Kugelchen entstand, die sich in vielen der Zellen gebildet
hatten. Unter einigen Glasröhren, welche besonders gut gegen den Einfluss des Sonnenlichts und gegen das Ein- dringen der umgebenden Luft geschützt waren, erhielt sich die milchweiße und später etwas grünliche Färbung den ganzen Sommer hindurch, bei andern dagegen ward dieses Zellengewebe auf der Oberfläche bräunlich und zeigte sich dadurch dem Rindengewebe ähnlicher. Lies man die Bildung in jenem Verschluf den ganzen Sommer hindurch, so erhielt sie im frischen Zustande mitunter die Dicke von $4\frac{1}{2}$ Linien, schrumpfte aber bei dem Trockenwerden sehr stark ein und bildete jenes ringenartige Gewebe, welches du Hamel und viele andere Botaniker für die reproducirte Rinde angesehen haben, was es aber nicht ist. In größerer Menge erzeugte sich diese Scheinninde dicht an dem oberen Wundrande der Rinde, und bildete sich dann von Oben nach Unten immer weiter fort.

Nach diesen Mittheilungen kommen wir zur Betrach- tung der Bedeutung dieses neuen Gebildes, welches sich unter gewissen Bedingungen auf der Oberfläche des entrindeten Holzes zeigt. Es kommt nicht nur in luftdicht abgesperrten Räumen zum Vorschein, sondern auch in freier Luft, wenn man die Entrindung nur an solchen Aesten oder Stämmchen vornimmt, welche dem direkten Sonnen- lichte nicht ausgesetzt sind. Ich habe schon an einem andern Orte *) dergleichen Beobachtungen näher beschrieben und es ist bekannt, dass sich die falsche Rinde gerade an Elsen sehr häufig zeigt, offenbar weil diese Bäume in dich- ten Büschen und an sehr feuchten Orten wachsen.

Die Physiologie lehrt, dass die innere Rindenschicht den neuen Holzring bildet; es wäre deshalb schon höchst auffallend, wenn der Holzkörper wiederum im Stande wäre, die Rinde zu reproduzieren. Man unter- suche aber jene neue Bildung, welche man für die reproducirte Rinde erklärt hat, in anatomischer Hin- sicht, und man wird sogleich finden, dass sie von der

*) S. Pflanzen-Physiologie Bd. 1. p. 390 u. s. w.
Meyen. Pathologie.
wahren Rinde gänzlich verschieden ist. In jener reproduzier- 
cirten Rinde, welche sich aus dem austretenden Saft der 
Markstrahlen bildet, sieht man keine Sonderung der ver-
schiedenen Schichten, aus welchen die normale Rinde eben 
desselben Baumes besteht, und es findet sich in derselben 
auch keine Spur von Baströhren, welche offenbar beson-
ders wichtig sind; daher können wir diese Bildung von 
parenchymatischem Zellengewebe auch noch nicht für Rinde 
erklären.

Es ist bekannt, daß sich einige Botaniker die Ansicht 
gebildet haben, als würden die Baströhren der Rinde durch 
den von Oben herabsteigenden Bildungssaft in den innern 
Schichten der Rinde gebildet und daß dagegen die Mark-
strahlen aus dem Safte hervorgingen, welcher von den 
Markstrahlen der älteren Holzschicht ausgesondert würde; 
indessen ich habe gezeigt,* dass auch die Markstrahlen 
in den neueren Holzschichten stets von der Rinde aus ge-
bildet werden und demnach eigentlich mit Unrecht Mark-
strahlen genannt werden. In einem der Versuche, welche 
ich früher, pag. 13 beschrieben habe, nahm ich eine Glas-
röhre von 2 Fuß Länge; die entrinde Stelle war über 
einen Fuß lang, doch hatte ich mehrere Rindenlappen an 
dem oberen Wundrande sitzen lassen, so daß sie frei in 
die Höhle der Glasröhre hineinragten. Ich beabsichtigte 
bei diesem Versuche die Erzeugung der neuen Holzschicht 
auf der innern Fläche der freihängenden Rindenlappen und 
er gelang auch ganz vollkommen; aber es zeigte sich hier-
bei noch eine andere interessante Erscheinung: Die neue 
Holzschicht war auf der innern Fläche der herabhängen-
den Rindenlappen entstanden, zugleich hatte sich auf dem 
entrindeten Holzkörper jene Scheinrinde gebildet, und da 
die Rindenlappen wegen der umschließenden Glasröhre 
icht weit abstehend waren, so hatte jene Rindensubstanz 
den ganzen Raum zwischen der Oberfläche des entrinde-
ten Holzes und der innern Fläche der neuen Holzschicht

*) S. Pflanzen-Physiologie I. pag. 394.
ausgefüllt, welche sich auf den Rindenlappen erzeugt hatte. Die neue Holzschicht war aber, wie ich es auch schon früher in solchen Fällen beobachtet habe, ganz vollkommen mit den sogenannten Markstrahlen versehen. Es ist überhaupt die Frage aufzustellen, ob jene Ausschwitzung aus den Enden der Markstrahlen, welche sich an entrißten Holzkörpern so häufig zeigen, ob diese denn auch wohl im normalen Zustande stattfinden, wenn die Rinde nicht entfernt ist, und ob es überhaupt wahrscheinlich, daß ein solcher aus den Markstrahlen kommender Saft zur Bildung der neuen Rinde u. s. w. mit thätig ist. Ich glaube diese Frage mit nein beantworten zu müssen, denn wir sehen, daß die neuen Holz- und Rindenbildungen auch dann ganz normal vor sich gehen, wenn dieser vermeinte Zufluß des Markstrahlsaftes vollkommen abgeschnitten ist; ja die Rinde und die neue Holzschicht würde sich doch höchst wahrscheinlich auch unterhalb der ringförmigen Entrindung bilden können, wenn der Markstrahlsaft dazu gebraucht würde, und dennoch zeigt sich dieses niemals, was wohl am meisten dafür sprechen möchte, daß im normalen Zustande die Bildung jenes rindenartigen Zellengewebes aus dem Saft der Markstrahlen wohl nicht stattfindet. Bei allen vorhin aufgeführten Versuchen, welche ich unter Glasröhren anstellte, zeigte es sich wieder überaus schön, daß die Wurzelzasern aus dem herabsteigenden Bildungssaffe hervorgehen; es bildeten sich nämlich in allen Fällen oberhalb der entrindeten Stelle, aber noch innerhalb der Glasröhre, mehr oder weniger viele Wurzelzasern, welche dann in die Höhle der Glasröhre hinaustiegen und sich daselbst durch die angehäufte Feuchtigkeit sehr wohl erhielten. Dagegen zeigte sich nicht selten unterhalb jener Entrindung, aber ebenfalls noch innerhalb der Glasröhre, die Entwicklung einer Knospe und, was recht auffallend und bemerkenswerth ist, sowohl dergleichen Knospen, als auch die vorhin erwähnten Wurzelzasern zeigten unter diesen Verhältnissen stets eine röthliche Färbung, welche durch den rothgefärbten Zellensaft
veranlaßt wurde. Das Hervortreten der Knospen unterhalb der geringelten Stelle gibt uns zugleich einen Beweis für die Nützlichkeit des Beschneidens der Äste bei Bäumen und Sträuchern, denn dadurch wird das Hervortreiben der Knospen befördert, wie es ja auch fast jedem Gärtner bekannt ist.

Aus dem Resultaten der so eben mitgetheilten Versuche erhalten wir die Anweisung zur Heilung solcher vorkommenden Entrindungen von größerem Umfange; es ist keine wirkliche Reproduction der Rinde zu erwarten, sondern nur die Bildung jener Scheinrinde, welche aber durch Abhaltung des Verstocknens des entblößten Holzkörpers befördert wird. Kommen demnach dergleichen Unglücksfälle an Bäumen vor, welche ihrer Blumen und Früchte wegen von hohem Werthe, oder uns überhaupt sehr lieb sind, so sorge man für einen solchen Verband des entrindeten Holzkörpers, daß die Verdunstung desselben abgehalten wird. Der Verband darf aber nicht unmittelbar auf der Fläche des Holzkörpers liegen, sondern muß wenigstens $4-6$ Linien weit von diesem abstehen. Schon du Hamel fand, daß das bloße Umbinden mit Stroh ganz hinreichend war, um die Bildung der Scheinrinde an entrindeten Kirsch- und Pflaumenstämmchen zu bewirken; die Strohlage muß aber dick und fest sein und außerdem noch eine Strohwand gegen die Einwirkung der Sonne aufgeführt werden. Alle die vielgerühmten Verbände mit besonderen Substanzen, welche man auf den Holzkörper legte und dadurch dessen Verheilung zu bewirken glaubte, sind nicht nur gar nicht nützlich, sondern im Gegenteil sogar schädlich. Das Baumwachs, mit welchem man gewöhnlich die Rindenwunden verkittet, ist durch seinen Terpenthin-Gehalt gerade schädlich, wenn es den entrindeten Holzkörper berührt; der Terpenthin bewirkt das Absterben der oberen Holzlagen, welche von denselben berührt werden, und so sieht man denn auch ganz gewöhnlich, daß das Holz unter solchen mit Baumwachs verkitteten Stellen eine schwärzliche Färbung angenommen
hat. Noch allgemeiner im Gebrauche ist es, daß man den entrindeten Holzkörper, besonders wenn die Entrindung von sehr großem Umfange ist, mit einer Mischung von Lehm und Kuhmist umlegt und diese Substanz mit Leinwand u. s. w. gegen das Abfallen befestigt. Auch diese Verbandsmittel sind den Bäumen sehr schädlich, denn sie bewirken nicht selten gleich im Anfange ein Absterben der äußersten Holzlage durch Fäulnis, und entziehen später, wenn die dazu angewendeten Substanzen vertrocknen, dem Holze beständig die Feuchtigkeit, so daß auch dadurch dessen äußerste Schichten absterben.

Wenn nun aber auch die Heilung des entrindeten Holzkörpers auf dem rationellsten Wege betrieben wird und die Bildung der Scheinrinde auf dem grössten Theile des Holzkörpers erfolgt, so ist die Heilung des Uebels dennoch immer nur palliativ, denn durch die sich bildende Scheinrinde wird nur die Verdunstung der obren Holzlagen verhindert und somit das Absterben des Holzkörpers in Folge von Vertrocknung auf mehr oder weniger lange Zeit aufgeschoben; denn die Scheinrinde erzeugt keine neue Holzschicht und keine neue Rinde und in derselben steigt der Bildungssaft nicht bis in die Tiefe hinab, um neue Wurzelfasern und Wurzelhärchen zu bilden, ohne welche endlich der Baum abstirbt. Es war schon du Hamel'n bekannt, daß sich das Absterben des geringelten Stammes ganz nach der Dicke desselben richtet, weil der Holzkörper um so langsamer vertrocknen muß, um so dicker er ist; wenn sich nun aber noch eine Scheinrinde auf dem Holzkörper gebildet hat, so wird das Absterben desselben durch Vertrocknung gänzlich verhindert und der Baum kann sich noch eine Reihe von Jahren erhalten. du Hamel*) erzählt, er habe ungefähr an hundert Bäumen, um deren Holz fester zu machen, um die Zeit, wenn der Saft am stärksten ging, die ganze Rinde, von den Aesten bis auf die Wurzeln abgeschält und dabei die Beobachtung gemacht, daß sich nur oben, wo

*) Naturgeschichte der Bäume II. pag. 43.
die Rinde abgeschnitten worden war, bisweilen 1½ Fuß lang, neue Rinde ansetzte, dagegen unten am Boden sich von jener Rinde gar nichts zeigte; diese Rinde war aber ebenfalls nichts weiter als das bloße rindenartige Gewebe, von welchem wir im Vorhergehenden ausführlicher gesprochen haben.

Wir besitzen auch eine Reihe von Versuchen über die Zweckmäßigkeit verschiedener Substanzen als Verbandmittel der Rindenwunden, welche ebenfalls du Häm mel anstellte. *) Er nahm theils einfache Substanzen, als Wachs, Terpenthin, Kalk, Salmiak, Pech u. s. w. theils verschiedene Salben und Pflaster, welche unmittelbar nach geschwender Verletzung aufgelegt wurden, und beobachtete dann nach einiger Zeit, wie die Heilung unter den verschieden genannten Substanzen erfolgt war. Diese Versuche waren besonders in der Mitte des vergangenen Jahrhunderts, als man sehr viel von besonderen Baumkit ten hielt, und diese sogar mit großen Summen bezahlte, **) 

*) Dessen Naturgeschichte der Bäume etc. II. pag. 44.

sehr wichtig und führten zu folgenden Resultaten: Es sei zwar gut, die Wunden der Bäume gegen die Einwirkung der freien Luft zu schützen, indessen sei es nicht gleich, welche Substanz man zum Verbande wähle. Man muß, sagt du Hamel, die fetten, die absorbirenden, die ätzenden und die geistigen Stoffe vermeiden, dagegen die balsamischen Sachen nehmen, welche das Austrocknen der Wunden verhindern und sie vor dem Regen und dem Zugang der freien Luft bewahren. Endlich gibst der erfahrene du Hamel noch den Rath, daß man die Substanzen nicht zu fest aufbinde, damit die Entwicklung der Randwulst und der Scheinrinde überhaupt nicht behindert werde.

Schließlich bemerke ich jedoch noch, daß alle diese Verbandmittel nur als solche wirken, durch welche das Austrocknen der Wundfläche abgehalten wird; aber keineswegs mit den Heilmitteln zu vergleichen sind, welche man bei der Heilung der tierischen Wunden anwendet, wo man durch die angewendeten Mittel die heilende Thätigkeit bald steigern bald niederdrücken kann, ganz wie man es für nöthig hält.

Zu den Verwundungen, welche durch ihre Folgen gar nicht selten den nachtheiligsten Einfluß auf die Gesundheit der Bäume ausüben, gehören das Abhauen oder Absägen großer Äste. Nicht selten ist man zu solchen Operationen durch diesen oder jenen Grund gezwungen und öfters, wenn große Äste der Bäume durch Stürme und durch Einschlagen des Blitzes herabgerissen sind, muß man noch nachträglich die unebenen Stümpfe absägen. Schon seit älteren Zeiten lehrt man hiebei, daß die größern Äste in schrager Richtung abgenommen werden sollen, damit alles darauf fallende Wasser mit Leichtigkeit ablaufen könne und also durch dessen Einsickern in die Holzmasse nicht etwa Fäulnis entstehe. Indessen auch bei diesen Vorsichtsmaßregeln, ja selbst wenn die Wunde besonders bedeckt und verbunden wird, kommt es gar nicht selten vor, daß der noch sitzengebliebene Stumpf des abgesägten Astes vertrocknet und in Fäulnis übergeht,
welche sich von der Holzmasse des Astes allmählich immer tiefer und tiefer in die Holzmasse des Stammes hinein- 
streckt; doch geht dieses glücklicherweise nur sehr lang-
sam vor sich. Aber während dieses Absterbens der Holz-
masse des Aststumpfes geht alljährlich die Bildung der 
neuen Holzschicht von den nebenbeistehenden Aesten vor 
sich und der Aststumpf wird an seiner Basis und oft noch 
was darüber ebenfalls mit der neuen Holzmasse beklei-
det, wenngleich auch das unmittelbar darunter liegende 
Holz schon abgestorben ist. In den folgenden Jahren geht 
die neue Holz- und Rindenbildung um die Basis des ab-
gestorbenen Stumpfes immer weiter, und wenn die Holz-
masse des Letztern endlich ganz verrottet und verschwin-
det, so bleibt der Cylinder mit einer dicken Randwulst 
übri, welcher durch die neuen seitlich herabgestiegenen 
Holzschichten gebildet ist. Schon in der Physiologie (Bd. I. 
p. 398) habe ich eine nähere Nachweisung über die Bil-
dung des Holzes an solchen abgestorbenen Aesten gege-
ben und die dabei mitgetheilten Beobachtungen zeigten 
sehr gut, daß der Bildungssaat, aus welchem sich die her-
abweigende Holzschicht bildet, eine flüssige Substanz sein 
müsse, und die Erklärung von du Petit-Thouars über die 
Bildung der Holzfasern u. s. w. nicht die richtige sein könne. 
Wenn nun gleich durch die neuen Holzschichten die 
Bildung des festen Holzcyllinders erfolgt, welcher die Ba-
sis des Aststumpfes einschließt, so geht doch die Fäulnifs 
des darin eingeschlossenen Holzkörpers meistenteils immer 
weiter, indem das darauf fallende Wasser in der HöHle 
des verrotteten Holzes sich ansammelt. Gerade an den 
Obstbäumen unserer Gärten kommt es sehr oft vor, daß 
der Holzkörper des Stammes durch jene Verwundungen 
in Fäulnifs überzugehen anfängt; aber dem aufmerksamen 
Gärtner wird es sehr leicht sein, seinen Pflegling gegen 
den nachtheiligen Einflüs jener Verwundungen zu schützen. 
Sobald man bemerkt, daß sich die neue Holzschicht um 
den Stumpf des Astes gebildet hat und das Holz des 
Stumpfes abgestorben ist und zu verrotten beginnt, so
muß man die ganze kranke Holzmasse ausschneiden oder ausmeischen und in einiger Entfernung unterhalb des Wulstrandes des neuen Holzcyinders eine Holzscheibe einbringen, welche das, durch die Verwundung entblößte Holz bedeckt. Man kann diese Holzscheibe, damit sie die offene Stelle genau schließt, mit Baumwachs oder mit einem der berühmten Baumkitte ganz genau einkleben und man kann sicher sein, daß, wenn die Scheibe genau eingesetzt war, sie schon im nächsten Jahre durch den neuen Holzring, welcher die Wulst am oberen Wundrande immer mehr vergrößert, befestigt wird und daß auf diese Weise dem Eindringen des Regenwassers und der dadurch entstehenden Fäulnifs vorbeugt ist.

II. Verwundungen durch Säugethiere.

Die Verletzungen der Bäume in Wäldern und in Gärten, welche theils durch die wilden Thiere der Wälder, theils durch die Hausthiere veranlaßt werden, sind von so übel Folgen, daß oftmals sehr bedeutender Schaden herbeigerührt wird, der selbst in den größten Waldungen bemerkbar wird. Nicht allein in den Wäldern, sagt der Verfasser des vortrefflichen Werkes über die Krankheiten der Wald- und Gartenbäume, *) sondern auch in den Gärten hauptsächlich zur Winterszeit, besonders in strengen Wintern, wo das Wild in den Wäldern nur selten so viel genießbares Moos, Wasserkräuter, Gräser, Binsen, Kletten- und Distelknospen, Eicheln, Lindensamen und dergleichen abgefallene Früchte mehr findet, als es zur Nahrung bedarf, sind die Baumknospen, Baumrinden, die zarten Zweige der Bäume, die jungen Holzpflanzen, ihr einziges Nahrungsmittel. Insbesondere ziehen die Hirsche im Frühjahre die Buche, wenn sie Blätter treibt, allen andern Gewächsen vor, und beißten die

ein- und zweijährigen Pflanzen von der Erde wie weggeschnitten ab. Mithin haben junge Buchenwäldchen in dieser Zeit viel zu leiden; dieselben sind vom Aufkeimen an bis zur Größe der Büsche der beständige Aufenthalt des Wildes und der Nachwuchs wird eine Beute desselben, indem das zarte Laub der Buchen, die Saamenblätter oder Schosse ihrer salatartigen Beschaffenheit wegen die angenehmste Nahrung für das Wildpret ist. Für das junge Nadelholz ist das Verbeizen ganz besonders nachtheilig, weil die Nadelhölzer nur aus ihren Terminalknospen hohe und gerade Stämme ausbilden können, daher das Wachsthum der Nadelholzstämmme in die Höhe aufhört, sobald der Terminaltrieb oder Mittelschufs abgebissen oder überhaupt zerstört ist.

Da mir die Gelegenheit nie zu Theil ward, mit gehöriger Aufmerksamkeit die Verletzungen zu beobachten, welche das Wild an den Bäumen des Waldes u. s. w. anstiftet, so folge ich hierin den Mittheilungen des anonymen Verfassers des vorhin genannten vortrefflichen Werkes über die Krankheiten der Wald- und Gartenbäume, denn Alles, was derselbe erzählt, zeigt das Gepräge treuer Naturbeobachtung und vielfjähriger Erfahrung.

Das Wildpret, sagt der Verfasser (a. a. O. p. 229), wird nie ohne die höchste Noth und nur aus Mangel aller andern Nahrung das Birkenholz anfallen und beschädigen, indem die eigenthümliche Bitterkeit, welche fast alle Theile dieser Pflanze besitzen, dem Wilde unangenehm ist. Auch die Rehe lieben hauptsächlich die Buchen, nächst diesen das Tannenholz und schaden ihnen durch Abfressen der Gipfel und Blätter; ebenso leidet ganz vorzüglich der Lerchenbaum, indem die Rehe die zarten Knospen dieses Baumes außerordentlich lieben. In späterem Alter leiden die Lerchenbäume durch Hirsche und Rehböcke, und selbst Lerchenstämmme von 6 bis 10 Zoll im Durchmesser werden von den Hirschen verdorben; denn nicht genug, das das Reh und Dammwild die Rinde, Knospen und jungen Zweige der Bäume verbeizt, es schadet zugleich auch dadurch,
daß es sich dabei an die Stämme anlegt und so die Wurzeln losmacht. Hirsche brechen ferner zuweilen die Spiese ihres Gehörns an jungen Gehölze ab; auch fegen sie im März an den Bäumen die behaarte Haut von dem neuen Gewebe ab und wählen dazu am liebsten weiche Holzsorten, Aspen, Saalweiden und Nadelhölzer. Ähnliches thun die Rothhirsche in der Brunstzeit aus bloßem Frevel, indem sie die Kraft ihrer Hörner an den Stämmen der Bäume versuchen. So weit das Thier in dergleichen Fällen reichen kann, geht meistens rund herum die Rinde verloren, und der Baum leidet zugleich auch durch die Erschütterung seiner Wurzeln.


Nach demjenigen zu urtheilen, was ich früher, pag. 7 und 8 etc. über das Absterben entrindeter Bäume mitgetheilt habe, wird in dem vorliegenden Falle das schnellere Absterben des Stammes durch Vertrocknung des entrindeten Holzkörpers,
gerade durch jene verharzten äußern Holzringe verhindert, welche eine luftdichte Hülle bilden, die alle Verdunstung verhindert.

Die Haasen thun ebenfalls sehr beträchtlichen Schaden. Bei hohem Schnee kommen sie in die Gärten und Baumschulen und nagen die Rinde der Bäume ab; die Rinde der jungen Aepfelbäume soll ihre liebste Winterkost sein, im Nothfalle nehmen sie aber auch mit erwachsenen fürlieb, wenn sie nur noch glatte Rinde haben, und oft verderben sie auch Pflaumen- und Kirschenbäume. Die Haasen richten meistens bedeutenderen Schaden an, als Hirsche und Rehe, denn sie dringen bei hohem Schnee selbst in die bezäunten Gärten in der Nähe der Städte ein und schaden den Obstbäumen.

Endlich ist noch der Verletzungen zu gedenken, welche von den Mäusen verursacht werden, wenn diese Thiere in zu großer Anzahl versammelt sind und im Winter nicht hinreichende Nahrung finden. Die Mäuse fressen von den Stämmen der Bäume nicht nur die Rinde und den Bast, sondern nagen auch einen beträchtlichen Theil des Holzes mit ab, und zwar wird die Rinde meistens erst 1, 2 bis 3 Schuh hoch vom Boden ringsum abgenagt, also grade an solchen Stellen wo sie anfängt zarter zu werden. Dergleichen abgenagte Bäume, sagt der anonyme Verfasser des obigen Werks, schlagen zwar oft im Frühjahr wieder aus, weil in dem übrigen Theile des Holzes noch immer so viel treibende Säfte vorhanden sind, als zur Hervorbringung des Laubes erforderlich, indessen diese Stämme gehen im Sommer meistens wieder ein, vielleicht durch die widernatürlich vermehrte Ausdünstung bei zerrissenen Holzgefäßen. An manchen solcher Bäume sterben mit den Blättern auch die Stämmchen ab, an andern aber sterben zwar die Blätter ab, indessen die angefressenen Stämmchen bleiben noch grün und heilen sich wieder aus. Anonymus beschreibt in gedachtem Werke auch die Art der Heilung solcher angefressenen Stämme; man habe nämlich an Birken gefunden, daß sich über der angenagten Stelle, wo die Rinde noch festsitzt, ringsherum
eine sehr warzige Wulst ansetzte, welche das angenagte Holz von Oben herab überwaltte. Außerdem fand man, größtenteils einen Zoll über der glatten Rinde, mehrere dünne, weißlichgelbe, mit karminrother Spitze versehene Wurzelzasern, welche sich durch das Gras hindurch gegen das Erdreich neigten. Diese angegebenen Beobachtungen stimmen mit den Resultaten unserer früher mitgeteilten Versuche ganz vollkommen überein, und es ist klar, daß auch hier an den genagten Wunden die Verheilung durch die Holzschicht erfolgt, welche sich von Oben herab über die ganze Fläche der Wunde zieht, wenn nur noch eine hinreichend große Quantität Rinde an dem Holze zurückgeblieben ist. Im Allgemeinen kann man sagen, daß die Verletzungen durch das Annagen der Mäuse nicht so gefährlich sind als vollständige Entrindung durch Ringelschnitte, denn es ist doch wohl nur selten, daß die Mäuse rund um den Stamm die Rinde abgefressen haben, und wenn noch einige Rindenstreifen übrig geblieben sind, durch welche die Rinde oberhalb und unterhalb der Verletzung mit einander in Verbindung steht, so wird der Bildungssaft durch diese hinabsteigen und es wird sich auch unterhalb mehr oder weniger viel der neuen Holzschicht und Rinde bilden.

III. Das Laubstreifen.

Zu den gewaltigsten Verletzungen, welche die Bäume zu erleiden haben, gehört das Laubstreifen, welches, je nachdem der Werth des Baumes mehr oder weniger groß ist, mit geringerer oder größerer Vorsicht ausgeführt wird. Da die Physiologie auf das entschiedenste lehrt, daß die Blätter den Bäumen die unentbehrlichsten Organe sind, durch welche die Respiration und Assimilation vermittelt werden, so muß natürlich die Beraubung derselben von größtem Einfluß für das Wachsthum der Bäume sein. Man kennt die Folgen, wenn man die Respiration und die Transspiration der Blätter plötzlich aufhebt, was z. B. durch Bestreichen mit Oelen, Firnissen u. s. w. leicht auszu-
führen ist; die Blätter werden alsbald verderben und abfallen. Sofort beginnt die Bildung neuer Knospen, welche in den Achseln der Blätter schon immer in ihrer Anlage vorhanden sind. Die Pflanze kann ohne Blätter oder deren stellvertretende Organe nicht leben und sofort reproduziert sie neue, wenn die früheren vernichtet wurden; mögen sie abgestreift, oder durch Insekten abgefressen, durch Frost oder auf irgend eine andere Weise vernichtet sein. Die Physiologie hat gelehrt, daß in den Blättern der herabsteigende Bildungssaft zubereitet wird, aus welchem die neuen Holz- und Rindenschichten, wie die Bildung der Wurzelzasern hervorgehen, und diese Bildungen beginnen in unsern Gegenden gegen Ende Juni als verhärtete Massen sichtbar zu werden und nehmen bis zum Herbst an Umfang und an Härte zu; werden aber die Blätter entfernt, besonders vor der Erhärtung der neuen Holzschicht, so wird die Bildung dieser gänzlich verhindert und es müssen erst wieder neue Triebe und neue Blätter zur Entwicklung kommen, um das Fehlende nachzuholen, was aber niemals vollständig erfolgen kann, indem die noch übrige Zeit des Sommers zu kurz ist, um den neuen Holzring zur Reife zu bringen. Der größte Nachtheil für den Baum entsteht aber durch das Laubstreifen dadurch, daß bei der doppelten Knospen-Entwicklung innerhalb eines Sommers die assimilierten Nahrungsstoffe der Pflanze, welche noch als Reserve-Nahrung in verschiedenen Theilen abgelagert waren, in solchem Maafse ausgesaugt werden, daß der Baum endlich dadurch erschöpft wird. Ist indessen der Vorteil, welchen man durch die Benutzung des Laubes der Bäume erhält, größer, als der Schaden, den man durch die verhinderte weitere Ausbildung des Stammes derselben erleidet, so wird man natürlich die Entlaubung so oft vornehmen, als es die Bäume möglich machen. In unsern Gegenden gebraucht man das Laub einiger Bäume fast nur zum Füttern des Viehes, besonders der Schaafe und der Ziegen, oder zur Fütterung der Seidenwürmer; in tropischen Gegenden
aber gibt es eine Menge von Pflanzen, deren Blätter so reich an Gerbestoff sind, daß sie zur Bereitung desselben in ungeheuern Quantitäten verbraucht werden und selbst behufs des Gerbens schon zu uns in den Handel kommen; außerdem werden die Blätter einiger Bäume und Sträucher zur Bereitung des Thee's benutzt. In allen diesen Fällen sind die Blätter um so wertvoller, je jünger sie sind. Man würde aber die Pflanzen sicherlich in 2 bis 3 Jahren tödten, wenn man denselben beständig die jungen Blätter abpfücken wollte, und verfährt daher hiebei nach gewissen Vorsichtsmaßregeln, unter deren Beachtung auch solche Pflanzen, denen alljährlich die Blätter entnommen werden, dennoch längere Zeit hindurch bestehen, wenngleich die Entwicklung ihres Stammes dadurch gar sehr beeinträchtigt wird.

Man streife das Laub so behutsam ab, daß die Rinde nicht viel verletzt wird, und vor Allem lasse man die obersten Blätter an den jungen Zweigen sitzen; auch pflücke man die Blätter nicht sämtlich zu gleicher Zeit ab. Wird das Laub als Nahrungsmittel für Thiere benutzt, so wird es allerdings immer schlechter, je älter es wird.

Die Entlaubung der Bäume veranläßt nicht nur die Entwicklung der neuen Knospen in den Achseln der alten Blätter, sondern es erzeugen sich dadurch auch eine Menge von Adventiv-Knospen an der Rinde der Stämme, wodurch das sogenannte Stammsprossen hervorgerufen wird, was das ursprüngliche Ansehen des Baumes gar sehr verschlechtert und wird die Entlaubung immer wieder von Neuem wiederholt, wie bei dem Maulbeerbaume, bei dem Theestrauche u. s. w., so kommen sehr bald dürre und verkrüppelte Zweige zum Vorschein, wodurch der Baum ein schlechtes Ansehen erhält, wie dieses besonders bei den Maulbeerbäumen der Fall ist.

Außerdem brechen die Gärtner zuweilen auch wohl die Blätter an manchen Pflanzen in großer Anzahl aus, um die Früchte schneller zur Reife zu bringen, z. B. am Weinstocke; sie erreichen, sagt ein erfahrener Praktiker,
hiedurch wohl in so weit ihren Zweck, daß die Trauben dadurch mehr den Sonnenstrahlen ausgesetzt werden, aber die Früchte bleiben auch unvollkommener, indem sie durch das Abnehmen der Blätter eines großen Theils ihrer Nahrungssäfte beraubt werden. Ja geht man hierin zu weit, und entblättert man zu stark, so wird man gar bald die Unentbehrlichkeit der Blätter empfinden; der Trieb solcher Stämme wird nachlassen, die Säfte können nicht gehörig verdunstet werden und so werden Auswüchse veranlaßt; selbst Platzen der Früchte kann eintreten und in Folge von Saftsüße selbst der Untergang des Baumes herbeigeführt werden.

IV. Verletzungen und Verwundungen durch Insekten.

Es liegt ganz außer dem Plane dieser Schrift, eine Naturgeschichte der den Pflanzen schädlichen Insekten zu geben, sondern ich beabsichtige nur, solche Insekten anzuführen, durch deren Zerstörungen dem Garten- und Forst-Bau, so wie den Oekonomen oftmals unermesslicher Schaden zugefügt wird, und zwar geschicht dieses immer nur, in sofern sie den Pflanzen einen kränkelnden Zustand und selbst den Tod veranlassen. Da hier oftmals die Pflanzen nur durch Vertilgung ihrer schädlichen Insekten zu erhalten oder zu heilen sind, so müssen zur Erreichung dieser Absicht die Lebensweisen derselben bekannt sein, und deshalb werden wir auch dergleichen Mittheilungen in diesem Buche nöthig haben. (2)

Die Insekten werden den Pflanzen meistentheils dadurch schädlich, daß sie entweder im Larven- oder im ausgebildeten Zustande einzelne der wichtigsten Theile der Pflanzen zu ihrer Nahrung völlig zerstören, d. h. auffressen, oder indem sie behufs ihrer Fortpflanzung einzelne Theile der Pflanzen verletzen und in die verletzte Stelle ihre Eier hineinlegen. In dem ersten Falle, wo die Pflanzen von den Insekten zu ihrer Ernährung verletzt werden, entsteht die Krankheit der Pflanze nur
in Folge des Mangels dieses oder jenes wichtigen Theiles, durch welchen dann die nöthigsten Ernährungs- oder Bildungs-Prozesse nicht ausgeführt werden können, daher der Baum oder die Pflanze überhaupt in ihrem Wachsthum zurückbleibt. Wenn man hier gegen die entfernte Ursache der Krankheit einschreiten will, so ist es durchaus nöthig, daß man die Naturgeschichte derjenigen Insekten kennt, welche die Krankheit veranlasst haben. Dieses ist aber nicht immer so leicht, und wir kennen gerade ganz überaus wichtige Fälle, wo man lange Zeit hindurch sehr verschiedener Ansicht darüber war, ob die Krankheit durch Insekten-Zerstörungen herbeigeführt worden sei, oder ob die Krankheit der Pflanze die Insekten herbeigelockt habe.

Es ist über die den Pflanzen schädlichen Insekten schon überraschend geschrieben worden und meistens über diejenigen, welche zuweilen, wenn sie in zu großer Menge erscheinen, den Forsten ganz unberechenbaren Schaden zufügen können, und neuerlich ist Herr Ratzeburg, Professor der Naturwissenschaften an der Königl. Preußischen höhern Forst-Lehranstalt zu Neustadt-Eberswalde, von Seiten der hohen Regierung beauftragt worden, ein Werk über die Forst-Insekten herauszugeben, welches dem gegenwärtigen Stande der Naturwissenschaften entsprechend, den Forst-Beamten Belehrung geben soll, um zum Schutze der Forsten den schädlichen Insekten in bester Art begegnen zu können. Dieses Werk enthält zwar nur die Beschreibung der Lebensweise der schädlichen Forst-Insekten, aber der größte Theil dieser findet sich auch in unseren Gärten, so daß Jedermann mit Hilfe dieses Werkes und mitHerrn Bouchez's Naturgeschichte der schädlichen und nützlichen Garteninsekten (Berlin 1833. 8.) hinreichende Mittel in Händen haben wird, um den schädlichen Garten-Insekten u. s. w. begegnen zu können.

Man hat die schädlichen Insekten eingeteilt in: Sehr schädliche, in Merklich schädliche und in Un-
merklich schädliche; hier kann nur von den ausge-
zeichnetsten der beiden ersten Abtheilungen die Rede sein,
und diese theilt man wiederum in mehrere Abtheilungen,
je nachdem sie diesen oder jenen Pflanzentheil zu ihrer
Nahrung wählen. So hat man Blattfresser (Phyllophagen),
Rindenfresser (Dermatophagen), Holzfresser (Xylophagen),
Saamenfresser (Spermatophagen), Blumenfresser (Antho-
phagen) u. s. w.

I. Von einigen der wichtigsten Blattfresser.

An die Entlaubung der Gewächse durch Abstreifen
der Blätter, welche im Vorhergehenden betrachtet wurde,
schließt sich die Betrachtung der Entlaubung durch Rau-
penfrafs unmittelbar an, welche mitunter in ihren Folgen
noch viel gefährlicher ist. Verschiedene Raupen- und Kä-
erarten treten bei uns zuweilen in so großer Anzahl auf
und zeigen eine solche Gefräfsigkeit, dafs sie, wie es all-
gemein bekannt ist, oft in der kürzesten Zeit die unglaub-
löchsten Verheerungen anrichten und gar häufig ist es ganz
unmöglich diesen Einhalt zu thun; in tropischen Gegenden
aber, welche von Heuschrecken geplagt werden, geht
der Schaden, welchen diese Thiere oft in Zeit von einigen
Stunden anrichten, fast in das Unglaubliche. Große Heu-
schrecken-Schwärme sind von solcher Ausdehnung, dafs
sie die Sonne verdunkeln und selbst in Meilen weiter Ent-
fernung als große dunkle Wolken erscheinen; überall wo
sich diese ganz überaus gefrässigen Thiere niederlassen,
ist in einigen Stunden alles Laub von den Bäumen
abgefressen; die Schafte der Pflanzen in den Zuckerplan-
tagen bleiben fast ganz kahl zurück und von grünen
Reisfeldern verschwindet mitunter jede Spur. Ja selbst
solche Gegenden, über welche die Heuschrecken fortziehen,
werden durch die unendliche Zahl von herabfallenden und
von ermüdeten Nachzüglern so fürchtbar zerstört, wie es
bei uns wohl nur selten durch Maikäfer geschieht, und den-
noch ist der Pflanzer, bei dem unendlichen Reichthume der
Natur in jenen Gegenden schon sehr zufrieden, wenn er
nur das Niederlassen der Heuschrecken-Schwärme von seinen Feldern verhindern kann, was denn auch wirklich durch Schießen, durch Pulver-Explosionen, durch Geschrei u. s. w. mehr oder weniger gut gelingt.

In unsern Gegenenden sind so furchtbare Zerstörungen des Laubes durch Insektenfraß gar sehr selten, obgleich sie im geringern Grade allerdings auch bei uns nicht selten vorkommen, so daß dadurch die Früchte gänzlich vernichtet werden. In noch geringerem Grade kommt dieser Fall häufiger vor, ohne weiter großen sichtbaren Nachtheil für die Bäume und Sträucher herbeizuführen. Zu den schädlichsten Insekten unserer Gegenenden, welche Entlaubung der Bäume und Kräuter durch Auffressen der Blätter herbeiführen, gehören einige Gattungen der Käfer, als Melolontha, Chrysomela, Cantharis, Haltica, Curculio u. s. w., die meisten Schmetterlinge und viele Hymenopteren.

Der Maikäfer (Melolontha vulgaris Fabr.) ist unter unseren Käfern der gefürchtetste Blattfresser, der in Laubwäldern und besonders in unsern Obstgärten furchtbare Zerstörungen anrichten kann; wenn der Maikäfer in großer Menge erscheint, so frisst er unsere Obstbäume oftmals ganz kahl ab, so daß weder Blätter bleiben noch Blätten und Früchte, und außer dem Schaden, der durch den Verlust der ganzen Ernte entsteht, sind die Bäume solcher Gärten für den ganzen Sommer hindurch entstellt. Weit größer ist indefs der Schaden, den die Maikäfer in ihrem Zustande als Made anrichten, in welchem sie den Namen der Engerlinge führen; in diesem Zustande leben sie eine Reihe von Jahren und ernähren sich nur von der Rinde der Baumwurzeln und einigen andern Pflanzen, selbst der Getreide-Pflanzen. Wenn die Engerlinge in sehr großer Menge auftreten, sind sie im Stande junge Pflanzungen ganz und gar zu zerstören, indem sie die Wurzeln derselben abnagen; ja selbst Plantagen von 10 bis 20 Jahre alten Obstbäumen hat man in Zeit von einem Jahre durch die Zerstörungen der Engerlinge eingehen sehen können. Selbst
Getreidefelder und andere Feldfrüchte haben durch die gefährlichen Engerlinge vollständigen Mißwachs gezeigt. Jedem Gärtner wird es öfters vorgekommen sein, daß einzelne Bäume seines Gartens mitten im Sommer, und reich mit Früchten bedeckt, plötzlich die jungen Zweige hängen lassen, selbst am Weinstocke habe ich es mehrmals gesehen. Man vermuthet gewöhnlich zuerst, daß zu wenig Feuchtigkeit die Ursache des Welkens sei; zeigen sich aber die zunächst stehenden Bäume frisch, so kann man mit ziemlicher Sicherheit die Gegenwart einer großen Anzahl von Engerlingen vorhersagen.

Wir könnten eine Menge von speciellen Fällen anzeigen, wo die Zerstörungen durch Engerlinge zu den größten Besorgnissen Anlaß gaben, wenn es nicht zu allgemein bekannt wäre. Man hat daher sehr ernstlich auf die Verminderung und Vertilgung der Maikäfer gedacht, und wenngleich es ganz unmöglich ist, ihren Zerstörungen Einhalt zu thun, wenn sie als Käfer in zu großer Menge auftreten, so hat man doch die Mittel in Händen, ihrer ferneren Vermehrung nachdrücklich entgegenzuwirken. Der Maulwurf ist dem Maikäfer der größte Feind, denn sowohl die Eier, als die Larven und die Käfer dienen zu seiner feinsten Speise, daher wenigstens in Obstgärten den Maulwürfen nicht zu stark nachgestellt werden sollte.

Um die Verminderung der Maikäfer zu bewirken, ist es nöthig, die Naturgeschichte desselben zu kennen, worüber denn auch in der letzten Zeit unendlich viel geschrieben ist. Der Maikäfer lebt vorzüglich gern auf Eichen, Rofskastanien, Ahorn, Ulmen und Buchen, er geht indessen auch auf die andern Bäume ohne Unterschied, wenn die genannten nicht vorhanden sind; das Erscheinen der Maikäfer richtet sich nach der Witterung, bei uns im nördlichen Deutschland zeigt er sich von der Mitte Mai's bis zum Anfange des Juni und er lebt dann 14 bis 20 Tage. Nach der Begattung, welche gegen 12 Stunden dauert, stirbt das Männchen und das Weibchen geht in die Erde hinein, 3, 4 bis 5 Zoll tief, und legt daselbst an.
dene Stellen 10, 20 bis 30 Eier, deren es 60—80 im Ganzen enthält, worauf es auch sehr bald stirbt, mitunter aber noch einige Tage hindurch frisst. Die Entwicklung der Eier zu Larven geschieht schon nach 4—6 Wochen und schon im Herbst erreichen diese eine Länge von 8 bis 9 Linien; schon in diesem Zustande thun sie den Wurzeln der Gräser und anderer zarten Gewächse vielen Schaden, so dafs man schon im folgenden Jahre eine Verminderung des Graswuchses bemerkt haben will. Zum Winter gehen die Larven jedesmal mehrere Fufs tiefer in den Boden und halten hier den Winterschlaf; mit angehendem Frühling kehren sie aber wieder in die obern Erdschichten zurück und leben von den Wurzeln der Pflanzen; doch je gröfser sie werden (sie führen dann den Namen der Engerlinge, Glime oder der Kappenstöfser) um so nachtheiliger werden sie den Bäumen und Sträuchern und überhaupt allen Gewächsen, unter welchen sie vorkommen. Im Sommer des vierten Jahres gehen sie bis auf 6 Fufs tief in die Erde und hier geht die Verpupfung in einer regelmäfsig geformten ovalen Höhle vor sich, was meistens in der Mitte des August’s und noch im September stattfindet, in manchen Fällen jedoch auch noch früher und ebenso auch noch viel später. Schon nach 4—8 Wochen entwickelt sich der Käfer aus der Puppe, bleibt jedoch meistens bis zum Frühlinge in seinem tiefen Aufenthalte. Vom Februar an, sagt Herr Ratzeburg*) in seiner schönen Arbeit über den Maikäfer, arbeiten sie sich immer höher, wozu sie besonders die frostfreien Tage benutzen, so dafs man sie im März schon meist unter der Oberfläche findet. Einzelne mögen wohl überhaupt nicht so tief gehen und diese sind es dann, welche, wenn sie sich bei auffallend gelindem Winterwetter herauszuarbeiten anfangen, unverhofft und gar nicht selten im Winter über der Erde erscheinen. Wenn die ausgebildeten Maikäfer über die Erde kommen, so erheben sie sich bald darauf und fliegen auf die Kro-

*) Die Forst-Insekten u. s. w. I. Berlin 1837. pag. 66.
nen der Bäume, deren nur wenige von ihnen verschont werden, als Linden, Faulbaum, Kiefern. Bei Tage sitzen sie meistens still, doch mit eintretender Dämmerung schwirren sie umher und gegen Morgen sitzen sie ganz still, wie es scheint, erstarrt vom Thau. Die Maikäfer fliegen nicht weit, daher auch ihre Verbreitung aus einer Gegend in die andere ganz unbedeutend ist, was denn auch die Vertilgung und Verminderung dieser Thiere sehr erleichtert.

Wir haben zwar schon oben bemerkt, daß der Maulwurf die Maikäfer in allen ihren Entwicklungs-Zuständen stark verfolgt, besonders die Engerlinge, welche auch auf aufgebrochenen Ackerkern vielfach von Krähen, Lerchen und Staaren vertilgt werden, ja die fliegenden Käfer werden in noch weit größerer Anzahl durch Vögel, Amphibien und Säugethiere gefressen, aber alle diese Feinde sind nicht im Stande, der Vermehrung dieser Käfer merklich in den Weg zu treten. Es bleibt nichts anderes übrig, als die Käfer zu sammeln und zu tödten, und dieses Mittel ist denn auch zu allen Zeiten als das allein wirksame empfohlen worden. Die beste Zeit zum Einsammeln der Käfer sind die frühen Morgenstunden, in welchen man die Bäume nur wenig zu schütteln hat, um das Abfallen der Käfer zu bewirken; an alten und sehr großen Bäumen müssen die Äste geschüttelt werden, und es ist natürlich, daß auch bei dem Allen nicht alle Käfer von den hohen Bäumen herabzubekommen sind. Die Tödtung der eingesammelten Käfer geschieht am sichersten durch kochendes Wasser oder durch Verbrennen, und zum Einsammeln selbst werden sich, selbst bei kleinen Preisen, schon Hände genug finden. Es ist auffallend, daß sich schon so manche Praktiker gegen das Einsammeln der Maikäfer, wie so mancher anderer schädlichen Insekten, als gegen unausführbare Maafsregel, ausgesprochen haben, während in solchen Gegenden, wo das Einsammeln stattgefunden hat, der Erfolg ganz auffallend gut ist. Aus den obigen Mittheilungen über die Oekonomie des Maikäfers geht hervor, daß
man schon vorauswissen kann, in welchem Jahre starke Maikäfer-Flüge und wann die Zerstörungen durch Engerlinge zu erwarten sind. Herrschte in irgend einer Gegend starker Maikäferfraß und ward gegen denselben nicht durch frühzeitiges Zerstören der Käfer eingeschritten, so ist über 4 Jahre ein noch stärkerer Flug zu erwarten. In tropischen Gegenden scheuets man weder Mühe noch Kosten, um durch Einsammeln und Vernichtung der Insekten selbst den furchtbaren Zerstörungen der Heuschrecken entgegen zu wirken, denn wenn diese Thiere nicht durch heftige Stürme in das Meer getrieben oder überhaupt getödtet werden, so würden sie sich so ungeheuer vermehren, daß sie zuletzt Alles auffräßen. Wenn demnach die Natur selbst diese schreckliche Landplage nicht vernichtet, so müssen die Menschen Hand anlegen. Zur Zeit meiner Anwesenheit auf der Insel Luçon herrschte daselbst Heuschreckenfraß, so daß man schon an etwa eintretende Hungersnöth dachte. Die Regierung setzte Preise auf die Vertilgung der Heuschrecken aus; sie bezahlte die Arroba (33\frac{1}{3} Pf.) mit \frac{1}{8} Piaster (8\frac{2}{4} Sgr.) und hatte schon 50,000 Piaster (75,000 Thlr. Preufs.) für Heuschrecken bezahlt, obgleich ihre Verminde- rung nicht besonders zu merken war.\)  

Bei dem großen Maikäferfraß in der Gegend von Quedlinburg bildete sich ein Verein von Gärttern und Oekonomen zur Vertilgung der Maikäfer; es wurden durch Kinder und andere Arbeiter 93 Wispel und 4 Scheffel Käfer gesammelt, wofür 267 Thlr. 11 Sgr. verausgabt wurde. Der Scheffel wurde mit 4 und auch mit 5 Sgr. bezahlt und er enthielt ungefahr 15000 Stück, so daß im Ganzen 33,540000 Käfer mit ihrer unendlichen Brut auf diese Weise zerstört worden sind.\)**

Es gibt noch mehrere Arten der Gattung Melolontha (Laubkäfer), die dem Maikäfer mehr oder weniger

\)

\)** S. Erster Nachtrag zu Ratzeburg's Forst-Insekten. Berlin 1839. 4to. pag. 22.

\) S. Meyens Reise um die Erde II. pag. 197.
in Form und Gefährlichkeit ähnlich sind, von welchen ich hier noch einige anführe:

Der Rofskastanien-Maikäfer (Melolontha Hippocastani Fabr.); er ist nur etwas kleiner und brauner als der gemeine Maikäfer, und kommt mit diesem überall zusammen vor, mitunter sogar noch häufiger als dieser.

Der große Juliskäfer (Melolontha Fullo Linn.), auch Walker, Müllerkäfer, marmorirter Maikäfer u. s. w. genannt. Er scheint nach Herrn Ratzeburgs Beobachtungen an den Kiefern am Liebsten zu fressen, indessen kommt er auch auf vielen Laubhölzern vor.

Der Sommerwende-Laubkäfer (Melolontha solstitialis L.) Juniuskäfer, Johanniskäfer, kleiner Maikäfer u. s. w. kommt auf Weiden, Buchen, Pappeln u. s. w. vor, auch auf Kiefern, und zeigt sich zuweilen ebenfalls in sehr großer Anzahl. Endlich führe ich noch den Garten-Laubkäfer (Melolontha horticola L.) auf, der mitunter auf Rosen und Obstbäumen ebenfalls große Zerstörungen anrichtet.

Unter den Käfern, die in unseren Gegenden gar häufig große Verwüstungen in dem Laube der Bäume anrichten, führe ich noch die Spanische Fliege (Lytta vesicatoria Fabr.) auf, welche über ganz Europa verbreitet zu sein scheint. Dieser abschrecklich riechende Käfer erscheint gar häufig in der Mitte des Juni in großer Menge und schadet in unseren Gärten nicht nur dadurch, daß er zuweilen sehr beliebte Bäume ihres Blätterschmucks in sehr kurzer Zeit beraubt, sondern auch einen so unangenehmen Geruch verbreitet, daß man oftmals solche Gegenden des Gartens, wo sie sich niedergelassen haben, vermeiden und ihnen den Platz überlassen muß. Ich habe in mehreren Gärten gesehen, daß die Spanischen Fliegen das Laub der Eschen allen andern Gewächsen vorzogen, und auf diesen Bäumen auch alle Jahre wiederkehrten, obgleich sie alljährlich in unglaublicher Anzahl getödtet wurden. Auch auf Flieder (Syringa vulgaris) kamen sie in eben denselben Gärten
häufig vor, aber sehr selten nur auf andern Bäumen und Sträuchern.

Die Lebensweise dieser gefräfsigen Thiere ist noch immer nicht vollständig bekannt; Herr Ratzeburg, der dieselbe in seinem Werke über die Forst-Insekten (a. a. O. pag. 90.) sehr umständlich mittheilt, vermuthet, daß ihre Generation einjährig sei, weil sie alljährlich, wenn auch nicht immer gleich häufig vorkommen, und aus dem plötzlichen Erscheinen derselben in grossen Massen schließt er auf ein gleichzeitiges Ausschlüpfen an einer Stelle. Sobald sie auf den Bäumen erschienen sind, widmen sie sich mit großer Lebhaftigkeit dem Fressen und der Begattung. Das befruchtete Weibchen begiebt sich von dem Baume herab und gräbt sich in die Erde, etwa 1 Zoll tief, wo es 40—50 Eier hineinlegt, die es hierauf ganz mit Erde bedeckt, und dann wieder zu fressen beginnt, lebt aber nur noch wenige Tage. Nach 3 bis 4 Wochen kommen die jungen Larven aus der Erde hervor und zerstreuen sich, doch ihre Verpuppung kennt man noch nicht.

Die Vertilgung der Spanischen Fliegen kann auch nur durch Einsammeln und Tödtung ausgeführt werden, doch muß dieses gleich bei ihrem Erscheinen geschehen; auch hier sind die Morgenstunden dazu am geeignetsten, und da diese Insekten einigen Werth in den Apotheken haben, so wird sich die Mühe für das Einsammeln dadurch belohnen lassen. Zuweilen verschwinden sie plötzlich, ohne daß man den Grund einsieht.

Von den Käfern führe ich noch die Gattung: Blattkäfer, Chrysomela auf, welche auf Bäumen, Kräutern und Sträuchern vorkommen und nur von dem Parenchym der Blätter leben. Die Larven dieser Käfer sind raupenartig und eben so gefräfsig als die Käfer; sie zerstören die Blätter von der Mitte aus und verstehen dieselben endlich vollständig zu skelettiren. Die Larven leben in grossen Gesellschaften und sind dadurch leicht zu vernichten; Absuchen der Larven wie der Käfer ist das einzige, radikale Mittel gegen diese Thiere. Sie überwintern im abgefalle-

II. Von einigen der schädlichsten Insekten, welche die Stämme und Äste der Bäume zerstören.

haben, gar kein Zweifel übrig bleiben, daß der kränkelnde Zustand und selbst das Absterben jener Bäume nur durch den Borkenkäfer herbeigeführt wird, wie ich dieses später noch umständlich auseinander setzen werde.

Die Lebensweise dieses merkwürdigen Insektes ist folgende: In unsern Gegenenden tritt die Brut in der ersten Hälfte des Mai's auf und diese braucht 10, 12—13 Wochen bis zum Ausfluge; gewöhnlich scheint bei uns nur $\frac{1}{2}$ Generation im Verlaufe des Sommers stattzufinden, bei sehr günstiger Witterung aber auch wohl 2, und dann findet die zweite Flugpart im August und September statt.

In den warmen und sonnigen Frühlings-Tagen kommen die Käfer aus ihren bisherigen Wohnungen im Innern der Rinde hervor und schwärmen in sehr großer Anzahl noch in der Luft, um die künstlichen Brutplätze zu suchen, auf welche sie dann plötzlich herabfallen. Sie wählen lieber frisch gefällte Hölzer als stehende und noch lebende hiezu, auch die umgerodeten Stummel ziehen sie besonders an, ja nach guten Erfahrungen verlassen sie auch die einzel von ihnen bewohnten lebenden Stämme, sobald man ihnen gefälltes grünes Holz hinwirft. Doch ist es schwer, sagt Herr Ratzeburg, die Zeit zu bestimmen, in welcher abgestorbener Holz von dem Borkenkäfer nicht mehr angetan und auch die von ihm befallenen Stämme, sobald man ihnen gefälltes grünes Holz hinwirft. Doch ist es schwer, sagt Herr Ratzeburg, die Zeit zu bestimmen, in welcher abgestorbener Holz von dem Borkenkäfer nicht mehr an-
selben Jahre ab; in alten 90—100jährigen Stämmen können sich jedoch dergleichen Käfer, wenn sie nicht in zu großer Anzahl vorkommen, noch mehrere Jahre erhalten, ohne daß die Bäume absterben. Sobald die Stämme befallen sind, bohren sich die Käfer in die Borken, was mitunter in einer halben Stunde ausgeführt werden soll, und hier unter der Rinde wird die Sammelkammer angelegt und die Begattung vollzogen. Hierauf graben sich die Weibchen sogenannte Muttergänge (welche parallel zwischen den Bastbündeln verlaufen) und legen an den Seiten 20, 60, 70 und selbst bis 130 Eier, welche mit Wurmmehl verklebt werden. Die Larven machen zierlich geschlängelte, auch im Splinte mehr oder weniger bemerkbare immer breiter werdende Gänge und verpuppen sich am Ende derselben im Baste oder in der Rinde. Da das Eierlegen längere Zeit dauert, selbst bis an 6 Wochen, so findet man in einem von den Insekten befallenen Stämme die verschiedenen Form-Stufen derselben. Nach Verlauf von 2—3 Wochen geht die Verpupung der Larve vor sich, in welchem Zustande sie 21 Tage liegt und dann als Käfer erscheint. Die älteren Käfer fressen sich nach der Begattung und dem Eierlegen wieder heraus und sterben alsdann.

Man hat sich zwar überzeugt, daß auch gesunde Fichtenstämme von dem Borkenkäfer angegriffen und mehr oder weniger schnell getötet werden, es ist mir aber nicht bekannt, daß man das Absterben des Baumes mit allen den begleitenden Erscheinungen gehörig verfolgt hat und daher sind wir über die Art des Todes und hauptsächlich über die nächste Ursache noch ganz im Ungewissen. Die Herren Hartig *) nehmen das Vorhandensein einer eigenthümlichen Käfersäure an, welche, wenn sie in zu großer Menge abgesondert wird, auf die gesunden Pflanzensäfte wie ein Gift einwirken und diese zersetzen müsse. Bei Bostrichus lineatus müsse diese Säure ungemein concentrirt sein, denn die nächste Umgebung des Ganges und dieser selbst sei wie durch Schwefelsäure verbrannt.

Die Heilung der vom Borkenkäfer befallenen Bäume gelingt nur dann, wenn die Zahl der Insekten nicht zu groß war und dieselben entweder künstlich oder von der Natur erstäckt oder überhaupt getötet werden, was immer nur ein seltner Fall ist. Die Hauptsache ist, daß man, sobald die Käfer irgend einen Wald befallen haben, gegen die weitere Vermehrung und Verbreitung derselben einschreitet, und dieses erfolgt auf verschiedenem Wege. Es wurde früher mitgetheilt, daß der Borkenkäfer frisch gefallte Stämme der Fichte allen übrigen vorziehe; man hat deshalb mit sehr gutem Erfolge sogenannte Fangbäume empfohlen, welche in den von Insekten befallenen Revieren etwa alle 50 Schritte aufgestellt oder besser mit allen Asten auf untergelegte Stöcke und Steine gela tert werden. Sobald sich die Schwärme auf die Fangbäume niedergelassen und diese in großer Anzahl überzogen haben, muß die Entrindung derselben vorgenommen und die Borke verbrannt werden. Das beste Vor bauungsmittel ist eine gute Bewirthschaftung des Forstes; es darf kein abgefallenes oder todtes Holz umherliegen.

und bei Windfällen und Windbrüchen muß sofort aufgeräumt werden. Ist aber einmal der Borkenkäfer in zu großer Anzahl vorhanden, so ist mit den vorgeschlagenen Mitteln nicht mehr auszureichen und nun muß man hauptsächlich auf Tödtung der Insekten denken, wodurch deren Vermehrung und Verbreitung am besten vorgebaut wird. Das todte Holz muß zwar fortgeräumt worden, aber hauptsächlich müssen die noch lebenden Bäume gereinigt werden, welche von dem Käfer befallen sind, was durch Entrinden oder Abborken geschieht, worauf die Borke vorsichtig verbrannt wird. Man darf hier keine Kosten scheuen.

**Der große Kiefernboorkenkäfer. Bostrichus stenographus Dtschm. (B. Pinastri Bechst.)**

Dieser Borkenkäfer gehört ebenfalls zu denen, die sehr zu fürchten sind; er bewohnt die Kiefern, wie der vorige die Fichten, doch ist er auch schon auf diesen beobachtet worden. Der Kiefernboorkenkäfer kommt nie in so großer Menge vor als der vorige, die Vorsichts-Maafsregeln wie die Vertilgung sind für beide dieselben.

Es gibt noch eine Menge anderer mehr oder weniger schädlicher Borkenkäfer, welche dann und wann in so großer Anzahl auftreten, daß sie die allgemeine Aufmerksamkeit auf sich richten. In dem schon oft genannten Werke des Herrn Ratzeburg sind diese Käfer sämtlich abgebildet, so wie auch Darstellungen der Formen der Gänge gegeben, welche bei jeder Art verschieden sind, so daß man aus diesen schon den Käfer erkennen kann.

Unter den Bastkäfern ist der Kiefernzwiegbastkäfer (Hylesinus piniperda Linn.) der gefährlichste; er überwintert dicht über der Wurzel der Kiefernstämme, wo er sich in die Rinde einbohrt und mit dem Rüssel in die Bastschicht selbst bis zum Splinte einragt. Schon im März und im Anfange April's schwärmen die Käfer und befallen frische Stöcke, doch ziehen sie liegendes Holz, selbst im Winter geschlagenes, den stehenden Stöcken bei weitem vor. Die Lebensweise

Die zahlreichen Arten dieserGattung sind ebenfalls ganz vortrefflich abgebildet in Herrn Ratzeburg’s Werk über die Forst-Insekten und mit Bewunderung sieht man die mannigfaltig gestalteten Gänge dieser Thierchen auf den vortrefflich ausgeführten Tafeln dieses Werkes.

Verheerungen angerichtet hat.*) Die Larven der Blattwespen sehen den Raupen der Schmetterlinge sehr ähnlich und werden deshalb auch Afterraupen genannt. Es gränzt an das Unglaubliche, in welchen Schaaren diese Afterraupen der Kiefern-Blattwespe beobachtet sind; wenn sie nicht in zu großer Menge vorkommen, so bleiben sie auf den Bäumen sitzen, an welchen sie auskommen; sind sie dagegen in sehr großer Zahl vorhanden, so treten sie wegen Mangel's an Nahrung ihre Wanderungen an, auf welchen sie dann durch Raupengräben u. s. w. leicht zu vernichten sind. Auch diese Insekten sollen das kränkelnde Holz dem gesunden vorziehen.


Die Blattläuse bilden eine der gewöhnlichsten Plagen unserer Garten-Cultur, und Jedermann, der irgend ein Pflänzchen in seiner Stube zu cultiviren liebt, wird schon oftmals diese lästigen Gäste mit Unwillen wahrgenommen haben. Wie es bekannt ist, treten die Blattläuse mitunter in solcher großer Masse auf, daß sie uns oft selbst die liebsten Gewächse widrig machen und wir ihnen dieselben Preis geben. Es gibt wirklich Fälle, sowohl im Großen, als im Kleinen, wo wir die Entfernung der Blattläuse von den Gewächsen selbst mit großen Anstrengungen nicht mehr auszuführen im Stande sind; wenn man aber das Erscheinen derselben früh genug wahrnimmt, so lassen sie sich sehr leicht (wenigstens im Kleinen) vertreiben.

Die Blattläuse sind uns nicht nur unangenehm, indem sie den von ihnen befallenen Pflanzen ein unangenehmes, oft ekelhaftes Ansehen geben, durch ihre Honig-Absonderung die Pflanzen und alle darunter liegenden Gegenstände beschmutzen und durch die Hüllen ihrer Körper, welche sie bei dem Häuten abwerfen, die Verunreinigung noch

vergrößern, sondern sie sind auch den Pflanzen überaus schädlich, sie veranlassen Deformitäten einzelner Theile, Krankheiten der Blätter, Blüthen u. s. w. und können sogar den Tod der Pflanze herbeiführen.

Die Blattläuse zerfallen in zwei große Klassen. Die eine derselben enthält solche, welche auf der Oberfläche der Pflanzen leben, während die zweite Klasse dergleichen Blattläuse umfasst, die im Innern der Blattsubstanz, und zwar in besonderen balgartigen Auswüchsen vorkommen. Die Blattläuse, welche frei auf der Oberfläche der Pflanzen vorkommen, besitzen fast alle auf dem Rücken des Hinterleibes zwei Saströhren, aus welchen sie einen honigsüßen, zuckerhaltigen Saft in Form kleiner Tröpfchen ausspritzen. An der unteren Seite des Kopfes haben sie einen langen Rüssel, mit welchem sie die Säfte der Kräuter und überhaupt der krautartigen Theile der Gewächse aussaugen. An alten, ausgebildeten Pflanzenteilen können die Blattläuse nur geringen Schaden verursachen; sie besuchen aber auch lieber die jungen und zarten Theile der Pflanzen und veranlassen an diesen die auffallendsten Deformitäten. Durch die Stiche, welche die Blattläuse mit ihren Saugrüsseln ausführen, werden die jungen und zarten Blätter in der Art gereizt, daß sie an verschiedenen Stellen auffreien, große blasige Auswüchse entwickeln oder auch sich mehr oder weniger vollkommen tütenförmig zusammenkrümmen; die Art dieser Deformität hängt fast immer sehr bestimmt von der Art der Blattlaus ab, welche die Pflanze verletzte.

sie lebendige Junge, welche rückwärts aus dem Leibe der Mutter kommen; aus den überwinterten Eiern entwickeln sich nur Weibchen, welche den ganzen Sommer hindurch ohne vorhergegangene Begattung lebendige Junge gebären; Bonnet sah von abgesonderten Weibchen in Zeit von 3 Monaten bis 9 Generationen hervorgehen und Herr P. Fr. Bouché *) sah bei der Rosenblattlaus, daß eine Mutter 4 Tage lang täglich 15 bis 20 Junge gebab, die nach einem viertägigen Alter wiederum von Neuem zu gebären anfingen. Die männlichen Blattläuse erscheinen erst zu Ende des Sommers oder im Herbst; sie befürchten die Weibchen und sterben, diese aber legen ihre Eier an die Zweige der Pflanzen u. s. w. Herr Hartig jun.**) hat die sehr wahrscheinliche Beobachtung gemacht, daß die Blattläuse auch in ungeheurer Anzahl aus der Erde kommen, was wahrscheinlich nur von gewissen Arten gelten wird; vorzüglich treten die Blattläuse des Nachts und in den frühesten Morgenstunden aus der Erde hervor, er sah es an einem Klumpen von Erde 6 Wochen lang. Der Gegenstand verdient die genaueste Beachtung, denn durch die Bestätigung jener Angabe würde es sich erklären lassen, daß sich zuweilen in einer einzelnen Nacht, wie ich es ebenfalls an einem Rosenstocke im Zimmer bemerkte, die Zahl der Blattläuse unglaublich vermehrt.

Die Gattung Aphis ist sehr artenreich. Die meisten bekannten Pflanzengattungen haben sogar ganz eigenthümliche Arten, welche dann gewöhnlich den Beinamen nach eben diesen Pflanzen erhalten, auf welchen sie hauptsächlich gern vorkommen. Die Rosen-Blattlaus (Aphis Rosae L.) ist den Blumen-Liebhaberinnen besonders bekannt; die Kohl-Blattlaus macht unsere Kohlarten oftmals fast ungenießbar, die Schneeball-Blattlaus entstellt die jungen Blätter des Schneeballs und gibt ihnen durch die schwarze Farbe ein sehr unangenehmes Ansehen. Die gekräuselten

*) Naturgeschichte der Garten-Insekten etc. 1833 pag. 43.
**) Forstliches Conversations-Lexicon pag. 31.
Blätter des Johannisbeer-Strauches sind auf der untern Fläche mehr oder weniger dick mit der Johannisbeer-Blattlaus bedeckt und auch unsere schönen Nelken werden von einer besonderen Art befallen u. s. w.

Erfreulicher als diese Mittheilungen ist es den Blumen-Liebhabern, wenn man ihnen ein Radikalmittel gegen die Blattläuse angeben kann; denn nur zu häufig nehmen sie Ueberhand, ungeachtet man die größte Sorgfalt auf das Ablesen derselben verwendet. An kleinen Topf- und Stuben-Gewächsen ist es allerdings nicht schwer, die Blattläuse zu vertilgen und ihre Wiederkehr zu erschweren, an größerem Bäumen und Sträuchern aber, die im Freien stehen, ist es oft ganz unmöglich, wirksam dagegen einzугreifen. An kleinen Stuben- und Treibhaus-Gewächsen muß man zur Winterzeit die Eier aufsuchen und zerstören; diese Eier sitzen gewöhnlich in den Achseln der Äste und Zweige, an der Rinde und hinter den Knospen, in den Ritzen der Rinde u. s. w.; sie sind schwarz, hart und glänzend und lassen sich am besten mit einem steifen Pinsel abreiben. Haben sich die Blattläuse aber schon in großer Anzahl über die Pflanzen verbreitet, so muß man versuchen, dieselben durch starken Tabacksrauch zu tödten; ein einmaliges Anblasen des Tabacksrauches, wie es bei Stuben-Gewächsen so häufig angewendet wird, pflegt nichts zu helfen, sondern man muß die Gewächse in einen besonders, gut verschlossenen Raum, z. B. in einen Treibkasten, in ein Treibhaus u. s. w. stellen und diesen Raum mit starkem Tabacksdampfe füllen. Die Praktiker schlagen vor, auf einen Raum von einer Kubiknuthe ein und ein halbes Pfund Taback auf Kohlen gestreut anzuwenden. Man bedient sich hiezu natürlich des schlechtesten Tabacks und bläst das Feuer mit einem Blasebalge an. Man hat auch besondere Instrumente angegeben, durch welche der Tabacksdampf in die geschlossenen Räume getrieben wird und unter diesenzeichnet sich das patentirtne neuere Englische, das auch in mehreren hiesigen Königl. Gärten im Gebrauche ist, sehr vorteilhaft aus;
man kann mit diesem Instrumente den Tabacksdampf durch die kleinste Öffnung in das Innere der Treibkasten führen, wo die Tötung der Blattläuse oft recht sehr nöthig ist. Der Tabacksdampf in verschlossenen Räumen ist noch immer als das vorzüglichste Mittel gegen die Blattläuse anzusehen. Man hat den Taback noch in anderer Form gegen dieselben angewendet, aber es ist nicht so leicht den Thieren beizukommen, da sie meistens auf der untern Fläche der Blätter sitzen. Man empfiehlt nämlich die Pflanzen des Morgens nach gefallenem Thau mit pulverisirtem Taback zu bestreuen oder auch dieselben mit einer Abkochung von Taback zu waschen oder zu bespritzen. Sind die Topfgewächse klein, so kann man sie in eine solche Abkochung des Tabacks eintauchen und erreicht alsdann sicherlich ebenfalls seinen Zweck. Alle die Pflanzen, bei denen der Taback gegen die Blattläuse angewendet wurde, nehmen den Tabacksgeruch an, der erst nach mehrmaligem Bespritzen mit Wasser verschwindet; aus diesem Grunde ist das Räuchern mit Taback ganz besonders bei solchen Pflanzen, deren Früchte bald zur Reife kommen, nicht sehr zu empfehlen.

Als ein anderes, ziemlich wirksames Mittel gegen die Blattläuse ist das Bestreuen der Gewächse mit pulverisitem, ätzendem Kalke anzuempfehlen; es muß indessen mehrmals wiederholt und der Kalkstaub muß dabei so viel wie möglich gegen die untere Fläche der Blätter geworfen werden.

Man hüte sich, die, leider schon so häufig anempfohlenen, Räucherungen der Pflanzen in verschlossenen Räumen mit Schwefel vorzunehmen, denn wird diese Operation zweckmäßig ausgeführt, so werden die ganzen Pflanzen, oder wenigstens diejenigen Theile derselben, welche schwefelische Säure einzuatmen erhielten, sicherlich in ganz kurzer Zeit getötet.

Die Blattläuse haben aber auch unter den Insekten eine Menge von Feinden. Als die eifrigsten Blattlaus-Feinde sind unstreitig die Larven der Coccinellen oder

Schließlich habe ich noch mit einigen Worten der sogenannten Läusesucht (Phthiriasis) zu gedenken, unter welchem Namen man eine Krankheit versteht, in der die ganze Pflanze mit kleinen Insekten bedeckt ist, welche die Säfte aussaugen, die Transpiration unterdrücken und die Entwicklung der Theile verhindern. Verschiedene Autoren, welche über Pflanzen-Krankheiten geschrieben haben, sind wirklich der Meinung, daß ein besonderer Krankheits-Zustand der Pflanzen das Auftreten der Blattläuse und anderer kleiner Insekten herbeiführt, daß überhaupt nur kränkliche Pflanzen von Blattläusen befallen werden, und ausgezeichnete praktische Gärtner haben als ein vorzügliches Mittel gegen die Blattläuse anempfohlen, daß man die Pflanzen in kräftigem Wachstume erhalten solle. Es scheint mir indessen nach Allem, was ich in dieser Hinsicht in freier Natur wie in den Gewächshäusern gesehen habe, daß eine solche besondere Krankheit, durch welche die Blattläuse herbeigeführt werden, wohl nicht vorhanden ist, sondern daß die Blattläuse gesunde und kranke Pflanzen befallen, aber immer nur solche, welche ein zarteres Laub haben. Es ist aber, wenn man besonders darauf achtet, gar nicht schwer zu erkennen, daß Pflanzen mit zarten Blättern, wie z. B. die Rosen, wenn sie stark mit Blattläusen bedeckt sind, sehr bald ein krankes Ansehen annehmen; die Blätter werden gelblich, schlaff und fallen sogar ganz ab; hier waren aber die Blattläuse nicht etwa durch diese Krankheit herbeigeführt, sondern der kränkelnde Zustand der Pflanze ward durch die Blattläuse herbeigeführt, indem sie durch ihren
Honigsäfte die Transspiration der Blätter u. s. w. unterdrückten.

**Die Schildläuse. Coccus-Arten.**


Auch von dieser Gattung gibt es eine große Menge von Arten, die stets sehr bestimmt immer nur gewissen Arten von Pflanzen angehören, und nach diesen benannt werden. Die gewöhnlichsten in unsrern Treibhäusern sind: Die Orangen-Schildlaus (Coccus hesperidum L.), die große Pfirsich-Schildlaus (Coccus Persicae Schr.) und die Weinschildlaus (Coccus Vitis Schr.). Auch an alten Stämmen der Rosen kommt eine eigene Art von Schildläusen vor und der Oleander pflegt im Winter in den Gewächshäusern gar häufig von einer andern Art besucht zu sein.

Die Vertreibung der Schildläuse ist viel schwieriger als die der gewöhnlichen Blattläuse, indem sie weder durch
Taback'sdampf, noch durch Bespritzen mit einem Tabacks-Decoct getödtet werden; es bleibt zur radikalen Vertreibung der Schildläuse kein anderes Mittel übrig, als das Abbürsten derselben vermittelt. Eine Bürste oder eines Pinsels. Die abgebürsteten Schildläuse müssen sorgfältig getödtet werden, indem die Jungen umherkriechen und auf andere Gewächse gehen.


Die Acariden.

Die Acariden sind kleine, spinnenartige Thierchen, von denen viele auf lebenden Pflanzen vorkommen und diesen oftmals großen Nachtheil zufügen. Sie sitzen gewöhnlich auf Pflanzen mit zartem, weichem Laube und nehmen auf denselben vorzüglich die untere Fläche der Blätter ein, welche allmählich mit einem feinen Gespinnste bezogen wird. Aber nicht nur auf den Blättern kommen diese so schwer zu vertreibenden Thierchen vor, sondern auch auf andern Organen und nicht selten werden Blüthen
und weiche, reife Früchte, wie z. B. Erdbeeren u. s. w. von ihnen befallen. Es gibt zwar viele Arten dieser Familie, von denen viele nur besonderen Pflanzen anzugehören scheinen, aber die meisten sind in den Gärten unter dem gemeinschaftlichen Namen der rothen Spinne (Acarus telarius L. Tetranychus telarius Dmg.) bekannt. Diese kleinen und häßlichen Thiere, welche mit den Käse-Milben u. s. w. in eine und dieselbe Gruppe von Thieren gehören, können sehr großen Schaden veranlassen und sind ungemein schwer zu vertilgen wo sie sich einmal eingenistet haben. Die Thiere leben meistens nur auf der unteren Fläche der Blätter und nisten daselbst unter einem sehr feinen Gespinnste; sie haben Saugrüsself mit welchen sie die zarten Flächen der Blätter anstechen, dieselben aussaugen und sie so allmählich zum Absterben bringen. Man kann es den Blättern gewöhnlich schon auf der oberen Fläche ansehen, wenn auf der untern die rothe Spinne sitzt; waren die Blätter noch sehr jung, als die Spinne auf denselben erschien, so pflegen sie an denjenigen Stellen, welche davon befallen sind, sich zu kräuseln und misfarbig zu werden; aber auch die ältern Blätter werden sehr bald ihr schönes Grün verlieren, wenn sie von den Spinnen befallen werden. Die meisten solcher Blätter werden auf der Oberfläche gelb und zwar fängt die Entfärbung mehrentheils von der Mitte aus an und zieht sich nach dem Umfange hin; manche Blätter werden gelblichrotthlich und viele auch bräunlich entfärbi und mehr oder weniger ganz trocken. Es ist ganz augenscheinlich, daß solche Blätter nicht mehr ihren Functionen vorstehen können, daß sowohl die Respiration als die Transspiration derselben mehr oder weniger gänzlich unterdrückt ist, daß demnach die Pflanzen dadurch sehr leiden und die Blätter selbst endlich abfallen.

In freier Natur leiden die Gewächse nur selten durch diese Milben, in den Gärten aber und auch in den Stuben sind sie oftmals unüberwindlich. Ganz besonders häufig werden solche Pflanzen von diesen Thieren befallen, welche
an Spalieren, an Mauren und an Stangen gezogen werden, wo es den Pflanzen oft an gehörigem Luftzug, an Zutritt der Sonne und des Regens von verschiedenen Seiten her fehlt. Dieses ist denn auch bei den Blumen, die in unsern Stuben gezogen werden, gewöhnlich der Fall und daher werden diese denn auch nicht selten von jenen lästigen Thieren besucht.

Die Vertilgung der rothen Spinne ist sehr schwer auszuführen. Hat sie große Pflanzen ergriffen und sich weit über dieselben ausgedehnt, so ist es ganz unmöglich gegen dieselbe radikal einzuschreiten, bei kleineren Gewächsen dagegen, besonders bei solchen, die einzeln stehen, kann man dieselbe versuchen und es gelingt um so besser, je früher man es anfängt. Anwendung von Tabaksdampf, Bestreichen oder Abwaschen mit Tabacks-Decoct und Bestreuen mit pulverisirtem Taback, was sich Alles gegen die Blattläuse so vorzüglich wirksam zeigt, hilft durchaus gar nichts gegen die rothe Spinne. Es bleibt nichts übrig, als die Pflanzen vollkommen zu reinigen, die Stengel und jedes einzelne Blatt genau abzubürsten, stark zu begiefsen oder häufig bewegen zu lassen, und dann dieselben recht luftig zu halten. Auch zeigt sich als ein ziemlich empfehlungswerthes Mittel das Bestreuen der mit Milben bedeckten Blätter mit fein gepulvertem Schwefel, dessen Geruch diese Thiere nicht zu vertragen scheinen; es ist übrigens oft sehr schwer, den Schwefel überall anzubringen und ein oberflächliches Bestreuen der Pflanze mit gepulvertem Schwefel hilft oft ganz und gar nichts. Auch verschiedene Räucherungen hat man zur Vertreibung der rothen Spinne anempfohlen und vor allem die Räucherung mit Schwefelblumen und Federn, mit Lorbeerblättern u. s. w. Die Räucherungen mit Schwefel sind aber gänzlich zu verwerfen, denn die schweflichte Säure, welche sich hiebei entwickelt, ist den Pflanzen-Organen, welche der Respiration vorstehen, durchaus tödlich und sicherlich sind auch schon manche Blumen-Cultivateurs durch die Anempfehlung des Schwefels gegen
die Spinne verleitet worden und haben sich dadurch diese oder jene Pflanze getödtet. Ich selbst habe Versuche an verschiedenen Pflanzen unter Glasglocken angestellt, unter welchen kurz vorher eine kleine Menge von Schwefel verbrannt war, und da sah ich denn auch zu meiner Bestürzung, daß die Pflanzen dadurch in Zeit von 3 Minuten getödtet wurden, so daß sie sogleich eine gelbliche Farbe annahmen und die Blätter hängen ließen, worauf später, wenn die Pflanzen (nämlich krautartige!) auch sogleich wieder hervorgenommen waren, auch die Stengel umfielen. Hierauf nahm ich andere, ausgewachsene Pflanzen mit zarten Blättern, als einige Exemplare der Vicebohnen und Balsaminen, stellte dieselben für die Dauer einer einzigen Minute unter eben dieselbe Glasglocke, aber auch in dieser kurzen Zeit wurden sie von der schweflichten Säure getödtet, doch fielen die Stengel erst am folgenden Tage ein.

Von den Verletzungen der Pflanzen, welche die Insekten behufs der Fortpflanzung ausführen.

Wir haben im vorhergehenden Abschnitte die Verletzungen der Pflanzen erwogen, welche die Insekten behufs ihrer Ernährung veranlassen und wir haben dabei kennen gelernt, daß diese Verwundungen den Gewächsen nur alsdann schädlich sind, wenn sie in zu großer Anzahl auftreten und dadurch den Pflanzen die wichtigsten Theile zerstören, die zu ihrem ferneren Wachsthum unumgänglich nöthig sind. Diejenigen Verletzungen aber, welche die Insekten behufs ihrer Fortpflanzung ausführen, sind von ganz eigenthümlicher Art; es sind wahre äußere Krankheiten, welche in Folge dieser Verletzungen entstehen und sie stellen sich dar, als bloße Verkrüppelungen, als Anschwellungen oder als fleischige Auswüchse von mannigfaltiger Form. Die ausgezeichneten Folgekrankheiten solcher Verletzungen durch Insekten sind die Fleischgewächse oder sogenannten Gallen. Hier wird es besonders deutlich,
daß durch die Verletzung oder durch den Stich, welchen das Insekt verursacht, in dem verwundeten Organe ein Reiz veranlaßt wird, in dessen Folge die Bildungstätigkeit eine abnorme Richtung annimmt; es entstehen Anschwellungen durch Wucherung des Zellengewebes an der verletzten Stelle und, was dabei das auffallendste ist, diese Wucherungen nehmen eigenthümliche, mehr oder weniger regelmäßige und auffallende Gestalten an, welche sich ganz nach der Art des Insektes richten, durch welches dieselben veranlaßt werden, d. h. jedes Insekt veranlaßt dergleichen Anschwellungen und Verkrüppelungen von eigenthümlicher Form. Diese letzte Erscheinung verdient unsere höchste Aufmerksamkeit, und man hat auch schon verschiedene Vermuthungen ausgesprochen, um das höchst Auffallende derselben zu erklären. Mir scheint es aber, daß uns hier alle Erklärungen verlassen, und daß Bewunderung anstatt der Erklärung eintreten muß. Die Insekten, welche die Pflanzen behufs ihrer Fortpflanzung verletzen und dadurch Auswüchse veranlassen, führen dieses mit einem besonderen Stachel aus und legen hierauf ihre Eier in die Verletzung hinein. Sogleich erfolgt eine Anschwellung an dieser verletzten Stelle; es wuchert das parenchymatische Zellengewebe, es treten Auftreibungen hinzu und das verletzte Organ nimmt, je nach der Art des Insekts, die mannigfaltigsten Deformitäten an. Das Ei, welches in die verletzte Stelle hineingelegt ist, muß einen anhaltenden Reiz auf die nächste Umgebung ausüben; durch diesen geschieht ein stärkerer Saftandrang und dadurch zugleich vermehrte örtliche Bildung, welche sich in Wucherung des parenchymatischen Zellengewebes zeigt. Vielleicht wird auch mit dem Stiche, welchen das Insekt veranlaßt, ein eigner Saft in die Wunde ergossen und dieser Saft wirkt dann vielleicht reizend auf das zunächst liegende Zellengewebe, wodurch Andrang des Saftes und Wucherung des Zellengewebes entsteht. Wenn auf diese Weise auch die Ursache der Wucherung und der dadurch hervorgehenden Deformitäten erklärt wird, so wissen wir
doch keine Gründe für die specifische Form anzugeben, welche die Deformitäten, je nach der Art des sie veranlassenden Insektes annehmen, und hierüber müssen wir uns also ähnliche Vorstellungen machen, wie diejenigen, durch welche wir uns die Entstehung der Vaccine in Folge der Einimpfung u. s. w. u. s. w. zu erklären suchen. (3)


Sehr richtig sagt Herr Hammerschmidt (a. a. O. p. 34) daß die Ausbildung der Pflanzenauswüchse (Excrecentiae) um so vollkommener wird, als sich der abnorme Bildungstrieb verstärkt, und die Vervollkommnung dieser After-organisationen stehe mit der Erhöhung des abnormen Bil-

*) S. die Allgemeine Oesterreichische Zeitschrift für den Landwirth, Forstmann und Gärtner. X. Jahrgang 1838. p. 35 etc.
dungstrieb in geradem aber mit der Erhöhung des normalen Bildungstriebes in umgekehrtem Verhältnisse. Nach den verschiedenen Entwicklungsstufen, welche die Formen dieser Auswüchse aufzuweisen haben, theilt Herr Hammer- schnedt dieselben ein in: Verkrüppelungen (Peromata), in Anschwellungen (Oedemata), Auftreibungen (Emphymata), Fleischgewächse (Sarcomata) und in Gallen (Gallae), welche wieder nach den verschiedenen Grade ihrer Ausbildung in mehrere Unterabtheilungen zerfallen, die wir hier specieller aufführen:

1) Verkrüppelungen (Peromata).

Zu den Verkrüppelungen gehören die verschieden-artigsten Gebilde, welche durch den Stich verschiedener Insekten, meistens von Blattläusen, verursacht werden, aber noch ohne bestimmte, sich stets gleichbleibende Form sind. Die verschiedenen Formen, unter welchen sich die Verkrüppelungen darstellen, sind:

1) Aushöhlungen, Excavationes.
2) Umbiegungen, Inflexiones.
3) Zusammenziehung, Constrictiones.
4) Zusammenrollungen, Convolutiones und endlich
5) Umdrehungen, Contorsiones.

Die 4 erstern Formen treten fast nur an den Blättern, die letztere an dem Stengel oder an den Blattstielen der verschiedenen Pflanzen auf. Die Aushöhlungen der Blätter entstehen entweder dadurch, dass die Insekten die Eier in das Diachym der Blätter hineinlegen, und dass die derselbst auskommenden Larven das umgebende Parenchym zwischen der Epidermis der obern und der untern Blattfläche ausfressen und eine Auftreibung der zurückbleibenden Oberhaut veranlassen, oder es werden auch die Eier der Insekten nur an die Oberfläche der Blätter gelegt und die jungen Larven fressen sich alsdann in das Diachym derselben hinein.

Die Umbeugungen, Zusammenziehungen und Zusammenrollungen der Blätter, Blattstiele und Stengel, welche
hier als besondere Formen von Verkrüppelungen aufgeführt sind, ließen sich wohl von einer und derselben Ursache ableiten und zu einer einzelnen Gruppe von Deformitäten zusammenstellen, welche sich eigentlich nur nach dem Grade der Deformität unterscheiden. Diese Verkrüppelungen kommen sehr häufig vor und die Umbiegungen an den Blättern erfolgen wohl fast immer in der Art, daß die obere Blattfläche die äußere, die untere dagegen die innere der Krümmung bildet. Die Ursache hievon liegt darin, daß die Insekten, welche diese Deformitäten veranlassen, auf der untern Fläche der Blätter sich aufhalten, hier das zartere Zellengewebe verletzen, wodurch dieses in dem Wachstumsthen stehen bleibt, oder wohl gar verkümmert, während das Zellengewebe der oberen Blattfläche in Folge des durch die Verletzung verursachten Reizes zu wuchern anfängt und dadurch nothwendig Krümmungen der Blätter nach der untern Fläche entstehen müssen.

Besonders auffallend sind die Contorsionen an jungen Stengeln und besonders an Blattstieilen. Sie nehmen zuweilen eine sehr regelmäßige Spiralform an und zeigen mitunter über 2 und selbst bis 3 vollständige Windungen. Macht man diese zusammengewundenen Blattstiele auseinander, so findet man die Blattläuse eingeschlossen, welche diese Zusammenziehungen veranlaßt haben.

Schon am Schlusse des letzten Abschnittes handelte ich von den nachtheiligen Einflüssen, welche das Vorkommen der Blattläuse auf den Blättern der Pflanzen verursacht, und dort haben wir auch kennen gelernt, daß fast alle jungen Blätter, wenn sie stark mit Blattläusen befallen werden, entweder in ihrer Entwicklung ganz zurückbleiben oder wenigstens die verschiedenartigsten Deformitäten erleiden. Solche krause, mit starken Auftreibungen und Bullositäten versehene Blätter sind etwas sehr gewöhnliches und diese Deformitäten grenzen unmittelbar an die Umbiegungen, Zusammenziehungen und Zusammenrollungen, von welchen hier bei den verschiedenen Formen der Verkrüppelungen die Rede ist.
2) Anschwellungen. Oedemata.

Die Anschwellungen zeichnen sich von den bloßen Verkrüppelungen durch einen stärkeren eignen Bildungstrieb aus, obgleich auch sie noch in keiner beständigen oder überhaupt nur bestimmmbaren Form auftreten; die normalen Bildungen haben noch immer die Oberhand, aber die Grade, in welchen dieselben durch das Auftreten der Afterorganisation gestört werden, geben die Charaktere zur Aufstellung der verschiedenen Stufen von Anschwellungen. Als solche bezeichnet Herr Hammerschmidt folgende:

1) Anschwellungen ohne wesentlichen Einfluss auf den Bildungstrieb und ohne alle bestimmte Form; hiezu werden gerechnet:
   a. die Warzen, Verrucae, welche an den Früchten der Birnen, Aepfel, Pflaumen und an den Blättern des Weinstocks, des Pflaumenbaums u. s. w. vorkommen.
   b. die Muttermäler, Naevi, welche an den Früchten des gewöhnlichen Kern- und Steinobstes sitzen.

2) Anschwellungen mit teilweisem Einflusse auf den Pflanzenbildungstrieb, aber ebenfalls noch ohne bestimmte Form. Hiezu werden die Verknöterungen, Tubera, gebracht, welche sich am Stamme, am Stengel, am Fruchtknoten und selbst an den Saamen zeigen. Die Knoten am Stamme und Stengel sind gewöhnlich mit sehr regelmäßiger Blattbildung begleitet, wenn dieselbe allerdings auch nicht so üppig auftritt wie im normalen Zustande; diese Knotenbildungen sind aber nicht mit der Maserbildung zu verwechseln, sondern entstehen meistens dadurch, daß die Insekten ihre Eier unter die Epidermis des Stengels legen.

3) Anschwellungen mit teilweisem Einfluße auf den Pflanzenbildungstrieb, wobei letzterer gestört erscheint, daher die Afterorganisation selbst sich schon in einer bestimmten Form darstellt.

Hiezu werden zwei sehr bekannte Mißbildungen gezählt, nämlich:
1) die Zapfenrosen, Squamationes und
2) der Pflanzenzopf, Plica.
Hier ist der normale Bildungstrieb meistens schon so stark gestört, daß die Blatt- und Blüthenbildung entweder sehr zurückbleibt oder doch eine ganz fremdartige Form darstellt; die Blätter bleiben klein und reihen sich rosen- oder zopfartig um die Anschwellung der verletzten Stengel. Die Zapfenrosen, wie auch der Wirrzopf, sind bekanntlich bei den Weiden-Arten gar nicht selten; sie kommen in manchen Jahren sehr häufig vor und einzelne Bäume werden dadurch mitunter recht sehr entstellt, wie ich es im auffallendsten Grade an einer Trauerweide beobachtet habe. Der Wirrzopf befällt die Blattknospen wie die ganzen Blüthenknospen, und die dadurch hervorgehenden Deformitäten nehmen höchst eigentümliche, sich aber immer wiederholende Formen an; ebenso verhält es sich mit den Zapfenrosen, welche nur die Blattknospen umgestalten. Die Entstehung dieser oftmals sehr auffallenden Deformität ist folgende: das Insekt (Cynips strobi, die Weidenrosenfliege) sticht mit dem Legestachel in die Knospe, und diese bleibt dadurch zurück; der Stengel, der sonst daraus hervorgegangen wäre, kommt nun wenig oder gar nicht zur Entwicklung, während sich die Blätter ausbilden und dadurch rosenartig zusammengehäuft erscheinen.

Die Zapfenrosen, welche so häufig an unsern Rosensträuchern entstehen, werden durch die Rosengallenfliege (Cynips Rosae) veranlaßt, welche ihre Eier in großer Menge in die zarten Blüthenknospen hineinlegen, wodurch der ganze Trieb zu einer dicken, selbst faustgroßen, fleischigen Masse anschwillt, welche auf ihrer Oberfläche mit zottigen Haar-ähnlichen Läppchen bekleidet ist, die anfangs eine grüne, später eine gelblich grüne, ja selbst eine rötliche Farbe annehmen. Diese Zapfenrosen der Rosensträucher nennt man Rosenenschwamm, Schlafapfel und gewöhnlich Bedeguar.
Mitunter gibt es Fälle, wo dergleichen Zapfenrosen sich unmittelbar an wahre zusammengesetzte Gallen
anreißen, über welche erst später die Rede sein wird, und
dahin ist denn eigentlich auch schon der Rosenschwamm
tzu rechnen.

3) Blasenförmige Auftreibungen. Empyymata.

Die blasenförmigen Auftreibungen gehören schon zu
den auffallenden Afterorganisationen, bei welchen in dem
verletzten Pflanzentheile die normale Bildung gänzlich
unterdrückt ist; sie treten auf, wie es der Name sagt, in
Form von blasenartigen Auftreibungen, die im Innern
hohl sind und die junge Brut der Insekten enthalten. Sie
sind das Produkt höchst eigenthümlicher Wucherungen
der verletzten Pflanzentheile, indem sich in jeder derarti-
gen Bildung ein eigner specisch determinirter Bildungs-
trieb darthut.

Herr Hammerschmidt theilt die Auftreibungen ein in:
I. Blasenförmige Auftreibungen, Empyymata bullaria,
auch Pemphyga oder Blasengeschwülste genannt, welche
wieder, ihrer Grösse nach
in Bläschen, Papulae und
in Blasen, Bullae zerfallen.

II. Sackförmige Auftreibungen, Empyymata bursaria,
auch Balggeschwülste genannt, welche sich von ersteren nur
durch dickere Wände unterscheiden, und diese zerfallen wieder
in längliche, oder zugespitzte Balggeschwülste, so-
genannte Fleischzapfen, und
in sackförmige Balggeschwülste, Bursae, Sackge-
schwülste genannt, die sich besonders durch ihre
Grösse und durch die Festigkeit und Dicke der
Wände der Folliculi unterscheiden.

Diese blasenförmigen Auswüchse kommen alle meisten-
theils auf den Blättern und zwar auf der obern Fläche
derselben vor, doch sind sie auch auf den Stengeln zu
finden; sie kommen so häufig vor, daß wir nicht nöthig haben
dergleichen näher aufzuführen; sie werden meistens von
Blattläusen veranlaßt, von welchen viele, wie wir es schon
früher pag. 49 anführten, im Innern der Pflanzensubstanz

Meyen, Pathologie.
leben und sich fortpflanzen. Sind bloß die Blätter mit solchen blasenförmigen Auftreibungen bedeckt, so kann man weiter keinen nachtheiligen Einfluß wahrnehmen, welchen diese Bildungen etwa auf den Gesundheits-Zustand der damit behafteten Pflanzen ausüben; man kann gar häufig sehen, wie die Blätter unserer Ulmen, der Haselnuß-Sträucher u. s. w. über und über mit Fleischzapfen oder mit Sackgeschwülsten bedeckt sind, welche mitunter eine bedeutende Größe annehmen und meistens auf der Oberfläche schön roth gefärbt werden, aber dessen ungeachtet stehen diese Bäume und Sträucher eben so üppig als ganz gesunde.

4) Fleischgewächse, Sarcomata.

Zu dieser Art von Auswüchsen rechnet Herr Hammerschmidt diejenigen Gebilde, welche sich durch fleischige Anschwellingen verschiedener Pflanzenteile charakterisiren, die aber in viel regelmäßigeren und bestimmteren Formen auftreten, als die Anschwellungen oder Oedemata. Während dort eine bloße unregelmäßige Verknöcherung stattfindet, bleibt die Form, in welcher diese Fleischgewächse erscheinen, selbstständig, wiederholt sich auf denselben Pflanzenteilen gleichförmig und bildet durch die Größe und Form ihrer Aftergebilde den nächsten Übergang zu den Gallen, von welchen sie sich übrigens wieder durch ihre fast fleischige Substanz und, durch den Umstand unterscheidet, daß bei den Gallen das Zellengewebe um die von den inwöhnenden Insekten gebildeten Höhlen sich stärker contrahirt, dichter wird und einen Kern bildet, was bei den Fleischgewächsen nicht der Fall ist.

Die Sarcomata bestehen aus einem dichten und meistens straffen Zellengewebe, wobei sie oft eine bedeutende Härte annehmen; sie werden mitunter sehr groß und wirken höchst störend auf die ganze Entwicklung derjenigen Theile, welche damit versehen sind.

Die Sarcomata werden wiederum eingetheilt in:

1. sackartige Fleischgewächse, Sarcomata
bursaria, welche am Fruchtknoten oder Blüthenkelche auftreten und den nächsten Übergang von den wahren Sackgeschwülsten darstellen.


II. Knotige Fleischgewächse, Sarcomata tuberculata.

Sie zeichnen sich von den vorigen durch größere Härte und regelmäßigere Form aus; sie treten auf am Fruchtknoten und Kelche, wie bei Trifolium (Melilotus), Scrophularia nodosa, Teucrium montanum, T. Chamaedrys und Galium verum, ferner an der Frucht selbst, wozu die Frucht von Prunus domestica als Beispiel angeführt wird, welches aber nicht recht zu passen scheint. Die begleitende Abbildung zeigt jene bekannte schotenförmige Verlängerung der Pflaume, welche sich vielleicht besser an einen andern Ort stellen ließe. Auch an den Stengeln sind diese knotigen Fleischgewächse beobachtet, z. B. bei Betula alba und endlich auch an den Blättern einiger Pflanzen, als der Achilles millefolium und Cornus sanguinea.

III. Abgerundete Fleischgewächse, Sarcomata subrotunda.

Diese Auswüchse reihen sich unmittelbar an die Galen und unterscheiden sich von diesen nur durch den fehlenden Nucleus; sie kommen vor am Fruchtknoten, am Stengel, an der Wurzel und an den Blättern, sind bei einer großen Menge von Pflanzen beobachtet und auch häufig in ihrem Vorkommen. Herr Hammerschmidt (a. a. O. Tab. III.) hat dergleichen Fleischgewächse von verschiedenen
Pflanzen abgebildet, als von Sisymbrium Loeselii (am Frucht-
knotten sitzend) (Fig. 19), von Serratula arvensis, wo diese 
abgerundete Fleischgeschwulst am Stengel haftet, (Fig. 20). 
Ferner dergleichen Fleischgeschwülste, welche an der Wur-
zel von Sinapis arvensis sitzen (Fig. 21) und endlich solche, 
welche auf den Blättern von Salix vitellina vorkom-
men (Fig. 22). Diese Fleischgewächse an Serratula 
arvensis werden nach Herrn Hammerschmidt's Beobachtun-
gen durch Trypeta flexuosa veranlaßt; die Eier werden 
in die Endtriebe gelegt und es entstehen Auswüchse, wel-
che oft 2 Zoll lang und 1 Zoll dick, und an beiden Enden 
zugespiitzt sind; im Innern sitzen 8—10 Larven in beson-
dern Zellen, welche sich zu Puppen umwandeln. Diese 
Auswüchse sind bei Wien sehr häufig, kommen aber auch 
bei Berlin nicht selten vor.

Die Auswüchse an den Wurzeln werden durch Cleopus-
Larven verursacht; Cleopus affinis auf den Wurzeln der 
Sinapis arvensis, und Cleopus Linariae auf der Leinkraut-
Wurzel u. s. w. Hierher gehört dann auch die auffallende 
Anschwellung, welche mitunter die Wurzeln unserer gemei-
nen Weiβskohl-Pflanzen befällt und gleichfalls durch den 
Stich eines Insektes veranlaßt wird, dessen Larven sich 
in großer Zahl in jeder solcher angeschwollenen Wurzel 
zeigen. Diese Verletzungen sind den Kohlpflanzen töd-
lisch, denn es schwillt die ganze Wurzel zu einer eiförmi-
gen, mit mehr oder weniger großen Warzen und Aus-
wüchsen versehenen Knolle an; es entwickeln sich aber 
keine Wurzel-Zasern und die Folge davon ist der Tod 
der Pflanze in Folge von Nahrungsmangel.

5) Die G a l l e n o d e r G a l l ä p f e l . Gallae.

Die Gallen sind die vollkommensten Auswüchse, wel-
che durch Insekten hervorgerufen werden. Sie haben 
meistens eine runde, oft höchst regelmäßige Form, sind 
von einer eigenthümlichen, festen, im Alter oft sehr har-
ten Substanz und die innere Fläche der Wohnung des In-
sektes ist mit einer eigenthümlichen festern Hülle aus-
gekleidet, welche durch ein dichteres Auftreten des Zellen-
gewebe veranlaßt wird.

Die Gallen kommen an den Blättern, Stielen, Blüth
ten, Früchten, Knospen und am jungen Holze vor. Sie
werden durch den Stich der Gallwespen verursacht, wel-
che eine eigne, genau zu trennende Abtheilung der Ader-
flügler bilden, und sich durch die Art ihrer Fortpflanzung,
welche im Innern von verschiedenen Pflanzenteilen oder
den darauf entstehenden Gallen geschieht, von den Schlupf-
wespen unterschieden.

Dergleichen Auswüchse, welche wir hier unter Gallen
verstehen, sind bekanntlich sehr häufig. Sie kommen auf
den verschiedensten Pflanzen vor und zeigen die mannig-
fachsten Formen, nach welchen sie wieder in Unterabthei-
lungen gebracht werden können. Es ist auffallend, daß
einer unserer gewöhnlichen Waldbäume, nämlich die Eiche,
ungemein reich an den verschiedenartigsten Gallen ist und
da wir sehr bestimmt wissen, daß jedes Insekt der Art
zur Ausbildung seiner Brut eine ganz eigen tümliche Art
von Gallauswüchsen erzeugt oder hervorruft, so sehen
wir hieraus, daß die Eichen eine sehr große Menge von
schädlichen Insekten aufzuweisen haben. Herr Hamme-
schmidt gibt an, daß er an den Eichen mehr als 50 Gat-
tungen der verschiedensten Auswüchse beobachtet habe
und in dem vortrefflichen Buche über die Krankheiten der
Wald- und Gartenbäume, welches wir schon oft citirt
haben, hat Anonymus eine ganze Reihe von solchen Ga-
llen, welche auf den Eichen vorkommen, näher beschrieben,
die ich hier in aller Kürze aufführe.

1) Die Eichenbeere; es sind kleine, durchsichtige
Galläpfel auf der unteren Seite der Eichenblätter, welche
die Grösse der Erbsen und das Ansehen einer Beere
haben. Das Insekt, welches diese Galle verursacht, heißt
Cynips quercus baccarum.

2) Die große gemeine Gallnuß, welche eben-
falls auf der unteren Seite der Blätter unserer gewöhnlichen
Eichen entsteht und durch Cynips foliorum quercus verursacht wird.

3) Die Rothnufs; kleine braune Galläpfel, häufig einzeln, paarweise oder auch zu dreien auf der untern Fläche aller Blätter der Gallenzwergeiche vorkommend und durch Cynips quercus inferus hervorgerufen.

4) Die Stielnufs; sie sitzt hauptsächlich an den Stielen der Blätter, aber auch an den Blättern und den jungen Trieben selbst; sie bildet hohle, ungleich aufgetriebene Mißgewächse, hat nicht immer einerlei Gestalt, kommt in manchen Jahren an der 2—3jährigen Saat sehr häufig vor und wird durch Cynips petioli quercus verursacht.

5) Das Blüthennüfschen; es kommt an den Stielen der männlichen Blüthenzäpfchen vor, an welchen mehrere als kleine erbsenförmige Gewächse einzeln oder in dicht nebeneinander stehenden Trauben hängen und durch Cynips pedunculi quercus verursacht werden.

6) Das Rindenbecherchen; es wird durch Cynips quercus corticis hervorgerufen und an der Eichenrinde in Gestalt der Becherschwämme gefunden.

7) Die Gallnufs; ein weisser, wolliger Gallapfel, der an den Ästen der Eiche vorkommt und durch Cynips ramuli quercus verursacht wird.

8) Der Schuppenapfel; er wird an den Endknospen der Eichen in Gestalt kleiner Artischocken angetroffen und durch Cynips quercus gemmae verursacht; nahe verwandt hiemit ist

9) Die Apfelgalle, welche an den Enden der Zweige junger Eichen entsteht und durch Cynips quercus terminalis verursacht wird.

10) Die Knoppern; sie sitzen an den Fruchtkelchen und werden durch die Knopperfliege, Cynips calycis quercus verursacht u. s. w. u. s. w.

Herr Hammerschmidt (a. a. O. pag. 86) teilt die Galle ein in:

I. Schildgallen, Gallae disciformes.
Sie kommen an den Stengeln, den Blattrippen und

II. Bedeguare, Gallae bedeguariae.
Diese großen, auf der Oberfläche mit Zotten und Haaren dicht befilzten Auswüchse, sind entweder einfach oder zusammengesetzt; vom ersteren Falle giebt die Eiche, vom zweiten der Rosenstrauch ein Beispiel.

III. Knorrengallen, Gallae tuberculatae.
Sie sind theils einfach, theils zusammengesetzt; im ersten Falle ist immer nur eine Larve in jedem Auswuchs, im zweiten dagegen besteht der Auswuchs aus mehreren Zellen und in jeder einzelnen Zelle kommt ein Insekt zur Ausbildung.

Hierher gehören die verschiedenen Arten von Galläpfeln, welche aus verschiedenen Ländern zu uns in den Handel kommen.

IV. Spitzgallen, Gallae conoideae.
Sie haben eine konische oder an beiden Enden zugespitzte Form und kommen am Stengel wie an den Blättern vor.

V. Kugelgallen, Gallae subglobosae.
Auch diese sind einfach oder zusammengesetzt, sie erlangen zuweilen eine sehr bedeutende Größe. Diese Kugel- oder Apfelgallen kommen häufig auf den Eichen, aber auch auf unseren wilden Rosen, auf Glechoma hederacea u. s. w. vor.

V. Aussatz, Baumkrätze, Baumraude, Lebbra im Italienischen nach Re. Cryptogamische Schmarotzer-Gewächse.
Unter diesen so vielsagenden Namen haben die Schriftsteller gewisse Zustände der Bäume bezeichnet, welche ganz und gar nicht zu den Krankheiten der Pflanzen gehören; man versteht darunter das Vorkommen von Moosen,

Dafs die Moose und die Flechten aus Saamen her-vorgehen und auf keine Weise als Producte eines krank-haften Zustandes der Bäume zu betrachten sind, ist heu-tigen Tages eine ausgemachte Thatsache. Die Saamen der Moose, wie die der Flechten, sind ganz ungemein fein, werden von dem leisesten Winde umhergetragen, und entwickeln sich fast unter allen äußern Verhältnissen, wenn nur ein gehöriger Grad von Feuchtigkeit dabei vorhanden ist. Ganz besonders gilt dieses von den Flech-ten, welche sich auf der rauhesten, wie auf der ebensten Oberfläche der weichen wie der harten Körper entwickeln, doch pflegt es um so länger zu dauern, je härter und glätter die Oberfläche der Körper ist. Das Vorkommen der Flechten auf Felsen, selbst auf Basalten und auf po-lirten Marmorblöcken u. s. w. ist allgemein bekannt, und man hat sie sogar auf den Fensterscheiben alter Kirchen beobachtet; sie vegetiren auf den Rinden lebender Bäume, wie auf der Rinde abgestorbener; sie wachsen eben so wohl auf dem alten trocknen Holze der Zäune u. s. w., als auf dem faulenden Holze im Innern feuchter Wälder, und ihre Würzelchen sind so ungemein klein und zart, daß ich dieselben größtentheils nur als Haftwurzeln betrachten, aber unmöglich glauben kann, daß sie allein es sind, durch welche diese Pflanzen ernährt werden; und
so müßte man schon aus diesem Grunde den Gedanken ganzlich aufgeben, als lebten diese cryptogamischen Gewächse von dem Nahrungssaft der Bäume, auf deren Rinde sie vorkommen. Ueberall auf der Oberfläche harter Körper, wo sich die Saamen der Flechten und der Moose anheften und zur Entwicklung gelangen, hatte auch schon vorher der Wind eine Menge von Staub angeworfen, in welchem die feinen Wurzelchen dieser Pflanzen haften und auch, so lange diese Substanz feucht ist, eine Masse von Nahrung ausziehen. Wer das Wachsen der Flechten in freier Natur oftmals beobachtet hat, der wird die Hygroskopicität derselben kennen; zwar scheint es, als wenn dieselben nur bei sehr feuchtem und regnigem Wetter wachsen, aber selbst im heißesten Sommer sind die Nächte selten so warm, daß sich nicht etwas Thau bildet, durch welchen diese Pflanzen erfrischt werden. Auf ihrer Oberfläche selbst bildet sich endlich eine Niederlage von allerhand Staub, dessen lösliche Substanzen mit der Feuchtigkeit des nächsten Regens durch die Oberfläche eingesaugt und zur Ernährung der Flechten benutzt werden. In dieser Weise erkläre ich mir die Ernährung der Flechten und bemerke nur noch, daß der Anteil, welchen die atmosphärische Luft bei ihrer Ernährung hat, noch gänzlich unbekannt, aber wohl ebenfalls nicht zu bezweifeln sein möchte; daher ist es ungläublich, daß das Vorkommen der Flechten und Moose die Säfte der Bäume ausziehe und auf diese Weise den Pflanzen, worauf sie sitzen, schädlich werde. Für diese Ansicht haben freilich die Schriftsteller und eine Menge von Praktikern angegeben, daß dergleichen Bäume, die stark mit Moos überzogen sind, auch ein schlechtes Wachsthum zeigen, kränkeln und vor der Zeit altern, *) indessen, obgleich dieses besonders bei alten Garten-Bäumen, wirklich zusammentrifft, so darf man diese Erscheinungen doch nicht von

*) S. Zur Kenntnifs der Krankheiten der Wald- und Gartenbäume u. s. w. Leipzig 1795. pag. 329.

Es ist aber allerdings der Fall, daß kränkelnde Bäume sich im Allgemeinen mit einer größern Anzahl von Flechten und Moosen bedecken als ganz gesunde, die unter ähnlichen Verhältnissen stehen; dann aber ist es mit den Bäumen schon so weit gekommen, daß einzelne Theile desselben schon abgestorben sind oder sich im Absterben befinden. An solchen Bäumen, besonders wenn ihre Rinde in normalem Zustande glatt ist, bemerkt man ein Zerreissen und Verderben der äußern Rindenschichten, wo durch dem Staube, den Saamen und der Feuchtigkeit besonders günstige Anhaltspunkte gegeben sind, und daher denn auch hier die Entwicklung der Flechten und der Moose um so mehr begünstigt wird. Das beste Zeichen, diesen tiefen Krankheits-Zustand des Baumes zu erkennen, ist das Erscheinen der Pilze in großer Anzahl, und besonders sind es einige, welche stets das Absterben der Bäume, oder wenigstens einzelner Theile desselben, worauf sie vorkommen, bezeichnen, als z. B. die Gattung Stilbosphora, Tubercularia, einige Arten von Telephoren, Sphaerien u. s. w. Das Vorkommen einzelner großer
Hutpilze auf der Rinde der Bäume beweist keineswegs einen krankhaften Zustand derselben, denn ihre Saamen sind daselbst eben so zufällig herbeigekommen, als die der Moose und der Flechten; oftmals sieht man aber, daß an einem gewissen Bäume und an bestimmten Stellen immer wieder von Neuem gewisse Pilze hervorbrechen, wenn sie auch noch so oft abgebrochen und zerstört werden; dieses pflegt dann darauf hinzuweisen, daß jener Baum wenigstens an der Stelle, wo die Pilze hervorkommen, sehr krank oder, wie gewöhnlich, wohl schon faul, d. h. abgestorben ist; hier hat sich in dem abgestorbenen Theile das Mycelium jener Pilze verbreitet, und von diesem aus gehen immer wieder von Neuem die Früchte hervor. Am schönsten ist dieses an solchen alten Bäumen zu sehen, die große Astlöcher zeigen, in deren Tiefe bekanntlich das Holz des Baumes immer mehr und mehr abstirbt; aus solchen Löchern entwickelt sich nicht selten der große Polyporus squamosus, und wenn der Hut abgebrochen wird, so zeigen sich in dem nächsten Jahre sicherlich ein oder mehrere neue.

An gesunden Bäumen wird dagegen das Vorkommen der Flechten und der Moose durch die äußern Verhältnisse bedingt. Sie kommen auf Bäumen um so seltener vor, je glatter und je trockener die Rinde derselben ist, denn Feuchtigkeit des Bodens ist eine Hauptbedingung für das Fortkommen jener niedern Pflanzen. So zeigen Bäume, welche ihre Stämme unmittelbar der Einwirkung des Sonnenlichts aussetzen müssen, nur sehr wenig Moose und Flechten, um so mehr dagegen solche, welche im Schatten stehen; ja selbst die Mitternachts-Seite der Stämme unserer Wälder ist fast immer stärker bemoost, als die andre Seite, weil sie stets länger feucht ist als diese, wo die Wärme der Sonne die Nässe sehr bald vertreibt. Selbst innerhalb der Tropen kann man, besonders an einzel stehenden Bäumen, oftmals sehr auffallend wahrnehmen, daß gerade diejenigen Seiten, welche dem nasseskalten Winde ausgesetzt sind, um vieles mehr mit Flechten, Moosen
und Lebermoosen bekleidet sind; in der südlichen Hemisphäre ist dieses die südliche und die südwestliche Seite. Auf der Insel St. Helena sah ich in dieser Hinsicht ein sehr auffallendes Beispiel; die Insel liegt im Bereiche des Süd-Ost-Passat's und durch die kältere Luft auf den Höhen der Insel wird die Feuchtigkeit des Passat's niedergeschlagen, so daß es auf dem Plateau der Insel, wo das berühmte Long-Wood, der ehemalige Wohnsitz Napoleon's steht, allerdings sehr feucht ist. Hier nach Long-Wood führt eine Allee von Gummi-Bäumen (Conyza gummifera Roxb.) und die Stämme derselben waren auf der südlichen und südöstlichen Seite so stark mit lang herabhängenden und röthlich gefärbten Usneen*) bedeckt, daß sie von Weitem ganz gelbröthlich gefärbt erschienen.

Wir kommen also zu dem Schlusse, daß das häufige Vorkommen der Cryptogamen auf der Rinde der Bäume entweder einen kranken Zustand derselben andeutet, oder eine Folge der äußern Verhältnisse ist; in dem ersteren Falle wird die Entfernung derselben wenig oder gar nichts helfen, und in dem andern ist es größtenthüils sehr gleichgültig, ob man die Moose, Flechten u. s. w. ruhig auf der Rinde wachsen läßt, oder ob man sie entfernt. Nur in solchen Fällen, wenn die Anhäufung der Moose sehr groß wird, kann das Vorkommen derselben auf den Stamn des Baumes schädlich zurückwirken, und zwar besonders bei solchen Bäumen, welche keine dicke Rinde besitzen, wie es gerade bei unseren Obstbäumen der Fall ist. Bäume dagegen, die starke Borken entwickeln, wie z. B. die Birken, Eichen, Fichten u. s. w., haben selbst durch die stärksten Anhäufungen von Moosen wohl sicherlich nur selten etwas zu fürchten. Die Ansicht, daß die Moose und Flechten dadurch den Bäumen schädlich werden, daß sie derselben die Nahrungssäfte entziehen, ist gänzlich zu beseitigen, und der Schaden, den sie veranlas-

sen, wird nur dadurch herbeigeführt, daß sie das Regenwasser und überhaupt die Feuchtigkeit an sich halten, wodurch endlich eine Fäulnis der Rinde entsteht, besonders in den Ritzen dicker Borken-Massen. Endlich geben sie auch einer Menge von Insekten und Würmern den passenden Boden zu ihrer Fortpflanzung u. s. w. Wird man aber wohl, wie ein tüchtiger Praktiker mit Recht sagt, deshalb den Bäumen die Blätter nehmen, weil sie einer noch weit größeren Menge von Insekten Nahrung und Aufenthalt gewähren?

Bei dem Allen ziehen die meisten Praktiker gegen die Moose und Flechten auf den Rinden der Bäume zu Felde und zwar nicht nur in Obstgärten, sondern selbst auf freier Landstraße. Man sieht, wie die Stämme der Chaussee-Bäume, selbst die gewöhnlichen alten Pappeln, mit der größten Sorgfalt abgekratzt werden und dadurch ein so höchst unnatürliches Ansehen bekommen. Man wird mir erwidern, daß dieses Geschmackssache sei; aber ich bin der Meinung, daß man seinen Geschmack durch das Studium der Natur bilden müsse; auch kann es wohl nur wenigem Zweifel unterworfen sein, ob ein mit den verschiedensten Flechten und einigen Moosen überzogener Baumstamm nicht einen schöneren Anblick gewährt, als ein solcher abgeglätteter; und außerdem scheint es mir, daß die äußern Rindenschichten an solchen abgeglätteten Baumstämmen viel früher absterben, als wenn sie nicht abgekratzt worden sind. Aber nichts sieht widerlicher aus, als wenn man in Obstgärten die Stämme mit Kalk und andern Substanzen weifs angestrichen bemerkt; man hat dieses Mittel gegen die Flechten und Moose wohl schon lange angewendet, und dieser und jener Praktiker kommt darauf immer wieder von Neuem zurück. Am gebräuchlichsten sind Mischungen von Kalkwasser und Kuhmist, Kalkwasser und grüner Seife, oder auch wohl Kalk und Theer, womit die Stämme und alle ‚dickeren Aeste der Obstbäume bestrichen werden; doch wenn man genauer nach dem Erfolge dieser Behandlung fragt, so findet man
dieselbe von sehr guter Wirkung gegen die schädlichen Insekten, die sich wegen der Schärfe der angewandten Mittel weder in die Rinde einfressen, noch in der Erde an der Basis des Baumes einen Aufenthaltsort für ihre Brut wählen können, denn das Regenwasser spült jene scharfen Substanzen allmählich herab und dadurch wird dann die Erde in der Nähe des Stammes gereinigt. Auch gegen das Ueberwandern der Raupen, besonders der Wickler, ist ein solcher Anstrich der Stämme sehr empfehlenswerth; aber alle diese Zwecke kann man auch wohl auf anderem Wege erlangen, ohne das natürliche Ansehen der Bäume so furchtbar zu entstellen. Man erreicht sicherlich seinen Zweck, wenn man die Flechten und Moose einmal im Jahre abreiben läßt, und hiezü ist eine recht nasse Jahreszeit, als z. B. bei‘m Anfange des Frühlings, am geeignetsten; nach anhaltendem Regen sitzen sie so lose auf den Bäumen, daß sie vermittelst harter Bürsten abgerieben werden können. Werden im Herbst, sagt Herr J. Fintelmann*), vor der Reinigung die Bäume mit Kalkwasser (welchem man, um die weisse Farbe zu vermindern, etwas Kienrufs beinmenge kann) bespritzt, so lösen sich die Flechten nicht allein leichter ab, sondern man zerstört dabei auch zugleich einen Theil der Insekten-Eier.

An diese Beobachtungen über das Vorkommen der Cryptogamen auf der Rinde der Bäume schließen sich unmittelbar die über die sogenannten Schmarotzer-Gewächse, welche wir im Folgenden auseinandersetzen wollen.

VI. Phanerogame Schmarotzer-Gewächse und deren Wirkung auf ihre Mutterpflanzen.

Nach einem alten Sprachgebrauch werde alle diejenigen Pflanzen, welche auf andern Gewächsen vorkommen, mit dem Namen der Schmarotzer-Gewächse belegt.

*) Die Obstbaumzucht. I. Berlin 1839 pag. 483.
indessen man hat schon längst erkannt, daß diese soge-
nannten Schmarotzer-Gewächse in den verschiedensten
Verhältnissen zu ihrem Mutterboden stehen. Man unter-
scheidet zuerst wahre und falsche Parasiten; die Letztern
sind solche Gewächse, welche zwar auf der Oberfläche
anderer Pflanzen vorkommen, aber mit diesen in keiner
organischen Verbindung stehen; die Unterlage oder der
Mutterboden ist diesen Parasiten ziemlich gleichgültig, es
kann diese oder jene Pflanze sein, ja auch auf todten
Pflanzen und selbst auf unorganischen Körpem können
sie vegetiren, wenn sie auf diesen Letztern eben dieselben
Stoffe finden, aus welchen sie auch in den andern Fällen
ihre Nahrungsflüssigkeit ziehen. So sitzt der Epheu mit
seinen Haftwurzeln auf der Rinde der Bäume und auf der
Oberfläche alten Gemäuer, wo in den Vertiefungen Feuch-
tigkeit, Staub und verschiedene verwitterte Stoffe ange-
häuft sind, aus welchen die Haftwurzeln einige Nahrung
ziehen können; sie saugen aber keineswegs den Nahrung-
saft aus dem Stamme der Mutterpflanze, auf welchem sie
festsitzen. Und ganz ebenso verhält es sich mit den
schmarotzenden Orchideen, Cacteen, den Tillandsien, Bro-
melien u. s. w. und ganz ebenso mit den cryptogamischen
Schmarotzern, von welchen im Vorhergehenden die Rede
war. Ja in den feuchten Wäldern der Tropen sind jene
Orchideen fast immer wieder mit kleinen schmarotzenden
Cryptogamen, besonders mit zarten und äußerst niedlichen
Formen der Jungermannien bedeckt; aber alle diese Ge-
wächse können auch auf faulen oder abgestorbenen Baum-
stämmen vegetiren und selbst auf unorganischen Körpem,
wenne sie in den Ritzen und Vertiefungen derselben die
nöthige Nahrungsflüssigkeit finden. Daher können denn
auch diese falschen Schmarotzergewächse, selbst wenn es
sehr große Pflanzen sind, nur dann den Mutterpflanzen
schädlich werden, wenn sie in zu großer Menge den Stamm
und die Aeste derselben umschließen, indem hiedurch
einmal eine zu große Menge von Feuchtigkeit den Stamm
beständig umgiebt, so daß er endlich zu stocken beginnt,
und indem zweitens hinter diesen parasitischen Pflanzen der Wohnsitz von vielen schädlichen Insekten und ähnlichen Thieren aufgeschlagen wird.

In den Wäldern und Gärten unserer nordischen Gegenden haben wir zwar mehrere Schlingpflanzen, welche auf die Bäume hinaufsteigen und mitunter selbst die Kronen derselben belästigen, doch diese alle bringen keine Gefahr, ja sie gehören auch nicht einmal zur Klasse der falschen parasitischen Gewächse. In unserm Gegenden gehört eigentlich nur der Epheu zu dieser Klasse von Pflanzen, und auch diesen haben wir gewöhnlich nicht zu fürchten; die Stämme müssen schon ganz ungeheuer groß und alt werden, bis sie den Baum erdrücken, auf dem sie befestigt sind. Auch der Epheu, mag er noch so groß sein, tödelt seine Mutterpflanze nicht durch Aussaugung des Nahrungssaftes, sondern (was überhaupt selten vorkommt) durch wirkliches Erdrücken oder Erwürgen. (4)

Eine andere Gruppe von Schmarotzer-Gewächsen steht gleichsam in der Mitte zwischen den wahren und den falschen Parasiten; es gehören dazu solche, die in der Erde keimen, deren Stengel aber auf andere Pflanzen hinaufsteigt, sich daselbst durch eigenthümliche warzenförmige Haftwürzelchen anheftet und nun durch diese seine Nahrung aus der Mutterpflanze zieht, nachdem schon seine eigenen Wurzeln und die Basis des Stengels vertrocknet sind. In unsern Gegenden ist die Gattung Cuscuta, die bekannte Flachsseide, als eine solche Pflanze zu nennen, und innerhalb der Tropen gibt es ähnliche Gewächse, wie die Cassythen. Aber auch unter den großen Schlingpflanzen, welche in den tropischen Wäldern die Kronen der höchsten Bäume mit ungeheurer Last beladen, selbst unter diesen gibt es wohl viele, die zuerst in der Erde keimten und ihre Nahrung durch die Wurzeln aufnehmen; später aber, wenn sie in den Kronen ihre Blüthen und Früchte entwickeln und dort von einem Baum zum andern hinüberziehen, dann sind die Wurzeln vertrocknet und die Pflanzen müssen also ihre Nahrungssäfte von den Bäumen
erhalten, auf welchen sie haften. Wahrscheinlich entwicklung auch diese Schlingpflanzen einzelne Saugwärzchen, welche, wie bei Cuscuta, durch die Rinde hindurch bis auf den Holzkörper eindringen; selbst bei unserem Convolulus arvensis hat Herr Palm die Entwicklung einzelner Saugwärzchen beobachtet. Unsere Flachsseide kommt zwar sowohl auf Sträuchern, als auf krautartigen Pflanzen vor, ist aber nur den letztern schädlich, indem sie ihnen wirklich die Nahrungssäfte aussaugt und ihren Wachsthum sehr vermindert; in den Flachsfeldern kann die Flachsseide die durchbrochenen Zerstörungen anrichten. Trifft der emporwachsende Stengel der Flachsseide irgend eine belebte Stütze, so windet er sich um dieselbe und rankt weiter hinauf; doch an derjenigen Fläche des Stengels, mit welcher die Flachsseide die Mutterpflanze berührt, entstehen eine Menge von einzelnen, oft auch von mehreren in gerader Reihe nebeneinanderstehenden, kleinen Warzen, deren Oberfläche ganz denselben Bau zeigt, welchen die Wurzelspitzen der Pflanzen gewöhnlich besitzen. Es sind nämlich die einzelnen Zellen der Oberfläche der Spitze dieser Warzen papillenartig ausgedehnt und mit diesen dringt die Wurzel der Flachsseide immer tiefer in die Oberfläche der fremden Pflanze ein; zuletzt gleicht das Wärzchen einem kleinen Wurzelchen, in welchem sogar ein Holzbündel auftritt, mit welchem das Wärzchen bisweilen durch die Rinde hindurch und bis auf den Holzkörper der Mutterpflanze eindringt, während sich das umgebende Zellengewebe ganz genau mit dem Zellengewebe der Rinde der Pflanze vereinigt, und so sind die Wege eröffnet, durch welche die Nahrungsfüssigkeiten aus der Mutterpflanze in den Parasiten übergehen. Sehr häufig, ja wohl sogar gewöhnlich, ist die Verbindung der Flachsseide mit der Mutterpflanze, worauf sie wächst, nicht so innig; übrigens ist die Struktur der Flachsseide so zart, daß diese Pflanze, wie ich glaube, einen großen Theil ihrer Nahrung aus der Feuchtigkeit zieht, welche die Mutterpflanze aushaucht.

Meyen. Pathologie.
Die wahren Schmarotzer-Gewächse stehen zu ihren Mutterpflanzen in einem viel innigern Verhältnisse; fast alle sterben mehr oder weniger schnell ab, wenn sie von ihren Mutterpflanzen entfernt werden, und dieses, so wie das Studium der Verbindung, welche zwischen der Mutterpflanze und den Parasiten stattfindet, beweist sehr bestimmt, daβ sie größtenteils, ja viele derselben sogar einzig und allein von dem Nahrungssafte der Mutterpflanze ernährt werden, und dadurch wird es denn schon leicht begreiflich, daβ solche Gewächse den Bäumen wie den krautartigen Pflanzen sehr schädlich werden, wenn sie im Verhältnisse zu der Mutterpflanze eine bedeutende Grösse erreichen.

Diese wahren Schmarotzer-Gewächse kann man zu unserem Zwecke sehr wohl in Stengel- und in Wurzel-Parasiten eintheilen, je nachdem sie auf dem Stamme oder den Aesten der Nährpflanze vorkommen, oder auf der Wurzel derselben ihren Ursprung nehmen. Zu den Stengel-Parasiten unserer Gegenden gehört der weisse Mistel (Viscum album L.), und im südlichereuropa die europäische Riemenblume (Loranthus europaeus); die letztere Gattung ist ganz ungemein reich an Arten und in Südeuropa wie in Indien giebt es viele derselben, welche durch die Pracht und Grösse ihrer scharlachrothen Blumen zu den ausgezeichneten Zierpflanzen gehören könnten. In unsern nordischen Gegenden wird die Mistel-Pflanze im Allgemeinen doch nur selten gefährlich, aber in einigen südlichen Ländern, wie z. B. in Ungarn, gehört sie allerdings schon zu den höchst lästigen Gewächsen.

Der weisse Mistel pflanzt sich in der Natur nur durch Saamen fort und dieses geschieht ungemein leicht, weil die Früchte, die bekannten weissen Beeren, von manchen Vögeln besonders gern gefressen werden, worauf aber die Embryonen mit dem grünen und ziemlich harten Eiweifskörper umgeben, ganz unverletzt abgehen und alsdann, wie man glaubt, noch leichter keimen, als wenn sie nicht durch den Magen der Vögel gegangen wären; ja es herrscht
wohl sogar der Glaube, daß die Mistel-Pflanze nur durch solche Saamen vermehrt wird, welche von den Vögeln gefressen sind, was aber sicherlich nicht richtig ist, denn mir glückten alle Keimungs-Versuche, welche ich mit reifen Mistel-Saamen anstellte, ja sie können Wochen lang durch und durch gefroren sein und keinen dennoch, wenn man ihnen nur den gehörigen Grad von Feuchtigkeit gibt. Die Mistel-Pflanzen können wohl auf allen bei uns vorkommenden Bäumen und Sträuchern wachsen, und wenn auch in dieser oder in jener Gegend die Pflanze auf gewissen Bäumen nicht gefunden wird, so findet man sie doch in andern Gegenden auf denselben, oder man kann sie künstlich darauf fortzupflanzen. Herr Roeper*) scheint dieses noch in einiger Hinsicht zu bezweifeln, denn er hat ein Verzeichnifs aller der Pflanzen mitgetheilt, worauf die Mistel-Pflanze beobachtet worden ist; es werden 58 derselben aufgeführt, die zu 19 Familien gehören. Schon hieraus scheint hervorzugehen, daß es der Mistel-Pflanze sehr gleichgültig sei, aus welchem Baume sie den rohen Nahrungssaft erhält. Ja es ist auch, wie ein sehr erfahrener Praktiker sagt, so viel gewiß, daß die Misteln nicht blos von den Säften des Baumes, auf dem sie sitzen, leben, sondern einen beträchtlichen Theil ihrer Nahrung auch durch die Blätter aus der Luft einsaugen müssen, denn man weiß, daß sie noch immer einige Zeit fortleben, wenn auch die Zweige und Stämme, worauf sie sich befinden, nach und nach eintrocknen, ja daß sie selbst im toten Holze auskeimen.**) Am häufigsten kommt bei uns der Mistel auf Aepfel- und Birnbäumen vor, deren Aeste damit zuweilen ganz überzogen werden; selten findet sich derselbe auf Nusfbäumen, doch hat man ihn auch auf der europäischen Riemenblume (Loranthus europ.) beobach-

*) S. dessen Uebersetzung der Pflanzen-Physiologie von De Candolle II. pag. 510.
tet, und junge Mistel-Pflanzen auf den dicken Stämmen alter Mistel-Pflanzen sind gar nicht so selten; auch hier dringt das Würzelchen durch die Rinde bis auf den Holzkörper. Der europäische Loranthus scheint ganz ähnlich in der Rinde anderer Bäume und Sträucher zu wurzeln wie die Mistel-Pflanze, aber es giebt tropische Loranthen, welche noch außerdem eine Menge von Wurzeln aus- schicken, die außerhalb der Rinde verlaufen und später den Ast der Mutterpflanze wie mit einer Röhre umschließen.

Man kann auch die Mistel-Pflanze durch Schnittlinge vermehren und zwar indem man dieselben auf das junge Holz anderer Bäume oder Sträucher aufpfropft; man hat schon viel von diesem Ppropfen der Mistel-Pflanze gesprochen, es ist aber nichts weiter, als ein Erziehen aus Stecklingen, denn eine Vereinigung des Pfropfrees mit dem Sub- jekt durch die neuen Holzschichten findet hier niemals statt.

Der Nachtheil, den das Vorkommen der Mistel-Pflanze veranlaßt, ist leicht zu erkennen; sind die Zweige, auf welchen der Schmarotzer wächst, nicht groß, so wird dieser in wenigen Jahren dem Zweige die Nahrung so stark aussaugen, daß er fast verhungert und daß es zur Bildung junger Triebe wenig oder gar nicht kommt, bis der Zweig endlich ganz vertrocknet, wenn der Schmarotzer nicht früh genug entfernt wurde. Es ist nicht selten, daß die Wurzeln der Mistel-Pflanze den Zweig des Subjekts so fest umschließen, daß der herabsteigende Saft bei der Bildung der neuen Jahresringe aufgehalten wird und knotige Auswüchse veranlaßt.

Das beste Mittel gegen die schädliche Wirkung der Mistel-Pflanze ist das zeitige Ausbrechen derselben, doch muß dieses vorsichtig geschehen, weil man dabei sehr leicht die Äeste der Mutter-Pflanze mit abbricht.

Von minderer Schädlichkeit scheinen mir die wahren Wurzel-Parasiten zu sein, deren wir in unsern Gegenden gleichfalls einige besitzen, wie z. B. die Lathraea Squama- ria, die Orobanchen und die Monotropa hypopythis; in den

Es gibt auch verschiedene Pilze, welche auf den Wurzeln der Pflanzen vorkommen, darunter sind sogar einige, welche die Pflanzen sehr häufig tödten, ja ganze Pflanzungen zu zerstören im Stande sind; diese Gewächse sind jedoch nicht mit den Schmarotzer-Gewächsen zusammenzustellen, sondern mit den Entophyten; von welchen an einem andern Orte die Rede ist.
Maserbildung, Maser, Maserholz, Flader. Tuber lignosum.

Die Maserbildung kommt nur an Bäumen vor, gehört zu den äußern Krankheiten der Pflanzen und ist gewöhnlich nur lokal; sie wird veranlaßt durch verschiedene Ursachen, welche der Entwicklung und Ausbildung der neuen Jahresringe hindernd in den Weg treten. Da die Ursachen, welche die Maserbildung herbeiführen, von sehr verschiedener Natur sind, so wird auch das Maserholz, welches dadurch gebildet wird, sowohl in Form, als in der Struktur sehr verschieden sein; doch stimmen, wie wir später deutlich sehen werden, alle diese Bildungen dem Wesen nach vollkommen überein. Von den bei uns vorkommenden Bäumen sind es besonders die Ulmen, die Ahorne, die Birken, Linden, Erlen und Eichen, welche sehr gewöhnlich Maserbildung aufzuweisen haben und bei diesen Bäumen kommt sie gewöhnlich in den Stämmen vor, mitunter aber auch an den größern Ästen und selbst an den obersten und dicken Wurzelästen.

des Stammes in mehr oder weniger großer Menge her-
vorbrechen und bald nachher in ihrer Entwicklung zu-
rückbleiben. Schon in dem ersten Sommer, wenn diese
Adventivknospen auftreten, entsteht rund um die Basis der-
selben eine Anschwellung der Holzmasse, welche durch
die neue Holzschicht veranlaßt wird, die sich von Oben herab
ergießt und in ihrem Verlaufe durch die hervorgebroche-
nen Adventivknospen aufgehalten wird, wodurch eine Sta-
chung dieses Bildungssaftes und in Folge dieser eine dik-
kere Holzschicht entsteht, wie wir dieses schon bei anderer
Gelegenheit näher auseinandergesetzt haben. Ist nun ein-
mal eine Anschwellung auf der Oberfläche des Stammes
oder der Aeste gegeben, so wird diese in den folgenden
Jahren immer wieder an eben derselben Stelle die Stau-
chung des herabsteigenden Bildungssaftes veranlassen und
dadurch die Bildung dickcrer Holzschichten an diesen Stel-
len herbeiführen, wodurch dann natürlich die Anschwellung
im Umfange immer mehr und mehr zunimmt. Die neuen,
von oben herabkommenden Holzschichten ergießen sich
aber auch zugleich über alle die jungen Stengel der aus-
gebrochenen Adventivknospen, welche die ganze Maserbil-
dung veranlaßten. Gewöhnlich sterben diese in Menge
neben einander hervorgebrochen Adventivknospen sehr
bald ab, und später erkennt man von Außen keine Spur
mehr der Ursachen, welche die ganze Maserbildung ver-
anlaßten. So lange aber die Triebe der Adventivknospen
vegetiren, so lange verbindet sich die von ihnen selbst
ausgehende neue Holzschicht mit dem von Oben herab-
steigenden gemeinschaftlichen Holzringe und man wird
leicht einsehen, daß je größer die Anzahl der Adventiv-
knospen ist und je länger sich die eine oder die andere
derselben erhält, um so bedeutender und um so uneben-
auf der Oberfläche die dadurch veranlaßten Masernknoten
sein werden. Während sich die neuen Holzschichten auf
der Oberfläche eines cylindrischen Stammes immer ganz
gleichmäßig über einander ergießen, so daß sie stets voll-
kommen parallel über einander liegen, findet hier bei der
Maserbildung natürlich die größte Unregelmäßigkeit in dieser Hinsicht statt; die neue Holzschicht legt sich zwar auch auf den Masernknoten immer genau über die Oberfläche der älteren Schicht, aber durch die unebene Oberfläche der entstandenen Anschwellungen der Holzmasse werden auch die neuen Jahresschichten nicht überall gleich dick werden, und wenn man solche Masernknoten der Länge des Stammes nach zerschneidet, so wird man überall den unregelmäßigen, oft wellenförmigen Verlauf der einzelnen Jahresschichten der Holzmasse erkennen können. Je größer die Masernmasse war, um so ausgezeichnet pflegt der wellenförmige Verlauf der einzelnen Jahresschinge der Holzmasse zu sein und um so geschätzt ist ein solches Maserholz. Macht man durch solche Masernknoten Horizontal- oder Querschnitte, so sieht man auf diesen ganz besonders deutlich die Struktur derselben; man kann überall den regelmäßigen Verlauf der verschiedenen Jahresschinge der Holzmasse erkennen, man sieht, wenn man gerade die rechte Stelle durchschnitten hat, die ersten Auftreibungen des Holzkörpers und dann die Umlagerung dieser durch die sich meistens verdickenden späteren Jahresschinge und man kann hiebei auch gewöhnlich sehr genau das Alter der Maser bestimmen.

Über die Entstehung der Maserbildung war man noch vor kurzer Zeit gar sehr im Unklaren; Einige glaubten, die Masern entstünden durch ein Insekt, das sich zwischen Holz und Rinde ein Loch mache, worauf ein starker Zufluß des Saftes nach dieser Stelle entstehe und auf diese Weise die Masernknoten hervorgehe, worin jenes Insekt seine Wohnung nehmen sollte. Willdenow schreibt noch von der Maser, daß sie theils durch Insekten, theils durch Abwechselungen der Witterung veranlaßt zu werden scheine. Er meint, es sei eine Unordnung in den thätigen Gefäßen des Holzes, die durch einen Reiz sich mehrmals verschlingen, ohne jedoch Knospen und Zweige zu bilden. Herr Link hat schon zu dieser Beschreibung der Maser den Zusatz gemacht, daß dieselbe aus unentwickelten...
Knospen bestehe, und wie wir im Vorhergehenden zu zeigen suchten, so sind die Adventiv-Knospen als die Gelegenheits-Ursache anzusehen, welche die obige Maserbildung herbeiführt.

Wir besitzen eine Schrift von F. J. Märten*) welche über die Maser handelt und, wenngleich sie auch sehr altmodisch geschrieben ist, dennoch die vorher beschriebene Bildung der Maser ganz richtig erklärt. Märten glaubt freilich, was gerade nicht der Fall ist, daß die Maserbildung vorzüglich von zunehmender Altersschwäche der Bäume herbeigeführt werde, daß nämlich die veralteten Stämme aus ihrer Saftmasse nicht mehr im Stande seien, die jungen Knospen durch die allzuharte Borke hindurchzutreiben; so entständen anfangs ganz geringe Erhabenheiten, die nur Rudimente von werden sollenden Zweigen seien; doch diese Erhabenheiten würden alljährlich durch die, sich darüber anreihenden neuen Splintlagen vergrößert und diese würden immer mehr gebogen, je größer die Ausdehnung der Erhabenheit würde. Endlich werde die Spannung der umschließenden Rinde so groß, daß sie mitunter zerreiße und so entständen die sogenannten Maser-Kröpfe.

Es gibt mitunter Bäume, deren Stämme auf einem großen Theile ihrer Oberfläche mit mehr oder weniger großen Masernmassen bedeckt sind, welche zuweilen sogar mit einander zusammehängen; dieses ist besonders häufig bei den Rüsten und andern Bäumen solcher Gegenden zu sehen, wo man denselben alljährlich die grössten Äste abhauen und den Stamm zum Hervorbringen junger Zweige und neuer Blätter zwingt. An solchen Stämmen entwickeln sich gar häufig mehr oder weniger große Massen von Adventivknospen, von welchen sehr viele gar nicht zur Entwicklung gelangen, und diese geben dann sogleich

*) Entwurf einer Theorie über die natürliche Entstehung sowohl, als künstliche Production des Maserholzes u. s. w. Mit drei Kupfertafeln. Wien und Triest 1815.
wieder die Veranlassung zur Bildung der ächten Maserkröpfe.

Von den bei uns in den Gewächshäusern cultivirten Bäumen giebt es einige, welche sich ebenfalls gar sehr durch die häufigen Masern auszeichnen, die an ihren Stämmen vorkommen, doch müssen die Stämme immer ein sehr hohes Alter erreicht haben. Vor Allen ist es die Granate, deren Stämme in hohem Alter das unregelmäßigste und knorrigste Ansehen zeigen, was fast einzig und allein aus der, an verschiedenen Stellen des Stammes entstandenen Maserbildung hervorgegangen ist. Auch alte Myrten-Stämme zeigen gar häufig mehr oder weniger große Maserkröpfe.


Von der Kropfmaser, die man auch Augenmaser zu nennen pflegt, unterscheidet sich die Knollenmaser durch ihre geringere Grösse, durch mehr oder weniger vollkommen kuglichsche Gestalt und durch glatte Oberfläche. Diese Knollenmasern haben oft nur die Grösse einer Faust und sind fast ganz kugelrund, doch bleiben sie nicht lange von dieser Gestalt, sondern die Masermasse vergrößert sich, wird unregelmäfsig auf der Oberfläche und geht endlich ebenfalls in die Kropfmaser über. Diese
Knollenmasern sind gewöhnlich nur durch einzelne hervorgebrochene, in ihrer Entwicklung jedoch zurückgebliebene Adventivknospen herbeigeführt; sie sind es gewöhnlich, welche auf den dicksten Wurzelästen der Bäume auftreten und selbst auf solchen Bäumen, an welchen das Vorkommen von Adventivknospen zu den größten Seltenheiten gehört, wie z. B. bei den wahren Coniferen. Es sind schon mehrere Fälle von kugelförmigen Masernknollen bekannt, welche auf den Wurzeln von Coniferen gefunden wurden, aber einen sehr ausgezeichneten Fall der Art beschreibt Märtex (a. a. O. p. 23) in seiner vorhin genannten Arbeit; er sah in einem Walde von weißen Cedern (Cupressus disticha L.) in Nordamerika, daß fast jeder Baum 2—4 Fuß hohe und 3—5 Zoll starke Kniestücke hatte und bekanntlich bildet sich auf dem oberen Ende solcher Kniestücke die Masermasse.

Eine großartige Maserbildung an einem Eschen-Baum bot sich mir durch die freundliche Mittheilung des Herrn Hofgärtner Hempel zu Berlin dar; der Stamm war in einem Alter von 55 Jahren abgestorben und schon seit 50 bis 52 Jahren hatte sich die Masermasse gebildet, welche den ganzen Stamm umzog, dessen Durchmesser 6½ Zoll betrug. Die Masermasse zeigte dagegen 1 Fuß und 4 Zoll im Durchmesser und hatte sich an einigen Stellen bis 1½ Fuß weit über den Stamm ergossen. Auf dem Längendurchschnitte dieses schönen Stückes, welcher gerade durch den Markeyylinder ging, konnte man sehr wohl sehen, daß hier die Maserbildung in Folge einer Verletzung hervorgegangen war, welche der Baum in seinem dritten oder vierten Jahre erlitten hatte. Auch konnte man nicht leicht ein instructiveres Präparat sehen, um sich zu überzeugen, daß die neuen Holzschichten, welche die Jahresringe bilden, stets von Oben herabsteigen und aus einer halbflüssigen Masse, nämlich dem Cambium bestehen, welches sich bei vorkommenden Hindernissen ansammelt und dann dickere Holzringe an solchen Stellen bildet, die endlich wulstartig über die Oberfläche des Stammes hervorragen. In dem
vorliegenden Falle bestand eigentlich die ganze Masermasse, besonders die der letztern 40 Jahre, in einer solchen stark entwickelten wulstartigen Auftreibung oder Verdickung der neuen Holzlagen und diese Wulst war auf der einen Seite des Stammes so bedeutend geworden, daß sie sich über die normale Rinde des Stammes einer danebenliegenden Stelle legte und diese bis auf 6 Zoll Länge einschloß. Seit den letzten 23 Jahren war die Masermasse schon so groß geworden, daß sich die neuen Holzschichten nur noch auf der einen Seite des Stammes über jene Masse hinausziehen konnten, aber auch diese waren nur so schwach, daß ihnen unterhalb der Masermasse die äußere dichtere Schicht, welche bei unseren Bäumen an jedem Jahresringe deutlich zu unterscheiden ist, fehlte; endlich war der Baum gestorben und zwar offenbar aus eben denselben Ursachen, welche der Ringelschnitt veranlaßt.

Nach diesen Mittheilungen über die Maserbildung gehört dieselbe offenbar gar nicht zu den Krankheiten der Gewächse, sondern besteht eigentlich in einem Bildungsfehler, welcher durch äußere, der normalen Ausbildung der Holzschichten hemmend entgegentretende Ursachen herbeigeführt wird. Zwar entwickeln sich die Masermassen meistens nur an älteren und oft an sehr alten Bäumen, weil diese mitunter gerade so häufig Adventiv-Knospen entwickeln, aber auch diese alten Bäume vegetiren ungeachtet der Maserbildung ganz vortrefflich; besonders bei den bloßen Kropf-Masern oder Augen-Masern, welche nur an einzelnen Seiten der Stämme vortreten; und sind diese Masernmassen endlich sehr groß geworden, so kann man sie, ganz unbeschadet der Stämme, abnehmen, was natürlich unter den angegebenen Vorsichtsmaßregeln stattfinden muß, weil sonst der Baum in Folge der großen Verletzung eingeht. Hat aber die Masermasse sich ringförmig um den Stamm des Baumes gelegt, wie man es an Birkenstämmen nicht selten sieht, und wie es in der vorhin beschriebenen Maser des Eschen-Stammes
stattfand, so ist allerdings ein frühzeitiges Absterben eines solchen Baumes zu erwarten, wenn man nicht durch be¬hutsames Entfernen eines Theiles der Masermasse schon früh genug dagegen einschritt. Die Maserbildung veran¬läßt hier ganz auf eben dieselbe Weise den Tod des Bau¬mes, wie dieses in Folge des Ringelschnittes der Stämme nachgewiesen wurde; ist die Masermasse endlich zu groß geworden, so pflegt die Rinde vielfach zu durchreifen und die herabsteigende Masse zur Bildung der neuen Holz¬schicht ist nicht mehr im Stande über jene große Wulst hinaus sich zu ergießen, so entsteht denn dadurch eine Unterbrechung für den Verlauf des Bildungssaftes zwischen dem Astende und dem Wurzelende des Stammes, und die Folge davon ist ein Zurückbleiben der Wurzeln und all¬mäßliches Absterben des Stammes aus eintretendem Mangel an Nahrungssäften, weil nämlich, wie die Physiologie lehrt, die Bildung der Wurzelzasern und natürlich auch der dar¬auf sitzenden Einsaugungspflanze, nämlich der Wurzel¬härchen, von dem herabsteigenden Bildungssaft abhängt; wird daher das Herabsteigen dieses Saftes zu den Wurzel¬ spitzen verhindert, so stirbt allmählich der Baum ab.

Überwallung.

Unmittelbar an die Maserbildung ließe sich diejenige Erscheinung anschließen, welche man mit dem Namen der Überwallung belegt und sogar als besondere Krankheit hie und da aufgeführt hat. Es ist im Vorhergehenden gezeigt worden, auf welche Weise die Heilung von Stammwunden erfolgt, nämlich durch ein Überziehen oder Überwallen mit neuen, von Oben nach Unten und ebenso seitwärts sich ergießenden neuen Holzschichten oder Jahresringen, und alle die vielen Versuche, welche die Physiologen über die Bildung der neuen Holzschichten angestellt haben, zeigen auf das Bestimmteste, daß alle neu entstehenden Holzlagen von Oben nach Unten herabsteigen. Um so auffallender waren die Mitteilungen, welche seit einiger Zeit über das Verwallen der, von abgeschlagenen Weißstannen zurückbleibenden Stämme von verschiedenen Seiten her bekannt gemacht wurden, ohne daß irgend eine wahrscheinliche Andeutung zur Erklärung dieser Erscheinung gegeben wurde. Man hat nämlich gesehen, daß die Stämme von gekappten Weißstannen in großen Beständen nicht sogleich absterben, sondern viele Jahre hindurch ganz regelmäßige neue Jahresringe bilden; diese neuen Holzlagen treten etwas über die Oberfläche der Wunde hinaus und indem die darauf folgenden sich beständig über die Wulst der älteren, über die Wundfläche hinausgestiegenen Jahresringe ergießen, wird allmählich die Oberfläche des ganzen Stumpfes überwallt. Bei dem ersten Anblick geschieht also hier die Bildung der neuen Holzlagen von Unten nach Oben und zwar geschieht dieses Alles an Stämpfen, welche weder Knospen entwickeln, noch irgend eine Spur von jungen Trieben und Blättern zeigen.

Die ersten Nachrichten über die Überwallung der Stämme oder der umgerodeten Stöcke von Weißstannen finde ich fast gleichzeitig von mehrern Schriftstellern *) mitgetheilt.


Hierauf, aber noch unbekannt mit den Beobachtungen der Vorgänger, hat Herr v. Wangenheim einige Mittheilungen über diesen Gegenstand gemacht***); es wurde von denselben eine vollständige Ueberwallung eines Stumpfes beobachtet, welcher 29 Jahre lang sein Wachsthum in die Dicke fortsetzte. Herr v. Wangenheim machte schon die Beobachtung, daß dergleichen Stümpfe im Schatten stehen müssen, und daß sie gewöhnlich absterben,

**) Berlin 1834 pag. 853.

Endlich hat Herr Treviranus* dieses Gegenstandes erwähnt, von welchem ich absichtlich in meiner Pflanzen-Physiologie geschwiegen habe, indem mir noch keine Erklärung desselben wahrscheinlich erschien, die Erscheinung selbst aber gegen alle richtigen Erfahrungen stritt. Herr Treviranus besitzt ein solches überwalltes Stammende, das 48—50 Jahre alt, gefällt worden war; der Stumpf blieb stehen und entwickelte wenigstens noch 22 Holzringe, die wenigstens ebenso dick sind, als die früheren. Sehr gut setzt Herr Treviranus die Bemerkung hinzu, daß man an dicken Ästen der Buchen, die einen halben Fuß oder Fuß weit vom Stamme abgelassen waren, bemerkt, wie sich die Schnitfläche wieder mit einer Wulst bedeckt, ohne daß sich jene Äste wieder mit Zweigen und Blättern bedeckt hätten; eine Erklärung jener Überwallung der Tannen-Stümpfe wagte aber Herr Treviranus noch nicht zu geben.

Nach langen Nachforschungen war ich denn endlich so glücklich, ein Exemplar eines solchen überwallten Stumpfes der Weißstanne zu sehen, welches sogleich die ganze Erscheinung erklärte. In den Sammlungen der Königl. Forst-Akademie zu Neustadt-Eberswalde befindet sich ein Exemplar, an welchem man sehen kann, daß einzelne Wurzeln des Stumpfes ganz innig verwachsen sind mit den Wurzeln eines anderen, daneben stehenden Stammes, und daß die Überwallung des Stumpfes durch neue Holzlagen erfolgt ist, welche von dem danebenstehenden Baume kamen.**)

*) Physiologie der Gewächse II. p. 126. 1838.

Wasserreiser, Wasserlodden, Sommerlodden, Räuber, Wasserschosse, Wasseräste, Nebenschosse u. s. w.
sind Adventiv-Knospen hauptsächlich des Stammes und der Hauptäste, welche zu vollständiger und überwiegender Entwicklung kommen. Wie der Bildung von Adventiv-Knospen in allen Fällen eine Störung des regelmäßigen Verzweigungsgangs zum Grunde liegt und diejenige örtliche Hemmung eintritt, welche wir in dem vorhergehenden Abschnitte als den Grund der Maserbildung erkannt haben, so bezeichnen die Wasserreiser überhaupt ein Zurückschreiten der Entwicklung auf diejenige tiefere Bildungsstufe, wo sich an irgend einer Stelle der oberirdischen Pflanze gleichsam ein neuer Wurzelhals oder Wurzelstock erzeugt, aus welchem, wie bei abgehauenen Stämmen, die ersten saftvollen Wurzeltriebe oder Wurzelsprossen hervorgehen. Wenn nun diese krankhafte Bildung einerseits aus einer Störung in dem Entwicklungsgange des Stammes entspringt und deren Folge ist, so wird sie andererseits rückwirkend wieder eine neue Ursache des Erkrankens und Abzehrens des oberhalb der mit Wasserreisern besetzten Stelle liegenden Theils des Stammes, und diese Wirkung ist um so nachtheiliger für das Leben des Ganzen, je größer die Menge und je üppiger und saftvoller die Masse der Triebe ist, welche oft, selbst an veredelten Obstbäumen, wieder Wildlingen gleichen und lange Zeit unfruchtbar bleiben, wenn sie aber mit der Zeit zum Fruchttreten gelangen, weit schlechtere Früchte bringen als der übrige gesunde Baum. Das Abschneiden der Wasserreiser hilft nur dann, wenn sie selten und einzeln auftreten, und es ist dann zu rathen, daß man sie nicht bloß ab- sondern vielmehr aus schneide und die Wunde zum Verheilen zu bringen suche. Gewöhnlich brechen nach dem Ab- und Ausschneiden wieder neue hervor und der Baum kränkelt immer weiter, wenn nicht durch Veränderung seines Bodens, seiner Umgebung u. s. w. eine günstige Veränderung

Meyen. Pathologie.
seines ganzen Wachstums hervorgebracht wird. Manche Bäume, z. B. die Gleditschen, neigen mehr oder weniger auch im normalen Zustande zu Adventiv-Bildungen, und Gleditschia macrocantha und ferox sind wahrscheinlich nichts anderés als solche Bildungsstufen der Gleditschia triacanthos, welche einerseits als Varietas inermis ganz ohne Dornen, in ihrem anderen Extrem aber an Stamm und Hauptsästen dicht mit langen, rechtwinklig abstehenden, dreispaltigen oder Ästigen, bald blattlosen bald etwas beblätterten am Grunde mehr oder weniger zusammengesetzten furchtbar verletzenden Dornspieren bedeckt erscheint.

N. v. E.

VII. Der Brand. Ustilago.

Für einen der schwierigsten Gegenstände dieser Arbeit muß ich die systematische Auordnung derjenigen Krankheiten ansehen, welche mit dem allgemeinen Namen des Brandes bezeichnet werden. Die Produkte dieser Krankheiten sind sich auf verschiedenen Pflanzen und auf verschiedenen Theilen einer Pflanze der Form und dem ganzen Habitus nach ungleich ähnlich, aber eine genauere Untersuchung zeigt, daß diese Bildungen auf sehr verschiedene Weise hervorgehen und dannen denn auch sehr verschiedene Charaktere an sich tragen, welche von ganz besonderer Wichtigkeit bei der Beurtheilung der Schädlichkeit dieser Gebilde für das Wachsthum der Pflanzen sind.

dieser Krankheiten in den letzten Jahren etwas mehr in das Klare gekommen zu sein, so müssen wir denn doch gestehen, daß es in Bezug auf die Vorbauung und Verhütung dieser Krankheiten heutigen Tages noch ziemlich eben so steht, wie in der Mitte des vergangenen Jahrhunderts.

Schon seit sehr alten Zeiten umfaßte man alle, zur Klasse des Brandes gehörigen Bildungen mit dem Namen: Ustilago und unterschied sie von dem Roste (Rubigo); nur mit wenigen Ausnahmen hat man diesen alten Gattungsnamen: Ustilago für die Brandbildungen allgemein beibehalten, und unsere neueren Untersuchungen sprechen meistens ebenfalls dafür, doch wird man künftig, wenn diese Bildungen alle auf das Umständlichste in ihrer Entstehung beobachtet sein werden, wahrscheinlich gezwungen sein, Unterabtheilungen und selbst neue Gattungen daraus zu bilden.

Die Beobachtungen über die Entstehung des Brandes, welche wir später vortragen werden, zeigen auf das deutlichste, daß wir hier mit wahren Entophyten zu thun haben; wir werden sehen, wie sich einige Brand-Arten als eigene parasitische Gewächse im Innern der Zellen der von ihnen befallenen Pflanzen zeigen und daß man die Brandmasse nicht mit dem tierischen Eiter zu vergleichen hat. Wir haben hier vielmehr Entophyten vor uns, und wenn diese auch noch so klein sind, so müssen sie ebenfalls systematisch bestimmt werden, was bisher theils nach der Form der sporenartigen Bläschen geschah, in welche sich diese Pflänzchen ab schnüren, theils nach ihrem Auftreten unter verschiedenen Verhältnissen auf verschiedenen Pflanzen und deren einzelnen Theile. Alle sichern Beobachtungen der neueren Zeit haben ein Keimen oder ein ferneres Wachsthum jener braunschwarzen Bläschen der Brandmassen nicht nachgewiesen, daher diese Bläschen auch nicht den Namen der Sporen verdienen.

Folgende Brand-Bildungen werden wir als besondere, eigenthümliche Krankheiten näher beschreiben und das Auftreten der Pilze, welche als Producte derselben erschei-
nen, näher charakterisiren. In wieweit sie generisch zusammenzustellen sind, wird man aus dem Folgenden ersehen:


Der Flugbrand befällt gewöhnlich nur die Organe der Blüthen und der Früchte, herrscht hauptsächlich auf den Getreide-Arten und auf unkultivirten Gräsern, besonders auf Hafer, Weizen, Gerste, Hirse u. s. w., kommt aber auch auf den Fructificationsorganen und den Saamen mehrerer dikotyledonischer Gewächse vor, worüber später ausführlicher berichtet werden soll. Der Flugbrand charakterisirt sich durch ein braunschwarzes, staubartiges Pulver, welches in denjenigen Pflanzenteilen erzeugt wird, worin es auftritt, wobei aber zugleich die ganze normale Substanz des davon befallenen Pflanzen-Organes zerstört wird. Nach vollkommener Ausbildung dieses staubartigen Pulvers brechen die Hüllen der Organe, worin sich dasselbe bildete, ebenfalls auf und das Pulver fällt heraus und verfliegt allmählich, so daß zuletzt nur noch einzelne kleine Fetzen und Stümpfe von denselben zurückbleiben. Dieses sind die gewöhnlichen Erscheinungen, unter welchen sich der Flugbrand bei den Gräsern, und besonders bei den Getreide-Arten zeigt; der Hafer zeigt am häufigsten Flugbrand und Weizen und Gerste sind ebenfalls sehr oft damit geplagt, aber am Roggen gehört der Flugbrand zu den größten Seltenheiten. Wenn man die durch Flugbrand zerstörten Aehren näher betrachtet, so wird man finden, daß in der größten Entwicklung dieser Krankheit alles parenchymatische Zellengewebe der Blüthen und Fruchtheile vollständig zerstört ist, daß nichts weiter von diesen übrig bleibt, als die einzelnen Faserbündel der Spelzen und Schuppen, zwischen welchen dann noch bis
zur vollkommenen Reife des Getreides eine mehr oder weniger große Masse jenes schwarzen Staubes zusammengehäuft haften bleibt, bis endlich Wind und Regen auch diesen entfernen und dann, wie ich es bei Weizen und Roggen gesehen habe, von den ganzen Aehren nichts weiter als die Rhodeis und einige Spuren von Faserbündeln aus den Kelch-Spelzen u. s. w. zurückbleibt. In andern Fällen ist die Zerstörung nicht so vollständig; der Saame, ja die ganze Frucht wird zerstört, aber von den verschiedenen Spelzen bleiben mehr oder weniger große Stücke erhalten, und der Hafer, besonders Avena elatior, zeigen gar nicht selten, daß nur der Saame durch Flugbrand zerstört ist. Hier springt die Caryopsis auf und der Brandstaub kann herausfallen, die Spelzen bleiben aber fast ganz gesund, obgleich sie meistens sehr bald vertrocknen.\footnote{Mitunter hat der Flugbrand bei dem Hafer und auch bei der Gerste größtenteils nur in der inneren Fläche der Spelzen seinen Sitz, und es kommen auch wiederum Fälle vor, wo der Brand nur in der Hälfte der Frucht (der Caryopsis) seinen Sitz hat; hier ist der Saame ganz gesund, die Körner sind aber mehr oder weniger schwarz.}

Beie andern Pflanzen tritt der Flugbrand in Begleitung mehr oder weniger großer Anschwellungen der davon befallenen Theile auf, und hierin zeichnet sich der Mays auf eine sehr auffallende Weise aus. Am interessantesten erscheint die Krankheit an den männlichen Blüthen des Mays, welche bald theilweise, bald bis auf die Kelchschuppen gänzlich krankhaft angeschwollen und zerstört sind; sie haben oft die auffallendsten Formen angenommen, welche durch Auflockerung und krankhafte Wucherung des parenchymatischen Zellengewebes entstehen; die Spiralröhren laufen indessen mit hinein. Die weiblichen Blüthen gehen ebenfalls die grössten Deformitäten ein; die jungen Saamen mit den sie umschließenden Hüllen und Schuppen schwellen an, oft bis zur Größe einer Haselnuss und noch darüber, und nehmen durch gegenseitigen Druck die
ungestaltetsten Formen an. Sehr oft kommen aber auch an den verschiedenen gleichartigen Theilen der Mays-Pflanze große sphärische Auswüchse vor, welche mitunter bis zu der Größe eines Kinderkopfes anschwellen und im Innern ebenfalls den Flugbrand bilden, der dann nach dem Aufreißen dieser Auswüchse hervortritt. Diese Auswüchse, wie auch die Anschwellungen der verschiedenen Blüthen- und Fruchttheile des Mays, bestehen aus einem saftigen, straffen Zellengewebe und zeigen eine weißgrünlliche Färbung, werden aber auch an einzelnen Stellen auf der Oberfläche röthlich gefärbt, ähnlich der rothen Färbung auf den Aepfeln u. s. w. Die Auswüchse, wie alle angeschwollenen Theile sind zu- erst in ihrem Innern sehr saftig und ungefärbt, später entwickeh sich in dieser Substanz dunkel schwarzbraune Streifen und diese verwandeln sich allmählich in das schwarze Pulver des Staubbrandes; zuletzt sind die angeschwollenen Theile in ihrem Innern mehr oder weniger zerstört und mit dem Pulver gefüllt.

Es ist ungemain schwer, die Entwicklung des Flugbrandes in seinen ersten Stadien an unsern Getreide-Arten zu verfolgen und es stellen sich diesen Beobachtungen unüberwindliche Hindernisse in den Weg; bei der Mays-Pflanze dagegen, wo die vom Brande befallenen Theile zuerst aufgetrieben werden und von hinlänglicher Größe zur Untersuchung sind, gelang es mir, diesen Gegenstand vollständig zu verfolgen*) und später habe ich auch an dem Flugbrande des Weizens und der Gerste dieselben Beobachtungen wiederholen können.

Untersucht man nämlich diejenigen Theile, an welchen sich der Brand bildet, in ihren frühesten Zuständen und mit gehöriger Vergrößerung, so wird man sich bald überzeugen, daß die Massen, woraus sich später das Brand-Pulver hervorbildet, in dem Innern der Zellen dieser Organe entstehen, sich daselbst anhäufen und dann

die Zerstörung und Resorption der sie umschließenden Zellenwände veranlassen, wodurch dann das Brand-Pulver frei wird und die Höhlen des zerstörten Gewebes erfüllt. Man sieht im Anfange in den großen und saftigen Zellen der Auswüchse und Anschwelungen der Mays-Pflanzen kleine Schleimablagerungen, die sich an einer oder an mehreren Stellen der innern Fläche der Wände der Zellen erzeugen. Aus diesen, zuerst ganz unregelmäßig geformten, fast ganz durchsichtigen Ablagerungen, gehen fadenförmige, ungegliederte und sich verästelnde Gebilde hervor, welche schon eine pflanzliche Form zeigen, was sich denn auch durch die spätern Veränderungen derselben noch mehr erweist. Diese wahrhaft parasitischen Bildungen sind im Anfange ungefärbt, fast ganz durchsichtig und zeigen nur bei sehr starken Vergrößerungen ein feinkörniges Wesen in einer zarten schleimartigen Substanz. Bald bemerkt man, daß die Aeste des Pflänzchen's anfangen, sich zu verzweigen und oft stehen Aeste und Zweige sehr gedrängt bei einander. Um die Zeit, wenn die Verzweigung beginnt, fangen die Fäden an sich in kleine, kugelförmige Körper abzuschnüren, doch ist nicht leicht eine Regel zu finden, nach welcher diese Abschnürungen erfolgen; bald beginnen die Abschnürungen unten an der Basis der Fäden, womit sie festsitzen, bald geschieht sie zuerst oben an den Spitzen der Aeste, aber meistens scheinen die kleinen Seitenäste zuerst diese Umwandlung einzugehen, und bald sind es nur einzelne Stellen, an welchen sich die Abschnürungen zeigen; dann verwandeln sich die ganzen Fäden in solche rosenkranzförmig aneinander gereihte Kugelchen, welche noch längere Zeit hindurch zusammenhängend bleiben. Diese abgeschnürten Körperchen nehmen zuerst eine ellipsoidische Form an und werden endlich ganz kugelrund; sie färben sich zuerst gelblich, werden dann immer bräunlicher, bis tief braun und trennen sich, während sie sich auch noch vergrößern, von ihren Aesten und Stämmchen, bis endlich alle Fäden dieser Gebilde in solche kugelförmige Körper zer-
fallen sind, welche sich bei genauerer Beobachtung als kleine Bläschen zeigen, die bei verschiedenen Pflanzen auf ihrer Oberfläche bald mehr bald weniger glatt, bald mit Rauhigkeiten versehen sind. Oft sieht man in einer und derselben Zelle schon ziemlich ausgewachsene, braune Brandbläschen, die frei in der Zelle umherliegen, während an den noch wachsenden Fäden theils mehr, theils weniger vollkommen ausgebildete gelbe und gelbbräunliche Bläschen sitzen und ein Theil der Fäden selbst noch ganz ungefärbt erscheint. Mit dem Auftreten der reifen Brandbläschen im Innern der Zellen pflegt die Auflösung oder Verjauchung der umgebenden Zellenwände einzutreten und dann liegen die, schon vollkommen ausgebildeten und die, sich noch weiter ausbildenden Bläschen frei im Innern der Höhlen umher, welche durch die Auflösung der Zellen eines solchen aufgetriebenen oder angeschwollenen Organes entstehen und sich gewöhnlich immer weiter verbeiren.

Diese Beobachtungen, welche am Mays so leicht zu wiederholen sind, zeigen sehr deutlich, daß die Brandbläschen nicht aus den Zellensaft-Kügelchen der Pflanzen entstehen, ja man sieht sogar, daß nicht einmal der große schleimige Zellenkern, der in allen diesen Zellen vorkommt, zu jenen krankhaften Ablagerungen verwendet wird. Und ebenso gewiß läßt es sich hier entscheiden, daß der Brandstaub nicht in den Intercellulargängen gebildet wird, sondern aus kleinen parasitischen Pilzen hervorgeht, die sich im Innern von Parenchym-Zellen bilden und diese hierauf zerstören.

Ahnliche Anschwellungen, mit Flugbrand begleitet, kommen auch auf den Hirse-Arten vor, und sind auf unserem Panicum miliaceum gar nicht selten; man hat aus diesem Brande eine eigene Art gemacht und ihn als Caeoma destruens*) beschrieben, doch ich finde, daß derselbe sowohl in Hinsicht seiner Entstehung, als in Hinsicht seiner Struktur mit dem bisher beschriebenen des Mays und

*) S. Schlechtendal Flora Berol. II. p. 130.


Diese wichtige Krankheit, welche in verschiedenen Gegenden unter den verschiedensten Namen bekannt ist

*) Die Exantheme etc. p. 347.
und von den Landleuten wie die Pest gehaft werden, ist bis jetzt nur am Weizen und am Dinkel (Triticum Spelta) beobachtet worden. In unsern Gegenenden ist der Name: Steinbrand oder Schnierbrand der gewöhnlichste, doch noch passender wäre die Benennung Faulbrand. Dieser Faulbrand befällt nur den Saamen des Weizens und des Dinkels. Er zeigt sich in Form von runden, gleich großen, in Masse violettschwarz gefärbten Bläschen, welche weit größer (3 bis 4 mal), als die Bläschen des Flugbrandes sind und einen höchst unangenehmen stinkenden Geruch verbreiten. Der Geruch ähnelt dem des faulenden Harns oder faulender Häringe und gehört gewifs zu den unangenehmsten. Im jüngern Zustande ist diese Bläschen-Masse noch violettblau gefärbt und dann erscheinen die einzelnen unter dem Mikroskop ziemlich wasserhell und mit kleinen Kügelehen gefüllt, welche der Form nach der Stärke ähneln, aber nicht aus dieser bestehen. Später werden die Bläschen gelbbräunlich, ihr Inhalt wird gleichmäßig, scheint sich gröstentheils in ein fettes Oel umzuwandeln, und endlich wird die Zellennembran dieser Bläschen dick, fest, dunkelbraun gefärbt und mit kleinen Wärzchen auf der Oberfläche bekleidet.

Der Stein- oder Faulbrand ist schon vorhanden, selbst wenn die Aehren noch in der Blattscheide verborgen sind, und um diese Zeit sind schon die Ei'chen in den verschiedenen Ovarien so vollständig zerstört, dafs nur noch Spuren derselben aufzufinden sind; aber die von der Brandkrankheit ergriffenen Blüthen sind angeschwollen und die Ovarien haben schon um diese Zeit ziemlich die Grösse der ausgewachsenen Saamen. Um die Zeit, wann der Weizen blüht, ist der Steinbrand gewöhnlich schon ziemlich vollkommen ausgebildet und reif, aber die vom Brand ergriffenen Blüthenheitre kommen gar nicht zur Blüthe. Hiernach kann man eigentlich nicht sagen, dafs der Steinbrand den Saamen des Weizens zerstören, denn an den davon befallenen Körnern hat gar keine Befruchtung stattgefunden, sondern die Ei'chen wurden schon in ihren frü-

Dieses möge hinreichend sein, um die beiden, so bebürgigten Brandarten, den Flugbrand und den Steinbrand, von einander zu unterscheiden. Bei dem Weizen kommen gewöhnlich beide Arten gleichzeitig vor; doch wird der, im Allgemeinen seltener Steinbrand mehr gefürchtet als der Flugbrand. Auf Feldern, welche mit Brand befallen sind, kommen hier und da einzelne Pflanzen mit Flugbrand und andere mit Steinbrand vor, ja man findet an Weizen-Pflanzen, daß nur die Aehre des einen Hahnes mit Brand auftritt, während die andern Halme derselben Pflanze ganz gesund erscheinen. Man findet sogar an einzelnen Weizen-Aehren, daß die obersten Blüthen alle schon vom Steinbrande zerstört sind, während die untersten noch ziemlich vollständig zur Blüthe gelangen und man hat selbst Stein-
brand und Flugbrand in einer und derselben Aehre gefunden. Unbegreiflich bleibt es uns freilich, daß der Steinbrand nur bei Weizen-Arten und nicht an Gerste, Hafer u. s. w. beobachtet wird, welche gerade so häufig vom Flugbrande befallen werden, der sich demjenigen des Weizens ganz ähnlich verhält.

Die folgenden Betrachtungen über die Ursachen des Brandes, deren Verhütung u. s. w. gelten der Brandkrankheit im Allgemeinen, wenn nicht bei dieser oder jener Beobachtung die Art des Brandes besonders angegeben ist.


Die Gelegenheits-Ursachen, welche den Brand herbeiführen, sind mannigfacher Art, beschränken sich aber größtenteils auf den Zustand der Atmosphäre und auf

Ebenso allgemein stimmen die Berichte darin überein, daß der Getreidebrand an schattigen Stellen, am Rande von Wäldern, oder in engen, gegen durchziehende Winde geschützten Thälern häufiger vorkommt, als er an trockenen, höher gelegenen, der freien Luft mehr ausgesetzten Orten erscheint. Ueberhaupt erscheint der Brand auf solchen Feldern, welche eine nasse und kalte Lage haben, immer viel häufiger als auf trockenen, daher denn auch besonders häufig in der Nähe von Wiesen.

Bonnet und viele Andere vor und nach ihm glauben annehmen zu können, daß starke und kalte Thaue die Entstehung des Brandes veranlassen; er führt eine Menge von Gründen an, welche dafür zu sprechen scheinen, indessen ist es heutigen Tages zu bekannt, daß man auch gegen alle diese Angaben Gegenbeobachtungen aufzuführen hat. Wenn aber der Thau sich wirklich als die entfernte Ursache der Entstehung des Steinbrandes ansehen läßt, so würde es, wie Bonnet vorschlägt, vortheilhaft sein, wenn man vor Sonnen-Aufgang mit einer Schnur über das Getreide hinfahren und dadurch den Thau abschütteln wollte.

Man hat auch schnelle und häufig vorkommende Temperatur-Wechsel zur Blütezeit des Getreides gleichfalls als entfernte Ursache des Brandes ansehen wollen, doch hat man dabei vergessen zu beachten, daß der Brand schon lange vor der Blütezeit der Pflanzen da ist.

Andere Schriftsteller haben eine übermäßige Nässe des Bodens als die hauptsächliche Ursache angesehen, welche die Krankheit des Steinbrandes herbeiführe. Bonnet stellte einige, wie es scheint, sehr gut ausgeführte Versuche an, um über diesen Punkt in das Reine zu kommen, aber er erhielt ganz andere Resultate als er erwartet hatte. Bonnet sätete Weizen auf zwei verschiedene Felder und ließ diese stets so stark begießen, daß sie einem morastigen Acker ähnlich waren, doch sah er weder an diesen Weizen-Pflanzen, noch an denen, welche auf demselben Boden gesät aber nicht begossen worden waren, die Entstehung irgend einer Brandähre.

Eben so wichtige Gelegenheits-Ursachen bietet der Zustand des Bodens zur Erzeugung des Brandes dar, denn man hat unendlich oft bemerkt, daß selbst aus ganz vortrefflicher, gesunder Saat der Brand hervorgeht, wenn die Pflanzen in einem unpassen den Boden standen. Als ein solcher unpasser Boden ist derjenige zu bezeichnen, welcher stark mit frischem Dünger gedüngt ist, und ganz besonders häufig erzeugt sich der Brand auf solchen Feldern, welche mit äußerst nährhaften und scharfen Düngern, als mit Menschenkoth, mit Schafsdünger, Schweinedünger u. s. w. gedüngt wurden. Ueberhaupt sollen alle Dünger-Arten, welche in einem, noch nicht vollkommen zersetzten Zustande in den Boden gebracht werden, die Entstehung des Brandes befördern, ja selbst jeder Weizen mit Herbstdüngung soll stark mit Brand befallen werden. Die erstem Fälle sind wohl ziemlich übereinstimmend als richtig gefunden worden, aber der letztere, daß selbst jede Herbstdüngung dem Weizen nachtheilig sei, indem sich in der kältesten Jahreszeit der Dünger nicht gehörig zer-

Der Haberweizen zeigte:

<table>
<thead>
<tr>
<th>Naß gesät</th>
<th>Brandstaub von Haberweizen bestreut, gesät</th>
<th>Trocken und rein gesät</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) naß gemacht und, mit Brandstaub von Haberweizen bestreut, gesät</td>
<td>166</td>
<td>478</td>
</tr>
<tr>
<td>2) naß gesät</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3) trocken und rein gesät</td>
<td>3</td>
<td>300</td>
</tr>
</tbody>
</table>

*) Auserlesene mikroskopische Entdeckungen etc. Nürnberg 1781. pag. 46. etc.
In den Garten gesteckt:

1) naß gemacht und mit Brandstaub von glatten Weizen bestreut 40 59
2) trocken und mit Brandstaub bestreut 102 35
3) rein und trocken gesät 89 1

Der glatte Weizen zeigte:
1) naß gemacht und mit Brandstaub von glatten Weizen bestreut 48 14
2) naß gesät 82 9
3) rein und trocken gesät 106 5

Der Sommerweizen zeigte:
1) naß gemacht und, mit Brandstaub von Sommerweizen bestreut, gesät 339 188
2) derselbe mit Brand von der Gerste bestreut 168 234
3) Sommerweizen mit Rost von der Gerste bestreut 203 —
4) nasser Sommerweizen 198 4
5) trockener Sommerweizen 102 —

Die Resultate dieser Versuche sprechen zu deutlich dafür, daß der Steinbrand eine Krankheit des Getreides ist, welche sich vom erkrankten Saamen auf die Pflanzen gesunder Saamen übertragen läßt, doch geschieht dieses nicht etwa, wie man vielleicht glauben könnte, durch eine unmittelbare Fortpflanzung der Bläschen des Brandes, welche man für Sporen halten könnte, sondern die Substanz des Brandstaubes ist von der Art, daß sie, dem Boden mitgetheilt, worin andere gesunde Getreide-Pflanzen wachsen, die Nahrungssäfte desselben dergestalt verändert, daß diese alsdann durch ihre Beschaffenheit in denjenigen Pflanzen, von welchen sie aufgenommen wurden, jene Krankheit erzeugen, deren Produkt der Steinbrand ist. Man kann die Substanz des Steinbrandes, welche sich durch ihren höchst unangenehmen Geruch und durch ihre Schärfe auszeichnet, für ein so skamlhaftes Produkt halten, das es, wenn diese Substanz in die Säfte einer gesunden Pflanze übergegangen ist, in dieser dieselbe Krankheit durch Ansteckung wieder hervorruft, deren
Produkt sie selbst ist. Es fehlt auch nicht an Beispielen, nach welchen sich die Krankheiten des Menschen auf eine ganz ähnliche Weise durch Ansteckung gleichsam fort-
pflanzen, wenngleich ihrer Entstehung ganz andere Ur-
sachen zum Grunde liegen. Es haben schon verschiedene Botaniker die Meinung ausgesprochen, daß der Brand aus dem Boden, worauf die erkrankten Pflanzen wachsen, durch die Wurzeln in dieselben hineingelange; Einige haben sich dabei die Sache sehr materiell gedacht, indem sie an-
nehmen, daß die Brandbläschen selbst in die Pflanzen hin-
ingingen; die meisten haben sich aber die Sache ganz richtig vorgestellt, daß nämlich nur die Substanz des Brand-
stanbes in einem gelösten Zustande aus dem Boden in die Pflanzen eindringe und die Säfte dieser krankhaft afficire, wodurch wieder dieselbe Krankheit erzeugt wird.

Diese schönen Versuche von Gleichen sind vor einigen Jahren auch in England wiederholt worden.
Man nahm gesunde Weizenkörner, bestreute sie mit Brand-
staub vor der Saat und säete sie, theils mit theils ohne scharfe Beizen préparirt. Der Erfolg stimmte ganz mit den obigen Resultaten der Beobachtungen von Gleichen überein; man erhielt nämlich in allen Fällen Brand-Aehren in großer Menge und zwar sowohl aus vorher gebeizten, als aus ungebeizten Saamen. Der gebeizte Saamen brachte indessen doch eine geringere Menge Brand-Aehren her-
vor, als der ungebeizte.

Herr v. Rosenberg-Lipinsky, dessen Abhandlung über den Brand im Getreide ich schon mehrmals ange-
führt habe, war mit den Ansichten, welche sich über die Natur des Brandes aus jenen Versuchen aufstellen lassen, nicht übereinstimmend und unternahm es, dergleichen Beobachtungen durch eigne Versuche zu wiederholen. Zuerst brachte Herr v. R. den Brandstaub auf junge Wei-
zen-Pflanzen von verschiedenem Alter, ja er bestreute

*) S. Mögliner Jahrbücher der Landwirtschaft pro 1836 p. 206.
**) Verhandlungen etc. des patriot. landwirtschaftlichen Vereines zu Oels II. p. 121. 1840.
Meyern. Pathologie.
selbst solche Pflanzen damit, bei welchen schon die Aehre aus dem Blatte hervortrat und erhielt denn auch, wie es zu erwarten war, keine Brand-Aehren in Folge dieser Operation. Im Herbste 1838 wurden indessen die Versuche in der Art gemacht, daß die Saat selbst stark mit Brandstaub eingepudert und dann gesäet wurde, während auf demselben Felde auch reiner Weizen gesäet wurde. Es wurden diese Versuche auf 2 verschiedenen Feldern angestellt und das Resultat war, daß die Bestäubung des Saamenkornes mit Brandstaub die Erzeugung der Brand-Aehren keineswegs herbeiführte. Der Brand herrschte ziemlich gleich auf dem ganzen Felde, es mochte reiner oder bepuderter Weizen ausgesäet sein.

Viele der Schriftsteller, welche über den Brand geschrieben, haben das Wesen dieser Krankheit zu ergründen versucht; ich führe nur einige dieser Ansichten auf, welche, wie es mir scheint, am consequentesten durchgeführt sind. Herr Unger*) glaubt, daß die äußern Schädlichkeiten oder die Gelegenheits-Ursachen zur Erzeugung des Brandes auf dieselbe Weise einwirken, wie bei der Erzeugung der Blättrpilze. Der erste Einfluß, den eine feuchte Atmosphäre auf das Pflanzenleben äußert, ist unstreitig eine Hemmung der Athmungsfunction und eben dadurch Zurückhaltung der Excretionsmaterie. Die nächste Wirkung davon ist natürlich noch eine grösere Anhäufung roher, unverarbeiteter Stoffe, die oft durch gleichzeitig dargebotene, mehr wässerige Nahrung den Keim der Krankheit nothwendig entwickeln, und auf jene Organe concentriren muß, die sich oben in der Evolution befinden. Es geschieht allerdings, daß, so wie sich der Krankheitsstoff nach Innen sammelt, er auch an der Peripherie des Pflanzenleibes als Exanthem erscheint, doch ist der Eingriff auf die Athmungsfunction gewöhnlich nicht so energisch, daß dadurch das bildende Leben, als die die Begeistigung des rohen Stoffes vollführende Thätigkeit, im gleichen Maße in ihren Grundpfeilern erschüttert würde. Die Richtung ist hier eine andere, und diese bildet den alleinigen Unterschied zwischen der Brandbildung und dem Exanthem.


*) Die Exantheme etc. p. 356.
**) a. a. O. p. 92.
Uebermaafs von Kohlenstoff auftrete, welcher durch den Sauerstoff nicht entfernt werden könne. So verschieden-artig sind also die Erklärungen, welche man über die Natur der Brandkrankheit aufgestellt hat; sie gründen sich, ich möchte sagen sämmtlich, auf reine Hypothesen, von welchen viele als ganz unerwiesen anzusehen sind, und andere sind sogar gegen alle Theorie.

Erinnern wir uns der Thatsachen, welche ich früher, pag. 101 über das erste sichtbare Auftreten der Brandbildung mittheilte, so werden wir diese ganz ungezwungen als das Produkt oder als die Folge einer abnormen Richtung des Ernährungs-Prozesses ansehen können; wir sahen abnorme Ablagerungen von vegetabilischen Nahrungsstoffen im Innern der einzelnen Zellen entstehen und diese Ablagerungen wurden höher belebt, individualisirt und zerfielen in die Brandbläschen. Das Auftreten dieser parasitischen Bildungen im Innern der Zellen glauben wir, am natürlichsten durch eine Stockung der Nahrungssäfte erklären zu können, und diese Stockung der Säfte wird durch übermäfsige, der Natur der Pflanze fremdartige Düngung herbeigeführt, kann aber auch noch mittelbar durch verschiedene andere äussere Einflüsse auftreten. Gar häufig gehen den Ablagerungen jener parasitischen Bildungen im Innern der Zellen Erscheinungen voran, welche schon allein hinreichend sind, theils für eine Stockung der Säfte, theils für eine abnorme Richtung im Ernährungs- und Bildungs-Prozesse zu sprechen. Das üppige Aussehen der gewöhnlichen Getreide-Pflanzen (von welchem alle Landwirthe sprechen), die vom Brande befallen sind, das dunklere Grün derselben, der dickere Knoten u. s. w. alles dieses spricht für eine solche Stockung der Säfte, welche auf irgend eine Weise herbeigeführt ist und dann das üppige Wachsen der Pflanze, ja die abnormen Anschwelungen derselben veranlassen. Diese Stockungen der Nahrungssäfte können auf verschiedene Weise veranlasst werden; am gewöhnlichsten durch übermäfsige und besonders durch eine fremdartige, noch nicht gehörig zersetzte Dün-
gung. Ebenso können aber auch Stockungen der Nah-
 rungssäfte und abnorme Ablagerungen derselben durch
 lange anhaltende unterdrückte Transspiration der Pflanzen
 herbeigeführt werden, und auf diese Weise möchte das
 häufige Auftreten des Brandes in solchen Gegenden er-
 klärlich werden, welche in feuchten, der Sonne und dem
 Windzuge wenig ausgesetzten Lagen befindlich sind.

Somit kommen wir schließlich zur Kur der Brand-
 krankheit; doch sind wir leider nicht vermögend, gegen
 dieses Uebel mit Erfolg einzuschreiten, wenn die Krankheit
 einmal ausgebrochen ist. So wie die Krebskrankheit die
davon befallenen Organe des menschlichen Körpers zer-
 stört, so macht es die Brandkrankheit bei den Pflanzen.

Die ganze Kur der Brandkrankheit beschränkt sich
auf die Anwendung von Vorbauungs-Mitteln, durch welche
die Entstehung oder Verbreitung des Brandes verhindert
wird, und diese Mittel beschränken sich auf folgende:
Vor Allem sehe man auf die Qualität der Saamen,
welche man säen will; je gesunder und ausgesuchter diese
sind, desto weniger Brand ist im Allgemeinen zu erwarten.
Man nehme wo möglich alte und gute Saat; bei dem Wei-
zen zeigen sich die hornig oder glasig gewordenen Saa-
men am vorteilhaftesten. Der vorteilhafte Gebrauch der
alten Saat gründet sich wahrscheinlich darauf, daß durch
die Länge der Zeit die schlechteren, nicht vollkommen
gereiften Körner u. s. w. so weit verderben, daß sie nicht
mehr aufgehen. Sehr häufig hat man den Glauben, daß
eine Saat, welche auf einem andern Felde gewachsen, vor-
 theilhafter gegen die Brandbildung ist, als die, welche auf
eben demselben Acker gereift ist; diese Meinung ist indes-
sen gewifs grundlos und man hat nur dann eine fremde
Saat zu wählen, wenn die einheimischen Saamen schlech-
ter sind als andere, und besonders dann, wenn sie auf
Feldern reiften, die stark vom Brande befallen waren.

Als ein vortreffliches Mittel die Entstehung des Bran-
des in dem Getreide zu verhüten hat man hundert und
tausendfach das Beizen der Saat kurz vor ihrer Aussaat

Man sollte glauben, daß ein solcher Gegenstand mit Leichtigkeit zur Entscheidung zu bringen sei, aber dieses ist doch bis zum heutigen Tage noch nicht geglückt und man kann hieraus wieder sehen, wie es mit landwirtschaftlichen Erfahrungen steht. Es versteht sich denn auch ganz von selbst, daß, so lange die That sache noch nicht einmal festgesetzt ist, daß das Einbeizen der Saat ein Mittel gegen den Brand sei, so lange auch keine richtige Erklärung dieser Angaben stattfinden kann. Wäre es erst ganz erwiesen, daß der Brandstaub, mit den Saamen in die Erde gebracht, diese affizirt und in den jungen Pflanzen wiederum die Brandkrankheit zu erzeugen im Stande ist, so wäre die vortheilhafte Wirkung des Beizens der Saamen am einfachsten dadurch zu erklären, daß die ätzenden Substanzen der Beize die schädlichen Mischungsverhältnisse des Brandstaubes umzuwandeln im Stande seien. So wie die Sachen aber gegenwärtig stehen, scheint der Vordersatz noch nicht vollkommen erwiesen und der Nachsatz schon aus diesem Grunde noch höchst zweifelhaft zu sein. Wahr ist es allerdings, daß aus einem Felde, welches stark mit Brandkrankheit geplagt ist, diese nur sehr schwer und ganz allmählich herauszutreiben ist.
Wohl ebenso wichtig, als die Wahl der Saat, möchte eine gute Bestellung des Ackers als Vorbauungs-Mittel gegen die Entstehung des Brandes anzusehen sein. Ein guter, nicht zu frischer, gleichmässig zerreißter Düngungs-Zustand und gehörige Entwässerung des Bodens, das ist es, was man zu beachten hat; aber wenn auch dieses Alles richtig ausgeführt wird, so wird man dennoch noch immer dann und wann einzelne Brandähren auf den Feldern vorfinden.

Diese beiden Arten des Brandes, der Steinbrand und der Flugbrand, sind die gewöhnlichsten und auch die schädlichsten, da sie gerade viele unserer Getreide-Arten befallen, es gibt aber auch noch einige andere Arten von Brand, welche sich in ihrem Auftreten gar sehr von den genannten Brand-Arten unterscheiden und künftig auch wohl zu besonderen Gattungen gebracht werden möchten; als solche führe ich auf:

3. Den Stengelbrand im Roggen.

Der Brand in dem Stengel der Roggenpflanzen scheint sehr selten zu sein. Ich habe denselben nur einige mal zu beobachten Gelegenheit gehabt und auch wohl niemals früh genug, um über seine Entstehung vollständigen Aufschluss geben zu können. Dieser Brand zeigte sich unter sehr auffallenden Erscheinungen. Ich sah ihn um die Zeit, als der Roggen blühen wollte; das oberste Internodium des Halmes war der Länge nach aufgeplatzt und hatte sich bandartig ausgebreitet, aber die eine ganze Fläche, welche früher die innere Fläche des hohlen Halmes war, zeigte eine schwarze Färbung, die durch den Brandstaub veranlaßt wurde, welcher sich hier erzeugt hatte. In Folge dieser Umwandlung des Internodium's in einen bandartigen Streifen hatte die Festigkeit deselben nachgelassen und der Halm mit seiner Aehre war jedesmal umgebogen und herabhängend.

Zwar war nur das oberste Internodium des Halmes aufgeplatzt, aber auch die übrigen bis zur Wurzel hin,
waren auf der innern Fläche vom Brande ergriffen und zugleich zeigte sich auch in dem Parenchym der Blattscbei-
den der untersten Internodien ebenfalls etwas Brand, wel-
cher mehr oder weniger lang und breit ausgedehnt auftrat.

Der Brandstaub dieser Art ist von tief dunkelbrauner
Farbe und erscheint in Form kleiner Häufchen, die sehr
eigenthümlich sind; gewöhnlich hängen 3 bis 4 grösere, tief
braun gefärbte runde Bläschen miteinander zusammen; diese
Bläschen sind kleiner als die des Steinbrandes und grö-
ßer als die des Staubbrandes, sie zeichnen sich aber da-
durch ganz besonders aus, dafs aus jedem einzelnen Bläs-
chen mehrere kleine wasserhelle Wärzchen zu den Seiten
hervortreten, welche bei einigen noch klein, bei andern
dagegen auch schon weit gröfser sind; oft fand ich die
Stellung dieser weifsen Bläschen sehr regelmäfsig. Die
Untersuchung solcher Stellen des erkrankten Stengels,
welche noch nicht ganz zerstört waren, schien mir zu zei-
gen, dafs sich in den Zellen kleine bräulichgelbe Bläs-
chen entwickelten, aus welchen seitlich mehrere junge
Bläschen hervorwuchsen, die allmählich immer gröfser wur-
den und später wahrscheinlich eigene, für sich bestehende
Brandbläschen bilden.

Da diese Art des Brandes so ganz im Innern der
Pflanze auftritt, ohne dafs man an derselben vorhergehende
Desorganisationen wahrnimmt, so hält es gewifs sehr schwer,
diese Krankheit im jungen Zustande zur Beobachtung zu
erhalten; aber schon nach den gegebenen Mittheilungen er-
giebt sich dieser Brand als von den vorher genannten sehr
verschieden. Herr Unger*) hat die Bläschen eines Blatt-
pilzes abgebildet, welchen er für Caeoma Ficariae hält, die
einige Äehnlichkeit in ihrer Zusammenhäufung mit den, von
mir im Roggenstengel beobachteten Brandbläschen zeigen.

Kurz vor dem Drucke dieser Seiten fand ich, dafs
Herr Wallroth**) diese Brandbildung in Thüringen, und

*) Die Exantheme etc. Tab. VI. Fig. 29.
**) Flora crypt. Germ. II. p. 212.
ebenfalls an dem Roggen, auf fettem Boden beobachtet hat; er beschreibt sie unter seiner, angeblich schon von Theophrast aufgestellten und sehr verschiedenartige Sachen enthaltendenGattung Erysibe und nennt dieselbe Erysibe occulta (E. troglodytes Wallr. in litt.). Da Ustilago ganz und gar von Uredo, worauf hauptsächlich Erysibe Wallroth gegründet ist, zu trennen ist, so habe ich diese eigenthümliche Brandbildung hier zu Ustilago gestellt, glaube aber, daß man daraus noch eine besondere Gattung machen kann, nur muß die erste Bildung dieses Brandes noch genauer beobachtet werden.


In der Umgegend von Berlin, wo man den Elymus arenarius gegen den Flugsand angesäet hat, leidet diese Pflanze alljährlich ganz gewöhnlich an einer eigenthümlichen Art von Flugbrand. Dieser Brand ist von tief-schwarzer Farbe und zeigt sich auf der Oberfläche des Halmes unmittelbar unter der Blattscheide; der Brandstaub bildet mitunter Krusten, welche eine halbe Linie dick sind und sich meistens vom untern Knoten eines jeden Internodium's bis über die Hälfte desselben erstrecken, oder im Allgemeinen so weit als die Blattscheiden reichen. Später lösen sich die Blattscheiden mehr oder weniger von dem Halme und dann kommt der lose und freiliegende Brandstaub zum Vorschein. Wenn dieser Brand ausgebildet ist, sollte man glauben, daß der Brandstaub auf der inneren Fläche der Blattscheiden sitze, eine nähere Untersuchung, besonders auf gut geführtem Querschnitte zeigt indessen sehr bestimmt, daß sich die ganze Brandmasse auf der äußern Fläche des Halmes befindet und zwar unmittelbar auf der Epidermis desselben, ohne daß diese dadurch zerstört wird, ja man kann den Brandstaub vollständig von der Epidermis entfernen und diese ist alsdann nach wie vor ganz unversehrt.

Die Entstehung dieser Brandmasse muss man im Anfange des Sommers beobachten. Schon in der Mitte des Juni zeigt sie sich bei uns in allen Graden der Ausbildung und feine Quer- und Längsschnitte, durch den erkrankten Halm geführt, geben von dem Verhalten der aufsitzenden parasitischen Masse die genaueste Ansicht. Unmittelbar auf der Epidermis des erkrankten Halms und vollständig bedeckt von der umgebenden Blattscheide, zeigt sich eine gelbliche, weiche Substanz, welche aus feinen, dicht neben einander liegenden und mit einander verklebten Schleimfasern zu bestehen scheint. Diese Masse bildet auf ihrer Oberfläche, also zunächst der Epidermis der umschließenden Blattscheide, jene rufsartige, schwarze Masse, welche aus den kleinen Brandbläschen besteht, ja man kann ziemlich deutlich sehen, dass sich diese kleinen Bläschen durch Abschnüren an der Spitze jener faserartigen Gebilde zeigen, aus welchen die weiche Masse zu bestehen
scheint, die sich, offenbar in Folge einer Ausscheidung, auf der Oberfläche der Halme gebildet hat. Mit der Abtrennung der Bläschen nehmen diese die dunklere, bräunliche Färbung an und diese Bläschen-Bildung schreitet allmählich immer mehr und mehr von der Oberfläche in die Tiefe hinab vor, bis endlich die ganze abgelagerte Substanz, bis unmittelbar auf der Epidermis des erkrankten Internodium's, sich in Brandstaub umgewandelt hat. Die Substanz des vom Brand-Pilz umgebenen Halmes zeigt in ihrem Innern wenig Abweichendes, nur die Zellen der Epidermis und der zunächst darunter liegenden, pflegen spät im Sommer hie und da auch in ihrem Innern dergleichen kleine, fadenförmige und verästelte Ablagerungen einer schleimartigen Masse zu zeigen, wie wir sie in so ausgezeichnetem Grade in den Flugbrand-Geschwüsten des May's sahen, aber es kommt hier bei dem Elymus niemals zur Ausbildung von Brand-Bläschen im Innern der Zellen.

ven verlaufen, und daß hier im Innern die Entwicklung ganz in derselben Art vor sich geht, wie bei Ustilago hypodytes zwischen Halm und Blattscheide. Das krankhafte Excret, woraus sich die Brandbläschen bilden, erscheint auf der innern Fläche jener Luftöhlen und vergrößert sich nach der Mitte derselben zu. Hier in der Mitte erscheint auch die Ausbildung der kleinen Brand-Bläschen zuerst und von hier aus erstreckt sie sich allmählich immer weiter bis an die Wände der Luftöhlen, zuletzt ist gar häufig der ganze Raum im Innern jener Luftöhlen mit Brand-Staub gefüllt und dann bricht die darüber liegende Zellenschicht und die Epidermis auf der Oberfläche des Blattes auf und die Bläschen der Brand-Pilze treten hervor und verstäuben. Auch bei diesem Flug-Brande findet man einzelne größere, wasserhelle Bläschen zwischen den kleinen und bräunlich gefärbten, doch sind sie seltener, als bei der vorher beschriebenen Art.

Sowohl Ustilago longissima als Ustilago hypodytes fand ich nur in solchen Gegenden, welche entweder sehr tief und unmittelbar am Wasser liegen, wie dieses z. B. mit Ustilago longissima auf Poa aquatica stets der Fall ist, oder es waren Gegenden, welche bei Tage der brennenden Sonnenhitze ausgesetzt und Nachts durch naheliegendes und kaltes Wasser eine sehr niedere Temperatur zu ertragen haben, so daß dadurch starke Ausdünstungen der Pflanzen sehr leicht und häufig unterdrückt werden müssen. Wir sahen denn auch die Entstehung dieser Brand-Pilze aus einer homogenen und mehr schleimartigen Masse, welche von der Oberfläche der Pflanzensubstanz nach solchen Gegenden hin abgesondert worden ist, an welchen die Transpiration zwar ebenfalls vor sich geht, die transpirirte Masse aber nur in geringem Grade fortgeführt werden kann, wie z. B. auf der Oberfläche der Halme, welche noch ganz fest von den genau anliegenden Blattscheiden umschlossen werden und ebenso auf der innern Fläche der Luftöhlen und Lücken.
XI. Der Rost. Rubigo der ältern Autoren.

1) Uredo Pers.

Der Rost ist zwar eine, viel häufiger vorkommende Krankheit der Pflanzen als der Brand, aber sie ist unsern Cultur-Pflanzen niemals so schädlich als dieser, daher denn auch viel weniger über den Rost als über den Brand geschrieben worden ist. Mit dem Namen: Rost, Rubigo, bezeichnete man im Allgemeinen die gelbbrauen, rostfarbenen Flecke, welche auf verschiedenen Theilen einer großen Menge von Pflanzen auftreten und durch kleine, staubartige Körper dargestellt werden, die man für parasitische Gewächse aus der großen Familie der Pilze erkannte. Mit dem Ende des vergangenen Jahrhunderts begann man dergleichen Bildungen mit größerer Aufmerksamkeit zu studiren und fand, daß sie aus sehr verschiedenartig gestalteten Gewächsen bestehen, die sich wieder in eine Reihe von Gattungen und Arten trennen lassen. Diejenigen Bildungen der Art, zu welchen der Rost im Getreide gehört, von dem noch am Meisten die Rede ist, wurden von Persoon*) unter der Gattung Uredo vereinigt, die sich durch einfache Bläschen charakterisirt, welche unter der Epidermis der Gewächse entstehen und nach dem Zerreissen derselben als ein feines Pulver hervortreten. Wenngleich die spätern Untersuchungen und besonders die Beobachtungen der neuesten Zeit sehr wohl zeigten, daß unter der Gattung Uredo wahrscheinlich noch sehr verschiedenartige Sachen vereinigt sind, so ist dennoch die Persoonsche Gattung als eine sehr gute anzusehen und durchaus beizubehalten, ganz besonders noch deshalb, weil dieser Name so sehr allgemein angenommen ist. Neuerlichst hat jedoch Herr Wallroth**) die Gattung Erysibe nach Theophrast aufgestellt und dahin die Uredines nach Persoon wie auch die Ustilago-Arten, welche wir im Vorhergehenden als so gänzlich verschiedene Bildungen.

nachgewiesen haben, gestellt; wir können hierin Herrn Wallroth nicht folgen, denn einmal sind die neuen Namen für diese Bildungen schon eingebürgert, zweitens hat Theophrast mit dem Namen Erysibe keine bestimmte Gattung benannt, wozu ihm die Mittel noch ganz fehlten, und endlich ist Erysibe schon wiederum längst für den bekannten Mehltan vergeben, eine Gattung, welche diesen Namen ebenfalls behalten mufs. Die Zahl der Synonyme für die parasitischen Bildungen, welche den Brand und Rost darstellen, ist schon so unendlich groß, daß wir alle neueren Namenveränderungen hierüber zurückweisen müssen.


Herr Unger hat viele schöne Beobachtungen über die Uredines bekannt gemacht, aber wie unendlich viel noch immer über den Ban und die Entstehung dieser Gebilde und der sie begleitenden Erscheinungen zu beobachten sei, davon möchte eine der gemeinsten Bildungen der Art, nämlich die Uredo candida Pers. (U. cruciferarum DC.) den besten Beweis geben.

*) Die Exantheme etc. 1833 pag. 262.
Gegenstand mit dem vortrefflichen großen Instrumente von Plössl und ich wage es jetzt mit Herrn Unger*) als ganz bestimmt auszusprechen, daß diese Uredo-Bildung durch eine abnorme Bildung und Umwandlung der Zellen hervorgeht, welche dicht unter der Epidermis jener Pflanze liegen. Ich weiß sehr wohl von welcher Bedeutung dieser Ausspruch ist, aber ich habe diesen Gegenstand auch vielfach genau untersucht. Hier bei der Capsella ist zu keiner Zeit irgend eine Ablagerung zwischen den Zellen zu sehen, aus welcher, wie es Herr Unger für dergleichen Bildungen allgemein gesehen zu haben glaubt, die Bläschen-Bildung hervorgehen könnte, sondern man sieht auf gut geführten Vertikalschnitten sehr wohl, daß die oberste grüngefärbcnte Zellenschicht, welche auf den erkrankten Theilen der Pflanze unmittelbar dicht unter der Epidermis liegt, die Matrix bildet, aus welcher sich die Bläschen der Pusteln hervorbilden und dieses geschieht auf folgende Weise:


*) Das Dasein der Entophyten beruht auf einem Krankheitsprozesse, der weniger als solcher, als vielmehr als Krankheitsorganismus in die Erscheinung tritt, wie in der vegetativen Welt überhaupt der Lebensprozeß oder das thätige Prinzip von der Form oder Keimseitenden Pole beherrscht wird u. s. w. Unger, die Exantheme der Pflanzen. S. 179.
aber an derselben mit einem ganz kleinen, cylindrischen Stielchen sitzen bleiben. Gleich darauf geht die Spitze der Zelle die Bildung einer neuen Blase von eben derselben Größe, wie die erste, ein, welche sich gleichfalls mit einem Stielchen von der Basis abschnürt; so erfolgt nun die Bildung der 3, 4, 5, 6, und wohl auch der 7ten Blase auf ganz gleiche Weise, nämlich durch ein Verlängern, Auswachsen und Abschnüren der Spitze der erkrankten Zellen und lange Zeit hindurch, selbst oft noch nach dem Aufreißen der Epidermis, kann man, bei behutsam geführten Schnitten, die ganzen Reihen der durch kleine Stielchen zusammenhängenden und gleich großen, perlschnurformig aneinandergereihten Uredo-Bläschen sehen, welche als ihr Endglied noch immer jene, ursprünglich dicht unter der Epidermis gelagerte Zelle zeigen. Bei der Formveränderung dieser Zellen kann man auch sehr wohl die Veränderung des Inhaltes derselben verfolgen; die grünen Kugelchen sind sehr oft noch in der unteren Hälfte einer solchen Zelle, die schon Bläschen gebildet hat, ganz normal, während sie höher hinauf schon größtenteils aufgelöst, entfärbt und in der Spitze dieser Zellen ganz verschwunden sind. Auch sieht man sehr häufig, dass die Zellen der zunächst darunter liegenden Schicht ebenfalls krankhaft affizirt sind, was sich hier wenigstens durch einen rothgefärbten Zellsaft darstellt. Die Erhebung der Epidermis, wodurch die sogenannte Pustel entsteht, wird also hier durch die kleinen Bläschen veranlaßt, welche aus den Enden der, der Epidermis zunächst gelegenen Zellen durch Abschnürung hervorgebildet und immer weiter emporgeschoben werden.

Die wahre Uredines sind von gelbrother Farbe und haben eine ganz andere Entstehung; sie brechen unter der Epidermis hervor, sind aus bedeutend grössern Bläschen gebildet, welche alle gestielt auftreten, sich aber bei der vollkommenen Reife von den Stielen trennen, die dann zurückbleiben. Man sieht hieraus, dass diese wahren, rostfarbenen Uredines mit jenen der sogenannten dritten Ent-
wicklungs-Epoche des Herrn Unger zusammenfallen. Diese Uredines treten auf sehr vielen Pflanzen auf, meistens auf den Blättern, und zwar auf derjenigen Seite derselben, welche mit Spaltöffnungen versehen ist; sie kommen aber auch auf solchen Pflanzenteilen vor, welche keine Spaltöffnungen besitzen; als auf dem Rücken der Blattnerven u. s. w. Am Stengel, an den Kelchen, selbst an verschiedenen Blüthensteilen und auch an den Früchten treten diese Rostbildungen auf und man hat sie, je nachdem sie auf verschiedenen Pflanzen vorkommen, als besondere Arten beschrieben, die meistens den Namen der Pflanze als Beinamen erhielten, auf welchen sie beobachtet wurden. Einige Botaniker haben geglaubt, daß die systematische Bestimmung solcher einfachen Bildungen unnötig sei und andere glaubten wieder, daß sich diese Gewächse gar nicht weiter in Species unterscheiden ließen. Gewöhnlich haben einige ausgezeichnete Systematiker die spezielle Beschreibung der Uredines unterlassen, denn viele derselben sind gar sehr auffallend charakterisirt, worauf man aber bis jetzt noch wenig geachtet hat, weil dergleichen Untersuchungen fast nur auf sehr gut geführten Querschnitten zu verfolgen sind, deren Anfertigung aber für sehr starke Vergrößerung leider sehr schwer ist. Gewöhnlich sind die Uredines für gewisse Gattungen und mitunter auch für ganze Familien in ihrer Form vollkommen übereinstimmend, daher denn auch die Zahl der, noch künftig zu beschreibenden und abzubildenden wirklichen Arten wohl nicht so sehr groß werden möchte.

Über die Bildung dieser Uredines ließ sich im Allgemeinen Folgendes beobachten: Die Uredines treten ebenso, wie die meisten übrigen Blattpilze, meistens ohne besondere Anschwellung der Pflanzenteile auf, doch kommen hier, wie auch bei den andern Blattpilzen, dergleichen Fälle gar nicht selten vor, wo diejenige Stelle der Pflanzenteile, welche von der Uredo-Bildung ergriffen ist, mehr oder weniger stark anschwillt, und dieses ist ganz besonders an den Blattstielen, an den Nerven der
Blätter u. s. w. der Fall, selten jedoch nur auf dem Diphyan der Blätter. Die Uredines treten im Allgemeinen nicht so früh im Sommer auf, als die Aecidien, von welchen später die Rede sein wird, ja sehr oft erscheinen sie bei gewissen Pflanzen erst sehr spät, treten dann auf den älteren Blättern zuerst auf und gehen von diesen allmählich zu den jüngern in ihrer Verbreitung über. Auf Querschnitten kann man wahrnehmen, dass die der Epidermis zunächst liegende grünfärbte Zellenschicht den Sitz der kleinen Pilze bildet. Diese Zellen sind mehr oder weniger vollständig entfärbt; statt des grünfärbten Inhaltes zeigen sie eine röthliche, feinkörnige Masse, welche auch noch mehr oder weniger tief die zunächst liegenden Zellenschichten erfüllt, und hie und da finden sich in einzelnen Zellen kleine orangerote Tröpfchen eines, wie es scheint, fetten Öles. Zugleich findet man, dass eine solche orangerote, feinkörnige und schleimige Masse, wie sie in den erkrankten Zellen enthalten ist, zugleich die Intercellulargänge derjenigen Zellenmasse erfüllt, welche den Sitz der kleinen Schmarotzer darstellt und besonders ist es die Oberfläche derjenigen Zellen, die zunächst der Epidermis liegen, welche mit jener Substanz bekleidet ist. Aus dieser Masse gehen unmittelbar die einfachen Schlüche hervor, welche an ihren Enden keulenförmig anschwellen und sich durch Abschnürung dieser Anschwellung in den Träger und das darauf sitzende Bläschen umwandeln. Hier bei den wahren Uredo-Arten kann man ganz bestimmt beobachten, dass diese parasitischen Gewächse nicht durch eine abnorme Bildung und Umwandlung der Zellen hervorgehen, sondern dass sie aus jener schleimigen, orangeroten Substanz entstehen, welche auf der äussern Oberfläche der erkrankten Zellen abgesondert wird. Überall, wo diese Uredo-Bildungen auf solchen Pflanzentheilen auftreten, die mit Spaltöffnungen versehen sind, erfüllt diese kranke Absonderung der schon erkrankten Zellen die zunächst liegenden Intercellulargänge, doch finden diese Absonderungen..."
auch in solchen Fällen statt, wo gar keine Intercellulargänge vorhanden sind, und da werden durch dieselben die früher innig mit einander verbundenen Zellen getrennt, die äußere Zellenschicht wird ganz abgelöst und nach der Ausbildung der Uredo-Bläschen auch zersprengt. Demnach kann man keineswegs die Behauptung aufstellen, daß die Uredo-Bildungen als Krankheiten der gestörten Respiration anzusehen seien und in den Respirations-Organen ihren Sitz hätten.

Die orangerote Farbe erhalten die Uredo-Bläschen von ihrem Inhalte, der sich ganz ähnlich jener, in und um die erkrankten Parenchym-Zellen erzeugten orangenrothen Substanz verhält, aber häufig in Form kleiner und mehr bestimmter Körnchen auftritt, welche dann die bekannte Molekular-Bewegung zeigen, was aber durchaus nicht immer stattfindet.

Bei den Dikotyledonen treten die Uredo-Bildungen mehr in Form kleiner runder Häufchen auf und diese sind mitunter von einem Kranze kleiner, nach Außen gebogener, ebenfalls keulenförmig gestalteter Härcchen umgeben, welche dem Ganzen ein sehr niedliches Ansehen geben, wenn man es mit gehöriger Vergrößerung betrachtet. Am schönsten und regelmäßigsten zeigte sich mir diese Bildung an der Uredo auf den Blättern der Rosen; dieser Kranz von Härcchen bedeckt bei den Rosen die zunächstliegenden Ränder der zerrissenen Epidermis so vollkommen, daß man kaum glauben sollte, daß die Uredo-Pustel durch die Epidermis hindurchgebrochen sei. Mitunter sind diese Härcchen im Umkreise der Uredo-Pustel recht lang, mit dicker Keule und schmalem Stiele versehen und unterscheiden sich von denjenigen jungen Härcchen, welche in der Mitte der Pustel stehen, nur durch Größe und durch ihre Krümmung; sie bleiben aber auch für ihre ganze Lebensdauer in diesem Zustande, während die Härcchen in der Mitte der Pustel sehr bald Veränderungen eingehen. Es schnürt sich nämlich das keulenförmig angeschwollene Ende eines jeden Härcchens zu einem mehr oder weniger
kugelförmigen oder ellipsoidischen Bläschen ab und dieses trennt sich nach vollendeter Reife von seinem Stielchen, welches sitzen bleibt und keine neuen Bläschen erzeugt. Diese Uredo-Bläschen nennt man zwar bei der systematischen Beschreibung: Sporen oder Sporidien, indessen so wohl die Beobachtungen meiner Vorgänger, als auch die meinigen, gar häufig wiederholten, haben niemals ein Keimen oder weiteres Wachsthum derselben dargethan und somit glauben wir mit Bestimmtheit sagen zu können, daβ sich eben so wenig die Rostbläschen wie die Brandbläschen durch Sporen unmittelbar vermehren, daher denn auch eine Übertragung dieser Pilzbildungen von einer Pflanze zur andern durch die Bläschen derselben nicht anzunehmen ist, wenn auch so häufig hiervon im großen Publiko die Rede ist.

Eine sehr beliebte Ansicht über die Fortpflanzung der Rostarten war diejenige, welche von Banks aufgestellt wurde. Nach ihm glaubte man, daβ die Rostbläschen im Zustande der Reife aufplatzen, was ich aber nicht bestätigen kann, und daβ der feine Inhalt derselben durch die Spaltöffnungen in die Pflanzen hineintrete und dann überall auf dem Boden der Höhlungen keime; ja man ging so weit, daβ man annahm, der Rost im Getreide entstehe durch den schönen Blattpilz, der auf dem Sauerdorn (Berberis vulgaris) so häufig vorkommt. Man hatte nämlich in England gesehen, daβ manche Gegendenden, in welchen viel Sauerdorn vorkommt, vom Rost im Getreide stark zu leiden haben und schloß daraus, daβ der Sauerdorn daran Schuld sei. Diese Meinung ist ungemein häufig von den Landwirthen ausgesprochen, aber es ist, wenn man die Gründe dafür näher untersucht, keine Spur von Wahrscheinlichkeit dafür aufzufinden. Der Blattpilz auf dem Sauerdorn ist ein Aecidium, gehört gar nicht zu den Rostbildungen, und daβ ein Aecidium-Bläschen eine Uredo-Bildung hervorrufen könne, wäre noch eine Hypothese mehr. Uebri gens gibt es auch viele Gegendenden in Deutschland, wo man den Sauerdorn in großer Menge neben den Getreide-
Feldern stehen und in ihm keinen so gefährlichen Nachbarn kennen gelernt hat.

Gewöhnlich tritt die Uredo- oder Rost-Bildung in so geringer Ausdehnung und in so später Zeit auf den Blättern der Pflanzen auf, daß diesen dadurch wenig oder gar kein merkbarer Schaden erwächst; man hat aber mitunter, und besonders an unsern Cultur-Pflanzen, den Rost in so großer Menge beobachtet, daß dadurch den Pflanzungen sehr großer Nachtheil zugefügt wurde. In einem tiefgelegenen Garten sah ich mehrere Jahre hintereinander Hunderte von Rosenstöcken so stark mit Rost befallen, daß auch fast kein einziges Blatt davon verschont blieb; die Folge davon war, daß die Pflanzen recht sehr litten und die Rosen von Jahr zu Jahr schlechter wurden. Unsere Cerealien sind es gerade, welche sehr häufig in großer Ausdehnung von dem Rost befallen werden und dabei auch mehr oder weniger stark leiden, weshalb denn auch der Rost im Getreide schon häufig die Aufmerksamkeit der Oekonomen und Naturforscher auf sich gezogen hat, was man bei dem Rost auf andern Pflanzen gerade nicht für nöthig hielt. In manchen Jahren ist der Rost im Getreide (Uredo Rubigo-vera Dec. und Uredo linearis Pers.) ungemein häufig und ganze Länder werden davon heimgesucht, so daß man das Auftreten desselben als eine wahre Epiphytozie bezeichnen kann, nämlich als eine Pflanzenkrankheit, die sich, nach Art der Epidemieen in der Krankheitswelt der Menschen, über ganze Länder und ganze Gegenden erstreckt. Ziemlich allgemein hat man erkannt, daß das Auftreten des Rostes eine Krankheit ist, welche mit den meteorologischen Verhältnissen im innigen Zusammenhange steht und gegen solche Krankheiten ist denn auch ganz und gar nichts zu thun. Das Jahr 1804 zeichnete sich, ganz besonders in England, durch starkes Auftreten des Rostes im Getreide und im Klee aus, wobei aber auch viele Gegenden des Continents zu gleicher Zeit sehr stark an dieser Krankheit litten; in England fiel die Ernte ganz ungemein schlecht aus und dieser Umstand
veranlafste daselbst das Erscheinen mehrerer Schriften über jene so gefährliche Krankheit unserer Cerealien. Die berühmte Schrift von Banks:) über die Ursachen der Krankheit des Kornes, welche von den Landwirthen Brand, auch Mehlthau und Rost genannt wird, ward im Magazin aller neuen Erfindungen**) in der deutschen Uebersetzung wiedergegeben und ist in manchen andern praktischen Schriften zu finden, und die schöne Abhandlung: Ueber den Rost im Getreide im Jahre 1804 aus Art. Young’s Annalen ward in der landwirthschaftlichen Zeitung von 1816, Nr. 12. mitgetheilt. Man erkannte sehr bald, dafs die Ursache des häufigen Erscheinens des Rost’s in den meteorologischen Verhältnissen des Jahres 1804 zu suchen sei. Es fiel viel Regen, und häufig wechselten während der Blüthezeit warme Tage mit kalten Nächten, und die-ses sind die entfernten Ursachen, welche zu allen Zeiten und in allen Ländern die Entstehung des Rost’s herbeiführen können; Getreide-Felder, welche in der Nähe kal-ter Gründe angelegt sind, werden sicherlich immer viel häufiger mit Rost befallen sein, als andere, ganz trocken gelegene, und zwar aus dem einfachen Grunde, weil in solchen Localitäten der Wechsel der Wärme des Tages und der Kälte des Nachts viel bedeutender ist. Es scheint mir übrigens, dafs dergleichen Angaben, dafs die Blattpilze nie so häufig vorgekommen seien, als in den trockenen Jahren von 1808 und 1811 nicht ganz richtig sind; es ist nur zu gewifs, dafs der Rost bei feuchtem Wetter erscheint, besonders wenn dasselbe mit Kälte begleitet ist, und wenn man genauer darauf achtet, so wird man alljährlich beobachen-ten können, wie die Rost-Arten während anhaltend trock-nen Zeit in ihrem Auftreten zurückbleiben, aber sich sehr bald zeigen, wenn das feuchte und kalte Wetter wieder eintritt.

*) A short Account of the cause of the disease in Corn, called the Blight, the Mildew and the Rost. London 1805. 8.

**) Leipzig 1806 p. 264.
Der Rost befällt alle unsere Getreide-Arten und kommt ebensowohl auf den wildwachsenden Gramineen und Cyperaceen vor; von den cultivirten Gräsern befällt er jedoch am häufigsten den Weizen, die Gerste und den Hafer, der Roggen leidet indessen nur selten und im Allgemeinen kann man sagen, daß die Winter-Getreide häufiger vom Roste heimgesucht werden, als die Sommer-Getreide-Arten. Die Krankheit ist um so schlimmer in Bezug auf den Ertrag der Pflanzen, je früher sie eintritt und je größer die Menge derselben ist, welche sich auf den Blättern, den Halmen und selbst auf den Spelzen zeigt. Tritt die Krankheit schon vor der Blüthe ein, so zeigt sie sich sehr bemerkbar in dem verminderten Ertrage; die Körner werden zwar reif, aber sie bleiben leicht, denn es fehlt ihnen an Stärkemehl, und bei jenen großen Mißsernsten im Jahre 1804 ist dieses in England oftmal's so stark gewesen, daß man bei dem Mahlen des Getreides fast nur Kleie erhalten hat. Dagegen waren die Körner von solchen, mit Rost befallenen Pflanzen zur Aussaat ganz tauglich und gaben im folgenden Jahre ganz vollkommen gesunde Pflanzen.

Von einer Heilung der vom Roste befallenen Pflanzen kann nur dann die Rede sein, wenn diese Pflanzen mehrjährig sind; bei den Getreiden aber, welche vom Roste befallen sind, ist nichts mehr zu machen und auch mit den Vorbauungsmitteln gegen den Rost steht es sehr schlecht, da die entfernten Ursachen dieser Krankheit in den meteorologischen Verhältnissen begründet sind, gegen welche nicht anzukämpfen ist.

Von den übrigen Cultur-Pflanzen sind es hauptsächlich die Erbsen und großen Bohnen, welche gar häufig so stark vom Roste befallen werden, daß ihr Ertrag an Früchten darunter gar sehr leidet.

2. Uromyces Link.

Eine zweite Gattung, welche die Rostkrankheit der Pflanzen darstellen hilft, ist Uromyces nach Herrn Link. Sie charakterisirt sich von der vorhergehenden Gattung
Uredo durch gestielte Bläschen, indem die Stiele auch bei vollkommener Reife an den Bläschen sitzen bleiben, was bei Uredo nicht der Fall ist. Die feinen Stiele an den Bläschen von Uromyces sind übrigens von denselben nicht durch wirkliche Abschnürung getrennt, sondern es sind bloße Fortsätze derselben. Die Bildung der Uromyces-Arten geschieht übrigens ganz ebenso wie die der Gattung Uredo, und die Uromyces-Bläschen unterscheiden sich von diesen noch durch eine dunklere Orangefarbe, welche dem bloßen Auge mitunter ganz dunkelbraun erscheint.

Die Gattung Uromyces ist sehr nahe mit Uredo verwandt, indem es Uromyces-Arten gibt (und wahrscheinlich findet es sich bei allen Arten dieser Gattung) wo man in einer und derselben Pustel wahre Uredo-Bläschen, nämlich ungestielte, und dicht daneben lauter gestielte Bläschen findet. Besonders häufig sind die Uredo-Bläschen bei dem Aufbruche der Pustel, während später lauter wahre Uromyces-Bläschen zur Ausbildung kommen. Durch diesen Umstand ist denn auch die Bestimmung mancher dieser Rost-Arten, ob sie zu Uredo, oder ob sie zu Uromyces gehören, recht sehr schwierig und daher denn auch die vielen Synonyme, welche alle diese Bildungen mit sich führen. Auffallend ist mir immer das Erscheinen von Uromyces Euphorbiae Cyparissiae (Uredo scutellata Pers.). Er findet sich bei uns in der Mark gar häufig und zwar stets an solchen mißgestalteten Pflanzen, welche gewöhnlich das Aecidium Euphorbiae tragen; er bedeckt gewöhnlich die ganze untere Fläche der obersten jungen Blätter, kommt aber auch mit einzelnen Häufchen auf der oberen Fläche dieser Blätter vor, ja ich habe mehrmals gefunden, daß die Blätter der Euphorbia schon mehrere Pusteln der männlichen Aecidien-Bildung zeigten, worüber später die Rede sein wird, als plötzlich statt der weiblichen Aecidien-Pusteln die dunkel orangenbraun gefärbten Uromyces-Pusteln hervortraten. So sah auch Herr Unger,*)

*) Ueber den Einfluß des Bodens etc. p. 216.
daß eine Uromyces-Art mit dem Aecidium Liliacearum am Schafte und an den Blättern von Lilium bulbiferum auftrat.

Besonders häufig kommt Uromyces auf den Leguminosen vor und Herr Unger führt diese Art als Uromyces appendiculata auf, wozu Uredo appendiculata Persoon und Caeoma appendiculosum Lk. gerechnet werden, doch wird auch hier dieses Schmarotzer-Gewächs wohl nur sehr selten in solcher großen Menge auftreten, daß es den Pflanzen dadurch tödlich wird. Mit besonderer Aufmerksamkeit hat übrigens Herr Unger*) die Bildung der Uromyces-Arten verfolgt und wir verweisen auf diese Arbeiten, weil dieser Gegenstand an diesem Orte nicht weiter ausgeführt werden kann.


Häufiger und artenreicher als Uromyces ist die Gattung Puccinia. Sie zeigt gestielte Sporangien (wenn man sie so nennen darf), die in der Mitte der Quere nach eingeschnürt sind und im Innern 2 zusammenhängende, mit einer gefärbten und grumösen Masse gefüllte Bläschen enthalten. Die Entstehung derselben ist ganz wie die der Uredo-Bläschen, aber bei der weiteren Ausbildung schnürt sich das blasenförmig angeschwollene Ende des einfachen Schlauches durch eine Querwand in zwei besondere Hälfte ab und hierauf erfolgt die Bildung einer eigenen feinen Haut im Innern einer jeden dieser Abtheilungen. Dieses ist das Wesentliche in der Bildung der Pucciniien; bei den verschiedenen Arten dieser Gattung wird man jedoch bald diese, bald jene kleine Abweichung von diesen Angaben auffinden können. Man nannte die äußere Haut dieser Pucciniien-Bläschen Sporangium, und die beiden, im Innern befindlichen, mit der grumösen Masse gefüllten Bläschen erklärte man für Sporidien,**) andere

*) Die Exantheme etc. p. 278 und über den Einfluß des Bodens etc. p. 216.

**) S. Eysenhardt's vortreffliche Arbeit über die Gattung Phrag-
nenen die äußere gestielte Hülle das Sporidium und die beiden innern Bläschen die Sporidiola. In wie weit diese Benennungen passend sind, wird man beurtheilen können, wenn man erfährt, dafs von einer Fortpflanzung dieser Bildungen noch nichts beobachtet worden ist, ja dafs man weder das Hervortreten der beiden innern Bläschen aus dem sogenannten Sporangium, noch das der grumösen Masse aus dem Innern der Bläschen beobachtet hat.

Die Puccinien treten ebenso wie die Uredines in rund- oder in linienförmigen Häufchen auf; sie sind gewöhnlich von einer dunklern orangegelben, bis ziemlich tief braunen Farbe und verhalten sich in ihrer ganzen Entwicklungsweise wie die Uredines.

Die Gattung Puccinia ist sehr reich an Arten; uns interessirt an diesem Orte jedoch nur die Puccinia graminis, welche ebenfalls sehr häufig den Rost im Getreide bildet, ja bei dem großen Misswuchse im Jahre 1804 scheint der Getreide-Rost hauptsächlich aus Puccinia graminis bestanden zu haben. Man kann jedoch diese beiden Arten von Rost, nämlich Uredo Rubigo, wovon pag. 34 die Rede war und Puccinia graminis schon mit blofsem Auge unterscheiden; die erstere Art ist von heller orangerother Farbe, während die andere dunkel orange ja oft fast dunkelbraun gefärbt ist, auch bilden die Puccinien viel höher hervorstehende Häufchen als die Uredines. Schon Fontana wufste es, dafs der Rost im Getreide von zwei verschiedenen parasitischen Gewächsen gebildet wird.

Die Puccinien-Bläschen sind wiederum auf verschiedenen Pflanzen-Gattungen und Familien sehr verschieden geformt und es lassen sich oftmals die Arten dieser Gattung sehr scharf bestimmen. Im Allgemeinen zeigen sie zwei Hauptformen: die eine ist eirund und zeigt genau in der Mitte die Querwand, die andere ist dagegen mehr in die Länge gezogen, mit bedeutendem Stiele versehen und midium und Puccinia Potentillae in Bezug auf Bildungsgesetze erläutert. Linnaea 1828 p. 81.
oft auch auf dem oberen Ende zugespitzt. Im Innern der einzelnen sporenartigen Zellen sind nicht selten die Zellenkerne zu sehen und in andern Fällen zeigt sich auch hier an dem grünoßen Inhalte die Molekular-Bewegung.

4. Phragmidium Link.

Herr Link trennte noch die kleine Gattung Phragmidium von Puccinia, welche sich durch lange, mehr cylindrische Sporangien auszeichnet, die im oberen Ende noch ein in mehrere Fächer, 5, 6 bis 7 getheiltes Sporidium enthalten. Sowohl durch die, schon vorher angeführte Arbeit von Eysenhardt, besonders aber in Herrn Unger's Werke über die Blatt pilze, besitzen wir ausgezeichnet schöne Beobachtungen über die Bildung dieser, hoch entwickelten Schmarotzer, auf welche ich verweisen zu können glaube, indem es uns hier zu weit abführen würde, wollte ich specieller in die Bildungsgeschichte dieser Gewächse eingehen, welche zwar ebenfalls Produkte einer innern Krankheit der Pflanzen sind, indessen niemals in solcher Bedeutung auftreten, dafs dadurch das Gedehren der davon befallenen Pflanzen gefährdet würde. Auf unsern Himbeer-Sträuchern, so wie auf den Rosen kommen die Phragmidien-Arten sehr häufig vor, erscheinen aber gewöhnlich erst spät im Sommer.

XII. Der Spelzenrost, Weizenrost, Kappenrost. Rubigo glumarum (Kappenbrand und Balgbrand unrichtig benannt).

Unter dem Namen Kappenbrand (Spelzenbrand), Uredo glumarum, hat Th. Schreger* eine Krankheit dieser Art beschrieben, welche mir selbst nicht vorgekommen ist, auch finde ich nirgends über das Vorkommen einer Uredo glumarum berichtet. Schreger sagt, dafs der Kappenbrand eine fast ebenso schädliche Pilzart als der Steinbrand sei; er habe grosse kugelrunde oder längliche pomeranzengelbe

*) S. Encyclopädie von Ersch und Gruber. Artikel Brand.

**Aecidium Pers.**

Die Gattung Aecidium bietet eine sehr grosse Anzahl verschiedenartiger Blattpilze dar, welche auf Kräutern und Bäumen in unsern Gegenden ungemein häufig vorkommen. Im ausgebildeten Zustande sind sie mehr oder weniger vollkommen orangefarbig und treten in mehr oder weniger grossen Pusteln auf, welche bald mit, bald ohne Anschwellungen oder anderweitige Deformität der davon befallenen Organe erscheinen. Der Pilz besteht im ausgebildeten Zustande aus einem Häufchen von ellipsoidischen, sporenartigen Bläschen, welche in einer eigentümlichen, mehr oder weniger becherförmig gestalteten Hülle (Peridium) enthalten sind und allmählich verstäuben. Diese becherförmigen Hüllen waren früher geschlossen, kugelförmig, entwickelten sich in der Substanz der davon befallenen Pflanzentheile, meistens der Blätter, und brachen endlich über die Epidermis hinaus. Die Arten dieser
Gattung sind sehr zahlreich und man benennt sie gewöhnlich nach den Pflanzen, auf welchen sie vorkommen; die Form und oberflächliche Struktur der Aecidien-Bläschen, vorzüglich aber die Form der Aecidium-Hülle gibt den Charakter zur Bestimmung der Arten, welche sehr constant sind.

Die Aecidien, wie die meisten Blattpilze treten im Frühjahr und im Anfange des Sommers auf; gewisse Pflanzen sind in manchen Gegenden stets von diesen Blattpilzen heingesucht, so z. B. Euphorbia Cyparissias bei Berlin. Bei dieser Pflanze sitzen die Aecidien-Pusteln fast immer auf der untern Fläche der Blätter, welche damit zuweilen über und über bedeckt ist; aber alle Blätter, welche damit befallen werden, haben eine andere Form als die gesunden; sie werden dicker und erlangen nie ihre vollkommene Größe, ja meistens bleibt die ganze Pflanze, welche stark mit Aecidien-Pusteln bedeckt ist sehr zurück.

Die Bildungsgeschichte der Aecidien ist sehr interessant, aber noch immer nicht vollständig aufgeklärt; besonders Aufmerksamkeit verdient jene eigenthümliche Bildung, welche stets den Aecidien-Pusteln vorangeht und, wie es scheint, bis jetzt nur von Herrn Unger*) bemerkt ist. Vor dem Ausbruche dieser Exanthemata (Blattpilze), sagt derselbe, bemerkt man kleine, punktgroße, dunkler gefärbte Pusteln, die dem unbewaffneten Auge fast gänzlich entfliehen; das Mikroskop zeigt aber, daß diese Pusteln in den Athemhöhlen der Blätter wurzeln, durch die Poren (wo sie vorhanden) in Form eines Cyliander hervortreten, hierauf ihre balgartige Umhüllung an der Spitze öffnen und eine Menge kleiner, ovaler, durchsichtiger Sporen, oft fadenförmig an einander gereiht, hervorsprossen. Herr Unger fand diese Bildung bei allen Pflanzen, wo sie ihm vorkam, sehr ähnlich und bezeichnet defshalb dieselbe unter einem einzigen Species-Namen und zwar als: Aecidiolum exanthematum.

*) Die Exanthemata etc. p. 300.
Eine genauere Untersuchung dieser eigenthümlichen Bildung, welche den Aecidien-Pusteln stets vorangeht, so wie die Berücksichtigung der räumlichen und zeitlichen Verhältnisse, unter welchen jene beiden Bildungen zu einander stehen, veranlassen mich zu der Meinung, daß wir hier verschiedene Geschlechter eines und desselben Pilzes vor uns haben, daß nämlich das Aecidiolum-exanthematum des Herrn Unger die männliche oder befruchtende Bildung der darauf folgenden wahren, sporenartige Bläschen enthaltenden Aecidium-Pustel ist. Obgleich ich aus den vorliegenden Beobachtungen gezwungen bin anzunehmen, daß wir hier bei den Aecidien mit Gebilden zu thun haben, welche den getrennten Geschlechtern bei andern cryptogamischen Pflanzen entsprechen, so bin ich dennoch keineswegs der Meinung, daß hier von einer wirklichen Befruchtung die Rede sein kann, wie sich dieses auch durch die speciellere Anführung der beobachteten Thatsachen nachweisen lassen wird.

Schon lange vorher, ehe die wahren Aecidien-Pusteln sichtbar werden, ist der männliche Vorläufer, wenn ich mich so ausdrücken darf, im vollkommen ausgebildeten Zustande; will man aber die anatomischen Verhältnisse dieser Bildung genauer kennen lernen, so muß man die frühesten Zustände derselben, noch lange vorher, ehe die Epidermis durchbrochen ist, zur Untersuchung ziehen. Ich fand zwar bei den meisten Pflanzen, daß sowohl die männlichen, als die weiblichen Aecidien-Pusteln auf der obern wie auf der untern Blattfläche vorkommen können, gewöhnlich ist es aber so, daß die weiblichen Pusteln auf der untern Blattfläche, die männlichen dagegen auf der obern Fläche eben derselben Blätter auftreten. Ja in allen den Fällen, wo die weiblichen Pusteln nur einzelne, genau begrenzte Flecke auf der untern Blattfläche einnehmen, gehen die männlichen Pusteln lange vorher, aber sie sitzen genau an eben derselben entsprechenden Stelle auf der obern Blattfläche. Mit am schönsten zeigte sich dieser Fall auf den Blättern von Rumex Acetosa, wo die
mit den männlichen Aecidien-Pusteln bedeckten Flecke von rother Farbe, genau begrenzt und mit einem hellgelben Rande eingefaßt waren; ferner auf den Blättern von Rhamnus Frangula, Ribes Grossularia, Urtica dioica u. s. w. Auf den Blättern von Sium Falcaria sind die männlichen Aecidien-Pusteln über die ganze Oberfläche des Blattes zerstreut; sie sitzen daselbst vereinzelt und ebenso, nur auf der untern Blattfläche, treten auch die weiblichen Aecidien-Pusteln daselbst auf. Bei Euphorbia Cyparissias sind es nur die obersten Blätter, welche die männlichen Pusteln zeigen, die darunter stehenden tragen die weiblichen, doch findet man hier und da auf einem und derselben Blatte beide Arten, aber die männlichen sind größtentheils schon ganz zerstört, wenn die weiblichen in voller Entwicklung stehen. Auf den Blättern von Ranunculus repens bilden die männlichen Pusteln kleine, runde Häufchen, während die weiblichen, sich später entwickelnden, rund um die erstern gestellt sind.

Ehe die männlichen Aecidien-Pusteln die Oberfläche der Organe, auf welchen sie vorkommen, durchbrochen haben, liegen sie unmittelbar unter der Epidermis oder der äußersten Zellenschicht. Auf Querschnitten, welche durch diese Gebilde geführt worden, sieht man runde, mehr oder weniger etwas linsenförmig zusammengedrückte Körper, welche die, unmittelbar darüberliegende Epidermis kegelförmig emporgehoben, und die darunterliegende oberste Zellenschicht des Diacyhms kesselförmig eingedrückt haben. Der dadurch entstandene Raum ist mit der jüngern, männlichen Aecidien-Pustel gefüllt, die in diesem Zustande noch einen sehr merkwürdigen Bau zeigt; sie besteht nämlich aus sehr feinen, linienförmigen, an beiden Enden zugespitzten Zellen, welche sämtlich strahlenförmig gestellt sind, so daß sie vom Umfange aus alle nach dem Mittelpunkte gerichtet sind; der Mittelpunkt der Pustel ist dagegen mit einer feinkörnigen, schleimigen und röthlich gelb gefärbten Flüssigkeit gefüllt, ja eine ähnliche feinkörnige, schleimige Substanz füllt auch die kleinen
Pustel liegen, mit jener rothgelblichen, feingekörnten Masse gefüllt sind, sondern daß auch die grünen, dicht unter der Pustel liegenden Zellen ihre schöne Farben verlieren und mehr oder weniger stark mit jener rothgelben gekörnten Substanz erfüllt werden.

Hat nun diese männliche Aecidien-Pustel ihre vollkommene Ausbildung erreicht, so platzt die darüberliegende Epidermis und es tritt ein kugelförmiger Körper aus der Öffnung derselben hervor, welcher aus der obersten Schicht jener nadelförmigen Zellen besteht, woraus die männliche Aecidien-Pustel gebildet wird; etwas später treten auch diese nadelförmigen Zellen an der Spitze des Kegels auseinander und verbreiten sich in der Art, daß sie einen Becher bilden; aus der Mitte dieses Zellenbündels treten unzählige kleine, bei verschiedenen Pflanzen sehr verschieden gestaltete Moleküle oder Bläschen hervor, welche in einen zuckerhaltigen Saft eingehüllt sind und gar häufig eine Molekular-Bewegung zeigen. Öffnen sich eine große Menge dieser männlichen Aecidien-Pusteln zu gleicher Zeit, so wird zuweilen der erkrankte Blatttheil ganz und gar mit einem zuckerhaltigen Saft bedeckt. Die nadelförmigen Zellen sind bei den Aecidien-Pusteln einiger Pflanzen ungemein fein, bei andern aber, wie z. B. bei Aecidium Si und ganz besonders bei Aecidium cancellatum auf Birnblättern, sind sie bedeutend groß und zeigen sich in Hinsicht ihres Inhaltes sehr bemerkenswerth. Im Anfange sind diese Zellen mit einer rothgelblichen, einige feine Körnchen enthaltenden Substanz gefüllt, später aber ändert sich diese in der Art um, daß nur hier und da einzelne scheinbar aus einem ungefärbten Oele bestehende Tröpfchen in den Zellen zu sehen sind. Die Bildung der Moleküle aber, deren Hervortreten aus der Mitte der hervorgebrochen nadelförmigen Zellen vorher angegeben wurde, geschieht in der Mitte der Pustel und, wie es scheint, werden sie aus solchen nadelförmigen Zellen, oder wenigstens zwischen dergleichen geformt. Sind diese Moleküle sehr klein, wie z. B. bei Aecidium Rhamni,
bei Aec. Euphorbiae u. s. w., so treten sie in Form einer schmalen Säule aus der Mitte der Pustel hervor, sind sie aber größer, wie z. B. bei Aec. Sii Falcariae, bei Aec. cancellatum u. s. w., so wird man in einzelnen Fällen ziemlich deutlich sehen können, daß diese Moleküle noch bei dem Hervortreten in der Art aneinandergereiht waren, daß man daraus auf ihre Entstehung aus jenen nadelförmigen Zellen schließen kann.

Dieses ist Alles, was ich über die Struktur und das Verhalten dieser männlichen Aecidien-Pusteln zu sagen habe. Sie stehen sonst in keiner weiteren Verbindung mit der Pflanzensubstanz und haben keine Spur von jenem flockigen Pilzgewebe, welches, gleichsam das Mycelium darstellend, mit den wahren Aecidien-Pusteln in Verbindung steht und sich durch das Intercellular-System der Blattsubstanz durchzieht. Um die Zeit, wenn diese männlichen Aecidien-Pusteln in vollkommener Ausbildung stehen, d. h. wenn sie aus der Oberfläche der Blätter u. s. w. hervorbrechen, bemerkt man in der Tiefe der Blattsubstanz (niemals so Oberflächlich und dicht unter der Epidermis wie bei jenen) die Entstehung der weiblichen Aecidien-Pusteln und diese zeigen sich zuerst als kleine, ungefärbte, welche und kugelförmige Körper, welche aus einem zarten und kleinmaschigen Zellengewebe bestehen. Die Substanz dieses jungen Parasiten ist stets sehr bestimmt von dem umgebenden Zellengewebe zu unterscheiden, welches mit dem Parasiten sehr dicht verbunden ist und bei weiterer Ausbildung desselben etwas zusammengedrückt und dadurch hie und da zerstört wird. Je größer der Parasit wird, um so mehr zeigt sich eine schleimige, feingekörnte Substanz, welche den Umfang des Parasiten und die zunächst liegenden Zellen umhüllt, und das flockige, aus zarten gegliederten und vielfach verästelten Fäden bestehende Gewebe, welches wohl das Mycelium des jungen Parasiten ist, breitet sich immer mehr und mehr durch die Intercellular-Gänge der Blattsubstanz aus. Die Entwicklung und Ausbreitung dieses Mycelium’s richtet sich ganz und
gar nach der Größse der Intercellular-Gänge; ist die Blattsubstanz locker und mit großen und weiten Intercellular-Gängen und Höhlen versehen, so wird auch das Mycelium stark ausgebreitet, im Gegenteil aber beschränkt sich dieses oft nur auf einige wenige und kurz verästelte Fäden.

Wie die Zellenbildung bei der Entwicklung des jungen Parasiten erfolgt, ist noch nicht beobachtet; es schien mir aber, daß auch hier ein Bild von 4 und 4 Zellen im Innern einer jeden einzelnen vor sich gehe. Hat der junge Parasit eine gewisse Größse erreicht, so fängt er an, sich gelbröthlich zu färben und die Zellen der äußersten Schicht nehmen eine besondere Festigkeit und ein getüpfeltes Ansehen an, wodurch die äußerste Zellenschicht des Parasiten zu einer festen, mehr pergamentartigen Hülle umgewandelt wird, welche das Peridium darstellt. Mit dieser Entwicklung rückt der Parasit aus der Tiefe der Blattsubstanz an die Oberfläche des Blattes oder desjenigen Theiles, in welchem er vorkommt; er durchbricht hierauf die Epidermis und öffnet sich nun an freier Luft durch Zerreissen der hervorgetretenen Spitze des Peridium's. Bei den verschiedenen Arten dieser Aecidien wächst das Peridium nach dem Hervorbrechen noch mehr oder weniger weit über die Oberfläche hinaus, ja der ganze Parasit nimmt eine Cylinderform an und nun zerreißt die frei liegende Spitze des Peridium's. Auch dieses Zerreissen des Peridium's ist bei verschiedenen Arten sehr verschieden; gewöhnlich geschieht es strahlenförmig nach den verschiedenen Richtungen hin, und dann klappen die einzelnen, dadurch entstandenen Lappen des Peridium's zurück und umkränzen den Rand des Bechers, welchen jetzt die geöffnete Aecidien-Pustel darstellt. Bei einigen Arten gehen die Zerschlitzungen des Peridium's sehr tief und dann sind die Lappen sehr fein und haarförmig, wodurch die Pusteln ein rauhes Ansehen erhalten u. s. w. Durch alle diese Verschiedenheiten in der Form der Pusteln und in der Form des aufgeplatzten Peridium's werden die verschiedenen Arten dieser großen Gattung von
parasitischen Pflanzen bestimmt, ja man hat sogar eine besondere Gattung hierauf gegründet, nämlich die Gattung Roestelia, welche jedoch ihr Begründer, Herr Link, wieder aufgegeben hat. Die Roestelia cancellata des Herrn Link ist die bekannte große Aecidien-Bildung auf den Blättern unserer Birnäume; die einzelnen Pusteln werden sehr groß, ragen cylindrisch $1 \frac{1}{2} - 2$ Linien hoch über die Blattfläche hinaus und sind an ihrem freistehenden Gipfel sehr tief geschlitzt. Auch hier, bei der Roestelia, ist schon lange, oft 6—7 Wochen vorher, an der erkrankten Stelle des Blattes das Auftreten jener, von mir als männlich bezeichneten Aecidien-Pusteln zu sehen; diese Gebilde treten in großer Menge zusammengehäuft auf und bilden orangerothe, etwas erhobene Flecke; später pflegt auch an diesen Stellen die Substanz des Blattes etwas anzuschwellen und dann bilden sich, meistens auf der entgegen gesetzten Seite des Blattes, diese wahren Aecidien-Pusteln aus. Gar sehr häufig bleibt es jedoch auf den Blättern des Birnbaums bei der bloßen Entwicklung der männlichen Pusteln und es kommt nicht weiter zur Ausbildung der wahren weiblichen Pusteln.

Sobald sich das Peridium der weiblichen Aecidien-Pustel geöffnet hat, zeigen sich die orangerothen sporenartigen Bläschen in Form eines feinen Staubes, der an der Oberfläche der Pustel verfliegt; genauer Untersuchung zeigt, daß diese sporenartigen Bläschen in Reihen aufeinandergestellt sind und diese Reihen genau nebeneinander liegen. Die Entwicklung der sporenartigen Bläschen geschieht von Oben nach Unten; ja die obersten Bläschen sind oft schon lange verstäubt, während die Basis dieser Zellenreihen noch nicht einmal gelbroth gefärbt ist, und auf dem Grunde des Peridium's auch noch keine regelmäßige Trennung der künftigen sporenartigen Zellen zu sehen ist. Herr Corda*) hat nämlich eine Darstellung einer Pustel von Aecidium Tussilaginis nach einem

*) S. Icones fungorum III. 1839 Tab. ill. Fig. 3.
Querschnitte gegeben, welche jedoch wohl in den wesentlichen Punkten, nämlich an dem Grunde der Pustel, und ebenso in Hinsicht der Verbindung des Peridium's mit den angrenzenden Zellen, unrichtig ist, so wie wir auch die Darstellung des flockigen Mycelium's nicht der Natur getreu finden können.


XIV. Die Protomyces-Bildung.

Herr Unger*) entdeckte eine sehr interessante Entophyten-Bildung, welche er mit dem Gattungs-Namen Pro-  

*) Die Exantheme etc., p. 341.
tomyces bezeichnete und sie als ein Verbindungsglied zwischen die Brand-Bildung und die wahren Blattpilze hinstellte. Bei dem wahren Steinbrande und dem Flugbrande haben wir die Entstehung dieser Entophyten im Innern der Zellen klar nachgewiesen und bei der Beschreibung des Auftretens der Botrytis parasitica P. auf unserem Taschen-Pfeffer wird man finden, daß auch dieser Pilz durch krankhafte, abnorme Ablagerungen im Innern der aufgetriebenen Zellen entsteht, aus diesen hervorbricht und dann zwischen den Zellen weiter fortwächst; hier bei der Protomyces-Bildung ist dagegen deutlich zu sehen, daß diese Entophyten durch krankhafte Absonderungen außerhalb der Zellen entstehen, und zwar auf folgende Weise.

Im ausgebildeten Zustande zeigt sich der Protomyces in Form von einzelnen, ganz für sich bestehenden, kugelförmigen oder ellipsoidischen Bläschen, welche zerstreut zwischen den Zellen des von der Krankheit ergriffenen Gewebes vorkommen. Bei Aegopodium Podagraria hatte ich Gelegenheit diese Bildung vielfach zu beobachten; sie ist von Herrn Unger als Protomyces macrosporus bezeichnet, verhält sich aber in verschiedener Hinsicht anders, als von ihm angegeben ist.

Der Protomyces macrosporus zeigt sich auf verschiedenen Theilen der Blätter; am gewöhnlichsten bildet er callöse Wülste, welche auf der Oberfläche des gemeinschaftlichen Blattstieles wie an den einzelnen Stielchen hervortreten, im Anfange sehr blafsgrün, später aber auf der Oberfläche etwas gelbräunlich gefärbt sind; auch auf den Blättern selbst erscheint dieser Pilz und ist stets mit knorpelartig harten und bullösen Auftreibungen der Blattsubstanz begleitet. Bald treten diese harten, hellgelblich gefärbten Blasen nach der unten Fläche der Blätter, bald nach der obern hervor und auch in Hinsicht ihrer Anzahl auf einem und demselben Blatte zeigen sie die größte Verschiedenheit. Gar häufig sind die hervorragenden Rippen und Adern der Blätter mit den wulstartigen Auftreibungen, welche ebenfalls diesen Pilz enthalten, bekleidet.
Am deutlichsten tritt obige Protomyces-Bildung auf zart geführten Querschnitten hervor. Man sieht dann eine große Menge von runden und sehr dickwandigen Blasen, welche scheinbar ganz unregelmäßig im Zellgewebe des aufgetriebenen Organes verbreitet sind; dies normale Zellengewebe ist gewöhnlich zartwandig, dicht und fast gar keine Intercellulargänge zeigend. Bald sind die Protomyces-Bläschen größer bald kleiner; als die angrenzenden Zellen, und oft scheint es, als wenn die einzelnen Protomyces-Zellen mitten in den andern parenchymatischen Zellen gelagert seien, was sich aber, bei einer genaueren Untersuchung, als unrichtig erweist. Im ausgebildeten Zustande besteht eine solche, durch Protomyces-Bildung veranlasste Aufreibung an den Blättern von Aegopodium aus einer Menge von großen Blasen, die im Innern mit einem feinkörnigen Pulver gefüllt sind und drei sehr weit auseinander stehende Umgränzungs-Linien zeigen, welche auf zwei sehr dicke Häute deuten. Sowohl die äußere als die innere Membran dieser Blasen ist wasserhell und gallertartig, aber ziemlich fest. Einzelne Blasen (diese sind aber sehr selten) enthalten statt der feinkörnigen Substanz eine grobkörnige Masse, die Amylum-Kügelchen ähnlich erscheint. Sehr viele der einzelnen Protomyces-Bläschen haben aber ihren Inhalt entleert oder derselbe ist in ihnen nicht zur Ausbildung gekommen, und diese Blasen zeigen sehr auffallende Eigenthümlichkeiten. Die äußere, dicke, glasartige Haut ist an ihnen wie gewöhnlich; das Innere derselben ist aber mit einer wasserhellen, gallertartigen dicken Membran bekleidet, welche sich unter vielfach verschiedenen Formen zusammensaltet und in der noch zurückbleibenden Höhle eine geringe Menge einer feingekörnten Substanz enthält.

Wenn man die einzelnen, so ausgezeichnet gestalteten Bläschen dieses Protomyces näher betrachtet, so wird man hie und da den Verlauf der zarten Zellenwände erkennen, welche den zunächstliegenden Zellen angehören und man wird sich allmählich überzeugen können, dass die

Die callösen Auftreibungen und Anschwellungen der von der Protomyces-Bildung befallenen Theile brechen niemals auf, wenngleich sie auch im Alter ihre Oberfläche stark entfärben, gelbbranen und selbst dunkelbraun werden, es treten also auch die Protomyces-Bläschen, die sich im Innern jener Anschwellungen befinden, niemals hervor; sie sind fast immer von der Epidermis oder der äußersten Zellenschicht eingeschlossen und nur ein einziges Mal habe ich beobachtet, daß eine der Zellen der äußersten Zellenschicht ganz und gar Form und Inhalt u. s. w.

*) a. a. O. Taf. VI. Fig. 28.
eines Protomyces-Bläschen’s angenommen hatte. Wie dieses Bläschen entstanden war, konnte natürlich nicht beobachtet werden.

Die Protomyces-Bläschen, wie die Ustilago- oder Brand-Bläschen, gehören demnach zu den einfachsten Entophyten, ja die Protomyces-Bläschen stehen noch tiefer als die Ustilago-Bildungen, obgleich in beiden Fällen an eine Fortpflanzung der sporenartigen Körper nicht zu denken ist. Diese Bildungen aber, welche als Produkt einer Krankheit auftreten, sich der Form nach regelmässig individualisieren, sich aber fortzupflanzen nicht im Stande sind, möchten uns einen Fingerzeig zu den Vorstellungen geben, welche wir uns über die Erzeugung niederer Organismen, durch Generatio originaria zu machen haben.

In Tyrol fand Herr Unger das Galium Mollugo nicht selten von einer Protomyces-Bildung befallen, welche er mit Protomyces endogenus bezeichnet. Die sporenartigen Blasen dieser Gewächse sind klein, oval, blafs, später bräunlich und endlich schwarzbraun mit etwas warziger Oberfläche; sie erfüllen in Masse die sehr erweiterten Interzellulargänge, welche noch außerdem eine zahllose, äußerst lebhaft herumschwimmende Menge von Molekülen enthalten. Das Galium aber, welches von dieser Krankheit ergriffen ist, zeigt sich immer sehr verkrüppelt; es hat einen zwergartigen Stengel mit stark verkürzten Gliedern; die Knoten sind angeschwollen und ebenso wie die Blattnerven bläulich-schwarz von Farbe. Auch die Blätter bleiben kürzer, werden dicker und die ganze Pflanze scheint unfruchtbar zu bleiben.

XV. Die schimmelartigen Entophyten.

Die Zahl der schimmelartigen Gewächse, welche im Innern höherer Pflanzen entstehen, hier oder da auf der Oberfläche derselben hervorbrechen und mehr oder weniger große Zerstörungen veranlassen, ist ebenfalls ungewöhnlich groß. Wir werden finden, daß die vielfach
gefärbten, brandartigen Flecke, welche auf den Blättern und auf andern Theilen der Pflanzen so häufig vorkommen, ebenfalls fast immer kleinen Pilzen ihren Ursprung verdanken; es sind aber verhältnismäßig nur noch sehr wenige genauer untersucht. Die merkwürdigsten dieser parasitischen Bildungen sind:

**Die Botrytis-Schimmel. Botrytis Mich.**

Dieser Schimmel besteht aus röhrenförmigen gegliederten und verästelten Fäden, von denen die sporentragenden sich erheben, aufrecht stehen, und sich nach der Spitze hin mehr oder weniger stark verästeln. An den Enden der kleinsten Aestchen sitzen dann die ziemlich großen, runden oder elliptischen Sporen in großer Menge zusammengeschält. Durch die Herren Link, Persoon, Nees v. Essenbeck, Fries u. s. w. sind schon viele dieser Botrytis-Schimmel beobachtet und beschrieben; man will die meisten auf trocknen oder auf faulenden Pflanzentheilen beobachtet haben, doch ein genaueres Nachsuchen zeigt, daß sehr viele derselben auf ganz frischen Pflanzen entstehen und zwar als Produkt eines krankhaften Zustandes derselben hervorgehen.

Auf unserer Hirtentasche, der Capsella Bursa pastoris kommt die Botrytis parasitica Pers. (B. ramulosa Link und B. nivea Mart. flor. Erl.) vor, welche stets mit mehr oder weniger starken Aufreibungen der Pflanze begleitet ist und an welcher sich Mehreres sehr deutlich beobachten läßt, was bei andern Arten dieser Gattung nicht der Fall ist. Man hat bisher sowohl die Botrytis parasitica, als auch die Anschwellungen verschiedener Theile der Capsella beobachtet, doch dafs beide von einander abhängig sind, hat man noch nicht beschrieben. Herr Unger*) spricht sehr ausführlich von solchen angeschwollenen und verküppelten Individuen der gemeinen Hirtentasche, welche er bei Wien und in Tyrol sah, und ähnliche Mißbil-

*) Die Exantheme etc. p. 253.
düngen hat man an Hesperis tristis und an Hesperis matronalis wahrgenommen. Herr Unger sah die weitverbreiteten Pusteln der Uredo candida auf jenen verkrüppelten Capsella Individuen, doch fand er keinen besonderen Blattpilz, welcher denselben veranlaßt haben könnte. Diese Verkrüppelungen der Capsella sind indessen in unsern Gegenden sehr häufig und wenn die Witterung danach ist, im Frühjahr, im Sommer und im Herbst zu finden; bald sind bloß einzelne Theile des Stengels, bald sind Blätter, Blüthen, Früchte und zuweilen ist die ganze Pflanze von diesem krankhaften Zustande ergriffen, welcher sich in partiellen oder in allgemeinen Anschwellungen oder Auftreibungen des parenchymatischen Zellengewebes zeigt. Es ist sehr gewöhnlich, daß sich auf der Oberfläche dieser angeschwollenen Stengel, Früchte u. s. w. die weißen Uredo-Pusteln zeigen, und zwar in so großer Anzahl, daß sie in einander zusammenfließen; häufiger ist es indessen, daß gerade solche, schon mit den Uredo-Pusteln bedeckten Stellen der Pflanze mehr oder weniger stark anschwellen und dann später die Botrytis-Bildung zeigen. Haben endlich jene Anschwellungen eine gewisse Größe erreicht und ist die Epidermis auf den Uredo-Pusteln überall aufgerissen, so tritt der Botrytis-Schimmel in mehr oder weniger großer Anzahl von Stämmchen aus dem Innern des grünen Parenchym an vortrefflich schwellen und bildet kleine Rasen, welche der Oberfläche der Anschwellung ein weißes, rauhes, aber wie bepudertes Ansehen geben. Bei oberflächlicher Untersuchung scheint die Botrytis auf den Uredo-Bläschen zu sitzen und deshalb erhielt sie den Beinamen Botrytis parasitica; wenn man aber diese Anschwellungen genauer untersucht, so findet man, daß sich eine größere Menge von Zellen darin gebildet hat, daß diese Zellen und ihre Interzellulargänge größer erscheinen als im normalen Zustande und daß sich das Hypostroma der Botrytis zuerst im Innern dieser Zellen entwickelt, aus diesen hervorbricht, sich in den
Intercellularargängen nach allen Richtungen hin umherzieht und endlich durch die Masse der locker auf einander liegenden Uredo-Bläschen hindurchbricht. An der Darstellung jener Anschwellungen des Stengels nimmt sowohl das Parenchym, welches außerhalb des Holzringes liegt und also die Rinde bildet, als auch das Parenchym des Marks Antheil; und es bildet sich, sowohl in den Zellen des Markes, wie in denjenigen der Rinde, wie und da das Mycelium jenes Schimmels; aber aus den Zellen des Markes kommt er wohl niemals zum Herausbrechen. Im Innern dieser Parenchym-Zellen zeigen sich die ersten Bildungen der Botrytis als kleine, wasserhelle, schleimige Ablagerungen, welche bei aller ihrer Formverschiedenheit dennoch bestimmte Gestalten annehmen; sie zeigen sich zuerst als runde oder ellipsoidische plattgedrückte Schleimmassen, welche noch mehr oder weniger der innern Fläche der Zellennembran anliegen, dann verlängern sie sich, krümmen sich je nach der Form der Zelle, verästeln und vergrößern sich so bedeutend, daß oft die Zellen fast ganz damit gefüllt sind. In diesem Zustande brechen diese, in eine Pilzform übergegangenen krankhaften Ablagerungen aus dem Innern der Zellen der Rinde hervor und laufen eine Strecke weit als winzige, sich noch immer sehr unregelmäßig gestaltende und unregelmäßig verästelnde Fäden, welche in grössern Intercellularargängen sogleich einen bedeutenderen Umfang annehmen, umher, bis sie in die äussern und lockeren Zellenschichten der Rinde gelangen und von hieraus als Stämmchen, die später Früchte entwickeln, durch die Uredo-Masse hindurchbrechen.

Dieser kranke Zustand der Capsella entwickelt sich, begleitet von der Uredo-Bildung, bei feuchtem Wetter und tritt unter diesen Umständen im Frühjahr, wie im Sommer und besonders am Ende des Sommers ein; ist das Frühjahr sehr trocken, so ist es gewifs eine grosse Seltenheit, auch nur ein Exemplar der Art zu finden.

Eine andere Schimmelbildung der Art ist die Botrytis epiphylla Pers. (Botrytis farinosa Fr.), welche auf
der untern Fläche der Blätter von Atriplex- und Chenopodium-Arten vorkommt. Sie ist von einer mehr grauen, schmutzigen Farbe und bedeckt mehr oder weniger große Flächen der Blätter genannter Pflanzen. Im jungen Zustande, wenn diese Schimmel aus den Öffnungen der Epidermis hervorbrechen und noch nicht viel verästelt sind, haben sie einige Ähnlichkeit mit Erineum-Bildungen, und man hat sie denn auch als solche häufig aufgeführt und ein Fragezeichen dazugesetzt. Eine stärkere Vergrößerung zeigt jedoch, dass diese Schimmel nichts mit der Erineum-Bildung gemein haben. Die Botrytis epiphylla ist offenbar gleichfalls das Produkt einer Krankheit derjenigen Pflanzen, welche damit bezogen werden und ihr Auftreten ist ebenfalls mit einer Veränderung der Substanz des Blattes verbunden; doch kommen hier niemals solche große Entartungen und Anschwellungen vor, wie bei der vorhergehenden Art. Das Blatt, oder die Stelle des Blattes, welche von der Botrytis bezogen wird, zeigt sich etwas aufgetrieben, bildet mitunter selbst Bullositäten und zeigt schon eine Entfärbung, wenn kaum die erste Spur des Schimmels auf die Oberfläche der untern Seite des Blattes kommt, und später pflegt die vom Schimmel ergriffene Seite mehr oder weniger hellgelb gefärbt zu erscheinen, sich mitunter zu krümmen und auch wohl noch weitere Deformitäten einzugehen, was jedoch nur selten der Fall ist.

Ich habe an diesen Blättern, ihrer Zartheit wegen, nicht das erste Auftreten des Schimmels wahrnehmen können, wohl aber kann man sehen, wie sich die gegliederten Fäden des Hypostrom's durch die Intercellular-Gänge des Blattes hindurchziehen und wie endlich die sporentragenden Aeste zu den Spaltöffnungen der untern Blattfläche hervortreten, sich hier verästeln und Sporen entwickeln. Die Sporen werden im reifen Zustande grau-bläulich gefärbt und teilen diese Farbe auch den erkrankten Flächen der Chenopodium-Blätter mit.

Im vergangenen Jahre (1840) war die Botrytis epiphylla in unsern Gegenden ganz ungemein häufig und
zwar auf den Blättern von Chenopodium album. Die Witterung war im Anfange dieses Jahres sehr trocken, aber dennoch zeigte sich der Schimmel schon im Frühjahr und zwar sowohl auf reinem Sandboden, als auf gutgedüngter schwarzer Gartenerde.


An den Blättern des Aegopodium's ist besonders leicht zu sehen, daß eine Erkrankung ihrer Substanz der Bildung des Schimmels vorausgeht; man findet die Blätter gefleckt und diese Flecken zeigen auf der obern Blattfläche eine gelbliche Färbung; mitunter findet auch einige Aufreibung der Substanz des Blattes statt. Besonders häufig zeigt sich diese Krankheit an den Blättern solcher Pflanzen, welche im tiefen Schatten und dicht an Gräben und Quellen mit fließendem Wasser stehen; diese pflegen geil aufzuschließen und eine gelblichgrüne Färbung zu zeigen, welche auf den gestörten Respirations-Prozefs dieser Pflanzen hindeutet, und diese Individuen sind es gerade, welche am meisten von dieser Schimmelbildung, wie von den Blattpilzen, befallen werden.

Der Botrytis-Schimmel auf den Blättern von Aegopodium Podagraria unterscheidet sich schon bei dem ersten Anblicke von Botrytis parasitica, welche auf der Capsella

*) Die Exantheme etc. p. 170. Tab. II. Fig. 14.
vorkommt; die Blätter von Aegopodium sind mit einem sehr lockern und flockigen Wesen bezogen, welches man, mit bloßem Auge betrachtet, mehr für das Gewebe irgend eines Insektes zu halten geneigt sein möchte. Herr Unger giebt an, eben diese Schimmelbildung auch auf Chenopodium bonus Henricus, an Geranium sylvaticum, Euphrasia officinalis, Senecio vulgaris, Chrysosplenium alternifolium, Isopyrum thalicroides und an Ranunculus repens gefunden zu haben.

Herr Unger hat bei seinem vielfährigen Aufenthalte in Tyrol die schönste Gelegenheit gehabt, die Botrytis-Bildungen auf einer großen Menge von Pflanzen zu beobachten; er fand*) die Botrytis conferta (Botrytis ramosissima, ramis divaricatis, ramulis approximatis, sporidiis ovalibus minoribus) auf lebenden Blättern von Phyteuma betonicaefolium, Cardamine hirsuta und Sisymbrium impatiens, wo sie die ganze Unterseite mit einer feinen Wolle überzieht und auch nicht selten in Gesellschaft eines Blattpilzes erscheint. Auf Veronica Beccabunga kommt eine andere Art vor, welche sich durch ihre graue Farbe, wie durch die Bullosität auszeichnet, die sie an den grünen Blättern der Pflanzen veranlaßt. Eine andere Botrytis mit verhältnißmäßig dicken und kurzen Stämmchen, mit kurzen und einfachen Aesten und fast runden Sporen fand Herr Unger auf Anemone ranunculoides, nemorosa und Hepatica, an erstem Pflanzen aber immer nur in Verbindung mit Aecidium punctatum, wodurch die Blätter zugleich sehr verunstaltet werden; diese neue Art wird Botrytis pygmaea genannt. Eine andere Botrytis, mit sehr großen, birnförmigen Sporen und schöner, weißer Farbe fand sich auf Pimpinella Saxifraga und ward Botrytis macrospora genannt.

*Cylindrospora Grev.*

Eine andere den Blättern der lebenden Pflanzen einwohnende Schimmel-Art zicht noch mehr die Aufmerksam-

*) S. dessen Exantheme etc. p. 172.
keit der Gärtner auf sich, indem sie oft gar häufig vorkommt und die Blätter der davon befallenen Pflanzen mehr oder weniger stark befleckt. Herr Greville bildete aus diesem Schimmel, der er auf den Blättern der Brassica oleracea beobachtete, die Gattung Cylindrospora, und Herr Unger*) fand dergleichen Bildungen auf vielen Pflanzen und beschrieb sechs verschiedene Arten derselben, zugleich führt er**) diese Pflanzen unter der Aufschrift Cyanosis vegetabilium auf.

Es ist in der That auffallend, daß diese so niedlichen Schimmel-Bildungen nicht schon früher die Aufmerksamkeit der Pilzkenner angeregt haben, da ihr Auftreten stets von mehr oder weniger ausgezeichnet gefärbten Flecken begleitet ist. Die Farbe dieser Flecke ist gewöhnlich mehr oder weniger tief violett und dieses ist wohl die Ursache, daß Herr Unger die Krankheit, deren Produkt diese Schimmelbildung sein möchte, die Cyanosis der Pflanzen genannt hat.

Die zur Gattung Cylindrospora gehörigen Gebilde haben einen zarten, flockigen Thallus, der aus gegliederten und verästelten Fäden besteht und sich in den Intercellularargängen der erkrankten Blätter verbreitet; durch die Spaltöffnungen treten, von dem Thallus ausgehend, kleine Büschel, oft nur aus 3—4, oft aber aus einer weit größer Zahl von kleinen Fäden bestehend, welche in mehr oder weniger cylindrisch geformte Sporen zerfallen. Ein jeder dieser, aus den Spaltöffnungen hervorragenden Fäden besteht aus 3—4 solchen länglichen Sporen. Mit dem Erscheinen dieses Pilzes ist aber zugleich eine eigenthümliche Entfärbung der davon ergriffenen Blattsubstanz verbunden; zuweilen ist die, dem Vorkommen des Pilzes entgegengesetzte Stelle des Blattes mehr entfärbt, zuweilen ist aber gerade diejenige Fläche auffallender gefärbt, auf welcher die kleinen Schimmel aus den Spaltöffnungen her-

*) Die Exanthe me etc. p. 166.
**) S. Unger über den Einfluß des Bodens etc. p. 222.
Meyen, Pathologie.

Einen nachtheiligen Einfluß auf das Wachsthum der Pflanzen kann man dieser Entophyten-Bildung gerade nicht zuschreiben, selbst nicht einmal an den Erdbeer-Pflanzen ist dieser wahrzunehmen, an welchen diese Krankheit seit den letzten 3—4 Jahren hier in der Umgebung von Berlin in solchem Grade herrscht, daß mitunter der 5te bis 4te Theil der Fläche der Blätter mit diesen Flecken bedeckt ist. Es treten übrigens bei keiner andern Pflanze, auf welcher ich diese Krankheit sah, die Flecke so genau begrenzt und so dunkelviolett gefärbt auf, als gerade auf den Blättern der Erdbeeren, welche durch diese Flecke sogar ein sehr niedliches Ansehen erhalten, was in den spätern Vegetations-Perioden noch um so schöner wird, indem das Zellengewebe in der Mitte eines jeden dieser violetten Flecke abstirbt und als ein weifsgelblicher Feck zurückbleibt. Auf der untern Fläche der Erdbeer-Blätter ist die Färbung dieser Flecke viel geringer und besonders schmal ist der violett gefärbte Ring, dagegen breiter der entfärbte Fleck in der Mitte dieses Ringes. Auch die Blätter von Leontodon Taraxacum und die von Cichorium Intybus sind mitunter auf einem grossen Theile ihrer Oberfläche mit grossen und schön violettröth gefärbten Flecken bedeckt, die oft sämmtlich zusammenstoßen.

Besonderer Erwähnung geschieht hier noch der Cyllindrospora nivea, welche Herr Unger zuerst beschrie-
Dieser Schimmel kommt auf den Blättern der Veronica Beccabunga vor und bildet kleine, schneeweisse Sporen-Häufchen, die mit heller gefärbten oder etwas misfarbigen Flecken begleitet sind. Hier, wie in manchen andern Fällen, ist die Menge der hervortretenden Sporen-Fäden so groß, daß die Epidermis dadurch zerrissen wird.

Eine Bestimmung der Arten kann uns hier nicht weiter interessiren; es ist aber wirklich nicht schwer die auffallenden Verschiedenheiten hervorzubehen, welche diese Pilzbildungen auf verschiedenen Pflanzen-Familien sowohl in Hinsicht ihrer Form, als durch die Färbung der Flecke, welche die davon ergriffenen Stellen der Blätter annehmen, darbieten. Da bisher diese Schimmel-Bildung noch nie in so großer Menge unsere Cultur-Pflanzen befallen hat, daß diese darunter Schaden litten, so hat man auch an eine Vertreibung dieser Krankheit noch nicht gedacht. Die meisten Pflanzen, deren Blätter ich mit Flecken von Cyllindrospora-Arten bedeckt fand, wuchsen in feuchten und wenig sonnigen Orten; besonders waren es Pflanzen, welche im Schatten anderer Gewächse standen, so daß ich glauben möchte, daß die Ursachen dieser Krankheit mit jener des Mehltäusches oder der Erysibe-Bildung ziemlich übereinkommen.

Es giebt übrigens sicherlich noch manche andere schimmelartige Entophyten, welche dergleichen Flecke auf den Blättern verschiedener Pflanzen hervorrufen und deren nähere Beobachtung den kommenden Zeiten vorbehalten ist. So fand ich auf den Blättern verschiedener Hieracien, welche in ihrer ganzen Fläche eine röthliche Färbung angenommen hatten, mehr oder weniger große und runde schwarze Flecke, die mit einem gelben Rande eingefasst waren. Alle die erweiterten Intercellulargänge dieser Blätter waren von einem flockigen zarten Mycelium durchzogen, der sich besonders schön in jüngeren Blättern zeigte, und die Athemhöhlen derjenigen Stellen, welche gefleckt waren, enthielten eine Menge kleiner und ziemlich runder, ungefärbter und durchsichtiger Bläschen.
Bei genauerer Untersuchung zeigten sich auch verschiedene Zellen im Diachym dieser Blätter, welche einzelne Bläschen der Art enthielten, wie jene in den Athemhöhlen dicht unter der Epidermis, und manche dieser Bläschen im Innern der Zellen hatten nach verschiedenen Richtungen hin feine, einfache und auch verästelte Fäden ausgetrieben, oder, was noch wahrscheinlicher schien, die Fäden waren an einzelnen Stellen zu jenen Bläschen angeschwollen. Von Aufreibungen waren diese Entophyten nicht begleitet.

Noch eine andere Gattung dergleichen Schimmelbildungen fand ich auf den Blättern von Ranunculus seele-ratus; die Blätter zeigten auf der oberen Fläche große, weisfgelblich gefärbte Flecke und waren mit großen Büscheln der sehr eigenthümlich gestalteten Schimmelbildung bedeckt.

**Der weiße Rotz.**

Der weiße Rotz ist eine Krankheit der Hyacinthen-Zwiebeln, welche durch eine eigenthümliche Schimmelart verursacht wird, die an ausgenommenen Zwiebeln entsteht, und ihre Verheerungen vom Zwiebelsehale aus beginnt, von wo aus sie sich in die Tiefe der Zwiebeln hineinverbreitet. Zwiebeln, die vom weißen Rotze befallen sind, enthalten einen sehr klebrigen Schleim in großer Menge, doch sind die Zellen der Schuppen, selbst wenn sich der Schimmel schon gebildet hat, noch immer mit vollständigen Amylum-Kügelchen gefüllt, wodurch sich, nebst dem Umstande, dass diese Krankheit von Außen und Oben nach Innen und Unten in die Zwiebel eindringt, der weiße Rotz sehr auffallend von der Ringelkrankheit der Hyacinthen-Zwiebeln unterscheidet, von welcher später die Rede sein wird. Der Schimmel, welcher dem weißen Rotze zum Grunde liegt, besteht in langen und ziemlich derben, gegliederten Fäden mit gedrängt stehenden Aesten, deren Endglieder mehr oder weniger unregelmässig anschwellen und seitlich noch kleinere Aestchen zeigen. Das Mikroskop zeigt, dass


werden dann nicht weiter visitirt (wie man die Operation bezeichnet, welche die Holländischen Blumisten mit den Zwiebeln vor ihrem Versenden vornehmen) sondern weggeworfen. So genau nun auch die Zwiebeln bei dem Ausnehmen nachgesehen und durch Beschneiden der Spitzen des Zwiebelhalses untersucht worden sind, so findet man dennoch unter den aufbewahrten Zwiebeln von Zeit zu Zeit einzelne kranke, was sich dadurch zu erkennen gibt, daβ sich an der Zwiebelspitze, wo sie abgeschnitten ist, ein gelber klebriger Schaum ansetzt. Wenn solche Zwiebeln auf den Brettern liegen, so findet man auf denselben mehr oder weniger große Massen einer zähen, schmutziggelben, übel- (meistens widerlich süsβs) riechenden Materie, welche so fest am Holze klebt, daβ die Zwiebeln oft zerbrechen, wenn man sie abnehmen will. Während die Zwiebeln eingeschlagen in der Erde liegen, werden dieselben in noch weit größerer Anzahl von dem weissen Rotze befallen als später, wenn sie schon auf trocknem Boden liegen; doch ist das Nichteinschlagen kein unsicheres Mittel gegen das Entstehen des weissen Rotzes. Ob beide dieser Übel eine und dieselbe Krankheit sind, und ob die letztere, die man vielleicht nicht unrecht den gelben Rotz nennen könnte, eine Modification, oder eine spätere Periode der ersten Krankheit ist, konnte Herr Schneevoogt nicht bestimmen.

Hiernach ist also der weisse Rotz eine Krankheit, welche nur die ausgenommenen Zwiebeln befallt und diese besteht, wie ich oben zeigte, in der Bildung eines Schim- mels, welcher von Außen eindringt und durch Feuchtigkeit in seinem weiten Wachsthum befördert wird. Erkennt man früh genug dergleichen Zwiebeln, so muß man alles Erkrankte durch das Messer entfernen, was man am besten durch dünne Querschnitte thut, welche den Wurzelhals allmählich immer mehr und mehr abtragen; man kann hierin tief gehen, denn die Ersatzknospe liegt um diese Zeit so tief, daβ durch jene Schnitte kein Nachtheil zu befürchten ist. Die Schimmelbildung ist indessen schon immer
mit einer Entmischung der Säfte der Zwiebelschuppen verbunden daher auch das Abschneiden aller vom Schimmel befallenen Theile nicht mehr helfen will.

Mit der Angabe der Ursachen, welche diese ebenfalls sehr tödtliche Krankheit herbeiführen, steht es ebenfalls sehr schlecht; es scheint aber, daß ein sehr feuchter Boden, oder starker Regen während der Blütezeit, die erste Veranlassung zu einer Stockung oder zu einer Überhäufung des Gewebes der Zwiebelschuppen mit Nahrungssäften ist. Die Zwiebelschuppen, welche von der Krankheit ergriffen sind, zeigen in ihren Zellen die Stärke-Kügelchen wie im normalen Zustande; außerdem aber ist der Zellsaft mit einem dicken und klebrigen Schleim versehen, was im normalen Zustande eigentlich nicht der Fall ist. Aber auch diese Krankheit, ebenso wie die Ringelkrankheit, befällt meistens nur sehr stark getriebene Zwiebeln. Herr Bayer in seiner vortrefflichen Abhandlung über die Hyacinthe*) ist der Meinung, daß ein zu starkes Düngen der Hyacinthen-Zwiebeln ein so üppiges Wachsthum verursache, daß sich die Häute am Zwiebelhalse nicht mehr fest genug an einander anschließen, wodurch Zwischenräume entstehen, in welche die Feuchtigkeit leicht eindringen kann, und somit der Grund zu Krankheiten und zu Fäulnifs von Oben gegeben ist. Herr Bayer beschreibt aber unter dem Namen Ringsucht oder auch Zirkelsucht ganz wahrscheinlich zwei Krankheiten, nämlich den weissen Rotz und auch Ringelkrankheit, denn das Entstehen eines bräunlichen Ringes am Zwiebelhalse spricht ganz besonders für diejenige Krankheit, welche wir unter dem Namen der Ringelkrankheit kennen lernen werden, dagegen die Auflösung der Zwiebeln in eine klebrige, übelriechende Flüssigkeit gerade dem weissen Rotze angehört und nicht bei der Ringelkrankheit beobachtet wird.

Ich habe einige Häufchen von Zwiebeln beobachtet,

*) S. Verhandlungen des Hannöverschen Gartenbau-Vereins. I. Hannover 1833, p. 120.
welche gleich nach dem Ausnehmen mit dem weißen Rotze befallen waren; sie verdarben auf die schon früher angegebene Weise sehr schnell, aber auf den Ueberbleibseln mehrerer Zwiebeln zeigte sich die Bildung eines Sclerotium's, wodurch, wie es scheinen möchte, der weiße Rotz mit der folgenden Krankheit verwandt ist, welche unter dem Namen des schwarzen Rotzes beschrieben werden wird. Ich habe zwar an dem Schimmel, welcher dem weißen Rotz zu Grunde liegt, keine wahren Fructifications-Organe gefunden und ihn defshalb auch noch nicht systematisch bestimmt, aber es schien mir nicht nachweisbar, daß die Sclerotien-Pilze, welche ich mitunter im letzten Stadio des weißen Rotzes auftreten sah, mit diesem Schimmel im Zusammenhange standen. Die Sclerotien schienen mir ein ganz eigenes Mycelium zu haben, das sich von jenem Schimmel bedeutend unterschied.

Der schwarze Rotz, eine Sclerotien-Bildung.

Der schwarze Rotz ist eine sehr gefährliche Krankheit der Hyacinthen-Zwiebeln, welche man für neueren Ursprunges hält. Mein Vater, sagt Herr Schneevoogt zu Harlem in seinen lesenswerthen Mittheilungen über den weißen Rotz und die Ringelkrankheit,* merinnerte sich der Zeit noch sehr wohl, daß man nichts von diesem Uebel wußte, und man weiß genau, in welchen Gärten in der Nachbarschaft der Stadt man den Rotz etwa vor 60 bis 70 Jahren zuerst entdeckt hat.

So viel als mir bekannt geworden, hat Herr Sauer, Universitätsgärtner zu Berlin, die erste Beschreibung von den Erscheinungen dieser Krankheit in Deutschland publizirt.**) Herr Sauer hatte seine Beobachtungen in Holland gemacht, woselbst die Blumisten alljährlich großen Schaden durch diese Krankheit erleiden; er sah die Ent-

169


tief schwarzer Farbe auf der ganzen Oberfläche und zeigt eine feste weiße Masse auf dem Durchschnitte. Die Sclerotien, welche dem schwarzen Rotze zu Grunde liegen, entstehen im Innern der einzelnen Zwiebelschuppen und oft findet man 10 und 20 kleinere in einer einzigen Schuppe; viele von diesen wachsen mit einander zusammen, wenn sie sich vergrößern. Der Thallus besteht in einem stark verfilzten, flockigen Gewebe, welches die Substanz der Zwiebelschuppen durchzieht und sich auf beiden Flächen derselben ausbreitet; der Thallus nimmt aber an Masse und Ueppigkeit ab, sobald sich die schwarzen Körper bilden, welche man als Sclerotien beschrieben hat.


Ja Herr D. C. P. Bouché *) sagt in seinem Aufsatze über die Cultur der Zwiebelgewächse, daß diese Krankheit

*) Allgemeine Gartenzeitung von 1837 p. 322.

Der schwarze Rotz ist zwar eine sehr zerstörende Krankheit, doch kann sie, wenn sie früh genug erkannt wird, an einzelnen Zwiebeln durch starkes Fortschneiden der vom Pilze befallenen Theile sicherlich beseitigt werden; es ist daher auch sehr anzuempfehlen, dass jeder Besitzer von ausgenommenen Hyacinthen-Zwiebeln diese wöchentlich besicht, um dann früh genug dem Feinde entgegenwirken zu können. Sind die Zwiebeln erst stark mit Pilzen befallen und vertrocknen schon die äussern Schuppen, dann ist auch nur geringe oder gar keine Hoffnung zur Erhaltung derselben. In Holland soll man solche erkrankte Zwiebeln an Orte hinlegen, wo sich Schnecken aufhalten, welche den Rotz, das ist die Pilzbildung, abfressen; ich zweifle indessen recht sehr, ob dieses Mittel etwas helfen wird, denn an feuchten Orten, wo sich Schnecken...
gewöhnlich aufhalten, wird die schnelle Ausbildung des Pilzes, welcher die Krankheit veranlaßt, gerade am besten befördert. Auch soll man die vom schwarzen Rotze befallenen Zwiebeln 14 Tage lang in Wasser bringen, welches man mehrere Male wechselt; hierauf lege man sie an eine trockne Stelle und so seien sie dann zum Herbste tauglich. Ich habe keine Ursache, die Richtigkeit dieser Angabe zu bezweifeln, denn es ist bekannt, daß sich Sclerotien nicht unter Wasser bilden, und so wird wahrscheinlich der ganze Pilz während der Zeit, da die Zwiebel im Wasser liegt, verfaulen. Jedenfalls kann man dieses Mittel anwenden, denn den Zwiebeln schadet es sehr wenig, wenn nur das Wasser oft erneuert wird.

Die entfernten Ursachen, welche die Entstehung des schwarzen Rotzes veranlassen, möchten mit jenen im Allgemeinen zusammenfallen, welche Schimmel-Bildung und besonders die Entstehung von Sclerotien bedingen oder befördern, und diese sind Feuchtigkeit der Luft oder der Umgebung, besonders aber dumpfe, stockige Orte.

Des großen Schadens wegen, den der schwarze Rotz den Blumisten zufügt, hat schon im Jahre 1817 die niederrländisch-ökonomische Gesellschaft eine Preisaufgabe über denselben ausgeschrieben, welche aber leider unbeantwortet geblieben ist.

habe, durch den weißen, oder meistens durch den schwarzen Rotz zerstört und in dem zurückbleibenden Staube befindet sich eine große Menge von feinen, nadelförmigen Kristallen, welche im normalen Zustande bündelweise im Innern der Zellen abgelagert sind. Die ungleich feinen, nadelförmigen Kristalle sind es, welche mit dem Staub auffliegen und bei der Berührung der Haut das Jucken und Brennen veranlassen, welches immer heftiger wird, je mehr man solcher Kristalle in die Haut einreibt. Die Blätter der Callen, der Agaven u. s. w. sind ebenfalls sehr reich an solchen Kristallen, und Jedermann kann sich von ihrer Wirkung überzeugen, wenn nur ein Stückchen derselben mit der frischen Schnittfläche an irgendeinen zarten Theil des Körpers, z. B. an das Ohr, an die Wange u. s. w. gerieben wird. Es sind die Folgen rein mechanischer Reize. (7)

Der Mehlthau. Albigo Ehr.


Da der Mehlthau eine sehr verheerende Krankheit der

*) Syst. mycologic etc. Vol. III. p. 234. 1829.
Pflanzen ist und sich oftmals unbegreiflich schnell entwickelt und ausbreitet, so hat man schon viel und oft nach der Natur und den Ursachen dieser Krankheit geforscht. Herrn Unger's*) Arbeit über den Mehlthau ist sehr lesenswerth, wenngleich ich einige darin vorkommende Angaben gerade nicht bestätigen kann, aber mit Recht behauptet er, daβ auch hier, bei der Bildung des Schimmels, welcher den Mehlthau darstellt, eine krankhafte Thätigkeit in den ergriffenen Organen vorangeht. Meine Beobachtungen können aber nicht dartun, daβ eine Herabstimmung des Athmungs-Prozesses, wodurch sich die Excretions-Masse nicht nur in einzelnen Theilen der jener Function vorstehenden Organe ansammelt, sondern auch mit bildsamen Stoffen überladen, einer Art Faulung unterworfen wird, den alleinigen Grund jener Krankheits-Erscheinung in sich trage, wie Herr Unger lehrt. Ich kann keine Excretions-Massen sehen, womit sich die Respirationsorgane, d. i. die Intercellulargänge u. s. w. überladen sollen, auch sieht man gar nicht selten die Entstehung der ersten Schimmelflecke des Mehlthaues gerade auf solchen Pflanzentheilen, welche keine Spaltöffnungen haben und unter der Epidermis auch keine Intercellulargänge zeigen.

Auf dem Hopfen sehen wir das Auftreten des Mehlthaues (welcher auf dieser Pflanze mit dem Namen Erysi phe macularis Fr. bezeichnet wird) am häufigsten; schwächer und kräftige Pflanzen, ja oftmals die schönsten, mit den grössten tief grün gefärbten Blättern werden bei dem Hopfen vom Mehlthau ergriffen. Hier werden diejenigen Stellen der Blätter, welche später mit Mehlthau behaftet sind, meistens schon einige Zeit vorher entfärbert, sie erhalten eine gelbliche Farbe und das Mikroskop zeigt, daβ diese Farbe durch ein Ausbleichen, durch ein Gelblichwerden der grün gefärbten Zellensaft-Kügelchen entsteht; es ist aber nicht immer der Fall, daβ diese gelblich entfärberten Stellen der Blätter später mit einem Schimmel-

*) S. Die Exantheme der Pflanzen etc. Wien 1833. p. 386.
jene weifsgrauen Flecke, von welchen wir weiter oben gesprochen haben. Dauert die Krankheit langer, so zei-
gen sich auf der untern Blattfläche die einzelnen Häufchen des Mehlthau es, indem das Mycelium des Schimmels durch die Intercellulargänge und Spaltöffnungen zum Blatte heraustritt und hier im Freien seine besondere Fruchtbil-
dung eingeh. In einem andern Falle habe ich auch auf
den Früchten der getriebenen Erdbeer-Pflanzen sehen kön-
nen, dafs der Mehlthau, welcher gerade immer die grös-
ten und schönsten Früchte befiel, nicht nur auf der Ober-
fläche, sondern auch in den Intercellulargängen seinen
Sitz hatte.

Gewöhnlich aber, wie ich es schon vorher bemerkt
habe, nimmt der Schimmel des Mehlthau es auf der Epi-
dermis seinen Ursprung und gar nicht selten selbst auf
solchen Pflanzenteilen, denen die Hautdrüsen und deren
Spaltöffnungen fehlen; nicht immer ist eine vorhergegan-
gene Entfärbung solcher Theile vorhanden, welche von
der Krankheit ergriffen werden. Der Schimmel zeigt sich
zuerst als ein sehr zartes Gewebe, dessen Fäden oft regel-
mäfsig radial verlaufen, sich allmählich vielfach verästeln
und verzweigen, wodurch sich die Fäden mit einander ver-
filzen, und dann die weifsen Flecke erzeugen,-welche man
schon mit blofsem Auge sieht. Das Mikroskop zeigt ganz
deutlich, dafs die Fäden dieses Schimmelbodens auf der Ober-
fläche der Epidermis verlaufen und hie und da kleine, warzen-
förmige Auswüchse bilden, welche den Haftwurzeln ande-
er Pflanzen ähnlich, zur Befestigung der Fäden an der
Epidermis dienen. Oft sind ganze Reihen solcher Warzen
an einem und denselben Gliede dieser Schimmelfäden zu
finden. Eine weitere krankhafte Veränderung der Epider-
mis-Zellen, auf welchen der Schimmel vorkommt, ist nicht
bemerkenbar und es fragt sich nur, auf welche Weise hier
der Schimmel entsteht.

Wollte man annehmen, dafs die Sporen des Mehlthau-
Pilzes an die Pflanzenteile anfliegen und hier zur Ausbil-
dung gelangen, so wäre die Erklärung über die Entstehung
des Mehlthaues sehr leicht. Diese Erklärung ist aber ganz und gar unzulässig, indem durchaus nicht abzusehen ist, wo dann alljährlich, wenn sich der Mehlthau findet, die Sporen desselben herkommen sollen. Man wird uns doch wahrscheinlich nicht etwa einwenden wollen, daß diese Sporen das ganze Jahr hindurch auf der Erde gelegen oder in der Luft umhergeflogen seien, denn dergleichen zarte Substanzen werden sicherlich nicht lange den äußern klimatischen Verhältnissen widerstehen können; solche Erklärungen müssen heutigen Tagen überhaupt ganz aus der Mode kommen, denn sie grenzen oft an das Lächerliche. Die der Schimmelbildung so häufig vorangehende Entfärbung der Blattsubstanz, die Auftreibungen der Blätter, das Vorkommen dieser Schimmel in den Intercellulargängen der Blattsubstanz u. s. w., Alles dieses deutet darauf hin, daß die Schimmelbildung des Mehlthaues ein Produkt der Krankheit ist, welche solche Pflanzen, oder deren einzelne Theile ergriffen hat, die später sich mit Mehlthau bedecken. Man hat schon in früheren Zeiten eine, aus den Blättern der erkrankten Pflanzen ausgetretene, stockende Feuchtigkeit als die Ursache der Entstellung des Schimmels des Mehlthaues bezeichnet, ohne dieses erwiesen zu haben; aber neuerlichst glaubt Herr Unger* mit Sicherheit darthun zu können, daß das Substrat, welches der Bildung der Schimmel-Flecken unmittelbar zum Grunde liegt, in einem wässerig-schleimigen Wesen bestehe, welches sich über alle jene Theile ausbreitet, welche später vom Mehlthau befallen werden. Es sei eine übermäßige Excretionsmasse mit organischen Stoffen geschwängert, welche von der ganzen Epidermis des Pflanzenkörpers mittelst organischer Durchschwitzung abgeschieden und auf der Oberfläche der erkrankten Pflanzentheile abgesetzt werde. Wenn diese Angaben ihre Richtigkeit hätten, so wäre allerdings wenigstens eine bildsame Substanz vorhanden, aus welcher der Schimmel hervorgehen könnte; man wird aber doch

*) Die Exantheme etc. pag. 388.  
Me yen, )hthologie.
der Wahrheit zur Ehre behaupten müssen, daß eine solche, von den erkrankten Pflanzenteilen ausgeschiedene Substanz nicht vorhanden sei, da sie sich weder dem bloßen Auge, noch dem Mikroskope zeigt. Nichts desto weniger kann ich ebenfalls nur der Ansicht sein, daß die Schimmelbildung des Mehltahaus aus der Feuchtigkeit hervorgehe, welche von dem erkrankten Pflanzenheile transspirirt wird. Wir wissen, in welcher geringen Menge in dem transspirirten Wasser organische Substanzen enthalten sind; die Masse derselben kann vielleicht größer sein, wenn die Transpiration von solchen erkrankten Pflanzenteilen ausgeht, aber jedenfalls ist immer nur sehr wenig organische Substanz nötig, um eine so geringe Schimmelbildung zu veranlassen, als der Mehltan zeigt. Auch möchten die entfernten Ursachen, welche Mehltan-Bildung auffallend begünstigen, gleichfalls dafür sprechen, daß die Transpiration bei der Entstehung dieser Krankheit eine sehr wichtige Rolle spielt.

In der weiteren Ausbildung des Mehltan-Schimmel's bemerkt man, daß aus den daniederliegenden Flecken eine mehr oder weniger große Anzahl von Aestchen entspringt, welche aufrechtstehen, ziemlich von ganz gleicher Höhe und kürzer gegliedert sind, als die niederliegenden Fäden. Es dauert auch nicht lange, so schnüren diese Fäden sich an ihren Gelenken immer mehr und mehr ein, bis sich endlich die Glieder als ellipsoidische Zellen von Oben nach Unten trennen und die Sporen bilden, deren Keimung gar nicht schwer zu beobachten ist. Sehr häufig (und dieses findet besonders in einer feuchten Atmosphäre statt) bleibt der Mehltan-Schimmel in diesem Zustande, färbt sich später grau und wird zuletzt auch öfters schmutzig bräunlich. Endlich bildet sich auf diesem Mehltan-Schimmel noch ein besonderes Fruchtbläschen; welches bald rund, bald länglich ist, im Anfange ungefärbt, später meistens gelbbräunlich bis schwärzlich gefärbt. Dieses Fruchtbläschen bildet sich zuweilen zu einem starken Balge aus und enthält entweder unmittelbar die Saamen


12

*

*) Forstbotanik Bd. I. p. 149.
**) Berlin 1839. p. 479.

Ich selbst habe diese Erysibe- oder Mehlthau-Bildung an den Pfirsich-Bäumen in großer Ausbreitung gesehen. Der Pilz gehört zu Erysibe communis und überzieht die Rinde und die Blätter der jüngern Triebe mit einem, oft ziemlich dicken Filze, wobei aber die Blätter zusammenschrumpfen und abfallen, so daß die Stengel mitunter auf weite Strecken ganz blattleer stehen. Alle Früchte, welche an solchen stark erkrankten Aesten vorkommen, bleiben mitten in ihrer Ausbildung zurück; ihre Oberfläche entfärbt sich, entweder auf einzelnen beschränkten Stellen oder in größerem Umfange, und diese entfärbten Stellen zeigen dann eine stärker entwickelte Haarbildung, aber diese Haare wie die äußersten Zellschichten sind abgestorben. Zuletzt fallen diese Früchte ab. Die Zerstörungen, welche der Mehlthau an den jungen Pfirsich-Bäumen verursachen kann, sind in der That sehr bedeutend; alle kranken Bäume der Art waren dicht an einer weissen Mauer gegen Süden gezogen, und keine Ursache war aufzufinden, wodurch an diesen vortrefflichen Stellen jene Krankheit hätte herbeigeführt werden können.

Schließlich bleibt uns noch übrig, einiger anderer Fälle zu gedenken, welche, leider nur zu häufig, mit dem Mehlthau verwechselt und ebenfalls mit diesem Namen belegt und als Krankheiten beschrieben worden sind.

Zuerst ist der schmutzige, mehlartige Anflug aufzu-


**Der Wurzeltödter.**

Den krankhaften Zustand der Pflanzen, welchen wir hier bezeichnen wollen, belegen wir am Zweckmäßigsten mit dem Namen des Pilzes, der ein Produkt dieser Krankheit zu sein schien. Man hat aus diesem Pilze, der nur die Wurzeln gewisser Pflanzen befällt und die furchtbarsten Verheerungen unter ihnen anzurichten im Stande ist, die Gattung Rhizoctonia* gebildet. Er zeigt sich als ein flockiges, oft stark verfilztes Fasergewebe, aus gegliederten und verästelten zarten Fäden zusammengesetzt, überzieht mehr oder weniger große Flächen der Wurzeln und bildet fleischige und unregelmäßige sporangiartige Körper, worin Sporen enthalten sind.

*) DeCandolle II. 1809. Mém. du Mus.
Herr Fries hat bereits in seinem Systema mycologicum 7 Arten von Rhizoctonien beschrieben, nämlich Rhizoctonia Allii, Batatas, Crocorum, Mali, Medicaginis, Muscorum und Orobanchez diese Pilz-Gattung scheint; indes auf sehr vielen Pflanzen vorzukommen und wir haben neuerlichst schon von mehreren anderen gehört. Ueberhaupt muß man den Gärtner und Landmann darauf noch besonders aufmerksam machen, daß er in Fällen, wo diese oder jene Pflanze schlecht steht und keine besondere Ursache davon zu bemerken ist, so genau wie möglich den Zustand der Wurzeln untersuche; hiebei werden sich dann öfters Pilze und andere Krankheiten der Wurzeln ergeben, welche den kränkelnden Zustand der Pflanze erklären. Es sind indessen die Sclerotien, welche ebenfalls auf Wurzeln vorkommen, mit den Rhizoctonien nicht zu verwechseln.


In unsern nordischen Gegenden scheint diese Krankheit noch wenig bekannt zu sein, denn alle Gärtner, welche ich danach gefragt habe, wußten mir darüber nichts zu berichten. Der berühmte Duhamel**) hat uns über den Safran-Tod ganz vortreffliche Nachrichten mitgetheilt; er wußte schon, daß eine kleine Trüffel die Ursache dieser Krankheit sei. Die Vermehrung dieses Pilzes geschehe durch eine große Menge von Wurzeln, welche die Trüffel austreibt, die Decken der Zwiebeln durchdringt und das Fleisch aussaugt, worauf die Zwiebeln verfaulen. Die

*) Das System der Pilze Tab. XIV. 1817.
**) Die Naturgeschichte der Bäume etc. B. V. Cap. I. Art. V.
Krankheit ist äußerst gefährlich, indem sich der Pilz ungebrämt schnell vermehrt und sich nach allen Seiten hin ausbreitet, so daß ganze Crocus-Felder davon vernichtet werden können, wenn man nicht schnell dagegen einschreitet, was durch Umgrabung der von der Krankheit befallenen Zwiebeln auszuführen ist. Im südlichen Frankreich ist die Krankheit häufig.

Herr DeCandolle*) hat die Verheerungen beschrieben, welche die Rhizoctonia Medicaginis anrichtet, die die Wurzeln des gemeinen Schneckenklee's oder der Luzerne befallt. Dieser Pilz ist von purpurrother oder von violetter Farbe und verursacht in kurzer Zeit das Absterben der Pflanze, während er selbst sich immer mehr und mehr nach allen Seiten hin ausbreitet und die nahe stehenden Pflanzen ebenfalls befallt und tötet. Im südlichen Frankreich, so wie in der Gegend von Genf, in Lothringen und in andern Ländern soll dieser Pilz auf den Luzernfeldern vorkommen und daselbst große runde, leere Stellen veranlassen.

Schon Duhamel wußte, daß der Spargel und der At tich von einer ähnlichen Krankheit ergriffen werden; kürzlich hat Herr Decaisne**) eine Rhizoctonia Rubiae beschrieben, welche in den südlichen Departements von Frankreich mit außerordentlicher Schnelligkeit die Wurzeln der Färber-Röthe bezieht und sehr schädlich wirkt. Eine andere Art kommt auf den Wurzeln der Erbsen unserer nördlichen Felder vor u. s. w.

Über die Ursachen dieser Krankheit wissen wir noch nichts zu sagen.

Der Rufsthau, Cladosporium Fumago Link, Torula Fumago Chev. etc.

Mit dem Namen: Rufsthau bezeichnet man einen schwärzlichen, oft ganz tief schwarzen, rufsartigen Anflug,

mit welchem mitunter die Blätter der Bäume, Sträucher und zuweilen auch der krautartigen Gewächse überzogen werden. Diese Bildung tritt auch so plötzlich ein wie der Honigthau, und befällt dann alle Pflanzentheile und alle daneben und darunter liegenden fremden Körper ohne Unterschied, daß man dadurch Veranlassung nahm, denselben in Bezug auf die schwarze Farbe mit dem Namen des Rufsthaues zu belegen.


So viel mir bekannt geworden ist, hat Herr Unger*) die erste umständlichere Beschreibung des Rufsthaues gegeben und zwar ist von ihm das Cladosporium Fumago Lk. beobachtet worden. Er sah den Rufsthau in den verschiedensten Gegenden Deutschlands und unter den mannigfaltigsten Verhältnissen der Lage, des Bodens und der Witterungsbeschaffenheit, glaubt aber, daß sich derselbe nur im Ausgange des Sommers und im Herbst und zwar nach lange anhaltendem Regen entwickele, und besonders häufig komme derselbe in Gebirgsländern vor. Nach Herrn Unger's Angaben gewahrt man zuerst eine schleimartige,

*) Die Exantheme etc. p. 397.
gleichförmige Masse, in welcher sich ein Gewebe von dunkelbraunen gegliederten, einfachen und verzweigten Fäden bildet, welches allmählich größere Flecken darstellt und mit den sporen- und sporangienartigen Körpern den schwarzen, rufsartigen Anflug bildet.

Ich selbst habe den Rufsathau nur auf Pflanzen beobachtet, welche zugleich stark mit Blattläusen bedeckt waren, und zweimal habe ich Gelegenheit gehabt, diese Bildung umständlicher zu beobachten, wodurch ich zu folgenden Resultaten gelangte: Dem Rufsathau ging die Bildung des Honigthaues durch Blattläuse voran; er überzog, ebenso wie der Honigthau, in Allgemeinen nur die obere Fläche der Blätter und zwar der tiefer stehenden Aeste, doch alle diejenigen Blätter, welche um die Zeit dieser Bildung eine andere Stellung hatten, als die gewöhnliche, zeigten den Rufsathau immer auf derjenigen Seite, mit welcher sie nach Oben gerichtet waren. Bei einem Schneeball hatten die Blattläuse an den jüngern Blättern sehr häufige Verkrüppelungen veranlaßt, durch welche diese Blätter sehr unregelmäßig gestellt waren, und alle diese waren denn auch auf denjenigen Flächen mit Rufsathau bedeckt, mit welchen sie nach Oben gerichtet waren; es verhielt sich also ganz ebenso in dieser Hinsicht wie mit dem Honigthau, der von den Blattläusen verursacht wird; man konnte ganz deutlich sehen, daß die Substanz, welche den, später rufsartigen Anflug verursacht hatte, von oben nach unten herabgefallen sein mußte. Es waren denn auch nicht nur die Blätter, sondern auch die Stengel mit Rufsathau bedeckt und alle Pflanzen, welche unter dem Schneeball standen, worunter sich besonders viel Buxbaum befand, waren ganz schwarz mit dem Ueberzug versehen, von der gleich den Boden bekleidete. Eine darunter stehende Phlox hatte ebenfalls einen leichten Ueberzug von Rufsathau auf der obern Fläche ihrer Blätter, man sah keine Blattläuse auf derselben, aber ganz deutlich konnte man einzelne Stellen mit krystallisirtem Zucker erkennen, und neben diesen die abgeworfenen

An einigen Johannisbeer-Sträuchern konnte man es ebenfalls sehr wohl erkennen, daß die schleimig-zuckeralhaltige Substanz, aus welcher sich der Rufsthau entwickelte, von den darüberstehenden Blättern herabgefallen war; denn immer nur unter solchen zeigte sich der Rufsthau, welche auf der unteren Fläche mit Blattläusen bedeckt waren.

Aus diesem und aus einem ähnlichen Falle an einem Weinstocke faßte ich die Ansicht, daß der Rufsthau nur eine Folge des durch die Blattläuse gebildeten Honigthaues sei. In diesem zuckerhaltigen Saft erzeugen sich jene braunschwarzen, schimmelartigen Pilze und diese verbreiten sich dann über alle Flächen hin, welche mit dem Honigsäfte bekleidet waren. So lange die Pilzbildung noch jung war, so lange war auch der klebrige Saft des Honigthaues unter derselben wahrzunehmen, später aber, als wahr scheinlich der Honigsaft von den Pilzen aufgezehrt worden, war der Rufsthau, wie gewöhnlich, eine schwarze und nicht abfärbende Masse.

So kann ich denn auch den Rufsthau für keine besondere Krankheit der Pflanzen ansehen, und es ist auch den Gärttern sehr bekannt, daß derselbe wenig oder gar keinen Einfluß auf die Gesundheit derjenigen Pflanzen ausübt, welche damit befallen werden. Befällt der Rufsthau die Früchte und kann man diese nicht früh genug durch Abwaschen reinigen, so werden dieselben wegen des schwar zen Ueberzuges ungenießbar; doch läßt sich derselbe
abnehmen und dann sind die Früchte genießbar. Alle Gärtner empfehlen gegen den Rufsthau ein starkes Spritzen mit Wasser; sehr oft ist indessen diese Bildung so ausgebreitet und schon so fest sitzend, daß selbst sehr starke Regengüsse erforderlich sind, um die Pflanzen vom Rufsthau zu reinigen. Obgleich mitunter Fälle vorkommen, wo der Rufsthau eine Kruste von einer halben Linie Dicke bildet, und die ganze Fläche der Blätter und der Stengel überzieht, so verursacht derselbe dennoch geringen Nachtheil, indem er meistens nur die obere Fläche der Blätter überzieht, die bei den meisten Gewächsen ohne Spaltöffnungen ist.


Ich sah das Auftreten des Rufsthaues schon früh im Sommer. Es hatte öfters, wenn auch gerade nicht stark geregnet, und es schien mir, daß er gerade an solchen Stellen am häufigsten erschien, welche wenig der Sonne ausgesetzt waren, wo also auch der Honigthau nicht so schnell trocken werden konnte. In einem feuchten Walde, dicht am Ufer des Rio Tinguiririca in Chile sah ich einen Baum von Rhus ornatica Hook., dessen Blätter auf der obem Fläche ganz dick mit Rufsthau incrustirt waren, und dieser Pilz gehörte der Torula Funago Chev. an; die untere
Seite dieser Blätter war stark mit großen Blattläusen bedeckt.

Herr Unger ist der Meinung, daß der Rufsthau durch gestörte Atemfunktion der leidenden Theile hervorge- rufen werde; in Folge dieser werde die Epidermis der oberen Blattfläche zur eigenartigen Secretion determinirt und aus diesem Secretum bilde sich der Pilz; daher könne man den Rufsthau mit dem Mehlthau vergleichen und Herr Unger beobachtete auch beide Bildungen auf einem und demselben Organe. Ich gebe gerne zu, daß der Rufsthau noch unter andern Verhältnissen erscheinen werde, als denen die bis jetzt von mir wahrgenommen worden sind, doch ist das Vorkommen des Rufsthaues und des Mehlthauses neben einander auch dadurch sehr leicht erklärlich, daß sich auf Pflanzen, welche vom Mehlthau befallen sind, auch die Blattläuse sehr häufig einfinden; diese können Honigthau veranlassen und aus diesem bildet sich wieder Rufsthau. Jedenfalls stimme ich aber Herrn Unger bei, wenn er sagt, daß der Rufsthau eine, noch keineswegs hinlänglich erforschte Krankheit sei.

Gar nicht selten erscheint der Rufsthau in unsern Gewächshäusern, und hier sind es die Pflanzen mit ausdauernden, immergrünen Blättern, welche vorzüglich davon befallen werden; aber auch hier ist das Vorkommen der Blattläuse etwas sehr gewöhnliches. Schließlich bemerke ich nur noch, daß mir bei meinen anatomischen Untersuchungen der Pflanzen gar nicht selten dergleichen Fälle vorgekommen sind, wo ich einzelne Flecken jenes Rufsthau-Pilzes, nämlich das Cladosporium Fumago, auf der Epidermis aufsitzen fand.

XVI. Der Rinden-Ausschlag der Birnbäume.

Eine eigenthümliche Krankheit der Birnbäume ist seit mehreren Jahren in dem Garten der hiesigen Gärtner-Lehr-Anstalt beobachtet; Herr D. C. P. Bouhé war so gütig mich darauf aufmerksam zu machen. Man bemerkt näm-
lieh zur Herbstzeit, im Winter und bis zum Frühjahr, daß
sich an den jüngern Zweigen krankhafte Bildungen zeigen;
die Epidermis, wo dieselbe noch vorhanden ist, und die
äußersten glatten Zellenschichten, welche die Korkschicht
der Rinde bilden, reißen der Länge nach und hie und da
auch in der Breite auf und es treten braunschwarz ge-
färbte Krusten hervor, welche auf den Zellen der grünen
Zellenschicht der Rinde ihren Sitz haben. Diese schwärz-
liche Kruste besteht aber aus einem kleinen Pilze, und tre-
ten diese in großer Menge auf einem und demselben Aste
auf, so treibt derselbe sehr schwach oder er stirbt auch
ganz ab. Die Blätter dieser Bäume leiden im Sommer
sehr viel an dem bekannten orangefarbenen Blatt Pilze der
Birnbäume, dem Aecidium cancellatum Pers. aber im An-
fange des Juli dieses Jahres sah ich denn auch, daß die
jungen Triebe solcher mit jenen Pilzen befallenen Zweige
recht sehr erkrankten, die Blätter bekamen hie und da auf
ihrer untern Fläche schwarze Flecken, oft waren diese
Flecken bedeutend großes 5, 6 und 7 neben einander
stehend. Diese Flecken breiteten sich allmählich aus, gaben
der Blattfläche eine Sammetfarbe, welche immer dunkler
wurde, bis endlich die Blattsubstanz, welche von diesen
Flecken ergriffen war, sich etwas krümmte und endlich
ganz abstarb und zu einem schwarzen Pulver zerfiel. An
manchen Blättern entstanden hiedurch nur einzelne, runde
Löcher, an andern dagegen ward mitunter der größte Theil
vollständig zerstört. Die mikroskopische Untersuchung
zeigte mir, daß diese schwarzen Flecken auf den Blättern
durch eben dieselben kleinen Pilze gebildet wurden, wel-
che aus der innern Rindenlage der Äeste und Zweige her-
vorbrechen; ja hier, auf den saftigen Blättern, kann man
ihre Form-Verhältnisse noch deutlicher sehen, als auf der
Rinde, und ich zweifte keinen Augenblick daran, daß sich
diese Pilze auf den Blättern durch die ausgestreuten Spo-
ren des Rinden-Pilzes erzeugt haben. Der kleine Pilz,
von welchem hier die Rede ist, bildet eine neue Gattung

Die Ursachen dieser Krankheit sind ebenfalls unbe- kannt, aber die Krankheit vermindert sich, wenn man die Aeste stark abstutzt.


Das Mutterkorn ist eine von denjenigen Krankheiten, über welche am meisten geschrieben und beobachtet ist, und dennoch steht es mit der Kenntnifs des Wesens diese- ser Krankheit noch immer sehr schlecht; die verschieden- sten und sich widersprechendsten Ansichten werden all- jährlich über die Entstehung des Mutterkorn's publicirt, so dafs Niemand weifs, woran man sich zu halten hat. Der Grund dieser auffallenden Unkenntnifs einer so wich- tigen und so häufig vorkommenden Krankheit liegt jedoch nur darin, dafs es so ungemein schwer hält, dieselbe in


Nach alljährlich angestellten Nachsuchungen ist es mir endlich geglückt das Mutterkorn wenigstens in dem Zustande aufzufinden, in welchem das Ovarium äußerlich noch ganz das Ansehen eines gesunden jungen Roggenkorns zeigt, zu welcher Zeit aber im Innern desselben schon Alles zerstört und mit einem Pilze gefüllt ist. Es wäre besonders wünschenswerth, das Auftreten der Krankheit in einem noch weit jüngeren Stadio zu beobachten; doch nur sehr mühsame Untersuchungen von unzähligen


jungen Roggen-Saamen können dazu führen. Nach den Beobachtungen verschiedener Botaniker wird das erste Auftreten des Mutterkorn's durch die Ausscheidung einer süßen und klebrigen Flüssigkeit, von welcher man auf den erkrankten Aehren mehr oder weniger große Tröpfchen innerhalb der Kronspelzen vorfindet, bezeichnet und man hat die verschiedensten Ansichten über den Ursprung und den Zweck dieser honigartigen Flüssigkeit aufgestellt; noch ganz kürzlich hat Herr F. Körber, *) der die wichtige Beobachtung gemacht hat, dafs die Krankheit entsteht, wenn der Saame schon etwas weiter, als bis zur Hälfte der Ausbildung gekommen ist und schon Amylum enthält, die Ansicht ausgesprochen, dafs um diese Zeit der Saame durch die Witterung, wenn Feuchtigkeit mit Sonnenhitze wechselt, so affizirt werde, dafs das Amylum in Gummi und Zucker verändert und tropfenweise ausgeschwitzt wird. Es kann sein, dafs diese Vermuthung des Herrn Körber richtig ist, doch stimmen damit meine, in ziemlich frühen Stadien dieser Krankheit, welche ich zu untersuchen Gelegenheit hatte, gemachten Beobachtungen nicht überein. Bei meinen Untersuchungen zeigte sich nämlich, dafs dergleichen schon erkrankte junge Roggenkörner, welche die Länge von $1\frac{1}{2}$ bis $1\frac{3}{4}$ Linien erreicht hatten, noch ganz gesund aussehende Ovarien hatten und sich nur durch eine etwas gelbliche Farbe unterschieden. Diese Ovarien hatten auch noch keinen Zuckersaft ausgeschwitzt, während sich auf andern, dicht daneben stehenden Aehren schon hie und da Zuckersaft zeigte und die dazu gehörenden Ovarien auch schon aufgebrochen und zum Theil zerstört waren. Als ich jene anscheinend ganz gesunden Ovarien öffnete, fand ich die ganze Höhle derselben vollständig gefüllt und die weiche, gelblich weisse Masse, womit sie erfüllt war, zeigte auf ihrer ganzen Oberfläche eine Menge der niedlichsten, mehr oder weniger regelmäfsig verlaufens-


M e y e n. Pathologie.

Mit der weiteren Entwicklung jenes Pilzes im Innern des Ovarium’s wird dieses selbst zerstört und zwar werden zuerst die Wände desselben an einer oder an mehreren Stellen durchbrochen, worauf die kleinen Pilzblasen sogleich hervorwuchern und ein Tröpfchen eines sehr süfs

schmeckenden, schleimigen Saftes mit sich emporführen. Dieser Zuckersaft, der sich aus dem Ovario zuerst zwischen den Kronspelzen ergießt und dann weiter hervorquillt, erscheint zwar im Anfange ziemlich gering, er enthält aber Hundert Tausende solcher kleinen ellipsoidischen Bläschen, woraus die ganze Masse des Pilzes besteht. Diese Flüssigkeit wird ihres Zuckergehaltes wegen von vielen Insekten, von Fliegen, Käfern u. s. w. besucht, die Insekten sind aber nicht die Veranlassung zur Entstehung der Krankheit, und wenn das Wasser jenes Saftes allmählich verdunstet, so bleibt der Zucker zurück, welcher die Spalten und Schuppen der Blüthen miteinander verkettet, bis er selbst vom Regen wieder abgewaschen wird. Nach dieser Ausscheidung des Zuckersaftes geht die Entwicklung des Pilzes sehr schnell vor sich, die Zeit aber, in welcher die Zucker-Ausscheidung stattfindet, läßt sich nicht so bestimmt angeben, indem sie sich ganz nach der Blütezeit des Getreides richtet; gewöhnlich findet man es aber gegen Ende Juni und im Anfange des Juli hier in der Umgegend von Berlin und etwa 14 Tage nach der Ausscheidung des Zuckersaft's sieht man schon die großen, schwarzen Mutterkörner weit aus den Aehren hervorragen.

Sobald der junge Pilz die Wände des Ovarium's zersprengt und mehr oder weniger vollständig zerstört hat, wuchert er schnell empor, schließt alle die, noch unzerstört zurückgebliebenen Stücke der Wände des Ovarium's ein und hebt sie mit in die Höhe; oft steckt noch die ziemlich erhaltene ganze Narbe im Innern der speckigen Substanz des Pilzes, oft ragt sie noch darüber hinaus und ist alsdann meistens mit Rostbrand befallen, oft sind sogar die Antheren mit dem Pollen und deren Filamente von ihm mit eingeschlossen. Am leichtesten erkennt man im Innern jener Masse die einzelnen Stücke der innern grünen Haut des Ovarium's (Pericarpium's), welche durch die Wucherungen des Pilzes weit über die Spitze des ehemaligen Ovarium's emporgehoben wurden. Sobald aber der junge Pilz über die Wände des Ovarium's heraußgewuchert
ist, beginnt mitten in der unteren Hälfte desselben die Bildung jenes festen Körpers, welcher die dunkel violette Farbe annimmt und uns im ausgebildeten Zustande als das eigentliche Mutterkorn bekannt ist. Da ich die frühesten Zustände des kleinen Pilzes, welcher im Anfange das Mutterkorn umhüllt, noch nicht kannte, so mußte ich glauben, daß der feste Körper des Mutterkorns, da er aus der Tiefe hervorwucherte, eine Degeneration eines Theiles des Saamenkorns, besonders des Eiweifskörpers sei, jetzt aber habe ich mich überzeugt, daß die Bildung desselben erst um die Zeit auftritt, wenn schon der junge Saamen mit seiner Hülle fast gänzlich zerstört ist. Es erfolgt viel mehr die Bildung dieses festen Körpers, welchen man gewöhnlich ganz allein mit dem Namen des Mutterkorns belegt hat, aus der Mitte unendlich vielfach verfilzter Schnüre jener ellipsoidischen Bläschen, welche man für die Sporen der Sphacelia segetum hält, und es herrscht in der Entstehung des festen Mutterkorns, mitten in jenem Pilze, der Sphacelia segetum Lév. (welchen ich für das Mycelium des Mutterkorns halten muß), die vollständigste Analogie mit der Bildung des festen Körpers der Sclerotium-Pilze, welche ebenfalls mitten aus der Verfilzung der Fäden ihres Mycelium's hervorgehen. Die näheren Vorgänge, unter welchen diese Bildung des Mutterkorns's aus der dichten Masse des Mycelium's entsteht, sind auch bei den sorgsamsten Beobachtungen nicht so leicht zu verfolgen, doch wissen wir schon aus einigen andern, leichter zu beobachtenden Fällen, daß die Fasern des Mycelium's sich verfilzen, ja mit einander zusammenwachsen und daß alsdann aus dieser Filzmasse die Haut, oder der eigentliche Fruchtträger oder Fruchtbehälter hervorgeht. Die Substanz der festen Sclerotien-Masse unterscheidet sich öfters von dem Fasergewebe des Mycelium's nur durch dichtere Aneinanderfügung und Verwachsung dickwandigerer Fasern; und so möchte denn auch bei dem Mutterkorn die Bildung auf eine ähnliche Weise vor sich gehen, was aber wohl erst in späteren Zeiten und durch stärkere

Nachdem ich im Vorhergehenden, wie ich glaube, vollständig erwiesen habe, daß das ganze Mutterkorn ein Pilz ist, und es auch sehr wahrscheinlich gemacht habe, daß die beiden Bildungen des Mutterkorn’s zusammengehören

*) Der Hausvater etc. I. St. 2. pag. 244.
**) Bayersche Flora II. pag. 571.
***) Flore Francaise Edit. 3. V. pag. 115.
†) Syst. mycol. II. pag. 268.
+++ Mém. de la Soc. Linn. de Paris V. 1827. a. a. O.

Die Bildung des Muttermorn's ist bis jetzt bei sehr vielen Gräsern beobachtet worden, deren Namen wir sehr sorgfältig in der Arbeit des Herrn Phöbus*) zusammen-

*) a. a. O. p. 105.

Ich habe in der hier gegebenen Darstellung nur wenige Literatur angezeigt, weil es mir schien, daß weitläufige literarische Untersuchungen über diesen Gegenstand nur von geringem Nutzen sein möchten, und die früheren und neueren Arbeiten auch schon sehr umsichtig durch die Herrn Wiggers, Phöbus u. m. A. benutzt worden sind. Ich hätte mehrere Bogen über diesen Gegenstand füllen können, wenn ich nur einen Theil der verschiedensten Ansichten und Beobachtungen mitgetheilt hätte, welche hierüber geschrieben sind; oft sind die Beobachtungen verschiedener Autoren sich gerade widersprechend. Noch ganz neuerlichst hat Herr J. Queckett**) die Bildung des Mutterkorn's in mehreren Gräsern, besonders bei Elymus sabulosus, beobachtet und gibt an, daß das junge Korn in den Fällen, wo sich später das Mutterkorn bildete, schon vor der Ent-

*) S. Phöbus a. a. O. p. 105.
**) Observ. on the anatomical and physiological nature of Ergot in certain Grasses. — Annales of natur. hist. etc. 1839. March. p. 54.
faltung der Blüthe ein schimmeliges Ansehen zeige, indem unzählige kleine Fäden und winzige Körperchen dasselbe mit einem Ueberzuge vollständig umkleideten. Gegen eine solche Angabe läßt sich nichts weiter erwidern, als daß entweder die Krankheit, welche Herr Queckett vor sich gehabt hat, eine ganz andere sei, oder daß unsere Beobachtungen, nach welchen (und dieses ist auch von mehreren andern Beobachtern bestätigt), das Mutterkorn erst viel später auftritt, unlängst sind, wofür ich selbst gerade nicht Ursache habe sie zu erklären.

Durch welche Ursachen wird das Mutterkorn hervorgerufen und wie kann man die Bildung desselben verhindern? Dieses sind zwei wichtige Fragen, welche schon vielfach erörtert worden sind. Man findet das Mutterkorn viel häufiger an schwächt wachsenden Individuen, daher besonders häufig auf sterilem, sandigem Boden; häufiger am Rande solcher Felder als in der Mitte, wo die Düngung besser ist. Man findet das Mutterkorn aber auch sehr häufig auf frisch urbar gemachtem Boden; es mag ein fetter oder ein magerer sein, und besonders häufig bildet sich das Mutterkorn in feuchten und kalten Sommern, selbst die kräftigsten, die gesundesten Roggenhalme werden unter solchen äußern Verhältnissen von diesem Pilze befallen, welcher das Mutterkorn darstellt. Der dritte und vierte Theil der Aerndte soll schon in Frankreich von Mutterkorn befallen gewesen sein. Man hat sehr häufig Verletzungen durch Insekten als die entfernte Ursache dieser Bildung angegeben, aber da hat man sich sicherlich sehr getäuscht. Das angeschwollene Ovarium ist noch ganz gesund von Außen, wenn es im Innern schon völlig mit dem kleinen Pilze gefüllt ist. Man spricht von Stökungen der Säfte, von einem zu starken Saftandrange u. s. w., welche die Entstehung des Mutterkorn's hervorrufen sollen, indessen durch alle diese Phrasen wird die Bildung desselben nicht erklärt und wir müssen uns ganz offen gestehen, daß wir die Ursachen nicht kennen. Auf großen vortrefflich bestellten Feldern, unter Millionen
von Halmen, kommt hie und da einmal eine einzelne Pflanze vor, welche ein einzelnes Mutterkorn in ihrer Aehre zeigt, während fast alle übrigen Blüthen gesunde und kräftige Früchte angesetzt haben. Einige Autoren wollen Mutterkorn hervorgerufen haben, wenn sie den Roggen auf feuchten, lehmigen Boden säten und ihn stark begossen, indes sind eben so viele ungünstig ausgefallene Resultate hierüber von andern Beobachtern mitgeteilt.

Fontana hat vielleicht zuerst die Meinung ausgesprochen, daß sich das Mutterkorn von einer Aehre zur andern fortbrütze und diese Fortpflanzung sei durch bloße Berührung auszuführen; ja die Fortpflanzung sei selbst vom Roggen auf Gerste, Weizen u. s. w. auszuführen. Auch diese Beobachtungen sind mehrfach wiederholt aber ganz erfolglos ausgefallen. Herr Wiggers (a. a. O. p. 31) hat das Mutterkorn unter die Wurzeln gesunder Roggenpflanzen gelegt und diese gut befeuchtet, worauf sich Mutterkorn gebildet habe. Herr Queckett (a. a. O.) hat den Pilz, welcher die Erkrankung des Korns veranlaßte und sich auch später an dem Mutterkorne zeigte, keimen gesehen, ja er will sogar das Wachsen desselben auf andern Pflanzentheilen beobachtet haben und glaubt daher, daß diese Fäden und Sporen nicht zu dem Mutterkorn gehören; er hält diesen Pilz noch für unbeschrieben und nennt ihn Ergotaecta abortans; er ist aber, wenn Herr Queckett nicht eine ganz andere Bildung vor sich gehabt hat, nichts anderes, als die Sphacelia segetum Lév. Das Wachsthum der Sporen unserer Sphacelia segetum habe ich selbst, nicht nur auf andern Theilen einer und derselben Aehre gesehen, sondern auch auf Weizen-Aehren, auf welche ich die Sporen übertrug. Man findet gar nicht selten an solchen Aehren, welche recht viele Mutterkörner tragen, daß sich ein flockiges Pilzgewebe in weissen, oder auch graulichen Häufchen, auf den Spelzen und zwischen den neben einander liegenden Blüthen entwickelt; die Untersuchung zeigt sehr bald, daß dieses Gewebe aus den jungen oder noch keimenden Pflänzchen der Sphacelia segetum besteht,
indem die Sporen dieses Pilzes ganz zufällig an den Ort gekommen waren, an welchem sie unter günstigen feuchten Verhältnissen sehr gut wuchsen. Hier zeigt sich denn auch das Mycelium der Sphacelia sehr gut und dieses besteht in kurz gegliederten aber stark verästelten Aesten, deren Aeste oft spitz zulaufen. Die einzelnen Glieder schwellen ellipsoidisch an, trennen sich von einander und stellen jene Sporen dar, welche in so unendlicher Zahl das Mützchen des Mutterkorn's bilden. Diese Beobachtungen führten mich zu dem Versuche, die Sporen der Sphacelia zwischen die Blüthen der Weizen-Aehren zu streuen und schon nach einigen Tagen sah ich ein zartes Pilzgewebe daraus hervorgehen. Hierauf beschränken sich jedoch wohl einzig und allein die Angaben, nach welchen eine Fortpflanzung des Mutterkorn's durch Berührung erkrankter Aehren mit gesunden statt gefunden haben soll. Die Sphacelia-Sporen wuchern wohl, aber das feste Mutterkorn kann sich nur im Innern junger Gräser-Saamen entwickeln; dahinein kann aber das Mycelium des Mutterkorn's nicht von Außen gelangen. Wenn übrigens eine solche Ansteckung stattfinden würde, so würde man auch sicherlich in freier Natur das Vorkommen des Mutterkorn's auf dicht nebeneinanderstehenden Aehren beobachten und zwar gerade nicht selten, was aber doch nicht der Fall ist; ja man findet sogar in einer und derselben Aehre im Allgemeinen immer nur sehr selten mehr als ein Mutterkorn. Zuweilen sind in einzelnen Aehren fast alle Saamen zerstört und die ganze Aehre steckt voller Mutterkorn.

Plenck*) handelt sehr umständlich von zwei verschiedenen Arten von Mutterkorn, nämlich von einem bösertigen und einem gutartigen, und Willdenow**) und Andere haben diese Angaben weiter verbreitet. Die bösertigen Kornzapfen, sagt Plenck, sind äußerlich veilchenblau und innerlich bläulichgrau. Dieser Staub hat einen ekelhaften

*) Physiologie und Pathologie der Pflanzen p. 311.
**) Grundriss etc. 7te Aufl. 1831. p. 502.

**XVIII. Die Schwindpocken-Krankheit.**


Die Krankheit zeigt sich nach Herrn Fintelmann's Beobachtung ursprünglich als runde oder elliptische, durch ihre Verbindung mit einander aber sehr mannigfaltig, doch stets so gestaltete trockne Wunden, daß die äußern Umfänge rundliche Ausbuchtungen (mit spitzen Winkeln dazwischen) bilden. Sie sind zwar ohne alle Regel, doch meistens so vertheilt, daß sie die Sonnenseite der Internodien einnehmen.


Das Wesen der Krankheit wird in einem ungesunden Zustande des Pflanzensaftes gesucht und das Auftreten der Wunden und Narben mit dem eines Exanthems's, gleich den
Pocken, verglichen. Als Gelegenheits-Ursache wird eine mehrjährige Dürre angegeben.


Im Jahre 1840 erschien die Krankheit des Weinstocks

*) Bemerkungen über eine Krankheit am Weinstocke etc. — Allgemeine Gartenzeitung etc. Berlin 1839. p. 233.
aberwärts, aber merkwürdig genug, sie hatte mehrere von denjenigen Gärten verlassen, welche sie zwei Jahre lang vorher so stark heimsuchte, dagegen trat sie wieder in anderen Gärten sehr stark auf, welche bis dahin nur sehr wenigen oder gar nicht davon gelitten hatten. Ich sah die Krankheit an dem jungen Holze in den letzten Tagen des Mai entstehen; sie zeigten sich zuerst als mifsfarbene Flecken der grünen Rinde und fast gleichzeitig traten auf einzelnen Blättern solcher erkrankter Schößlinge mehr oder weniger häufig Brandflecken auf; manche Blätter waren sehr stark von diesen Brandflecken ergriffen, so daß sie zusammen- schrumpften, sich bräunten und ganz zerstört wurden, an andern waren nur einzelne, ziemlich vollständig runde Flecken, welche im Anfange gelblich braun, später aber tief dunkelbraun oder rötlichbraun wurden und sich durch vollständige Mumifizierung der Blattsubstanz charakterisirten, daher denn auch diese Flecken auf beiden Flächen der Blätter vertieft sind; ja später, wenn die Mumifizierung noch vollständiger erfolgt ist, verstäubt sich diese vertrocknete Blattsubstanz und an der Stelle der Brandflecken bleiben Löcher zurück. Wenn man diese Brandflecken der Blätter früh genug mit gehöriger Vergrößerung untersucht, so wird man finden, daß sie durch einen kleinen Pilz verursacht werden, dessen Auftreten mit brandiger Zerstörung des Zellgewebes begleitet ist, und eben derselbe Pilz ist es, wie die fernere Untersuchung zeigt, welcher die brandigen Zerstörungen in der Rinde der jungen Triebe veranlaßt. Gleich im frühesten Zustande, in welchem die Flecken auf dem jungen Holze sichtbar werden, findet man, daß die krankhaft ergriffenen Stellen mit einer Unzahl von kleinen, wasserhellen Pilzen bedeckt sind, und daß mit ihrem Auftreten nicht nur die Zellen der zunächst ergriffenen Epidermis, sondern auch der 3 bis 4 darunter liegenden Zellenschichten erkrankt sind. Die Membranen dieser Zellen bräunen sich, werden trocken und zerfallen, und so erhält die zurückbleibende Wunde eine braune Farbe. In diesem Zustande könnte man die er-
krankte Stelle mit einem fressenden Geschwür vergleichen; die Pilzbildung wuchert immer weiter, das parenchymatische Zellengewebe der Rinde wird bis auf die Bastbündel gänzlich zerstört und auch im Umfange nimmt das Geschwür mehr und mehr zu. Alsbald entstehen dicht daneben neue Geschwüre, die sich ebenfalls vergrößern, mit den erstern zusammenfließen und auf diese Weise zuweilen den größten Theil der Fläche einzelner Glieder bedecken, die dadurch schrecklich entstellt werden. Haben sich erst mehrere einzelne Flecken vereinigt und haben sie erst die Form fressender Geschwüre angenommen, so gehen die brandigen Zerstörungen noch tiefer in die Substanz der jungen Triebe hinein; sehr bald sterben auch die von Geschwüren ergriffenen Bastbündel ab und die Mumification dringt bis in den Holzring hinein. Die Ränder dieser Geschwüre werden braunschwarzlich und etwas wulstig aufgetrieben, wahrscheinlich durch eine Reaktion des noch gesunden Zellengewebes der Rinde gegen die vom Brande ergriffenen Theile; ja diese wulstigen Aufreibungen sind zuweilen sehr groß und wechseln auf die auffallendste Weise mit den Vertiefungen der brandigen Flecken. Ergriffen diese Brandflecken die äußersten Spitzen junger Triebe, so werden alsbald die ganzen Spitzen mit den daran sitzenden jungen Blättern vollständig zerstört; sie werden braun, schrumpfen zusammen, werden schwarz und fallen ab. Ist aber das junge Holz an den von der Krankheit ergriffenen Stellen schon fester geworden, ist der Holzring schon ausgebildet, dann widersteht der Trieb zwar länger der Zerstörung, ist aber, selbst wenn nur einzelne Glieder desselben stark mit Brandflecken bedeckt sind, so sehr erkrankt, daß er dennoch, wenn auch erst später, jedesmal abstirbt. Ich habe im Oktober 1839 auf den Terrassen von Sans-Souci starke fingerdicke Stengel gesehen, welche so stark mit diesen fressenden Brandflecken angegriffen waren, daß sie durch und durch mumificirt waren und bei der geringsten Kraftanstrengung ganz und gar zerbrachen. Es gab einzelne Reben daselbst, welche
gänzlich durch diese Krankheit zerstört wurden und es waren nicht nur die jungen Triebe, sondern auch die alten, welche zuletzt ganz vertrockneten, doch fand ich an mehreren Reben, welche ausgenommen wurden, die Wurzeln im gesunden Zustande.


Nach den obigen Mittheilungen kennen wir gegen-

Schon fing man an, zu vermuten, daß der Weinstock vielleicht in Folge seines hohen Alters von der zerstörenden Krankheit ergriffen werden möchte, da doch bekanntlich die meisten durch Schnittlinge vermehrt werden; diese Vermuthung ward indessen bald widerlegt, denn man beobachtete die Krankheit zuerst mit an einer Rebe, welche seit 10 oder 12 Jahren aus Saamen gezogen war. So sehen wir also, daß Pflanzen von verschiedenem Alter von dieser Krankheit ergriffen werden. Wir sahen die Krankheit unter den verschiedensten äußern Verhältnissen entstehen, wir sahen sie an den kräftigsten gut gepflegten Pflanzen, welche im üppigsten Grün prangten und dagegen auch an Weinstöcken, welchen weniger Aufmerksamkeit geschenkt wurde. Wir haben kennen gelernt, daß die Krankheit ohne irgend bekannte äußere Ursachen entstand und ebenso wieder verschwand, ohne daß man einen Grund

*) S. pag. 206 ff.
angeben konnte, kurz sie verhält sich in ihren ursächlichen Momenten noch rätselhafter als Rost und Mehlthau, diese sind aber die Krankheiten, welchen die Schwindpocke angereiht werden kann.


Die Brandflecken auf dem Stengel der Himbeer-Sträucher unterscheiden sich von jenen des Weinstockes dadurch, daß sie kleiner sind, daß sie aber in um so größerer Anzahl auftreten und oft zwischen mehreren Blattansätzen die ganze Hälfte der Oberfläche der Rinde zerstören. Die Brandflecke können auch auf den Himbeer-Stengeln nicht so tief einfressen, weil der Holzring hier ganz vollkommen geschlossen und ziemlich hart ist, daher sind die Narben dieser geschwürartigen Brandflecken auf den Himbeer-Sträuchern immer nur sehr oberflächlich, ja die kleinern und einzeln stehenden sind nur sehr wenig vertieft, daher denn auch der Rand nicht so auffallend erhoben und wulstig sein kann, wie auf dem Weinstocke.
Schließlich möchte ich noch die Bemerkung hinzufügen, dass obige Krankheit wahrscheinlich auch bei mehreren andern Sträuchern vorkommt, und vielleicht auch auf Kräutern, denn ich hatte wenigstens bei verschiedenen der Letztern hier und da auf den Blättern Brandflecken beobachtet, welchen ganz ähnliche kleine Pilze aufsaßen.
Innere Krankheiten.
I. Saftausfluss und Thränen der Bäume.

Das Thränen der Bäume hat man häufig als eine Krankheit bezeichnet und es mit den Ausflüssen verschiedenartiger Säfte, welche wir gleich nachher speziell erörtern werden, in Zusammenhang gestellt, doch gewiüx mit Unrecht, denn das Thränen gewisser Bäume ist eine ganz natürliche Erscheinung und tritt nur dann ein, wenn dergleichen Gewächse auf irgend eine Weise an ihrem Holzkörper verletzt sind. In unsern Gegenden sind bekanntlich nur wenige Bäume, welche die Erscheinung des Thränen's zeigen; die Birke steht vor Allen obenan, dann einige Ahorn-Arten, Ulmen, Buchen und auch einige Weiden; unter den bei uns kultivirten Gewächsen ist es aber der Weinstock, welcher das Thränen am ausgezeichnetsten zeigt. Diese genannten Gewächse führen im Frühjahre, wenn die Knospen anschwellen, eine sehr große Menge von Nahrungslüssigkeiten; es sind mit diesen, um jene Zeit, selbst die Spiralröhren des Holzkörpers ganz gefüllt, und sobald dergleichen Theile verletzt werden, welche Spiralröhren enthalten, so kommt der darin befindliche wässerige Saft zum Ausflusse, eine Erscheinung, welche bis zum Ausbruche der Blätter anhält und dann sehr schnell aufhört. Schneidet man zu dieser Zeit, wenn die Spiralröhren mit Flüssigkeit gefüllt sind, an einem Weinstocke irgend einen Ast ab, so fließt das Wasser aus der Schnittfläche desjenigen Theiles, der mit der Wurzel in Verbindung steht, und dieses Ausfließen des rohen Nahrungs- saftes hat man mit dem Namen des Thränen's belegt. Da
dieser Saft etwas Zucker enthält, bei einigen Pflanzen sogar in solcher Menge, daß man die Flüssigkeit zur Bereitung von Zucker benutzt oder sie der weinigen Gährung aussetzt, so glaubt man, daß dieses Ausfließen eines solchen Nahrungssaftes dem Gewächse von Nachtheil sei, und gewiß auch mit Recht, wenn gleich dieser Nachtheil sehr selten unmittelbar wahrnehmbar sein möchte. Die Beobachtung hat gezeigt, daß bei dem Auftreten des Zuckers in dem aufsteigenden rohen Nahrungssaft die Stärke aufgelöst wird, welche in mehr oder weniger großer Menge in dem Holze und dem Marke der Bäume abgelagert war. Man kann sich indessen auch sehr leicht davon überzeugen, daß selbst nach vollkommen ausgebildeten Blättern und Blüthen in dem Holze solcher Bäume und Sträucher noch immer eine sehr große Menge von Amylum enthalten ist, und dadurch wird esverständlich, daß das einmalige Tränen eines Baumes noch keinen merkbaren Nachtheil hervorbringt. Wenn dergleichen Bäume, deren Holz reich an Amylum ist, in einem guten Boden standen, so können sie später mehrere Jahre hindurch in einem schlechten stehen, indem sie alsdann noch immer von ihrer eigenen Nahrung, dem aufgespeicherten Amylum, leben. Aus diesem Grunde beschneidet man gegenwärtig den Weinstock im Herbst. Mitunter zeigt sich jedoch am Weinstocke, wie an der Birke, den Ulmen u. s. w. ein solches Tränen im Frühjahr, ohne daß die Pflanze absichtlich verletzt ist; man sieht nur, daß die Flüssigkeit durch die Risse und Spalten der Rinde hervorquillt und in mehr oder weniger großen Massen ausfließt, wenn man aber näher untersucht, so findet man in dem Holzkörper irgend eine Verletzung; entweder zeigt sich eine kleine Spalte, oder, was gewöhnlicher ist, eine kleine faule oder abgestorbene Stelle, durch welche dann der Saft, der mit bedeutender Kraft emporsteigt, hervorquillt. Diese faulen oder abgestorbenen Stellen zeigen sich meistens da, wo früher Seitenäste saßen und abgeschnitten oder abgebrochen wurden.
Insoweit ist das Thränen oder Ausfließen des rohen Nahrungssaftes etwas ganz Natürliches und darf nicht als eine Krankheit angesehen werden, aber leider entstehen durch dieses Ausfließen aus solchen verdorbenen Stellen des Holzkörpers, wie durch die Spalten in Folge von Frost, sehr unangenehme krankhafte Zustände.

II. Der Honithau. Melligo, Mel aëris, Ros mellis

Unter Honithau versteht man einen zuckerhaltigen, dickflüssigen und klebrigen Saft, welcher zuweilen im Frühjahr, häufiger jedoch bei heißem Wetter zur Sommerzeit, die Blätter, Blüthen und jungen Triebe der Bäume, Sträucher und Kräuter überzieht. Bald überzieht er diese Theile als ein glänzender Firnifs und zwar nicht nur die obern Flächen, sondern mitunter auch die untern, bald tritt er auf in Form von gelblichen, zählen Tropfen.

Man hat ungemein viel über diese sogenannte Pflanzenkrankheit geschrieben und sich über den Ursprung jenes zuckerhaltigen Saftes gestritten, leider sind wir aber auch heutigen Tages über diesen Gegenstand noch nicht ganz im Reinen; wir werden aber finden, daß man die verschiedenartigsten Sachen zusammengeworfen und unter dem gemeinschaftlichen Namen des Honithau's beschrieben hat.

Die älteste Ansicht, welche man über den Ursprung des Honithau's aufgestellt hat, ist wohl die, nach welcher derselbe wie ein wahrer Thau aus der Luft fallen und die darunter befindlichen Pflanzen und andern Körper bedecken soll. Plinius sagt schon von dem Honithau,**) daß derselbe in den Hundstagen falle und sich dann an die Blätter der Bäume wie an die Haare der Kleider derjenigen lege, die sich gerade im Thaue aufhalten. Im Jahre 1762 haben wir durch Leche**) eine Geschichte des Honithau's erhalten,

*) XI. p. 126.
worin alle früheren Ansichten über diesen Gegenstand aufgeführt werden, und hiernach sieht man, dafs J. Bauhin der erste war, welcher das Herabfallen des Honigthau's aus freier Luft auf eine sehr treffende Art als ganz unwahrscheinlich und offenbar irrig darzustellen suchte. Man hatte schon damals bemerkt, dafs der Honigthau zuweilen nur auf eine besondere Art von Pflanzen falle u. s. w. Jene Ansicht des Plinius herrschte jedoch zu einer Zeit, als man schon wusste, dafs alle die fremdartigen Körper, welche sich in der Luft befinden, von der Erde aus verdunstet und in die Luft gestiegen sein müfsten. Man stellte sich daher denn auch sogleich die Frage, von welchen Körpern aus die Materie des Honigthaues hervorgehen möge und glaubte hiezu die Blumen der Pflanzen besonders geeignet zu finden; ja die Zeit, in welcher der Honigthau auftrete, sei gerade diejenige, in welcher die Pflanzen in voller Blüthe zu stehen pflegen. Eine der besten Abhandlungen, welche die Beweisführung dieser Ansichten bezeücht, ist von einem Anonymus im 14. Bande des Hamburger Magazins *) enthalten; geht man jedoch genauer auf die von ihm gemachten Beobachtungen ein, so wird man sehr bald finden, dafs auch sie eine andere Deutung zulassen und dafs er ebenfalls niemals sah, wie jener Honigthau aus der Luft gefallen ist. Gleich die ersten Beobachtungen über den Honigthau, welche daselbst sehr richtig und umständlich beschrieben werden, sind ganz anders zu deuten. Man hatte einen honigartigen Saft auf den Roggen-Aehren in Form einzelner Tropfen gefunden und glaubte auch diesen für Honigthau halten zu müssen; die Erscheinung ist aber so genau beschrieben, dafs es keinem Zweifel unterliegt, dafs dieser Honigsaft aus den Roggen-Aehren nichts weiter war, als die Absonderung jenes Pilzes, welcher die Bildung des Mutterkorn's verursacht und worüber in diesem Buche in dem Artikel über das Mutterkorn ausführlicher gehandelt worden ist. Es haben auch noch mehrere

*) 1759 p. 138—172.
andere Schriftsteller diesen Honigsaft auf den Roggen-Aehren unter Honigthau beschrieben; sie erkannten aber doch, daß dieser Saft von der Aehre selbst herstamme und also nicht aus der Luft herabgefallen sei.

Es fehlt aber auch nicht an Angaben, nach welchen der Honigthau in Gestalt eines feinen Staubregens, und zwar meistens Vormittags an sehr heißen Tagen, herabgefallen ist;**) auch in neuern Zeiten will man so etwas gesehen haben, doch sind die Angaben einmal durch keine namhafte Autoritäten zu unterstützen und zweitens werden wir sichere Thatsachen kennen lernen, nach welchen die Erscheinung des Honigthau’s anderweitig zu erklären ist. Herr Wiegmann sen.***) erzählte noch vor einigen Jahren einen Fall, wonach man wirklich glauben sollte, daß der Honigthau vom Himmel herabfalle; er hat nämlich im Juni 1822 beobachtet, daß Nachmittags ein Theil seines Gartens, von einem halben Morgen Größe, ganz mit einer klebrigen, zuckerreichen Flüssigkeit bedeckt war, und schliefst daraus, daß diese Substanz aus der Luft gefallen sein müsse. Noch interessanter ist eine von Wiegmann aus brieflichen Mittheilungen des verstorbenen Medicinalraths Ziz in Mainz mitgetheilte Beobachtung, nach welcher man im Juni 1823 Honigthau in Tröpfchen durch die von der Sonne beleuchteten Öffnungen zwischen den Baumästen fallen sah, und gerade nur die in jener Strecke befindlichen Blätter u. s. w., auch einen dort liegenden Hammer, mit süffstem Thau besprengt fand. So lange übrigens nicht von Sachverständigen, die auch sogleich mit dem Mikroskope bei der Hand sind, das Herabfallen eines zuckerhaltigen Saftes aus freier Luft unmittelbar beobachtet worden ist, wird es uns erlaubt sein, eine solche Erklärung des Honigthau’s gänzlich zu bezweifeln.


Die zweite, sehr allgemein herrschende Ansicht über den Ursprung des Honigthau's ist die, nach welcher der Honigthau von den Blattläusen abgesondert wird. Es haben nämlich die meisten von denjenigen Blattläusen, welche entweder frei auf der Oberfläche der Blätter oder in zusammengerollten Blättern leben, auf dem Rücken des Hinterleibes 2 Honigröhren oder Höcker, ans welchen sie eine zuckerhaltige Flüssigkeit entleeren, und auch der Saft, den man durch Zerdrücken der Körper der Blattläuse erhält, soll sehr zuckerhaltig sein. Da man nun gewöhnlich das Vorkommen des Honigthau's und das der Blattläuse gleichzeitig nebeneinander vorfindet, auch das Ausspritzen des Honigsaftes durch die Honigröhren der Blattläuse wirklich beobachten kann, so schloß man, was allerdings auch wohl sehr nahe lag, daß die ganze Bildung jenes zuckerhaltigen Saftes, welcher die Blätter und andere Theile der Pflanzen überzieht, ganz allein von den Blattläusen hervorgebracht worden sei. Auch fand man allgemein, und das haben gewifs auch schon viele der geehrten Leser dieses Buches gesehen, daß die Absonderung jenes zuckerhaltigen Saftes auf den Pflanzen um so gröBer ist, je gröBer die Zahl der Blattläuse, welche solchen Saft absondern. Wenn man einen Rosenstock im Zimmer hat, welcher stark mit Blattläusen bedeckt ist, so ist es leicht zu sehen, daß auch alle Gegenstände, welche unter dem Baume befindlich sind, sehr bald mit dem zuckerhaltigen Saft bedeckt werden und, wenn man genau darauf achtet, so geht diese Ausbreitung des süßen Saftes weiter als der Umfang des Baumes beträgt. Ja man sieht auch, daß mit den herabgefallenen Blattläusen die zuckerhaltige Flüssigkeit weiter ausgebreitet wird.

Bei dem Allen hat man denn doch verschiedene Erscheinungen aufgeführt, wodurch auch diese Erklärung über die Entstehung des Honigthau's in Zweifel gestellt werden kann. Man hat nämlich sehr allgemein und sehr richtig beobachtet, daß der Honigthau nicht auf der unteren Fläche der Blätter, sondern gerade immer auf der oberen
Fläche derselben befindlich ist und diese wie mit einem Firnisse überzicht; die Blattläuse dagegen sitzen fast immer auf der untern Fläche der Blätter und nur sehr selten auf der Oberfläche. Diese Einwendung ist indessen ganz unhaltbar, denn der Honigthau, welcher von den Blattläusen ausgespritzt wird und im Sonnenschein in Form eines feinen Staubregens herabfällt, muß gerade immer auf die Oberfläche der zunächst darunter stehenden Blätter fallen und so wird es wohl erklärlich sein, daß sich die Blattläuse im Allgemeinen auf der untern, der Honigthau dagegen auf der obern Fläche der Blätter befindet. Um diese sehr einfache Erklärung, welche ich von den mir vorgekommenen Fällen von Honigthau auf Rosenstöcken entnommen habe, zu verdächtigen, kann man einwenden, daß hiedurch nicht erklärt werde, auf welche Weise die obersten Blätter mit Honigthau bedeckt würden, über welchen keine andern weiter befindlich sind; in den zwei von mir genauer beobachteten Fällen habe ich indes sehr deutlich sehen können, daß die untersten Blätter am stärksten, die obern weniger stark und die obersten nur sehr wenig mit Honigthau bedeckt wurden. Der anonyme Verfasser jener lesenswerthen Abhandlung über den Honigthau im Hamburgischen Magazin*) erzählt einen Fall, wo er den Honigthau auf einem Pflaumenbaum häufiger gefunden habe, als in irgend einem andern Falle; die Blätter waren überall glänzend und klebrig, andere mit zerflossenen oder an der Spitze gesammelten Tropfen versehen. Er stieg in den Baum hinein, und fand es in dem obersten Wipfel ebenso beschaffen; unter andern saß daselbst ein ganz kleines, verwelktes und zusammengeschrumpftes Blättchen, dessen Höhlung beinahe ganz mit Honigthau gefüllt war und es ist neben und über diesem Blatte keines gewesen, welches irgend etwas in das kleinere hätte hineinfallen lassen können. Der Verfasser jener Abhandlung setzt indessen noch hinzu, daß überall, wo auf den Pflaumenblättern Honigthau war,

*) IV. p. 144.
eben da auch Blattläuse befunden waren, wiewohl diese auch auf Blättern saßen, welche keinen Honigthau zeigten. Es scheint, daß in diesem, so eben mitgetheilten Falle das Vorkommen des Honigthau's auf den obersten Blättern nicht von den Blattläusen abzuleiten sei, weil diese stets auf der unteren Fläche der Blätter gesessen hätten, indessen ist es kaum zu glauben, daß, selbst wenn jene Beobachtung ganz richtig ist, die Blattläuse auch immer auf der unteren Fläche der Blätter gesessen haben; man bracht nur andere kleinere Bäume, die mit Blattläusen bedeckt sind, in dieser Hinsicht genau zu untersuchen und man wird stets eine Menge finden, welche auf der oberen Blattfläce unherlaufen. Will man übrigens das gewöhnliche gleichzeitige Auftreten des Honigthau's und der Blattläuse dadurch erklären, daß die Blattläuse durch den Honigthau herbeigelockt werden, so muß man denn doch auch annehmen, daß sie den Honigsäfte fressen und sich deshalb auch auf die obere Fläche der Blätter begeben werden u. s. w. Der Anonymus im Hamburger Magazin führt aber jenen Fall mit den Pflaumenbäumen und die vielen übrigen nur auf, um zu erweisen, daß der Honigthau nicht von den Blattläusen abgesondert, sondern aus der Luft herabgefallen sei. Da müßte denn aber doch eine sehr große Menge dieses Saftes herabgekommen sein, wenn die Hölle eines gekrümmten Blattes mit demselben ganz gefüllt war, und schwerlich könnte ein solcher Honigregen übersehen worden sein! Wenn sich aber Blattläuse auf einem jungen Blatte einfanden, so pflegen sie auf beiden Blattflächen vorzukommen und auch gewöhnlich ein Krümmen oder Verkrüppeln der Blätter zu veranlassen, und dieses mag denn auch wohl hier der Fall gewesen sein, wo sich dann eine Zeit lang die Blattläuse auf der oberen Fläche des Blattes aufhielten und hier eine große Menge von Honigthau absonderten.

Der berühmte Reaumür hatte die Meinung aufgestellt, daß der Honigthau aus den Wunden hervordränge, welche durch die Stiche der Blattläuse verursacht würden; doch
hat er selbst diese Erklärung wieder zurückgenommen und glaubte später, daß aller Honigthau nur von Blattläusen erzeugt werde.


Es kommen nämlich dann und wann dergleichen Beobachtungen zum Vorschein, nach welchen der Honigthau auf keine andere Weise entstanden sein kann. Man findet Bäume im Freien und in der Stube, welche, oft sehr plötzlich, über und über mit Honigthau bedeckt werden und man kann sich durch Nebenumstände davon überzeugen, daß diese Absonderung weder vom Himmel gefallen ist noch von den Blattläusen abgesondert werden konnte, indem diese Letztern fehlten. Es gibt eine große Menge von Angaben, nach welchen man Honigthau früher sah als Blattläuse; doch ist den meisten derselben freilich nicht sehr zu trauen, da auch die jungen Blattläuse, die oft noch sehr klein und schwer mit bloßem Auge zu sehen sind, schon den Honigsaft absondern.

Eine hierhergehörige Beobachtung, welche mit größerer Genauigkeit angestellt ist, als dergleichen in früheren Zeiten ausgeführt wurden, ist kürzlich durch die Herren Hartig *) mitgetheilt worden. Man untersuchte den Honigthau auf einem Rosenstocke, der nicht aus dem Zimmer gekommen

war, und fand, daß sich derselbe in kleinen Tröpfchen aus der oberen Epidermis der Blätter absonderte und daß der Zuckerstoff in diesen Tröpfchen sich sehr bald in rautenförmigen und eubischen Krystallen ansetzte. Mit der Ausscheidung des Honigthau's hatten sich jedoch auch die Blätter sehr verändert; die grüne Farbe war verschwunden und durch eine graue ersetzt und die Blätter, welche im gesunden Zustande nach Auß en gewölbt waren, sollen sich als Vertiefungen gezeigt haben. Die grünen Zellen- saftkugelchen des Diachym's der Blätter seien an denjenigen Stellen verschwunden, wo ihnen Honigthau entquollen war, und es fand sich hier in jeder Zelle nur eine einzige, sehr große, meist die Hälfte der Zellen ausfüllende, wasserklare Blase, die aus abgesondertem Honig zu bestehen schien.

Auch Herr Treviranus*) hat an Weißpappeln und Linden während einer heißen Sommerwitterung diese Ausscheidung des sogenannten Honigthau's bemerkt; ebenso an Carduus arctioides und an Orangenbäumen, wenn die Luft der Gewächshäuser zu warm und zu trocken war; das Sekret erschien, und so habe ich es ebenfalls einigenmale auf Linden und Weiden gesehen, stets auf der Oberfläche der Blätter in zerstreuten, kleinen Tröpfchen, welche allmählich zusammenfloessen und somit einen glänzenden und klebrigen Ueberzug über die ganze Oberfläche der Blätter und oft auch über die ganze Oberfläche der jungen Aeste bildeten. Es gibt indessen noch eine ganze Anzahl von Beobachtungen, nach welchen die Blätter verschiedener Pflanzen, wie z. B. der Ulmen und selbst der Fichten einen solchen Honig-haltigen Saft absonderten, den man für Honigthau erklärte, und offenbar hängt diese Erscheinung ganz innig zusammen mit der Absonderung der Manna, von welcher im folgenden Abschnitte die Rede sein wird.**)

*) Die Physiologie der Gewächse II. p. 36.

Schon aus dieser Zusammenstellung werden wir ersehen, daß, wenn von Honigthau die Rede ist, wir mit sehr verschiedensten Erscheinungen zu thun haben können, und daß demnach sowohl die Ursachen, welche den Honigthau veranlassen, als auch die Folgen, welche derselbe verursacht, gar sehr verschieden sein müssen. Wir glauben mit Bestimmtheit behaupten zu können, daß der Honigthau nicht aus der Luft fällt, und daß er daher seinen Namen sehr mit Unrecht führt. Es ist aber mit Bestimmtheit nachgewiesen, daß die Blattläuse einen wasserhell, zuckerhaltigen Saft ausscheiden, welcher ganz gewöhnlich den Honigthau darstellt; diese Erscheinung kann natürlich nicht als eine Krankheit der Pflanzen angesehen werden, sondern sie bildet nur eine Gelegenheits-Ursache zur Entwicklung eines kranken Zustandes der Pflanzen. Sind nämlich die Blätter der Pflanzen, die jungen krautartigen Theile derselben überhaupt, mit Honigthau von Blattläusen überzogen, so hört die Respiration und Transpiration derselben an den überzogenen Theilen auf und eine vollständige Aufhebung der Respiration bringt, wie die Physiologie lehrt, solchen Pflanzenteilen in kurzer Zeit den Tod. Zum Glücke für die Pflanzen werden meistens nur die oberen Flächen der Blätter mit dem Honigsafte überzogen, und die Respirations- und Transspiration-Organe sitzen hauptsächlich und gewöhnlich auf den unteren Blattflächen, daher denn auch der gewöhnliche Honigthau, welcher nämlich von Blattläusen abstammt, den Pflanzen nicht besonders schädlich wird, hauptsächlich wenn sich die Blattläuse erst zu solcher Zeit einfinden, wenn die Blätter schon vollkommen ausgebildet sind. Ein starker Regen ist ganz allein hinreichend, diesen Honigsafte der Blattläuse abzuwaschen, und dann sind die Pflanzen wieder völlig frisch und haben weiter keine übeln Folgen zu erwarten, wenn die Blattläuse nicht wieder von Neuem den Ueberzug mit Honigsafte veranlassen.

Ganz anders verhält es sich dagegen mit demjenigen Honigthau, welcher von den damit befallenen Pflanzen Meyen. Pathologie.

III. Manna-Flüfs.

Die Manna ist eine zuckerartige Substanz, welche von der Rinde junger Stämme und Zweige, wie von den Blättern verschiedener Bäume, hauptsächlich aber der Manna-Esche (Fraxinus Ornus und Fraxinus Ornus var. rotundifolia), welche häufig in Sicilien und Calabrien, ja auch in Toscana vorkommt, abgesondert wird. Die Manna bildet sich bei der MannaEsche in der Rinde und auch in der Substanz der Blätter und diese Sekretion wäre mit der Absonderung des Gummis in den Steinobst-Arten zu vergleichen und weiter gerade nicht als eine krankhafte Erscheinung zu betrachten. Man weift, daß sich die Manna in der glatten Rinde der Zweige wie in den Blättern junger Mannaeesche ausscheidet und sich in ziemlichen Beulen oder Knollen zusammenhäuft, wodurch sie endlich die Substanz dieser Theile
zerrisst und ausfließt. Es ist dieses eine ganz natürliche Erscheinung an jener Pflanze, und nur wenn dieser Ausflußs übermässig stark ist, verursacht derselbe eine Schwäche, oder wohl gar den Tod des Baumes, wie man es bei dem Gummifluses mancher Steinobst-Arten so häufig sieht.


Nach Herrn Link’s Beobachtungen soll die Mannaesche nur dann die Manna geben, wenn sie gepfropft ist; bei Syrakus komme die Mannaesche häufig vor, sei aber nicht gepfropft und gebe auch keine Manna. Ein gewisser Rob. More*) sah in der Nähe von Neapel einen solchen Eschenwald, der 8—10 Jahre gestanden und auf Manna benutzt wurde; die Äste dieser Bäume waren jedes Jahr 1 Zoll in der Breite und 2 Fuß in der Höhe abgeschält. Im Anfange des August’s fing die Manna an zu fließen und floß 5—6 Wochen lang, wenn das Wetter trocken blieb. Es ist gewifs recht sehr zu bedauern, dafs die Mittheilung so unvollständig ist; aber es scheint mir, dafs alle diese Verletzungen der Rinde ausgeführt werden, um den Mannaaufuß zu befördern, was wahrscheinlich durch die Stockung des herabsteigenden Bildungssaftes geschieht. Ebenso möchte es zu erklären sein, dafs nur gepfropfte Bäume zur Manna-Bereitung verwendet werden, denn wir haben an einem andern Orte**) so manche Thatsache aufgeführt, welche gleichfalls auf eine, durch die Pfropfung veranlafste, langsame Herabsteigung des Cambium’s schliesßen ließen.

Die Manna fließt indessen nicht nur aus der Manna-

*) Hamburger Magazin IX. 71.
**) S. Meyen’s Pflanzen-Physiologie III. p. 90 etc.
Esche, sondern auch zuweilen aus mitteljährigen gemeinen Eschen und selbst aus andern Bäumen, wie z. B. aus Fraxinus lentiscifolia und aus Carpinus Betulus; in unsern nordischen Gegenden ist diese Erscheinung jedoch immer nur sehr selten. Andere Pflanzen sondern die Manna durch die Blätter ab; so z. B. wird die, unter dem Namen der Manna von Briançon in den Handel kommende Substanz von den Blättern junger Lerchenbäume im Monat Mai und Juni nach thaureichen Nächten abgesondert; sie dringt in Form kleiner Tröpfchen hervor, welche erhärten und dann die weissgelben Körnchen bilden. Sehr bemerkenswerth ist auch die Absonderung einer Manna-artigen Substanz, welche an Rhododendron ponticum Roxb. beobachtet wird; die Blätter, wie die jungen Zweige dieses Baumes sondern einen zuckerhaltigen Saft ab, der an der Sonnenseite bald in geringerer bald in bedeutend großer Quantität erscheint und gegessen wird. *)


*) Kosteletzki med. pharm. Flora III. p. 1022.
jenen Eschen vorkommt, bewirkt werde. Das Wahrscheinlichste möchte vielleicht sein, was auch Herr De Candolle annimmt, daß die Klumpen-Manna aus den künstlichen Verletzungen geflossen, daß dagegen die Körnern-Manna durch Verletzungen, der Insekten zum Ausflusse gekommen ist; übrigens erscheint auch diejenige Manna in Form von Körnern, welche unmittelbar von den Blättern ausgeschieden wird. De la Hire hat auch unter Pomeranzen-Bäumen eine Art von Manna gefunden, welche von den Blättern abgesondert war, und Rendaume erzählt, daß auch die Nufsbäume bisweilen eine Art von Manna von sich geben, aber auch daran sterben, wenn diese Absonderung zu stark ist. Die Manna der Weiden fand man der calabrischen sehr ähnlich, ja sie sollen noch mehr liefern als manche Eschenbäume. Bei allen diesen Bäumen pflegt die Manna-Absonderung bei starker und lange andauernder Hitze eintritt und so lange zu dauern bis häufige Regen fallen.*)

Die Manna besteht größtenteils aus dem Mannazucker und dieser ist dem Schleim- und Rohrzucker sehr verwandt, ja die Manna, welche eine Abart der Tamarix gallica (var. mannifera Ehr.) am Sinai liefert, enthält, wie Herr Mitscherlich gefunden hat, gar keinen Mannazucker, sondern verhält sich ganz wie Schleimzucker.

IV. Gummi-Flusses.


*) S. Duhamel die Naturgeschichte der Bäume I. p. 158.
einen besonders krankhaften Zustand ansehen kann, wie
denn solche, vom Gummiflufs befallenen Bäume oft noch
sehr reiche Früchte tragen, so weifs man denn doch,
daß der Gummiflufs auch in vielen andern Fällen auf
einen krankhaften Zustand der Bäume hinweist, ja die
Praktiker behaupten allgemein, daß ein zu starker
Gummiflufs, den man nicht zu gehöriger Zeit entgegen-
arbeitet, den Tod des davon befallenen Baumes zur Folge
habe. Indessen hat man hier offenbar die Symptome mit
der eigentlichen Krankheit verwechselt, denn es wird sich
in der Folge ziemlich klar herausstellen, daß ein zu star-
ker Gummiflufs an den genannten Bäumen nur das Sym-
ptom eines krankhaften Zustandes ist, und zwar stets auf
eine Stockung in dem Laufe und dem Verbrauche der
Bildungssäfte in der Rinde hindeutet.

Ehe wir die Art und Weise näher kennen lernen, wo-
durch das Hervortreten und die Absonderung so großer
Gummi-Massen hervorgerufen wird, ist es nöthig, eine
kurze Erörterung über das Auftreten des Gummi's in der
Rinde der Bäume im normalen Zustande zu geben. Dieses
wird uns dann auch die Annahme gestatten, daß der
Gummiflufs an und für sich keine so gefährliche Erschei-
nung sei, ja größtentheils ohne allen Nachtheil auf die
Vegetation der Pflanze fortbestehen könne.

Gummi, wie Zucker, sind die gewöhnlichsten assimilir-
ten Nahrungsstoffe, welche im Innern der Zellen der Pflan-
zien gebildet werden und sich hier bald in geringerer bald
in größerer Menge anhäufen, um dann zu gewissen Zeiten
tzu den verschiedenen Bildungen verbraucht zu werden. In
manchen Fällen aber, wo im Innern der Zellen große
Quantitäten von Gummi gebildet werden, wird diese
Substanz von den Zellen auch nach Außen abgesondert
und füllt dann die Intercellularargänge, die dadurch immer
mehr an Größe zunehmen und sich mehr oder weniger
regelmäßig gestalten; auf welche Weise die vielfach gestal-
teten Behälter entstehen, welche unter dem Namen der
Gummigänge, Gummigefäße u. s. w. bekannt sind. Die
wäre es nicht wohl abzusehen, daß die Natur so große Massen assimilirter Nahrungsstoffe den Pflanzen zwecklos entziehen sollte, denn ich halte eine solche Annahme, daß der Gummiflufs dem Gewächse vorteilhaft oder gesund sein könne, indem man denselben mit der Wirkung der Aderlässe verglichen hat, für etwas ganz Grundloses.


Nach den im Vorhergehenden gemachten Mittheilungen wird es einleuchtend sein, daß die Behandlung eines, vom Gummiüflus befallenen Baumes sehr verschiedenartig sein muß. Ein geringerer Gummiüflus an Bäumen, die ihn sehr häufig zeigen, ist weiter nicht zu beachten und alle lokale Behandlung des Gummiüflusses, nämlich das Ausschneiden derjenigen Stellen der Rinde, aus welchen das Gummi hervorquillt, was man zwar allgemein empfohlen hat, ist höchstens nur dann anzuwenden, wenn eine Spalte oder ein Rifs der Rinde, aus welcher das Gummi hervorkommt von der Art ist, daß sich darin Feuchtigkeit anhäufen und dadurch Fäulnifs und örtliches Absterben der Rinde erzeu- gen kann. Ja man hat nicht nur das Ausschneiden der secernirenden Rindenstelle und das Verkleben dieser Wun- den durch Kitt und dergleichen Sachen angerathen, son- dern man solle die Schnittfläche sogar noch vorher mit grüner Seife bestreichen, damit vermöge der darin ent- haltenen Alkalien die Gährung des ferner zufließenden
Saftes, einigermaßen gehemmt werde. Da indessen der Gummißfluß immer nur ein bloßes Symptom einer besonderen Krankheit oder einer allgemeinen Vollsaftigkeit ist, so kann alle örtliche Behandlung der Art, nicht nur nicht von Nutzen sein, sondern öfters sogar sehr nachtheilig; besonders nachtheilig ist das Bestreichen der Wundfläche mit grüner Seife, denn diese bewirkt das Absterben einer bedeutend tiefen Schicht des Holzes und der Rinde.

Sieht man, daß ein Obstbaum unserer Gärten plötzlich sehr viel Gummi aussondert, so möge man genauer nachforschen, ob entweder ein zu fetter Boden, oder die Art der Düngung, es veranlaßt habe, oder ob die Wurzeln leidend sind. Entfernung der Ursachen ist dann das beste Mittel, um die allgemeine Krankheit zu heben und mit ihr zugleich dem Gummißfluß zu begegnen. Ist der Baum nicht zu groß, so wird Versetzen das einfachste Mittel sein; doch wenn man dieses nicht ausführen will, oder auch nicht bewerkstelligen kann, so grabe man die Erde so viel als möglich von den Wurzeln ab und bedecke dieselben alsdann mit einer andern, dem Wachsthum des Baumes mehr entsprechenden Erde, und waren die Wurzeln faul, brandig oder überhaupt nicht gesund, so muß man dieselben vorher gehörig beschneiden. Ist der Baum aber schon sehr alt und aus diesem Grunde mit dem Gummißfluß stark behaftet, so wird die Hilfe, welche man demselben darbringt, wohl nicht lange fruchten und deshalb wird es ratsam sein, denselben zur gehörigen Zeit mit einem jüngern zu vertauschen.

Alle diese Höhlen waren mit einem noch dickflüssigen Gummi von schöner, brauner Farbe gefüllt; getrocknet zeigt es einen muscheligen Bruch und ist klar und durchsichtig. Es ist bekannt, daß die Markzellen der Cycadeen überaus reich an Amylum sind und mit die größten Amylum-Körner enthalten; dadurch wird es erklärlich werden, daß die zur Bildung des Amylum's bestimmten Säfte bei einem, durch irgend eine Ursache alienirten Bildungsprozesse zu den großen Gummimassen verwendet werden, welche in den Höhlen der Markmasse gefunden wurden. Es ist sehr wahrscheinlich, daß die übermäßige Sekretion dieses Gummi's auf mechanische Weise die Höhlen im Marke veranlaßte.

V. Kienholz, Kienkrankheit und Harzflufs.

Mit dem Namen der Kienkrankheit möchte ich denjenigen abnormen Zustand der Harz bildenden Bäume bezeichnen, in welchem sich das Harz in solchen Theilen bildet, welche im gesunden Zustande hierzu nicht bestimmt sind. Man hat bisher diesen Zustand mit dem Namen des Kienholzes belegt und ihn mit dem Harzflusse zusammengestellt oder sogar für identisch gehalten, was jedoch ganz unrichtig ist. Um aber den Unterschied in diesen beiden Zuständen deutlich zu zeigen, ist es ebenfalls nöthig, daß wir eine kurze Uebersicht der Verhältnisse erhalten, unter welchen das Harz in den Bäumen, die an dieser Krankheit leiden, vorkommt. Es sind die Coniferen, die bei uns den Harzflus und die Kienkrankheit zeigen. Im normalen Zustande kommt das Harz bei diesen Pflanzen in mehr oder weniger großen und erweiterten Interzellargängen vor, welche einen eigenthümlichen Bau in der Aneinanderreihung der die Wände bildenden Zellen zeigen und unter dem Namen der Harzgänge oder Harzgefäße bekannt sind. Diese Harzgänge haben ihren Sitz hauptsächlich in den äußern Schichten der Rinde, kommen jedoch auch im Holzkörper vor, wo sie sehr verschieden von denen der Rinde gebaut sind. Hier, in der Holzmasse, findet man die Harzgänge

dieses Absterben eine Folge des überaus starken Harzflusses ist, der gleichsam den Baum gänzlich erschöpft, wenn seine ganzen Bildungen hierauf gerichtet sind, oder ob, wie es sehr wahrscheinlich ist, auch hier der Harzfluss nur das Symptom eines tiefen krankhaften Zustandes ist; eine genauere Untersuchung der Wurzeln würde hierüber Aufschluss geben.


Um den nachtheiligen Folgen des Harzens vorzubauen und den Gewinn des Harzes dabei dennoch nicht zu schmälern, beobachte man bei dem Anreifen der Bäume folgende Regeln:** Man harze nur alte Bäume, welche

**) Oetels, etwas über die Harzgeschichte oder Pechnutzung fichtener Waldungen. Eisenach 1789.
12, 15—20 Zoll im Durchmesser haben; Stämme von 3 Fuß im Durchmesser geben das meiste Harz und können einige zwanzig Jahre auf Harz benutzt werden, junge Stämme dagegen werden in 10 bis 12 Jahren kernroth und zuletzt am Stammende, so weit die Laachen gehen, ganz faul. Solche Stämme, die zum Bauholz benutzt werden sollen, dürfen gar nicht gerissen werden, sondern nur solche, welche zu Brenn- und Kohlen-Holz bestimmt sind. Ferner reisse man einen und denselben Baum nicht alle Jahre, sondern lieber ein Jahr um das andere und thue es nur 8 bis 10 Jahre vor dem Abtriebe eines Bestandes.

In tropischen Wäldern kommen mehrere Bäume vor, deren Rinden große Quantitäten verschiedenartiger Harze geben, welche ganz ohne alle künstlichen Verletzungen ausfließen und man hat in den Brasilianischen Wäldern beobachtet, daß dieses ausfließende Harz nicht selten seinen Lauf von der Rinde nach innen nimmt, allmählich zwischen Holz und Rinde bis auf die Wurzeln herabfließt und sich hier, unter der Erde, in sehr großen Quantitäten anhäuft, woselbst es verhärtet und ein bernsteinartiges Ansehen erhält.

Krankheit ergriffen ist, durch und durch mit Harz imprägni
tirt wird, und zwar an Stellen, wo im normalen Zustande
durchaus gar keine Harzabsonderung stattfindet. Bald be
schränken sich dergleichen kienige Holzmassen nur auf
kleine Theile eines Stammes, bald verbreitet sich diese
Harzbildung auf grösere Strecken und nimmt mitunter
fast ganze Stämme ein. In den Gipfeln alter Kiefern soll
sich, wenn sie trocken werden, oft viel Kien oder harziger
Saft ansammeln; man nennt sie dann Kienzöpfe.*)

Diese ganze Harzbildung im Holze ist uns noch eine
völlig unerklärliche Erscheinung. Wir wissen durchaus
nicht, in welchem Verhältnisse dieser Sekretions-Prozefs
zum Leben der Pflanze steht, denn wir sehen, dass die
Stöcke und Wurzeln von alten gefällten Kiefern, nachdem
sie viele Jahre ohne weitere Zeichen von Leben in der
Erde standen, gerade am meisten und am gewöhnlichsten
solches Kienholz geben. Hartig**) erzählt, dass man auf
der Insel Wollin in Pommern dergleichen Stücke aus der
Erde hervorsucht, die wahrscheinlich vor einigen hundert
Jahren verschüttet worden sind. Man erkennt das Vorkom
den derselben an den kleinen Erhabenheiten des Bodens,
und findet darin die mit harzig-öligem Wesen überfüllten
Wurzeln sehr starker Kiefern. Hiernach müsste man also wohl schliessen, dass das Auftreten des Kienhol zes
mit dem allmählichen Absterben des Holzes der Kief
ern, Fichten u. s. w. verbunden sei.

Eine Heilung der Kienkrankheit wird niemand bezwecken wollen, da das kienige Holz weit höher im Werthe
steht, als das gesunde und nichtkienige. Kienige Stämme
sind bei Erd- und Wasserbauten ganz unverwüstlich, und
würden auch zu leichten Landwohnungen sehr vorteilhaft
sein, wenn nicht ihr Geruch sehr unangenehm wäre und
dabei die Feuersgefahr noch vergrössert würde.

VI. Filzkranzheit der Blätter, Erineum Persoon.*)


*) Tent. dispos. math. fung. p. 43, Phylleriaceae Fries (Syst. Myc. intr. p. LXII.

**) Berliner Magaz. der Nat. Freunde etc. 1809. p. 21 und 22.


††) Mycologische Hefte II. Leipzig 1823. p. 133.


Meyen. Pathologie.

Die Erineen, zu welchem Namen wir wieder zurückkehren, sind keine Pilze und auch mit den sogenannten Exanthemen der Pflanzen nicht zusammengehörig; es sind abnorme Haarbildungen der Epidermis der Blätter, wo auf mehr oder weniger großen Stellen die obere Wand jeder einzelnen Zelle in Form eines Härchens auswächst. Auf den Blättern verschiedener Pflanzen sind diese Härchen verschieden geformt, ja sie sind verschieden, je nachdem sie auf der Fläche des Blattes, oder auf den Nerven und in den Achseln der Nerven des Blattes auftreten. Diese abnormen Haarbildungen zeigen sich in Form von kleinen oder mehr oder weniger ausgedehnten Rasen, die um so stärker hervortreten, je länger die einzelnen Härchen sind, aus welchen sie zusammengesetzt werden. Sie treten größtenteils nur auf der unteren Fläche der Blätter auf, ja es gehört zu den Seltenheiten, wenn sie auf der oberen Fläche erscheinen. Mit diesem Auftreten der Haarwucherung ist jedoch zugleich eine geringe Anschwellung der übrigen Substanz des von der Haarwucherung ergriffenen Blattheiles verbunden, so dass dadurch ein Hervortreten der Blatffläche an der von der Krankheit ergriffenen Stelle stattfindet, doch immer nur auf der, dem Rasen entgegengesetzten Seite des Blattes. Wenn sich also, wie es gewöhnlich ist, die Filzkrankheit auf der unteren Blatffläche zeigt, so ist die Auftreibung des Blattes auf der oberen Fläche zu finden, die sich auch

*) Vgl. Corda Ic. Fung. IV. p. 3. t. 1. s. 7. (Erineum quercinum.)
meistens sehr bald verrät, besonders wenn die untere Fläche sehr stark davon ergriffen ist. Man hat die Be-
hauptung aufgestellt, daß die Anschwelling der Blattsub-
stantz um so stärker sei, je geringer die Haarproduktion auf der unteren Fläche ist, doch kann ich dieses nicht be-
stätigen. Die stärksten Bullositäten der Blätter in Folge
der Filzkrankheit sah ich auf dem Wallnusbaum, mit-
unter auch auf dem Weinstocke, und in beiden Fällen zei-
gen sich die Härchen sehr lang und bilden dichte Rasen.
Erscheint die Haarproduktion im Verlaufe der Blattner
ven, wie es bei der Buche nicht sehr selten ist, so bemerkt man nur selten eine Auftreibung auf der entgegengesetzten Blattfläche.

Die Aufreibung der Blattsubstanz besteht in einer
geringen Vergrößerung, gleichsam in einer Turgescenz
der einzelnen Zellen, wodurch die ganze ergriffene Stelle
wegen Mangels an Raum emporgehoben wird. Macht man
an jungen Blättern gut ausgeführte Querschnitte, so wird
man sich bei hinreichender Vergrößerung hiervon über-
zeugen können und man wird zugleich erkennen, daß jedes
Härchen eines Rasens aus der äußern Wand einer Epider-
mis-Zelle hervorgegangen ist, daß also jene Haarbildungen;
welche man mit dem Namen der Erineen oder Phylleria-
ceen belegte, durchaus keine selbstständigen Gewächse,
so wenig als Parasiten sind, sondern nur in abnor-
men Anschwellungen und Haarbildungen der Epidermis
der Blätter bestehen. Viele, ja die meisten der Bäume
und Sträucher unserer Waldgegenden haben in den Achseln
der Blattnerven selbst im normalen Zustande mehr oder
weniger große Schöpfe von Härchen. Im jungen Zustande
ist dies bei den Blättern fast ganz allgemein, ja sogar an
solchen, welche später eine feste und lederartige Struktur
annehmen und im ausgebildeten Zustande einen Glanz
zeigen, wobei keine Spur von Haaren vorkommt. Bei den
Buchen, den Linden, den Ahorn-Arten u. s. w. sind es
sehr oft gerade diese in den Achseln der Blattnerven
sitzenden Härchen, von welchen die Filzkrankheit ausgeht und ganz besonders bei dem sogenannten Erineum nervale Kunze, welches auf Linden-Blättern vorkommt, und bei dem Erineum nervisequum K. auf den Buchen-Blättern. Es ist ganz richtig, daß die einzelnen Härchen dieser genannten Erineen ganz anders gestaltet sind, als die Härchen der Rasen, welche auf dem Diachym der Blätter der genannten Pflanzen vorkommen; dieses ist aber auch eine sehr gewöhnliche Erscheinung bei den behaarten Blättern im normalen Zustande und man kann sich an Blättern der Buchen, auf welchen das Erineum nervisequum sehr ausgedehnt vorkommt, wohl überzeugen, daß die Härchen, welche auf dem Diachym sitzen, ganz anders gestaltet sind, als diejenigen auf den Nerven. So wie die Härchen der Pflanzen eigentlich nur selten Zellensaft-Kügelchen enthalten, so findet man sie auch an diesen abnormen Haarbildungen nur selten. Man hat diese Körner für die Sporen des Erineum-Pilzes angesehen, was nach der obigen Darstellung des Wesens dieser Bildungen nicht richtig sein kann, ja Herr Kunze sagt schon in seiner schönen Arbeit, obgleich er die Erineen noch als Pilze beschreibt, daß jene Körner wohl nichts anders als Stärkemehlkörner sein mögen. Ich habe mehrere Erineen im frischen und im ganz jungen Zustande untersucht und mich überzeugt, daß diese Kügelchen in ihrem Innern gerade nicht Stärkekügelchen sind, sondern sich ähnlich so vielen andern ungefärbten oder wenig gefärbten Zellensaft-Kügelchen verhalten, indessen hat die Physiologie schon längst gelehrt, daß solche Kügelchen zuweilen wenigstens Amylum-haltig werden.

Die Haarproduktionen der Filzkrankheit zeigen sich sehr oft ausgezeichnet schön gefärbt, doch kann man über die nächste Ursache dieser Färbung nur dann mit Bestimmtheit entscheiden, wenn man die Härchen im frischen Zustande zu untersuchen Gelegenheit hat, was aber immer etwas sehr Seltenes ist. Nach den von mir gemachten
Beobachtungen kommen diese Härchen entweder ganz ungefärbt oder gleich schön roth gefärbt zum Vorschein; im letztten Falle ist die Färbung durch einen rothgefärbten Zellensaft bedingt, ganz so wie sonst im gesunden Zustande, im erstern Falle dagegen, wo die Härchen ungefärbt sind, treten die Rasen von heller, weffser Farbe auf und behalten auch dieselbe, wenn man sie in diesem jungen Zustande schnell trocknet. Die Härchen zeigen die ungefärbte Membran und der Zellensaft ist ungefärbt und enthält mitunter einige kleine, ungefärbte Zellensaft-Kügelchen; später jedoch, wenn diese Härchen immer größer werden, und der darin enthaltene Saft vertrocknet, färbt sich die Zellenmembran gelblich und diese Färbung wird allmählich immer dunkler und dunkler, so daß die ganzen Rasen an alten Blättern mitunter völlig dunkelbraun, ja selbst schwärzlich erscheinen. An getrockneten Blättern wird man die Färbung der Erineum-Härchen sehr verschieden finden, je nachdem die Blätter zu verschiedenen Zeiten gesammelt wurden. Das schöne Erineum auf den Blättern der Blutbuche hat die rothe Färbung der Blätter, doch kommt das Erineum auf den grünen Blättern der gewöhnlichen Buche mitunter ebenfalls schön roth gefärbt vor, so daß also auch hierauf eigentlich nur wenig Werth zu legen ist.

Je nach der Form der Härchen, welche die Rasen der Erineen bilden, theilte man diese Produktionen, indem man sie gleichsam für parasitische Pilze hielt, in die verschiedenen, schon früher aufgeführten Gattungen, obgleich Herr Kunze*) schon sehr richtig bemerkt hat, daß diese Formen in einander übergehen:

Taphria s. Taphrina Fr. zeigt kurze, rundlich-keulenförmige Härchen, welche Rasen von seidenartigem Glänze bilden.

Grumaria Kunze (Rubigo Lk. Erineum Fr.) zeigt größere Härchen, welche keulenförmig, ja sehr oft bis zur

*) a. a. O. p. 130 etc.
Form der Hutpilze angeschwollen und mitunter höckerig und selbst ästig auftreten.

Phyllerium Fr. zeigt endlich Rasen von langen, gewöhnlich gekräuselten und mit einander verfilzten Haaren.

Dieses sind die Gattungen oder Unter-Abtheilungen, welche man von den Erineen aufgestellt hat. Mitunter sind sie auch schon dem Habitus nach zu erkennen; doch wird man bei gründlicherer Untersuchung den Übergang der einen Gruppe in die andere wahrnehmen können und endlich, nachdem man das Wesen dieses Gebildes aufgefasst hat, auch die Bemühungen, neue Arten aufzusuchen und nach trocknen Exemplaren umständlich zu beschreiben, für unnöthig halten. Die Erineum-Bildung ist eine Krankheit der Blätter, wobei die Epidermis am meisten betheiligt ist, indem sie Wucherungen zeigt, welche denen der tierischen Haut und der dahin gehörigen Gebilde (wie Herr Unger sagt) zu vergleichen sein möchten. Herr Unger, *) der bekanntlich die Hypothese aufgestellt hat, daß die Exantheme der Pflanzen Athmungskrankheiten seien, hält die Erineum-Bildung gleichfalls für eine solche Athmungskrankheit, doch mit entgegengesetztem Charakter, obgleich er selbst sehr richtig gesehen hat, daß der Entstehung dieser Haar-Produktionen stets eine Auflockerung, oder, wie ich lieber sagen möchte, eine Turgescenz der Blattsubstanz, bedingt durch eine örtliche Säfteanhäufung, vorangeht. Gewöhnlich sind die Rasen-Bildungen der Erineen ziemlich genau begrenzt; es kommen jedoch auch gar nicht selten Fälle vor, wo die Blattfläche an sehr vielen Stellen von der Filzkrankheit ergriffen ist und wo dann auch die Rasen in einander überfließen. Bei Buchen und bei Linden sah ich dergleichen sehr ausgebreitete Bildungen, und Herr Unger sah sogar, daß eine solche Erineum Bildung auf Amygdalus persica oft die ganze Blattfläche einnahm. Ich wüßte überhaupt keine Gründe an-

*) Die Exantheme der Pflanzen etc. p. 384.
zugeben, um zu erweisen, daß die Erineum-Bildungen als Produkte eines gestörten Athmungs-Prozesses oder überhaupt als Athmungskrankheiten anzusehen seien,* und überhaupt wissen wir auch hier, wie bei den meisten übrigen Pflanzen-Krankheiten, weder das Wesen der Krankheit noch die entfernten Ursachen anzugeben, welche die Krankheit hervorrufen.

Da die Erineum-Bildung eine abnorme Haarbildung ist, indem sich an solchen Stellen die Epidermis-Haare entwickeln, wo die Blätter im normalen Zustande keine zu haben pflegen, oder auch, indem sich die Haarbildung viel stärker zeigt, als im gewöhnlichen Zustande, wie z. B. bei dem sogenannten Erineum nervale, so sollte man glauben, daß solche Ursachen im Stande sind, die Filzkrankeit hervorzurufen, welche die Bildung der Haare zu befördern im Stande sind. Leider ist dieses aber auch wiederum ein Gegenstand, über welchen die Physiologie nicht ganz im Reinen ist. Wir beobachten nämlich in der Natur, daß solche Pflanzen; welche in einer sehr trocknen Luft vegetiren müssen, auch sehr häufig stark mit Haaren bekleidet sind, ja man kann sogar ganz deutlich sehen, daß die Bildung der Wurzelhärchen ungemessen verstärkt wird, wenn den Pflanzen nicht die hinreichende Menge von Feuchtigkeit gegeben wird, so daß man also in diesen Fällen die Haarbildung ziemlich sicher als ein Mittel ansehen kann, dessen sich die Pflanzen bedienen, um mit vergrößerter Oberfläche die Feuchtigkeit einzusaugen und auf diesem Wege ebenfalls zum Zwecke zu gelangen. Es gibt aber auch eine sehr große Menge von Sumpf-Pflanzen, welche gewöhnlich stark behaart sind und dennoch stehen diese Pflanzen stets sehr feucht; fast

*) Der Herr Verf. nimmt hier offenbar den Sinn Unger's falsch. Unger sagt nur: die Blätter sind Athmungsorgane; also ist eine Krankheit des Blattes die Krankheit eines Athmungsorgan's, oder eine Athmungskrankheit, wie Herr M. sich ausdrückt. Der Herausgeber.
sollte man glauben, daß die Haare in diesen Fällen zur Verstärkung der Transspiration dienten. *) Unter ebenso verschiedenen äußern Verhältnissen treten denn auch die Erineum-Bildungen auf. Im Allgemeinen kann man sagen, daß sie fast unter allen Zonen vorkommen, wo die Baum- und Strauch-artige Vegetation verbreitet ist, wenngleich dieselben in unsern Gegenden, wie es ganz natürlich ist, viel häufiger beobachtet worden sind. Am häufigsten zeigen sich die Erineen gegen Ende des Sommers, und fast sollte man glauben, daß große Trockenheit die Bildung derselben befördert, aber ich habe kürzlich die Erineum-Bildung auch an getriebenen Weinstöcken beobachtet, welche in überaus feuchter und heißer Luft gezogen wurden. Kommt übrigens das Erineum in einer gewissen Gegend an irgend einer Pflanze vor, so pflegen gewöhnlich alle Individuen eben derselben Art, welche in jener Gegend sich befinden, mit eben demselben Erineum bedeckt zu sein; was allerdings darauf hindeuten möchte, daß diese Bildungen durch äußere Verhältnisse hervorgerufen werden.

Für den Gesundheits-Zustand der Pflanze, welche von der Filz-Krankheit befallen ist, scheint übrigens die krankhafte Haarbildung ohne irgend bemerkbare Folgen zu sein dennoch hat auch diese Krankheit keine besondere Wichtigkeit obwohl sie in physiologischer Hinsicht zu den interessantesten gehört. Wir haben uns zu überzeugen gesucht, daß die Rasen der Erineen in einer abnormen Haarbildung bestehen, doch dürfen wir auch nicht unterlassen, zu bemerken, daß diese Wucherungen der Epidermis für gewisse Arten doch immer höchst constant auftreten, wenn gleich zuweilen auch Übergänge von der einen Form zu einer andern vorkommen; sie sind aber denn doch so constant, daß man Gattungen und eine sehr große Anzahl von Arten darauf begründete. Die Bestimmtheit der For-

*) Woraus folgt, daß die abnorme Haarbildung mit dem Atmungsprozesse wirklich in Verbindung steht. Der Herausgeber.
men dieser krankhaften Wucherungen ist nun aber gerade das Merkwürdigste dabei, indem sie darauf hindeutet, daß jene krankhaften Wucherungen für bestimmte Arten und Gattungen der höheren Pflanzen einen gewissen Grad von Selbstständigkeit erlangen, wodurch sie, wenigstens der äußern Form nach, verschiedenen niedern Pilz-Formen ähnlich werden, deshalb aber doch immer nur krankhafte Wucherungen bleiben.

Da die Filzkrankheit keine merklichen Folgen auf den Gesundheits-Zustand der daran leidenden Pflanzen zeigt, so wird es auch nicht nöthig sein, an eine Heilung oder Verhinderung des Auftretens dieser Krankheit zu denken, welche auch nach Allem, was wir darüber erfahren haben, ganz und gar nicht gelingen würde.

VII. Die safranfarbige Filzkrankheit.


Die safranfarbige Filzkrankheit zeigt sich gegen Johannis. Ich sah sie auf den Blättern von Populus nigra und von Populus tremula und zwar selbst an solchen Bäumen, welche häufig die gewöhnliche Filzkrankheit aufzuweisen hatten, nämlich das sogenannte Erineum populinum. Es kommt bald auf der obern, bald auf der untern Blattfläche vor und bringt Bullositäten des Blattes hervor, auf deren concaven Fläche die safranfarbige Wucherung der Epidermis ihren Sitz hat. Diese Wucherung besteht aber in kur-
zen, cylindrischen und gleich hohen Härcchen, in welche die oberen Wände der erkrankten Zellen der Epidermis ausgewachsen sind. Das Ausgezeichneteste hiebei ist aber, daß diese erkrankten Zellen samt den daraus hervorgegangenen Härcchen ganz und gar mit einer safranfarbigen grumosen Substanz gefüllt sind. Ein Aufspringen dieser kurzen Härcchen und ein Entleeren der gefärbten Masse findet hier nie statt, wenn die Härcchen nicht mechanisch verletzt werden, daher man diesen Inhalt auch nicht für eine Sporenmasse halten kann.

Sehr häufig findet sich auf den Blattstielen solcher erkrankten Blätter von Populus nigra noch eine andere Erkrankung, welche mit der orangefarbenen Filzkrankheit offenbar eine und dieselbe Ursache hat: Es zeigen sich nämlich mehr oder weniger große Callositäten von ähnlichem safranfarbigem Gelb und die anatomische Untersuchung zeigt, daß hier partielle Anschwelling und Vermehrung der äußersten Zellenlagen des Blattstieles stattfindet, wobei eine ganze Menge von Zellen der 2 bis 3 äußersten Zellenschichten mit einer ganz ähnlichen goldgelben oder safranfarbigen grumosen Substanz gefüllt sind, ganz ähnlich wie die hervorgewachsenen Härcchen auf der Blattfläche, nur mit dem Unterschiede, daß auf dem Blattstiele keine Härcchen entstehen und daß hier mehrere Zellenlagen auf die angegebene Weise erkrankt sind, während es auf den Blättern immer nur die Epidermis-Zellen sind.

Aus dieser Darstellung wird es sich wohl hinreichend bestimmmt genug ergeben, daß dieser Zustand, der mit dem Auftreten der ehemaligen Taphrina populina begleitet ist, eine, von der gewöhnlichen Filzkrankheit bedeutend verschiedene Krankheit ist. Aber auch diese Krankheit ist ohne merklich schädlichen Einfluß auf das allgemeine Wachsthum des davon befallenen Baumes.

VIII. Kraussucht der Blätter.

Das Krauswerden der Blätter ist eine sehr häufig vor kommende Erscheinung. Sie wird aber meistentheils durch
Insekten und zwar durch Blattläuse veraulafst. Diese Erscheinung haben wir schon oben (p. 49), wo von den Krankheiten, welche durch Insekten veraulafst werden, die Rede war, angesführt. Hier soll nur von dem Krauswerden der Blätter, als eigenthümlicher Krankheit, die Rede sein.

der Erineen, sondern sie zeigen auf den Querschnitten 4, 5 und selbst 6 Zellchen und nehmen auch ihren Ursprung nicht nur aus den Zellen der Epidermis, sondern die darunter liegenden Zellen nehmen ebenfalls daran Antheil, ganz so, wie es sich bei den Stielen der zusammengesetzten Drüsen zeigt. Auch stehen diese Auswüchse nicht so dicht, wie bei den Erineen, wo jede einzelne Epidermis-Zelle in ein Härchen ausgewachsen ist, und sie verursachen daher auf den Ribes-Blättern auch nur eine leichte Rauhigkeit. Auf der untern Blattfläche zeigen die Ribes-Blätter an den von der Bullosität ergriffenen Stellen ebenfalls eine auffallende Rauhigkeit, welche jedoch ebenfalls von jener der Erineen-Bildung ganz verschieden ist. Die Ribes-Blätter sind im normalen Zustande auf ihrer untern Fläche mit vielen einfachen Härchen bekleidet und nur die Oberfläche der Hauptnerven zeigt außer diesen Härchen auch noch eine Menge kleiner einfacher und gestielter Drüschen. Diese kleinen Drüschen sind äußerst selten auf der Blattfläche zu sehen, welche das Diachyn einschließt; in dem krankhaften Zustande jedoch, von welchem hier die Rede ist, ist die untere Blattfläche, so weit sie von denselben ergriffen ist, mit solchen kleinen, gestielten Drüschen bekleidet, welche einen etwas klebrigen Saft absondern, durch welchen die Blattläuse herbeigelockt werden, und so ist es zu erklären, daß diese bullösen Blätter des Johannisbeer-Strauches und mehrerer anderer Ribes-Arten so sehr häufig mit Blattläusen bedeckt sind, und zwar sitzen diese Thiere, so lange sie nicht in zu großer Anzahl vorkommen, fast nur auf den, mit jenen drüsenträgenden Härchen besetzten Stellen des Blattes.

Diese hier beschriebene Krankheit der Bätter an den Johannisbeer-Sträuchern u. s. w. betrachtete ich als eine Form, welche gerade zwischen der eigentlichen Filzkrankheit, die ebenfalls mit Bullositäten verbunden ist, und der Kraussucht mitten inne steht und gleichsam den Übergang vermittelt.
Das Krauswerden der Blätter kommt entweder mit oder ohne Desorganisation der Substanz vor; der letztere Fall, welcher oft die niedlichsten Varietäten bildet, die selbst erblich sind, wie z.B. bei der Trauerweide mit gekräuselten Blättern, welche angeblich von Napoleon's Grabe auf St. Helena herstammen soll, was aber unrichtig ist, dieser letztere Fall ist nicht weiter als Krankheit, sondern als eine Anomalie in der Bildung der Formen zu betrachten. Der andere Fall dagegen, die wirkliche Kraussucht der Blätter, wo das Krauswerden derselben mit Veränderungen in ihrer Struktur verbunden ist, kommt eigentlich nur sehr selten vor. Am häufigsten hat man das Krauseln der Blätter an den Kartoffel-Pflanzen beobachtet; die Weinrebe zeigt es auch mitunter, besonders wenn sie sehr warm und feucht getrieben wird. Herr Hofgärtner H. Sellow auf Sans-Souci war so gutig, mich auf diese Krankheit aufmerksam zu machen. Schon in solchen Fällen, wo die Filzkrankheit auf den Weinblättern vorkommt, werden die Blätter mitunter sehr kraus, indessen sind es doch meistens nur diejenigen Stellen, welche von den Bullositäten ergriffen sind; bei der Kraussucht aber wird fast immer das ganze Blatt in die Veränderung der Form und Struktur mit hineingezogen. Die ganze Oberfläche dieser Blätter zeigt überall, bis zum Rande hin, Höcker und Vertiefungen, dessgleichen auch die untere Blattfläche, doch wird man sehr bald bemerken können, daß die Höcker auf der unteren Fläche der Blätter nicht immer genau den Vertiefungen der Substanz auf der obren Blattfläche entsprechen. Die mikroskopische Untersuchung der Querschnitte solcher Blätter zeigt denn auch sogleich, daß sich die Struktur sehr wesentlich verändert hat. Die Höcker und Anschwellungen auf der unteren Blattfläche werden hier durch Vergrößerung und Verlängerung der Zellen des Diachym's der unteren Blattseite veranlaßt, ohne daß die Zellen der Epidermis dabei näheren Antheil nehmen. Es sind gewöhnlich die Zellen der 2 bis 3, der Ep-
dermis zunächst liegenden Schichten des Diachyms, welche in die Desorganisation eingehen. Sie vergrößern sich, die erweiterten Intercellularargänge zwischen denselben verschwinden und, sich in Form prismatischer Säulen erhebend, vereinigen sie sich in mehr oder weniger großer Anzahl, treiben die Epidermis empor und bilden mehr oder weniger große Höcker. Hier ist also nicht die Epidermis der hauptsächlich krankhaft ergriffene Theil, wie bei der Filzkrankheit, sondern es sind die Zellenschichten, welche dicht unter der Epidermis liegen.

Ich sah an einigen Weinstöcken die Blätter in großer Anzahl von dieser Krankheit ergriffen, doch konnte man weiter keine nachtheiligen Wirkungen auf das Wachsthum des Stockes davon wahrnehmen; auch zeigt die mikroskopische Untersuchung jene, der Form und Grösse nach sehr veränderten Zellen des Diachym's in jeder andern Hinsicht als vollkommen gesund.

Diese eigenthümliche Desorganisation der Blätter, nämlich die Vergrößerung und Formveränderung der Zellen des Diachyms, wodurch die Epidermis in mehr oder weniger großen und zahlreichen Höckern oder Wärzchen emporgehoben wird, kommt mitunter auch ohne das Krauswerden der Blätter vor, und zwar habe ich es auf der oberen wie auf der untern Blattfläche der Thunbergien beobachtet, wo auch die Blattstiele meistens davon ergriffen waren. Hier waren die Blätter glatt wie gewöhnlich, aber unzählbare weifsliche Wärzchen, oft von der Höhe einer halben bis zu einer ganzen Linie, erhoben sich über die grüne Fläche derselben, ohne der Pflanze weiter ein krankhaftes Ansehen zu verursachen.

IX. Die Unfruchtbarkeit. Sterilitas.

Die Unfruchtbarkeit der Gewächse besteht in einer verhinderten Frucht-Bildung. Doch kann diese durch die mannigfachsten Ursachen herbeigeführt werden, welche näher aufgeführt werden müssen.
Wenn die Blüthen der Pflanzen, oder die jungen Früchte derselben, bald nach ihrem Ansetzen von Insekten oder andern Thieren zerstört oder abgefressen werden, wenn sie durch starke Stürme und heftige Regengüsse und durch Hagelschlag abgeschlagen werden, oder wohl gar durch starke Nachtfrösste erfrieren, so folgt natürlich keine Fruchtbildung; eine solche Unfruchtabkeit aber ist die Folge äußerer Verletzungen und davon soll an diesem Orte nicht weiter die Rede sein, indem dieser Zustand gar kein kranker ist, sondern erst einen krankhaften herbeiführen kann.

Die Unfruchtabkeit der Gewächse hat gar häufig in der verhinderten oder unterdrückten Befruchtung ihren Grund, und diese ist wiederum eine Folge des gänzlichen Mangels der dazu nöthigen Geschlechtsorgane der Blüthen oder äußerer störender Einwirkungen. Bei diöcischen Gewächsen kommt es gar häufig vor, daß sie keine Früchte ansetzen, indem bald die männliche Pflanze fehlt, oder diese nicht zu gleicher Zeit mit dem Weibchen zur Entwicklung gelangt, ein Fall, der an ausländischen, besonders tropischen Pflanzen in unsern Gewächshäusern gar nicht selten vorkommt. Ebenso können die Früchte an vollkommen gefüllten Blüthen nicht zur Entwicklung gelangen, wenn sämtliche Geschlechtsorgane fehlgeschlagen oder in Blumen-Blätter umgewandelt worden sind, indem unter solchen Fällen die Befruchtung gänzlich unterbleiben muß; in allen diesen Fällen ist die Unfruchtabkeit eine ganz natürliche und normale Erscheinung.

Wo aber die Geschlechtsorgane in den Blüthen der Gewächse vollständig entwickelt sind und nicht etwa durch äußere Verletzungen entfernt oder zu ihrer Funktion untauglich gemacht werden, da muß man die Unfruchtabkeit als einen abnormen Zustand betrachten und nach den Ursachen näher forschen, welche dieselbe wohl veranlassen konnten. Es gibt Gewächse (ich rede zuerst nur von den bei uns einheimischen), welche eine Reihe von Jahren hindurch zwar blühen, aber wenig oder gar keine Früchte ansetzen.

Sehr häufig glaubt man die Unfruchtbarkeit der Bäume und anderer Gewächse durch ein zu frühes Abfallen der Blüthen erklären zu können, indessen ist dieses Abfallen gerade das Zeichen, daß die Blüthen nicht befruchtet wurden. Bei manchen Pflanzen erkennt man schon aus der Stellung der Blüthe, ob die Befruchtung erfolgt ist oder nicht, wie z. B. bei der Kaiserkrone, wo sich die befruchteten Blüthen sofort umdrehen und aufrecht stehen. Da die Gartenkultur, wie der ganze Ackerbau, größtenteils nur die Erzielung von Früchten zum Zwecke hat, so muß es auch von großem Werthe sein, wenn man das Fehlschlagen der Früchte verhindern kann, und größtenteils geschickt dieses gerade durch fehlgeschlagene oder gänzlich verhinderte Befruchtung. Eine große Anzahl von
tropischen Gewächsen kommt, wie bekannt ist, in unsern Gewächshäusern alljährlich zur Blüthe, ohne daß sie Früchte ansetzen; gar oft hilft hier die künstliche Bestäubung der Narbe, was man in neueren Zeiten sehr allgemein bei den Liliaceen, Cacteen, Orchideen u. s. w. zur Erlangung von Saamen angewendet hat; bei vielen andern Gewächsen der Art können wir jedoch in unsern Treibhäusern keinen Saamen erlangen. Die Ursache hiervon suche ich in dem Lebenszustande dieser Gewächse; man hat dergleichen tropische Pflanzen in unsern Gewächshäusern schon oftmals, im Verhältnisse zu den in ihrem Vaterlande üppig vegetirenden mit dem Namen der Krüppel und Invaliden belegt, und in der That mit Recht. Die meisten tropischen Gewächse unserer Gärten geben uns kaum eine richtige Vorstellung von der Ueppigkeit, mit welcher sie unter ihren natürlichen klimatischen Verhältnissen vegetiren. Dadurch wird es denn auch erklärlich, daß bei solchen, durch die klimatischen Einflüsse höchst geschwächten Gewächsen die Befruchtung nicht von selbst ausgeführt wird, ja sehr oft gar nicht auszuführen ist. Die kräftige Entwicklung der Antheren, so wie die üppige des weiblichen Geschlechtsorganes, besonders die Absonderung im Stylus-Canale halte ich für besonders nöthig, um mit Sicherheit auf den Erfolg der Bestäubung rechnen zu können, was aber bei den schwächeren Gewächsen unserer Treibhäuser gerade nicht immer zu erwarten ist. Mitunter kann auch ein zu üppiges Wachsthum der Pflanze die Ursache der Unfruchtbarkeit sein; dann aber pflegt es entweder nicht einmal zur Entwicklung der Blüthen zu kommen, oder wenn dieses geschieht, so füllen sich dieselben, wodurch dann natürlich, je nach dem Grade der Füllung, die Befruchtung und Saamenbildung unterbleibt; oder die junge Frucht leidet durch Brand u. s. w., welcher sich in Folge von Saftstockungen entwickelt und später genauer betrachtet wird. An den Bäumen bilden sich nicht selten, aus der Basis des Stammes oder unmit-
telbar aus der Wurzel junge, üppig aussehende und sehr schnell wachsende Äste, sogenannte Wasserreiser oder Wasserlodens, welche dem Baume selbst sehr nachtheilig werden, indem sie demselben durch ihr üppigeres Wachsthum eine verhältnismäßig sehr große Menge von Nahrung entziehen. Diese Nebenschossen müssen stets so bald als möglich entfernt oder in ihrer Entwicklung unterdrückt werden, was z. B. durch einfaches Umbiegen sehr leicht auszuführen ist; an den gepfropften Bäumen sind sie gänzlich ohne Nutzen, können aber hier wie auch an anderen Bäumen und Sträuchern die Ausbildung der Früchte durch wirkliche Entziehung der Säfte unterdrücken. Zwar werden in der Physiologie der Pflanzen so manche schöne Fälle aufgeführt, welche wohl beweisen, daß durch besonders üppige Entwicklung dieses oder jenes Theiles einer Pflanze die danebenstehenden entweder in ihrem Wachsthum zurückgehalten werden, oder wohl gar gänzlich unterliegen und gleichsam verhungern. Indessen scheint es mir, daß hier nicht bloß eine Entziehung des rohen Nahrungssaftes durch solche einzeln, üppig wachsende Äste u. s. w. stattfindet, sondern daß das polare Verhältnifs, welches sich in den Lebenserscheinungen der Pflanze so häufig deutlich macht, auch hier die Hauptrolle spielt, daß nämlich durch die Entwicklung eines neuen Astes an dem einen Ende des Stammes die Entwicklung der übrigen an dem entgegengesetzten Ende mehr oder weniger zurückgehalten wird, daher denn natürlich auch auf diesem Wege ein Fehlschlagen der Früchte herbeigeführt werden kann.

An den Gewächsen, die bei uns einheimisch sind, oder wenigstens in unserm Gegend allgemein kultivirt werden, wird die Unfruchtbarkeit gar häufig durch die Witterungs-Einflüsse bedingt, welche während der Zeit der Blüthe dieser Gewächse herrschen. Zu niedere Temperatur während der Zeit der Blüthe ist fast bei allen bei uns vorkommenden Gewächsen eine Ursache, durch
welche ein Fehlschlagen der Fruchtbildung herbeigeführt werden kann; doch eben so schädlich sind starke Regen während der Blüthezeit, ja selbst ein anhaltendes, nebeliges Wetter ist schon allein hinreichend, um den Befruchtungs-Prozefs zu stören. Die Physiologie lehrt schon, daß zur Entwicklung der Pollenschläuche, durch welche, wenigstens bei den meisten Gewächsen, die Befruchtung der Eychen ausgeführt wird, nur eine sehr geringe Menge einer dickflüssigen Substanz erforderlich ist und daß durch zu viel wässerige Feuchtigkeit die Pollenkörner so schnell anschwollen; daß die innere Haut derselben und ebenso auch die Pollenschläuche bersten oder meistens gar nicht zur Ausbildung gelangen. Bei sehr feuchter und nebelhaltiger Luft wird der Niederschlag der Feuchtigkeit auf die Befruchtungsorgane, welche hier, wie auf der ganzen Pflanze, stattfindet, so bedeutend sein, daß dadurch die Bildung der Pollenschläuche größtenteils nicht zur Ausführung kommt, und dieses wird bei anhaltendem Regenwetter natürlich noch in weit größerem Maafse eintreten; ja ein großer Theil des Pollens der aufgesprungenen Antheren wird sogar durch das Wasser abgewaschen werden.

Die Winde und Stürme sind während der Blüthezeit nur dann zu fürchten, wenn sie so heftig wehen, daß dadurch ein Abfallen der Blüthen bewirkt wird; zwar werden auch große Pollenmassen vom Winde fortgeweht, wie dieses z. B. von den Coniferen eine sehr bekannte Erscheinung ist, indessen sind meistens schon sehr geringe Quantitäten von Pollen hinreichend, um die Befruchtung der vorhandenen Eychen zu bewirken, und so viel wird dann meistens wohl noch immer bleiben; ja die Erschütterung bei der Bewegung durch den Wind kann gerade für die Bestäubung der Narbe recht vortheilhaft wirken.

Es herrscht der Glaube im großen Publikum, daß heftige Blitze während der Blüthezeit im höchsten Grade nachtheilig für die Befruchtung seien; doch ist hier, wie
bei ähnlichen sogenannten Erfahrungen der Art gar kein Grund vorhanden, wodurch sich die Richtigkeit dieser Angabe einsehen ließe. Gewöhnlich sind jedoch die Gewitter mit heftigen Regengüssen begleitet und diese möchten es dann vielleicht sein, welche die Befruchtung der Blumen nach der vorhin angegebenen Art verhindern.


Bei den Treibereien jedoch, welche meistens mit sehr großem Kosten-Aufwande betrieben werden, hat man noch mit so manchem Uebel zu kämpfen, welches die Unfruchtbarkeit der getriebenen Pflanzen veranlaßt und somit die Erreichung des Zweckes der ganzen Bemühung vereitelt. Es ist gewiß einleuchtend, daß die Treibereien am besten gelingen werden, wenn man die Cultur der zu treibenden Pflanzen ganz ebenso leitet, wie sie in freier Natur sich am vorteilhaftesten zeigt. Aber so leicht dieses auch erscheint, eben so schwer ist es im ganzen Umfange auszuführen. Bekanntlich beschäftigen sich die Treibereien in unsern Gegenden meistens mit der Cultur solcher Ge-
wächse, welche bei uns auch gewöhnlich in freier Natur zur Reife gelangen, wie z. B. mit dem Treiben der Kir-"schen, Pflaumen, Erdbeeren, Weintrauben, Himbeeren, Spar-Geł, Bohnen, Erbsen u. s. w. und zwar, geschieht dieses zu einer Zeit, in welcher diese Gewächse in freier Natur nicht zum Fruchttragen u. s. w. zu bringen sind; dennoch ist die Leitung des Klima's für den Erfolg dieser Treibe-
rene von höchster Wichtigkeit. Gewöhnlich ist es der Fall, daß man die Früchte früher haben will, als sie im Freien zur Reife gelangen; ja jeder Gärtner, der sich hie-
mit beschäftigt, sucht seine Ehre darin, dergleichen Früchte so früh, als nur immer möglich ist, zu liefern. Zwar kann man bei hinreichenden Mitteln, selbst bei der größten Kälte im Winter, eine gleichmäßige den Gewächsen angemessene Temperatur, selbst für tropische Pflanzen, erzielen, wie die-
es unsere Ananas-Treibereien und die Cultur der tropi-
ischen Pflanzen in unsern Gewächshäusern der botanischen Gärten zeigt, aber dieses allein ist nicht ausreichend; die meisten Pflanzen verlangen auch Licht, und zwar Sonnen-
schein, während ihrer Vegetations-Zeit, und wenngleich auch in dieser Hinsicht durch den zweckmäßigen Bau der Treib-
häuser viel geleistet werden kann, so fehlt es doch zur Herbst- und zur Winterzeit oft viele Wochen hindurch an allem Sonnenschein, und diesem Uebelstande ist leider nicht abzuhelfen.

Unsere gewöhnlichen Gewächse, welche zur Winter-
zeit getrieben werden, verlangen indessen nicht nur hohe Wärme und Sonnenschein, sondern sie verlangen, beson-
ders einige unter ihnen, auch den gehörigen Wechsel der Temperatur, wie er in freier Natur bei Tag und bei Nacht stattfindet, und ganz vorzüglich wichtig für ihr Gedeihen ist eine gehörige Leitung des Feuchtigkeits-Zustandes der Luft, in welcher sie wachsen. Dieses Letztere ist für die zweck-
mäßigste Treiberei von größter Wichtigkeit und hierin wird noch sehr gefehlt, obgleich es gegenwärtig durch den einfachen und sehr richtigen Feuchtigkeits-Messer, welcher
den Namen des Psychrometer’s führt, gar sehr leicht ist, zu jeder Zeit den Feuchtigkeits-Zustand der Luft zu kennen. Dieses Instrument dürfte in keinem Treibhause fehlen. So manche unserer Gewächse, deren Früchte man sehr früh erlangen will, z.B. die Erdbeeren, Himbeeren u. s. w., können zwar recht hohe Wärmegrade ertragen; sind aber diese hohen Wärmegrade in den Treibhäusern zugleich mit einer sehr feuchten Luft verbunden, so geschieht ein Fehlschlagen der Befruchtung sehr häufig. Besser ist es immer, diese Früchte während der Blüthezeit nicht zu warm zu halten; später aber, nachdem sie ordentlich angesetzt haben, können sie schon ohne Nachtheil eine verhältnismäßig starke Wärme vertragen.

Von allen Treibereien in unsern Gegenden ist das Treiben der Kirschen am schwierigsten; bei aller Aufmerksamkeit, mit welcher diese Gewächse in den Königl. Gärten bei Potsdam behandelt werden, kommt es denn doch leider nur zu oft vor, daß die ganz frühen Früchte, welche schon im Anfange des Januar blühten, auch sehr zahlreich ansetzten und sich schnell entwickelten, früher oder später zu Hunderten trocken werden und abfallen; oft sind es ganze Äste, welche über und über mit Blüthen und jungen Früchten bedeckt waren, die dann später gänzlich ohne Früchte bleiben. Es ist auffallend genug, daß man diese schlechten Früchte, gleich nachdem sie die Koppen (d. h. die Kelche) werfen, durch ihre langgezogene Form als solche erkennt, die sich nicht weiter, als höchstens bis zur Steinbildung entwickeln. Sie sind anfangs ganz gesund aussehend oder wohl gar von einer auffallend dunkelgrünen und glänzenden Farbe, doch mit der länglichen Form, die sie annehmen, werden sie zugleich kantig und zeigen eine oder auch mehrere hervorragende Nätthe, ja mitunter werden sie gleichsam faltig und von solchen Früchten ist durchaus gar nichts zu erwarten, früher oder später fallen sie ab, indem sie äußerlich etwas gelb geworden und trockene Stiele zeigen. Indessen kann man schon lange vorher, ehe diese äußerlich sichtbaren
Zeichen eintreten, die Entfärbung und das Zusammen-
schrumpfen des Eychen’s im Innern der Frucht bemerken. 
Es sind nämlich alle diese angesetzten Früchte in Folge 
der wirklichen Befruchtung der Blüthen enstanden; dann 
aber zeigte sich eine verhältnismassig zu schnelle und zu 
starke Entwicklung des Fruchtknotens, mit welcher die 
Ausbildung des Embryo’s im Innern des befruchteten Eichen’s 
nicht gleichen Schritt hält; ja der junge Embryo bleibt in 
seiner Entwicklung endlich ganz zurück, was bald auf dies-
er, bald auf jener Stufe der Ausbildung stattfindet. Bei 
den meisten dieser Früchte treten die ersten Spuren ihres 
Absterbens schon in der ersten Periode nach der Befruch-
tung ein, gleich nachdem sich das Keimbläschen im Embryo-
sacke gebildet hat, bei andern erst später, wenn die Ent-
wicklung der Cotyledonen an dem bis dahin noch ganz 
mikroskopischen Embryo beginnt und sich der Eiweifskör-
per am Embryosacke gebildet hat, bei noch andern erst 
dann, wenn der Embryo schon sehr weit ausgebildet ist, 
sohn \( \frac{2}{3} \) des Embryosackes ausfüllt und die Substanz des 
Kerns zurückgedrängt hat. Man sieht dann an den jungen 
Saamen, daß sich die Häute desselben gelblichbraun fär-
ben, daß die ganze Substanz etwas zusammenschrumpft 
und endlich bräunlich wird und zusammentrocknet, um 
welche Zeit die Frucht ein gelbbliches Ansehen erhält und 
endlich abfällt. Mitunter sind solche schlechte Früchte 
ziemlich von normaler Gestalt, ja man sieht an ihnen weiter 
nichts abweichendes, als eine auffallende Anschwellung 
einer Nath, aber auch diese tragen früher oder später die 
absterbenden Saamen in sich. Um die Zeit, wenn sich die 
Erhärtung des Steines aus den innern Zellenschichten des 
Fruchtknotens bildet, ist die Entscheidung sichtbar, dann 
fallen sie alle ab.

Ich habe viele dieser schlechten Früchte in allen Ent-
wicklungs-Zuständen zu untersuchen Gelegenheit gehabt. 
Fast alle Blüthen, womit die Bäume dicht bedeckt waren, 
woruden befruchtet und nach genauener Erwägung des künst-

Seit einigen Jahren hat Herr G. H. Fintelmann, Hofgärtner auf der Königl. Pfauen-Insel bei Potsdam, an den Kirschen-Bäumen, sowohl an denen im Freien, als an denen in Treibhäusern, eine Krankheit des Pistill's beobachtet, die gleichfalls das Fehlschlagen der Früchte zur Folge hat. Die Krankheit zeigt sich als eine Fäulnis, welche zuerst bald den obern Theil, bald den untern des Pistill's ergriff, d. h. dicht über dem eigentlichen Fruchtknoten; sie befällt aber ohne Ausnahme immer beide Theile, während der mittlere Theil des Pistill's, wenigstens äußerlich, gesund erscheint. Auch hier ist die Befruchtung des Eychen's ganz gewöhnlich, doch niemals kommt es bis zur Steinbildung der Frucht.

Die Unfruchtbarkeit ist bei manchen Pflanzen die Folge einer zu starken Wurzel-Produktion; und zeigt sich besonders bei solchen Gewächsen, welche sich durch Zwiebeln, durch Knollen oder durch knollenartige Wurzelzasern vermehren. Gemeinhin ist diese starke Wurzel-
Produktion sehr erwünscht und dann wird man nichts gegen die Unfruchtbarkeit unternehmen, ja man pflegt sogar die Blüthen vorher abzubrechen; will man aber auch bei diesen Gewächsen reife Saamen, so suche man die zu üppige Wurzel-Produktion zu mäßigen. Viele Gewächse, besonders solche aus tropischen Gegenden, kommen bei uns erst dann zur Blüthe, wenn die Gefäße, worin sie gezogen werden, mit den Wurzeln dieser Gewächse so stark gefüllt sind, daß sie darin so zu sagen keinen Platz mehr haben.

Wir haben schon früher angegeben, daß der Unfruchtbarkeit in Folge eines zu magern Bodens nur durch neue Düngung abzuhelfen ist; ist sie eine Folge zu hohen Alters, so pflanze man einen neuen Baum. Die schädlichen Einflüsse der Witterung auf die Fruchtbarkeit der Gewächse sind in freier Natur selten aufzuhalten; höchstens kann man mitunter etwas gegen die Wirkung der Kälte und gegen zu große Trockenheit des Bodens thun. Bei den Treibereien ist man jedoch durch genaue Beobachtung der Natur sehr bald im Stande, auch solchen schädlichen Einflüssen entgegen zu arbeiten; wenn aber auch dieses nicht glücken will, wie z. B. in den vorhin aufgeführten Fällen der Kirschen-Treiberei, dann versuche man an den einzelnen größern Ästen den Zirkelschnitt auszuführen, der in frühen Zeiten unter dem Namen des Zauberringes bekannt war.


Da aber der Ringelschnitt, wie oben Seite 6 ff. ausführlich dargestan worden, das Absterben des Astes oder Stammes zur Folge hat, so schlage ich statt des Ringelschnittes vor, die Rinde der zu ringelnden Äeste und Zweige mit starkem Eisendrath zu umwickeln, eine Operation, die, wenn sie gut ausgeführt ist, ganz vollkommen dem Zwecke des wirklichen Ringelschnittes ent-
spricht und dabei nur sehr wenige nachtheilige Folgen für das fernere Fortleben des Astes zeigt; ja man kann später, wenn sich nach mehreren Jahren eine sehr dicke Wulst oberhalb des Drathes gebildet hat, diese nach Abnahme desselben durch einige Längenschnitte, die durch die Rinde bis tief in das junge Holz geführt werden, mit demjenigen Theile des Astes wieder in Verbindung setzen, welcher früher unter dem Drathringe befandlich war.

Wenn große Verletzungen der Rinde an den Stämmen der Bäume während der Zeit erfolgen, daβ diese Gewächse in Blüthe sind oder Früchte angesetzt haben, so pflegen diese sehr frühzeitig abzufallen und es entsteht auch hiedurch Unfruchtbarkeit. Willdenow*) lehrt, daβ die Unfruchtbarkeit der Obstbäume öfters in einer Vollsaftigkeit ihren Grund habe; sie bilden beständig Zweige und treiben keine Blüthen; die äußere Rinde, meint Willdenow, sei hier häufig zu hart und es könne sich also alljährlich nur ein dünner Jahresring ansetzen. Die Gärtner suchten diesem Uebel durch Einstutzen einiger Zweige, Behauen der Wurzel und Verpflanzen in magern Boden abzuhalten, aber öfters schlage ihre Absicht fehl; das beste und leichteste Mittel sei dagegen das Aderlassen oder Schröpfen, wobei der Stamm und die Hauptzweige mit einem scharfen Messer der Länge nach schlangenförmig nur durch die Oberhaut geritzt werden. Nach einer solchen Operation könne sich der Gefäßring (soll Jahresring heißen) ausdehnen. Ich habe nicht die praktische Erfahrung, um mit Bestimmtheit dafür oder dagegen zu sprechen, daβ die Obstbäume in Folge eines zu fetten Bodens vollsaftig und dabei unfruchtbar werden; es scheint mir indessen, daβ andere Ursachen einer solchen Unfruchtbarkeit der Obstbäume zum Grunde liegen und die Behandlung, welche Willdenow vorschlägt, nämlich das Schröpfen oder Scarificiren der Rinde, scheint auch wohl nicht dafür zu


Es ist aber eine sehr leicht zu wiederholende Beobachtung, daß dergleichen Pflanzen, die in einem schlechten, sandigen Boden wachsen, nicht zur Blüte kommen, wenn sie in einem fetten Gartenboden gezogen werden; dieses ist besonders bei den Mesembrianthemen-Arten der Fall.

Man hat auch wohl öfters behauptet, daß die Unfruchtbarkeit eine Folge von zu übermäßiger Fruchtbarkeit in dem vorhergegangenen Jahre sei. Hierin möchte man sich aber wohl getäuscht haben, denn man sieht an gut kultivirten Bäumen, besonders an solchen, die in Treibhäusern oder überhaupt mit größerer Sorgfalt behandelt werden, daß sie eine lange Reihe von Jahren stets auf das Unglaublichste mit Früchten bedeckt sind. Sind es Bäume, die stets im Winter getrieben werden, so tritt allerdings nach mehreren Jahren eine Unfruchtbarkeit ein; dieses ist aber die Folge einer zu großen Erschöpfung, denn dergleichen Bäume treiben auch noch im Sommer eine sehr große Menge von Knospen. Aber auch hier kann man durch eine zweckmäßige Leitung der Düngung und durch Erholung der Bäume in freiem Boden sehr viel ausrichten.

Man schlägt vor, und viele Gärtner führen es auch aus, eine Anzahl von jungen Früchten auszubrechen, wenn die Bäume damit zu sehr beladen sind, um auf diese Weise einer Unfruchtbarkeit in den nächsten Jahren vorzubeugen; indessen thut man daran wohl unrecht, wenn nicht etwa die Masse der Früchte so groß ist, daß die Äeste sie nicht tragen können und selbst das Stützen nichts helfen würde, sonst aber kann man sehen, daß die Bäume von
selbst eine Menge von Früchten abwerfen, wenn sie deren zu viel haben, und auch solche Bäume sah ich mehrere Jahre hindurch, wenn sie jährlich gepflegt wurden, mit gleicher Anzahl von Früchten bedeckt.

Wir haben im Vorhergehenden die verschiedenen Arten von Unfruchtbarkeit aufgeführt, ohne sie von denjenigen Zustande zu unterscheiden, welchen man mit dem Namen des Abortus oder Mißfall's belegt hat, indem gar häufig Fälle vorkommen, wo es zweifelhaft bleibt, ob man sie als Unfruchtbarkeit oder als Mißfall anzusehen hat. Bei den Thieren versteht man unter Abortus eine zu frühzeitige Geburt der Jungen, wobei diese entweder nicht leben bleiben oder sich doch in einem sehr schwächlichen Zustande befinden; wollen wir diesen Zustand auf die Pflanzen übertragen, so können wir ihn nur in dem Fehlschlagen oder Abortiren der befruchteten Eychen wiederfinden, und dieses kommt denn auch bei den Pflanzen sehr häufig vor.

So sind z. B. die Fälle von Unfruchtbarkeit bei den getriebenen Kirschen, von welchen ich im Vorhergehenden ausführlich gesprochen habe, durch wirklichen Abortus zu erklären; die Eihüllen werden zuerst misfarben, die Nabelschnur vertrocknet, der Fruchtstiel wird trocken und endlich wird die Fruchthülle, welche hier die Frucht selbst darstellt, misfarben, schrumpft zusammen und fällt ab. Wir haben diesen Fall von Abortus bei den Kirschen durch übereilte Treiberei in einem zu fetten Boden zu erklären gesucht; es gibt indes noch viele andere Ursachen, welche wirklichen Abortus bewirken, und bald ist hie mit ein Abfallen der ganzen Frucht verbunden, bald sieht man, daß die Frucht um so schöner wird, d. h. um so genießbarer für uns, wenn die Saamen in derselben nicht zur Entwicklung gelangen. Man sieht nicht selten, daß die Eychen in manchen Pflanzen in Folge von gegenseitigem Druck abortiren, ja man kann sagen, daß sie sich selber erdrücken, wenn sie in zu großer Anzahl befruchtet sind und sich die Fruchthüllen verhältnismäßig nicht stark genug ausdehnen. Man sieht solche Fälle in unsern Gärten.
gar nicht so selten bei den Liliaceen, als bei den Tulpen, den Lilien und Feuerlilien, und auch bei den Orchideen möchte ich das häufige Abfallen der Früchte, nachdem alle ihre Eychen befruchtet sind und sich diese oft schon weit ausgebildet haben, auf diese Weise erklären.

Nicht immer hat das Fehlschlagen der Saamen ein Abfallen der Früchte zur Folge, wie wir dieses z. B. so schön an allen den Früchten sehen, welche um so wohl-

schmeckender zu sein pflegen, je vollständiger die Saamen
derselben abortirt sind. Unter den bei uns kultivirten
Früchten der Art ist besonders der Weinstock zu nennen; die schöne Sorte, welche unter dem Namen des Diamant
bekannt ist, so wie die Corinthen-Trauben, enthalten keine
Saamen, deren Anlagen indessen sehr wohl zu sehen sind. Ausgezeichnet gute Orangen dürfen ebenfalls nur sehr
wenige Saamen enthalten. Bei manchen der wichtigsten
Kulturpflanzen ist es sogar so weit gekommen, daß die
Früchte, welche Saamen enthalten, zu den großen Selten-
heiten gehören; das auffallendste Beispiel der Art bieten
die Pisang-Früchte dar, welche man lange Zeit hindurch nur
ohne Saamen kannte. Cook's Weltumseglung lehrte das
Vorkommen von eßbaren Pisang-Früchten mit Saamen auf
der Insel Java,*)) Finlayson**)) lehrte das Vorkommen
einer wildwachsenden Musa sapientum an der Küste Hinter-
Indiens, deren Früchte mit Saamen gefüllt waren, doch
hatten sie nur wenig eßbares Mark. Auf der Insel Luçon
sah ich eine constante Varietät des Pisangs: Platano de
Pepita genannt, welche man durch Stecklinge fortpflanzt
und die eine große Menge von Saamen in ihren sonst sehr
wohlschmeckenden Früchten enthält. Die Früchte des
Brodhaumes verhalten sich ziemlich ähnlich; auf vielen
der Südsee-Inselgruppen sind sie nur ohne Saamen zu
finden, auf andern dagegen ist das Fleisch derselben
ebenfalls sehr wohlschmeckend und dabei enthalten sie

*) Förster de plant. esculent. pag. 31.
Die Gründe solcher Verschiedenheiten möchten schwer zu erklären sein.

Bei den Pflanzen nimmt man es jedoch mit dem Begriffe des Abortiren's nicht so genau; man bezeichnet eben so wohl damit ein bloßes Vorkommen oder ein Fehlschlagen der Eychen, ohne daß diese vorher befruchtet worden wären.

X. Blätterfall oder das krankhafte Abfallen der Blätter.


Wenn aber das Abfallen der Blätter zu einer andern, als der für die Pflanze normalen Zeit stattfindet, so deutet es auf einen kranken Zustand der Pflanze. Schen wir dieses Abfallen der Blätter an den bei uns heimischen Pflanzen in freier Natur eintreten, so pflegt gewöhnlich zu große Dürre des Bodens, wie der Luft, oder, was wohl noch häufiger der Fall sein mag, ein zu nasser Boden die Ursache davon zu sein. Es ist auch eine sehr bekannte Erscheinung; dafs die Bäume und Sträucher in feuchten Gegenden, wenn diese noch im Sommer überschwemmt werden und lange unter Wasser stehen, mehr oder weniger ihre Blätter abwerfen und ebenso geht es dem Blumenzüchter nicht selten, wenn er diesen oder jenen Topf zu feucht hält. Bei der Cultur der Gewächse in den
Treibhäusern ist leider das Abfallen der Blätter, besonders bei sehr lange anhaltenden Winterm, eine bekannte und unangenehme Erscheinung, die wohl oft von der größten Trockenheit der Luft abzuleiten ist, welche sich in Gewächshäusern nach der älteren Einrichtung durch das starke Heizen erzeugt. Unter diesen Verhältnissen nämlich ist die Verdunstung der Feuchtigkeit durch die Blätter viel stärker, als die Aufnahme derselben durch die feinsten Würzelchen, ein Gegenstand über welchen früher pag. 261 die Rede gewesen ist. In neueren Zeiten weifs man diesem Uebelstände zu begegnen; man macht die Luft auch in den Gewächshäusern so feucht, als man es für nöthig hält, aber auch unter diesen Verhältnissen lassen viele Pflanzen ihre Blätter fallen; die Ursache hiervon suche ich in dem verminderten Lichtreize, denn es ist bekannt, wie sehr die warmen Gewächshäuser bei heftiger und anhaltender Winterkälte geschlossen werden müssen, so daß nur wenig Licht hineinfallen kann. Besonders solche Pflanzen lassen die Blätter fallen, welche entweder stets der Sonne ausgesetzt standen, oder den Sommer hindurch im Freien gehalten wurden; wenn diese dann plötzlich in die Gewächshäuser gebracht werden, wo ihnen nur sehr geringes Licht gegeben werden kann, so lassen sie alsbald die Blätter fallen. Dafs aber gerade der Lichtmangel bei Pflanzen, welche an einen stärkern Lichtreiz gewöhnt waren, die Ursache des Blattfalles ist, davon kann man sich sehr leicht überzeugen, wenn man solche Pflanzen in einen ganz dunkeln Raum setzt; hier werden die Blätter jedesmal abfallen, ganz ebenso, als wenn man vollkommen bleischüchter Gewächse plötzlich in helle Räume bringt, wo nicht etwa ein Vertrocknen der Blätter, sondern ein gänzliches Abfallen derselben erfolgt. Der Mangel gewohnter Reize, so wie die Überreizung durch ungewohnte Reizmittel sind also entfernte Ursachen, welche ein krankhaftes Abfallen der Blätter veranlassen können. Die Erklärung des Blätterfalles an Pflanzen, welche in einem zu feuchten Boden vorkommen, ist uns jedoch noch

Der entsprechende Grad der Feuchtigkeit des Bodens wie der umgebenden Luft, und das Zulassen des nötigen Lichtes sind also die Mittel, um das Abfallen der Blätter an Cultur-Pflanzen zu verhindern.

XI. Brandflecken auf den Blättern der Pflanzen.

Unter Brandflecken der Blätter verstehen wir diejenigen entfärbten Stellen, welche durch ein wirkliches Absterben und Vertröcknen des Zellengewebes, oder überhaupt der ganzen Blattsubstanz, entstehen. Solche Brandflecken kommen übrigens sehr häufig auf den Blättern der Pflanzen vor, doch bald in geringerer bald in größerer Ausdehnung, so daß dadurch die Funktion der Blätter bald mehr bald weniger aufgehoben wird; sie sind bald gelb, bald bräunlich, sehr oft aber ganz dunkelbraun gefärbt und entstellen das Ansehen des Blattes und der ganzen Pflanze, deren Blätter damit befallen sind.

Man hat geglaubt, die Entstehung dieser Brandflecken durch die Wirkung des heissen Sonnenscheines gleich nach vorhergegangenem Regen erklären zu können, ja man ist so weit gegangen, daß man glaubte, die einzelnen, auf den Blättern zurückgebliebenen Wassertropfen in Hinsicht ihrer Wirkung bei durchfallenden Sonnenstrahlen mit den Brenngläsern vergleichen zu können; doch all diese Angaben sind erdichtete Hypothesen. Die Brandflecken der Blätter haben die verschiedensten Ursachen und daher ist auch die Bedeutung ihres Auftretens für das Fortbestehen der Pflanze gar sehr verschieden.

Oft sind die Brandflecken eine bloße Folge von Verletzungen der Blätter durch Insekten und zwar durch
Blatt- und Rüsselkäfer veranlaßt; treten sie in zu größer Anzahl auf, so vertrocknen die Blätter vollständig und die Folgen davon sind oftmals sehr bedeutend, was sich besonders nach der Zeit der Vegetation richtet, in welcher diese Verletzungen und das Absterben der Blätter erfolgt. Treten jedoch diese Brandflecken nur in geringer Anzahl auf und ist nur eine kleine Anzahl von Blättern davon befallen, so ist das Ganze von unbemerkbarem Einflusse auf die Gesundheit der Pflanze. In andern Fällen deutet jedoch das Auftreten der Brandflecken an den Blättern auf ein inneres und meistens sehr tiefes Leiden der Pflanze, ja es sind dann diese Flecken nur als Zeichen einer innern Krankheit anzusehen, von welcher wir uns bisher noch keine Vorstellung haben machen können. Die Pflanze ist um so kränker, je jünger die Blätter davon befallen werden. Zuweilen sieht man in den Gewächshäusern, daß alle Individuen einer bestimmten Art von Pflanze dergleichen Brandflecken an den Blättern bekommen, und zuweilen geht dieses so weit, daß die Blätter endlich gänzlich absterben. Dem Auftreten der Brandflecken geht gewöhnlich eine Veränderung der grünen Farbe der Blätter voran, sie werden heller gefärbt, nehmen eine gelbliche und zuletzt wohl eine ganz citronengelbe Farbe an, ehe das Absterben der Blattsubstanz erfolgt. In solchen Fällen ist die Pflanze recht sehr krank und wenn sie von Werth ist, so muß schon frühzeitig auf eine Veränderung ihres Bodens und ihrer Nahrungssäfte Bedacht genommen werden. Ganz kürzlich hatte ich Gelegenheit, eine solche Krankheit an allen Individuen von Ficus elastica zu sehen, welche sich in großer Anzahl in einem sehr guten warmen Hause befanden; fast alle Blätter gingen dabei zu Grunde und die Pflanzen litten sehr; wurden aber die kleinen Töpfe in einen Treibkasten gesetzt, so erholten sie sich wieder und die jungen Blätter bekamen keine Flecken.

Man nimmt allgemein an, daß die Blätter der Pflanzen auch in Folge zu großer und anhaltend einwirkender Hitze mit Brandflecken bedeckt werden; dieses ist Meyen. Pathologie. 18
allerdings wahr, aber der Praktiker wird solche Brandflecken sehr leicht von jenen unterscheiden können, welche nur das Zeichen eines tiefer liegenden Leidens sind. Es sind besonders zarte, weiche und dünne Blätter, welche durch zu große Hitze leiden, besonders wenn hiemit zugleich Mangel an gehöriger Feuchtigkeit des Bodens verbunden ist. Die Blätter werden alsdann in ihrer Fläche gelblich gefärbt und sterben in mehr oder weniger großen und in unregelmäßigen Flecken gänzlich ab; ja es kommen Fälle vor, daß die Blätter gänzlich vertrocknen. Die vertrockneten Blätter unterscheiden sich jedoch sowohl durch ihre Färbung als durch ihre Consistenz gar sehr von denjenigen, welche mit Brandflecken versehen sind: die Brandflecken gingen stets aus abgestorbenen Stellen des Blattes hervor, während bei dem Vertrocknen der Blätter dieselben vorher ganz gesund waren und sich dann auch gleichmäßig entfärbten.


Eine Krankheit von eigenthümlicher Natur ergreift die Früchte der Birnen und einiger denselben verwandten Gattungen, als der Quitten und der Mispeln, eine Krankheit, welche im hohen Grade der Ausbildung oftmals einige der schönsten Sorten von Früchten fast ungenießbar macht.

Die Krankheit zeigt sich in dem Auftreten von harten, mehr oder weniger großen, meistens isolirt vorkommenden Massen innerhalb des saftigen Gewebes des Fleisches der Birnen. Diese Massen, zuweilen nur die Größe von Sandkörnchen erreichend, mitunter aber auch von bedeutender Größe, so daß sie zusammenstößsen und alsdann zusammenhängende harte Bildungen darstellen, sind es, welche den Werth der Birnen herabstimmen und ihnen den Beinamen der steinigten Birnen zuzuiehen. Diese erhärteten Massen sind zwar keine wirklichen Steine,
d. h. keine anorganischen Bildungen, die etwa innerhalb der Zellenmassen ausgeschieden wären, sondern sie haben, wie die Anatomie derselben zeigt, eher den Anspruch auf die Benennung von holzigen Erhärtungen des Zellengewebes; wir folgen indessen auch hier dem Sprachgebrauche und bezeichnen sie als Steine oder steinartige Erhärtungen.


Heutigen Tages erkennen wir mit Leichtigkeit, daß jene erhärteten Massen in dem weichen Fleische der Winterbirnen u. s. w. in nichts anderem bestehen, als in einer Verdickung der Wände einzelner oder größerer Massen von Zellen jenes Gewebes. Es treten diese steinigen Concretionen fast überall in der weichen Substanz der Birnen auf, seltener indessen dicht unter der Epidermis als in der Nähe der Karpelle; in einigen Sorten von Winterbirnen, (es sind dieses gerade solche, die sich bis zum Frühjahre ganz frisch erhalten), ist die ganze Substanz von der Epidermis bis zu den Karpellen mit solchen dickwandigen und erhärteten Zellenmassen durchdrungen und in der Nähe der Karpelle oder Saamenbehälter treten sie in solcher Menge auf, daß sie oftmals eine zusammenhängende steinartige Hülle bilden.

*) Die Naturgeschichte der Bäume I. 1764 p. 233 B. III. Cap. II. 18 *
Wenn man diese steinartigen Bildungen noch nicht kennt und sie mit schwachen Vergrößerungen beobachtet, so erscheinen sie oftmals wie krystallinische Massen; die kleinern wie einzeln liegende Krystalle, die grössern gleichsam wie Drüsen. Eine genauere Untersuchung zeigt aber*) dafs jede Zelle dieser erhärteten Massen mit einer sehr dicken Wand versehen ist und dafs diese Zellen- wände durch Aneinanderlagerung einer Anzahl von feinern Schichten verdickt sind, wie dieses die Pflanzen-Anatomie für die Verdickung der Zellenwände u. s. w. überhaupt lehrt. Anfangs sind fast alle Zellen der fleischigen Sub- stanz der Birnen zart und dünnhäutig und in diesem Zu- stande sind sie noch mehr oder weniger stark mit Kügel- chen einer Substanz versehen, welche sich theilweise ähn- lich der Stärke, meistens aber schon wie Gummi verhält; ja gar häufig und besonders in der Nähe der Epidermis treten diese Zellensaftkügelchen selbst grün gefärbt auf. Bei der Entwicklung des Fleisches der Birnen und besonde- rs um die Zeit, wenn die Reifung derselben ein- tritt, geschieht die Umwandlung jener Zellensaftkügelchen in Schleim und Zucker; in denjenigen Zellen jedoch, wel- che von der Krankheit ergriffen sind, geschieht diese nor- male Umwandlung nicht, sondern die Substanz, welche durch die Auflösung der Zellensaftkügelchen entsteht, lagert sich auf der innern Fläche der Zellenmembran ab und erhärtet zu einer neuen, sogenannten secundären Schicht. Auf diese Weise, indem sich die Bildung der Schichten wied erholt, geht die Verdickung der Zellenmembran fort und sie kann so bedeutend werden, dafs die Höhle der Zellen fast ganz verschwindet. Mit dieser Verdickung der Zellen- wände tritt zugleich die Härte derselben ein, so dafs ganz allein dadurch aus den einfachen und früher sehr zarthäutigen Zellen jene steinartigen Bildungen hervorgehen, welche so hart sind, dafs sie für den Menschen ganz unver- daulich erscheinen.

*) Meyen's Pflanzen-Physiologie I. 1837. p. 25. Fig. 11. Tab. 1

Die Struktur dieser erhärteten Massen ist überhaupt ganz ähnlich derjenigen, welche wir an den harten Hüllen der Steinfrüchte aller Art wahrnehmen und hiemit ist das Auftreten der Steine in den Birnen vielleicht auch einigermaßen in Zusammenhang zu bringen. Bei unsern Kirschen und Pfauen ist das Zellengewebe der inneren Schicht des Gernem's, woraus sich später der Stein bildet, anfangs ebenfalls ganz zart und saftig; aber bald nach dem ersten Auftreten der Kotyledonen an dem jungen Embryo geht die Erhärtung dieses Zellengewebes durch Ablagerung von secundären Schichten in den einzelnen Zellen vor sich, nur daß hier die Substanz noch härter wird, was endlich von dem gänzlichen Mangel der Höhlen dieser sich erhärtenden Zellen und einer unzählbaren Menge von Tüpfel-Kanälen begleitet ist. So wie hier, bei den Kirschen, den Pfauen u. s. w. die Steinmasse unmittelbar den Saamen umhüllt, so scheint die steinige Masse bei den Birnen gleichsam als eine mittelbare Umkleidung zu dienen und nur durch besondere Kultur sind diese Bildungen zu verhinden.

Einige Sorten von Birnen sind immer steinig, andere
zeigen dagegen diese Eigenschaft erst im hohen Alter und bei andern Bäumen tritt diese Krankheit ein, wenn sie in magerm und sandigem Boden wachsen. Uebrigens sind die Steine selbst in einigen Sorten von Birnen viel härter als in andern, und bei einigen bleiben sie sogar bis zur Reife der Frucht ziemlich weich. In solchen Fällen sind die Wände der Zellen weniger verdickt. Diejenigen Sorten von Winterbirnen, welche sich sehr lange frisch erhalten, selbst bis in den April und Mai, sind ungemein steinig, enthalten daher sehr wenig Saft und halten sich gerade dadurch so lange. Wenn man indessen diese Früchte genauer betrachtet, so wird man finden, daß sie meistens gar keinen Werth haben; denn selbst durch das anhaltendste Kochen wird das erhärtete Zellengewebe nicht erweicht, es bildet eine vollkommen unverdauliche Masse, die unverändert wieder abgeht. Und dennoch habe ich, hier in Berlin, dergleichen geschmacklose Birnen Ende März das Stück um einen halben Groschen verkaufen sehen können, in welchen etwa \( \frac{5}{6} \) der ganzen Substanz steinig war.

Es wird auffallend erscheinen, daß dieses Steinigwerden des Fleisches der Früchte aus der Familie der Pomaceen nur bei den Birnen, den Quitten und den Mispeln zu beobachten ist, daß es aber niemals bei den Aepfeln auftritt; indessen, obgleich wir die Ursache dieser Erscheinung keinesweges genau anzugeben wissen, so läßt sich denn doch das gänzliche Fehlen der Säure in diesen genannten Früchten mit dem Auftreten der Bildung sekundärer Zellenmembranen in Zusammenhang bringen, so wie die Verhinderung dieser Bildungen durch die Gegenwart der Säuren in den Aepfeln. Die Chemie lehrt die Umwandlung der Stärke und ähnlicher Stoffe durch lange anhaltende Einwirkung von Pflanzensäuren in Traubenzucker u. s. w., und so ist wohl die Gegenwart der Säure die Ursache, daß sich die stärkeartigen Stoffe nicht zu den sekundären Membranen der Zellenwände umwandeln können, sondern flüssig bleiben. Auch hat die Physiologie gelehrt, daß diese sekundären Membranen der Zellen aus
einer Substanz bestehen, welche der Stärke sehr nahe kommt, denn schon durch Kochen derselben in Aetzkali-Lauge u. s. w. werden sie mehr oder weniger vollständig in Stärke oder stärkeähnliche Substanz umgewandelt, während die ursprüngliche Zellenmembran, welche alle sekundären Schichten umschließt, mehr die gummiartige Natur beibehält.


klärungen stimmen nicht mit den Resultaten einer genauerer Beobachtung, und wir haben kurz vorher kennen ge-
ernt, daß die sekundären Schichten der Zellenwände aus
einer Substanz bestehen, welche mit der Stärke ziemlich
gleiche Zusammensetzung besitzen muß, daher diesel-
ben weder aus einer unverdaulichen Substanz entstehen,
noch den Namen des Sclerogènes verdienen, denn hiemit
bezeichnet Herr Turpin alle dem Organismus fremde Stoffe,
welche sich aus ihrer Lösung den innern Wänden der
Elementarorgane der Gewebe anlegen, und, wie er sagt,
unassimiliert sind.

Herr Treviranus*) glaubt, die steinartigen Bildungen
in den Birnen für drüsige Organe erklären zu können,
und ihre absondernde Thätigkeit, wie ihre endliche Ver-
stopfung, haben unstreitig auf das stärkere Hervortreten
des Zuckers Bezug, denn man nahm sie in größerer Menge
an solchen Birnen wahr, welche sich durch Süßigkeit
auszeichnen, und sie fehlen zunächst um das Kerngehäuse,
wo das Fleisch weniger süß ist. Ich glaube indessen,
daß die anatomische Struktur dieser Verhärtungen des Zel-
leggewebes am besten gegen die Annahme spricht, als
seien es drüsige Organe, und außerdem ist es wohl eine
sehr unrechte Wahrnehmung, daß gerade die steinigen
Birnen sehr süß sind; ich glaube das Gegenentwurf zu haben, wenn man, wie es sich von selbst versteht, nur
Birnen von einer und derselben Art mit einander verglichen.

XIII. Verholzen des Fleisches der Wurzeln,
Fitoliti di radice nach Ré.

Das Holzigwerden der fleischigen und saftreichen Wur-
zeln, wodurch dergleichen Unterfrüchte, welche so häufig
als Gemüse benutzt werden, oftmals fast ganz ungenießbar
werden, ist ein abnormer Zustand, der seinem Wesen nach mit
dem Steinigwerden der Früchte ganz übereinstimmt; es ist
nicht wirkliches Holz, welches sich hier bildet, sondern es ist

*) Physiologie der Gewächse II. p. 489.
eine bloße Verdickung und Erhärtung der Wände der Zellen, ganz ähnlich wie bei der Steinkrankheit der Birnen, doch werden diese Verhärtingen in den Wurzeln, den Knollen, den knollenartigen Auftreibungen der Basis der Stengel u. s. w., niemals den hohen Grad von Härte, wie in den Birnen, erlangen, weil hier die sich verdickenden und erhärtenden Zellen sehr viel kleiner sind, so daß bei eintretender Verdickung der Wände die Höhle derselben fast ganz verschwindet. Will man ganz genau zu Werke gehen, so muß man das Steingeworden der Wurzeln und Wurzelknollen von dem Verholzen derselben unterscheiden. Ersterer Zustand ist jenem Zustande in den Birnen analog, letzterer dagegen besteht in einem wirklichen Verholzen der feinern Holzbündel, die bis dahin ganz weich und zart waren. Dieser Verholzungs-Prozeß beginnt mit dem Erhärtung der Wände der Spiralröhren und im weiteren Grade verholzen auch die den Röhren zunächst liegenden, etwas länglich gestreckten Zellen. Bei den dicken Wurzeln und knollenartig angeschwollenen Wurzeln, Wurzelstöcken u. s. w., welche wir zu wohlschmeckenden Gemüsen cultiviren, kommt dieser Zustand nur dann vor, wenn diese Pflanzen in einem sehr schlechten Boden und bei sehr schlechter Witterung wachsen müssen und endlich auch, wenn sie auch noch so schön sind, in Folge zu hohen Alters. Gewöhnlich tritt aber das Verholzen der zarten Spiralröhrenbündel und das Steingeworden einzelner Massen des Zellengewebes gleichzeitig auf und hiemit ist nicht nur die Verhärtung dieser Unterfrüchte begleitet, wodurch sie weniger genießbar werden, sondern es vermindert sich auch ihr Wohlgeschmack und hauptsächlich schwindet ihr Zuckergehalt, was offenbar dadurch zu erklären ist, daß der Schleim und Zucker des Zellensaftes zur Bildung der Verdickungen der Zellen und Spiralröhren verbraucht wird. Bei Rüben, Unter-Kohlrabi, Zuckerwurzeln u. s. w., welche den Winter über aufbewahrt werden, kann man sich von ihrem allmäßlichen, Schlechterwerden durch Verholzung und Versteinerung ihres Gewebes, so wie durch das Schwin-
den ihres Gehaltes an Zucker und andern nahrhaften Substanzen überzeugen. Bei den Kartoffeln sind die Verhärtingen des Zellengewebes nur sehr selten.

Das Mittel gegen das Auftreten dieser Versteinerungen und Verholzungen ist eine anhaltend fortgesetzte sorgsame Kultur des Bodens, worin diese Gewächse gezogen werden.


Die Fleckenkrankheit zeigt sich unter sehr mannigfachen Formen und befällt verschiedene Theile der Pflanzen. Am häufigsten erscheint sie jedoch an den Blättern, deren Farbe in normalem Zustande grün ist, welche aber in Folge dieser Krankheit die gleichmäßige grüne Farbe verlieren und bald weißgefleckt, bald gelbgefleckt und bald roth- und buntgefleckt auftreten. Diese Flecken, von einer andern als der grünen Farbe, sind bald mehr bald weniger groß und bald mehr bald weniger gleichförmig gestaltet, ja, mitunter verlaufen sie als regelmäßige Streifen nach der ganzen Länge des Blattes und fassen dieses bandförmig ein, ein Fall, der besonders häufig bei den Blättern der Monocotyledonen vorkommt.

Es gab eine Zeit, besonders im Anfange des vergangenen Jahrhunderts', in welcher die Pflanzen mit gesprinkelten oder gebänderten Blättern sehr in der Mode waren, so dafs der berühmte Thomas Fairchild in seinem Garten mehr als hundert gesprinkelte oder scheckige Pflanzen besafs, und bei uns war es hauptsächlich die Stechpalme (Ilex Aquifolium L.) und das Kanariengras (Phalaris arundinacea L.), welche sehr allgemein gezogen wurden.

Heutigen Tages müssen wir die Fleckenkrankheit nach ihren Formen etwas näher bezeichnen und ich glaube, dafs wenigstens folgende Formen als Unterabtheilungen dieser Krankheit unterschieden werden müssen.

I. Weißgefleckte Pflanzen.

Hier sind die Flecken ganz ungefärbt und erscheinen
oft mit dem blendendsten Weiß. Die Ursache davon ist das
gänzliche Fehlen der grüngefärbten Zellensaftkügelchen in
den Zellen dieser weissen Flecken, während die Zellen
rund herum, welche den grüngefärbten Blatttheilen ange-
hören, ihre normal gestalteten und grüngefärbten Zellen-
saftkügelchen enthalten. Auch hier kann man noch zwei
Formen aufstellen, in welchen sich die Pflanzen zeigen,
sie sind entweder:

1) Weißgesprenkelte Pflanzen, oder
2) Weißgebänderte Pflanzen.

In dem ersteren Falle sind die weissen Flecken unregel-
mäßig über die Fläche der Blätter oder der davon er-
griffenen Pflanzenteile zerstreut, während sie im zweiten
Falle als mehr oder weniger vollkommen regelmäßige
Streifen der Länge des Blattes nach verlaufen, und diese
Streifen sind bald sehr schmal bald sehr breit, aber
gewöhnlich den ganzen Raum zwischen parallel ver-
laufenden Blatt nerven ausfüllend, wie dieses besonders
schön bei dem bekannten Band- oder Kanariengras zu
sehen ist. Zuweilen werden diese weissen Streifen so
außerordentlich breit, dafs der grösste Theil des Blattes
davon eingenommen wird und nur schmale grüne Streifen
zwischen den weissen hindurchlaufen, wie ich es öfters an
Kornelkirschen-Blättern gesehen habe, welche dadurch
ein besonders schönes Ansehen erhalten. Man nennt sol-
che weissgebänderte Blätter auch wohl versilberte.

Als eine Unterabtheilung dieser Form ist derjenige
Zustand zu betrachten, wo die Blätter dicotyledoner Pflan-
zen nur am Rande mit einem weissgefärbten Streifen ein-
gefasst sind, wie z. B. die Blätter des Pelargonium zonale
Ait. An schwächlichen Pflanzen dieser Art pflegen die
Blätter der jungen Triebe, die während des Winters zur
Entwicklung gelangen, eine sehr breite weisse Einfassung
ezu erlangen und mitunter kommen sogar vollkommen weifs-
gefärbte Blätter zum Vorschein.

Wir kennen eine Pflanze, welche, wie es scheint, auch
im normalen Zustande stets weißgesprenkelte Blätter be-
sitzt; es ist dieses das bekannte Arum pictum. Die weissen
Flecken sind hier über die Fläche des Blattes zerstreut und verlaufen ziemlich regelmässig nach der Richtung der Seitenerven. Die grössern dieser weißen Flecken gehen durch die Substanz des ganzen Blattes, d. h. von der Oberfläche bis zur Unterfläche hindurch, andere dagegen haben nur in der obern Schicht des Blattes ihren Sitz und erscheinen dann etwas grünlich, weil die darunter liegenden Zellen noch mit grünen Zellensäftkugelchen versehen sind.


II. Gelbgeflackte Pflanzen.

Bei den gelbgeflackten Pflanzen sind die Flecken, wie schon der Name sagt, gelbgefärbt und die anatomische Untersuchung zeigt, daß sich in den Zellen derselben zwar Kugelchen gebildet haben, die aber kleiner sind und meistens auch in geringerer Anzahl auftreten, als die in den Zellen der grüngefärbten Pflanzenteile, und außerdem jede Spur der Chlorophyll-Bildung entbehren, dagegen aber einen gelblichen Anstrich zeigen. Oft findet man jedoch in vielen dieser Zellen der gelbgefärbten Flecken nur einen gelblichen Schleim, die Membranen der Zellen sind jedoch immer ganz ungefärbt.

Auch hier sind wieder mehrere Unterformen dieses krankhaften Zustandes zu unterscheiden, als:

1) Gelbgesprenkelte Pflanzen.

Es sind Pflanzen, die einen ähnlichen Zustand zeigen, wie die weissgesprenkelten, nur daß die Flecken gelbgefärbt sind, etwa so wie die Blätter der Aucuba japonica es im normalen Zustande zeigen.
2) Gelbgäbänderte Pflanzen.


Bei einigen sehr großblättrigen Ananas-Spielarten sah ich mehrere Blätter schön gelbgefleckt, was aber bei diesen Pflanzen ganz und gar nicht constant ist, wogegen die Varietäten mit gelbgastreiften Blättern eben so constant sind, wie die mit weifsgebänderten Blättern. Auch hier, ganz wie bei den weifsgebänderten Pflanzen, ist die Unterabtheilung besonders zu beachten, wo auch bei dikotyledonischen Pflanzen die Blätter mit einem goldgelben Rande umfaßt werden; doch kenne ich diesen Zustand nur bei Lasiopetalum solanaceum. Es gibt Ananas-Varietäten, deren Blätter mit hellgrün gefärbten Streifen verziert sind; die anatomische Untersuchung zeigt jedoch, daβ diese Streifen eigentlich gelblich gefärbt sind, jedoch nur einen kleinen Theil der Zellenschichten des Blattes eingenommen haben, während die darunter liegenden Zellenschichten ganz natürlich dunkel grüngefärbt sind und durchschimmern, wodurch dann die Streifen hellgrün erscheinen.


Dieser Krankheitszustand, scheint mir mit der Fleckenkrankheit zusammenzugehören und sich von der gewöhnlichen Form derselben, nämlich von dem Gesprenkeltsein nur dadurch zu unterscheiden, daβ die Flecken sehr groß werden und zuweilen sogar ganze Pflanzentheile bedecken, so daβ diese gelbgesäubt auftreten und keine Spur von der grünen Farbe zeigen. Es hat sich diese Krankheit in neuerer Zeit besonders häufig bei den

Pflanzen, die von der Gelbsucht mehr oder weniger stark ergriffen sind, scheinen einen Zustand der Schwäche noch viel deutlicher zu beweisen; man hat mehrfach versucht dergleichen gelbsüchtige Aeste der Cereen zu vermehren, aber vergeblich, denn sie trieben keine Wurzeln. Wenn sich übrigens ein solcher krankhafter Zustand einmal entwickelt hat, so beharrt er zuweilen mit der größten Hartnäckigkeit. Ich habe ein Stämmchen von Cactus triangularis, welches größtentheils gelbsüchtig war, fünf Jahre lang beobachtet; ich habe dasselbe drei bis vier Monate lang theils mit reinem Kohlensäure-haltigen Wasser begossen, theils mit unserm gewöhnlichen Selterswasser; ich habe die Pflanze häufig versetzt und mit der besten Erde umgeben, habe die schönste Holzerde oben auf gestreut, aber die Pflanze blieb immer gelbsüchtig und die Aeste, welche sie trieb, waren es ganz vollkommen. Diese gelbsüchtigen Cacteen vertragen auch nicht die geringsten Grade von Kälte, und so verlor ich meine Pflanze in einer kalten Winternacht, in welcher sie am Fenster stand.

Die Fleckenkrankheit im Allgemeinen scheint auf einen schwächlichen Zustand der davon befallenen Pflanzen hinzudeuten und gewifs kommt bei der Entstehung derselben
sehr viel auf den Zustand des Bodens an, denn man hat beobachtet, daß Pflanzen, krautartige sowohl als selbst Bäume, deren Blätter damit befallen waren, in Folge von Versetzten, so lange sie noch jung waren, ihr buntes Colorit entweder mit einem Male oder nach und nach ablegten. (Burgsdorf*) sah an Buchenpflanzen, die durch Schneckenfraß um ihre Saamenblätter gekommen und im ersten Winter von den Rehen abgeäst worden waren, daß sie im Frühjahr zwei weißfleckige Blätter mit sehr wenig Grün hervorbrachten. Im Folgenden Jahre versetzte er sie in einen besseren Boden; auch hier brachten sie wieder scheckiges Laub; nachdem sich aber die Wurzeln in guter Erde wieder bestiekten hatten, wurden der weißen Flecken auf den Blättern immer weniger und endlich zeigte jeder junge Trieb ganz grüne Blätter. Die Pflanzen hatten aber so sehr gelitten, daß die Blätter im 4ten Jahre endlich rostig wurden und im Sommer nach einander abfielen. Auch bei Myrten mit gestreiften Blättern sah man, daß sie in einem guten Boden wieder grün würden und ebenso sieht man zuweilen, daß an Sträuchern mit gefleckten Blättern ein einzelner Ast mit vollkommen grünen Blättern erscheint. Gewöhnlich ist jedoch dieser Krankheits-Zustand so constant, daß er sich nicht nur durch Schnittlinge und durch Pfropfen fortzuleben läßt, sondern sehr häufig auch durch die Saamen; im letzttern Falle gehen aber auch vollkommen grünfärbte Pflanzen aus Saamen von gefleckten oder gescheckten Gewächsen hervor.

Die Fleckenkrankheit steht offenbar, wie wir gesehen haben, mit einem Zustande von Schwäche der Pflanze im Zusammenhange, obgleich man allerdings sieht, daß an manchen Pflanzen nur einzelne Aeste von dieser Krankheit ergriffen werden; gewöhnlich breitet sie sich jedoch in solchen Fällen von diesen erkrankten Aesten immer weiter und weiter über die ganze Pflanze aus und eine

Reihe von Pfropfungsversuchen, welche man an Schnittlingen von gefleckten Pflanzen unternommen hat, scheinen zu beweisen, daß jener Krankheitszustand durch den herabsteigenden Bildungssäfte weiter fortgeführt werden kann.

Obgleich die hierhergehörigen Beobachtungen noch nicht den Grad von Gewißheit haben, der zur Feststellung einer so wichtigen Thatsache nötig ist, so will ich sie denn doch aufführen, um besonders auf die Wichtigkeit aufmerksam zu machen, welche mit den Resultaten desselben verbunden ist, und zwar sowohl für die Physiologie als auch für die Gärtnerei.

Wenn ein Zweig des Jasmins' (Jasminum officinale) mit gesprenkelten Blättern auf ein gesundes Stämmchen desselben Jasmins' gepropft wird, so bekommen auch die übrigen, oberhalb und unterhalb des Pfropfreises sitzenden Zweige gleichfalls gesprenkelte Blätter. Diese Beobachtung soll zuerst 1700 von Wats in Kensington gemacht sein und 1710 ward sie von Fairchild wiederholt.*) Ja Bradley**) erzählt, daß Fairchild noch mehrere andere Versuche dieser Art angestellt habe, und der Gärtner Greening in Brentfort will gesehen haben, daß eine Esche auch unterhalb der Impfstelle gestreifblättrige Schosse trieb, nachdem ihr eine gescheckte Knospe aufgesetzt war, welche aber nicht einmal gefaßt hatte. Man hat diese interessanten Beobachtungen lange bestritten und selbst die ausgezeichnetsten Gärtner des vergangenen Jahrhundert's haben dieselben als unrichtig darzustellen gesucht; aber in neuester Zeit sind wiederum bestätigende Beobachtungen der Art bekannt geworden. Noisette hat nach Herrn Turpin***) den Versuch mit dem Jasmin angestellt und ebendasselbe Resultat erhalten, und ganz kürzlich hat man

*) S. Patrick Blair, Botanic Essays, London 1719 oder 1720 pag. 383.
***) Mém. sur la greffe.
einen Zweig eines rothblühenden Exemplares von Nerium splendens auf einen Stamm mit weißen Blumen gepfropft und die Beobachtung gemacht, daß auch die Äste unterhalb der Impfungsstelle roth blühten. Th. A. Knight*) hat sogar beobachtet, daß die Fleckenkrankheit an jungen Weinstöcken entstand, welche aus Saamen durch Bastardbefruchtung hervorgingen, nämlich durch Befruchtung von weißen Gutedel und weißen Frontignan durch Alepporeben.

Es scheint mir, daß aus der Menge der angegebenen Beobachtungen die Ansicht aufzustellen ist, daß die Fleckenkrankheit auf einen schwächlichen Zustand der davon befallenen Pflanzen hindeutet und also auch durch verschiedene, schwächer einwirkende Ursachen herbeigeführt werden kann; sie ist begleitet mit einer eigenthümlichen Entmischung der Säfte, so daß diese im Stande sind, die Krankheit auch auf gesunde Individuen fortzutragen, wie es durch die Pfpfungs-Versuche vollständig erwiesen zu sein scheint. Da aber leider noch so viele Zweifel über die Richtigkeit jener Beobachtungen aufgestellt werden, so hat kürzlich (1839) der Verein zur Beförderung des Gartenbaues in den Preußischen Staaten eine Preisfrage aufgegeben, welche die Wiederholung derselben verlangt und wir wollen hoffen, daß die Absichten des Vereins dadurch in Erfüllung gehen möchten und daß dabei zugleich auf die richtige Erklärung dieser Erscheinung aufmerksam gemacht werden möge, bis dahin aber glaube ich mir folgende Ansicht über diesen Gegenstand bilden zu können.

Es ist eine bekannte Beobachtung, daß auch an den Stämmen gepfropfter Bäume u. s. w. Adventivknospen erscheinen und zur Entwicklung gelangen, diese aber, haben ihren Ursprung nicht in dem Marke des Stammes, sondern in den Markstrahlen des Splintes, d. h. der jüngsten Holzschichten. Wenn also ein Impfling eine oder mehrere Holzschichten über den Stamm des Subjektes, auf welchen er gepfropft ist, herabgeschickt hat und aus diesem Stammme

Adventivknospen hervorbrechen, so gehören diese Knospen eigentlich gar nicht dem Subjekte an, sondern dem Holze des Impflings und müssen also auch mehr oder weniger vollkommen die Natur desselben zeigen. Manche Erscheinungen, welche man bei dem Pfropfen mit Zweigen von gescheckten Pflanzen erhalten hat, lassen indessen noch eine andere Erklärung zu, welcher ich mich übrigens noch mehr anschließen möchte, wenn der vorhin von Bradley mitgetheilte Fall mit der Pfropfung der Esche seine Richtigkeit hat. Die aufgesetzte Knospe von einer gescheckten Esche haftete nicht und starb endlich ab, und dennoch entstanden gescheckte Blätter auf dem Subjekte; man kann sich allerdings denken, daß obgleich die Knospe abfiel dennoch so viel von dem Saft dieser kranken Knospe in die Rinde und den Splint des Subjekts hineinstieg, daß dasselbe dadurch angesteckt wurde und nun ebenfalls gescheckte Blätter trug.


4) Wenn die weisse oder gelbe Färbung sich nicht auf Punkte, Flecken und Bänder etc. beschränkt, sondern alle Blätter, zuweilen selbst die jungen Triebe einnimmt, so nennt man diesen Zustand alsdann, welcher nicht mit Ausbleichen Etoiolement verwechselt werden darf, Bleichsucht Chlorosis.

III. Buntgeleckte Pflanzen.

Dieser Krankheitszustand zeigt sich an Pflanzen mit festen und lederartigen immergrünenden Blättern. Die Blätter erhalten in mehr oder weniger großer Anzahl bunt-
gefärbte Flecken, welche oftmals sehr regelmäßig geformt sind und sich nach bestimmten Regeln vergrößern, den damit befallenen Pflanzen aber immer ein sehr unangenehmes Ansehen geben. Bei verschiedenen Pflanzen verhalten sich diese Flecken mehr oder weniger verschieden, aber selbst wenn sie in sehr großer Anzahl auf derselben Pflanze vorkommen, kann man den Pflanzen doch gerade kein tieferes Leiden ansehen; sie wachsen wie gewöhnlich, entwickeln normal geformte Blätter und später erst zeigen sich die Flecken.

Bei den Camellien zeigen sich die buntgeflackerten Blätter besonders während des Winters, wenn sie etwas kalt gehalten sind; nicht selten. Die Flecken sind Anfangs ziemlich rund und treten besonders an den Rändern in großer Anzahl auf, vergrößern sich und schmelzen allmählich zusammen, so daß oft alle Ränder, 2, 3 bis 4 Linien breit mit einer bunten Einfassung versehen sind und sich außerdem auch noch in der Fläche des Blattes hie und da einzelne große Flecken zeigen. Diese Flecken haben auf der oberen Blattfläche eine dunkelbräunliche Einfassung und sind im Innern mehr schmutzig gelb-braun, zuweilen ist der bräunliche Rand noch durch eine helle, gelblich-grüne Zone umschlossen; auf der unteren Blattfläche sind die Flecken dagegen fast ganz gleichmäßig schmutzig-braun gefärbt und zeigen eine geringe Hervorragung über die Blattfläche. Die anatomische Untersuchung zeigte, daß die Zellen dicht unter der Epidermis der oberen Blattfläche in großer Anzahl mit einem rötlich gefärbten Zellensaft gefüllt sind, die sich bis über die Mitte des Blattparenchym's erstrecken; in der unteren Hälfte dieser sind solche roth gefärbten Zellen sehr selten, dagegen treten mitunter kleine Gruppen mit violett gefärbtem Zellensaft auf; andere, dicht daneben liegende, sind im natürlichen Zustande mit grünen Zellensaft-Kügelchen versehen, während die meisten gelb gefärbt sind. Diese gelbe Farbe hat ihren Sitz sowohl in den Membranen dieser Zellen, welche wirklich gelblich gefärbt auftreten, als

Eine ähnliche Krankheit zeigt sich auf den Blättern der prachtvollen Latanien (Fächer-Palmen), welche in den Gewächshäusern auf der Königl. Pfauen-Insel und im Botanischen Garten bei Berlin befindlich sind. Die Krankheit zeigt sich an den ansehnlichen Blättern dieser Pflanzen um die Zeit, wenn sie ungefähr 2jährig werden, und nimmt dann allmählich immer mehr zu, so daß endlich der größte Theil der Blattfläche mit gelb-bräunlichen, mehr oder weniger zusammenhängenden Flecken bedeckt ist; gegen das durchscheinende Licht gehalten, geben diese Flecken dem Blatte ein nicht übles Ansehen, aber im Allgemeinen wird die Schönheit dieser Pracht-Pflanzen durch jene Flecken sehr beeinträchtigt. Die Flecken treten zuerst sehr zerstreut auf der Fläche des Blattes auf, sind anfangs rund und bestehen in einem braunen Fleckchen in der Mitte, welches von einem Rande eingefasst wird, der, gegen das Licht gehalten, ziemlich goldgelb erscheint. Diese gefärb-
ten Stellen vergrößern sich allmählich, bald indem ein anderes Fleckchen sich seitlich ansetzt, bald durch unmittelbare Ausbreitung des ersten Fleckens. Sehr oft sieht man, daß diese Ausdehnung der gelbbraun gefärbten Stellen in Form von Kreislinien erfolgt, welche sich konzentrisch um den ursprünglichen Flecken legen, so daß stets eine gewisse Regelmäßigkeit in der Vertheilung der gelben und der braunen Stellen in diesen Flecken stattfindet. Gewöhnlich gelangen sie bis zu einer Ausdehnung von 3, 4 bis 5 Linien im Durchmesser und dann fließen sie mit andern, daneben liegenden Flecken zusammen, wobei alle Regelmäßigkeit in der Vertheilung der verschiedenen Farben schwindet.


Es fragt sich, wofür die Flecken auf den genannten Palmen zu halten sind? Unsere Latanien in den Königl. Gärten zeigen dieselben schon seit 8—9 Jahren, ohne daß man sagen kann, daß die Pflanzen dabei leidend seien. Die Flecken, welche einmal entstanden sind, verlieren sich nie wieder, doch werden manche der alten 4jährigen Blätter mitunter stärker gefleckt, als die übrigen gleichen alten Blätter, woraus man vielleicht schließen könnte, daß die Behandlung hierauf von Einfluß sei, obgleich man diese so aus-
nien, wie überhaupt die meisten Fächer-Palmen, verlangen aber ein sehr heisses und feuchtes Klima, und wenn man ihnen dieses nicht in dem Grade geben kann, wie es in der Natur jener Gegenden vorkommt, woselbst sie ihr Vaterland haben, so werden ihre Blätter früher entfärbt werden, wenngleich sie deshalb auch noch nicht abfallen, indem die Vegetation in diesen künstlich gezogenen Pflanzen überhaupt viel langsamer vor sich geht.

Schliesslich ist noch zu bemerken, dass sich die Blätter immergrünender Pflanzen mitunter entfärben, und meistens mehr oder weniger ausgebreitet gelb werden, was aber zugleich mit dem Auftreten vollkommen abgestorben Stellen begleitet ist, ein Zustand, der auf eine Krankheit des Gewächses schliesst läst und mit der bunten Färbung der Blätter nicht zu verwechseln ist. Von diesem Gegenstande haben wir schon bei Gelegenheit der Brandflecken gesprochen.

XV. Die Ringelkrankheit, Ringsucht, Ringelsucht, das Feuer, Hyacinthen-Pest.

Unter diesen verschiedenen Namen begreifen wir eine sehr verheerende Krankheit der Hyacinthen-Zwiebeln, welche sich in rostfarbenen Flecken zeigt, die zuerst einzelne Theile der Zwiebelscheibe ergreifen und sich von hier aus über einzelne oder über mehrere Schuppen von Unten nach Oben verbreiten. Ist die Krankheit weiter vorgeschritten, so findet man den grössten Theil der Zwiebelscheibe davon ergriffen, die Ersatzknospe zerstört und selbst grosse Parthien der Schuppen von der Basis bis zu dem Zwiebelhalse mehr oder weniger vollständig rostfarben oder schon ganz zerstört. Die äussern Zwiebelschuppen sind dabei von ganz gesundem Ansehen und an ausgenommenen trocknen Zwiebeln erkennt man diese Krankheit nur dadurch, dass sich der Zwiebelhals oder die Zwiebelscheibe mehr oder weniger leicht eindrücken lassen. Dieses findet aber nur alsdann statt, wenn die Krankheit schon in sehr hohem Grade die Zwiebel ergriffen und im Innern grosse
Zerstörungen veranlaßt hat. In geringerem Grade möchte es schwer, ja selbst unmöglich sein, die Krankheit schon an trocknen Zwiebeln zu erkennen. Sind dergleichen erkrankte Zwiebeln gepflanzt, welche man vorher noch nicht als solche hatte erkennen können, so zeichnen sich die Blätter derselben sehr bald von denen der danebenstehenden gesunden Zwiebeln aus und zwar, wie ein erfahrener Praktiker*) sagt: durch eine gelbe oder doch ungewöhnliche Farbe der Blätter, und durch ungleiche Höhe derselben, oder es sind auch alle Blätter kleiner als die anderer Zwiebeln von gleicher Sorte. Ist die Krankheit schon weit ausgebreitet, so erscheinen die Blätter unregelmäßig, oft spiralig gekrümmt und der Blumenstiel fault in der Tiefe ab, indem er wie ausgedreht erscheint.

Ich habe die Krankheit in mehreren Gärten beobachtet und gefunden, daß sie sich besonders stark gegen Ende der Blütethezeit entwickelte, wobei dann die Blätter vielfach unregelmäßig gekrümmt wurden und sich oft sehr leicht von ihren Zwiebelschuppen trennten, indem die Basen der Blattstiele abgefaßt waren. Mitunter wurden die Blätter auch gelb, ehe sie abgefaßt waren, schrumpften zusammen und vergingen endlich ganz; nirgend zeigte sich indessen eine Spur von einem Pilze, welcher diese Destructionen hätte verursachen können. Nimmt man diese stark erkrankten Zwiebeln aus der Erde, so findet man die Blattstiele am Zwiebelhalse entweder sämtlich abgefaßt oder, was gewöhnlich ist, so weich, daß die Blätter sogleich umfallen. Schneidet man nun an diesen kranken Zwiebeln den Wurzelhals durch horizontale Schnitte ab, so wird man eine oder mehrere Schuppen von einer gelbbraunen Farbe und einer weichen, breiigen Substanz finden, und diese ringförmigen, braunen Flecken, welche die Verderbnis der Schuppen anzeigen, haben die

*) S. Bayer, die morgenländische Hyacinthe etc. In den Verhandlungen des Gartenbau-Vereins für Hannover. 1. Heft. pag. 119. Hannover 1833.
Veranlassung zu dem Namen der Ringelkrankheit gegeben. Spaltet man die Zwiebel der Länge nach, so findet man, besonders wenn die Krankheit noch in der ersten Entwicklung ist, nur einzelne gelbe Flecken, welche die Zwiebelscheibe ergriffen haben und sich allmählich auch auf die Schuppen verbreiten; dieser Zustand mag es wohl vorzüglich gewesen sein, welcher den Namen: das Feuer veranlaßt hat, der in Holland für diese Krankheit ebenfalls gebräuchlich sein soll. Mitunter zieht sich die Krankheit (d. h. die gelben Flecken) von der Scheibe der Zwiebel auf die Oberfläche der einzelnen Schuppen von Unten nach Oben hinaus, und dann geht sogleich das dazu gehörige Blatt verloren.

Die braunen Flecken, welche hier als Krankheit bezeichnet sind, entstehen durch ein Absterben und eine verjauchende Verderbnis des Gewebes der davon ergriffenen Theile; es ist dieses offenbar der Ausgang der Krankheit, welche sich zuerst darstellt in einer Auflösung der Stärkekügelchen der ergriffenen Zellen. Die Stärkekügelchen verschwinden und es treten dafür kleine, selbstbewegliche Partikelchen in unendlicher Zahl im Zellensaft einer jeden Zelle auf, wie wenn die Stärke in Gummi umgewandelt wäre, was aber wohl nicht der Fall ist, indem diese erkrankten Theile keinen so klebrigen Saft enthalten, wie es sonst der Fall zu sein pflegt. Bald darauf wird der ganze Inhalt und auch die Membran dieser Zellen gelbräunlich gefärbt und diese Farbe wird immer dunkler bis eine vollständige Auflösung oder Verrottung des erkrankten Gewebes erfolgt, und dieses ist es dann, was die braunen Flecken bildet, von denen vorher die Rede war. Durch das Verrotten und durch die Verjauchung des Zellengewebes entstehen Höhlen in der Zwiebelscheibe wie auch in der festen Masse der Zwiebelschuppen. Diese Höhlen werden mehr oder weniger groß und fressen sich oft schlängelnd, aber stets sehr unregelmäßig, bis zu den Knospen und bis zur Basis des Blühenden Stieles durch. Die Zwiebelschuppen, welche dem Schaft zunächst stehen,
faulen auf eben dieselbe Weise, und so endet es allmählich, indem von Innen heraus ein großer Theil der Zwiebel verjaucht. Die faule Masse ist gelbbräunlich, voller Vibrionen, Milben, und sehr oft kommen dann auch noch Maden hinzu.

Die Ursachen dieser Krankheit sind eben so wenig mit Bestimmtheit anzugeben, als dieses bei den meisten übrigen Krankheiten der Pflanzen der Fall war. Die Ringelkrankheit ergreift jedoch nur sehr stark getriebene Zwiebeln; Zwiebeln deren Blätter fast so breit wie die der Tulpen waren, wurden in großer Anzahl von dieser Krankheit befallen, und kommt die Krankheit auf einem Hyacinthen-Beete vor, so ergreift sie nicht etwa eine einzelne Zwiebel, sondern man sieht meistentheils, daß rings herum fast alle Zwiebeln leiden. So möchte man denn wohl veranlaßt werden, zu glauben, daß diese Krankheit durch zu übermäßige und vielleicht auch durch unzweckmäßig Dünung hervorgerufen werde. Man glaubt auch, daß ungünstige Witterung die Krankheit veranlaßte; doch sah ich sie sowohl in einem warmen und trocknen, als auch in einem feuchten und kalten Frühlinge erscheinen, und die Krankheit geht, wie ich glaube, fast immer von der Zwiebelscheibe oder deren nächsten Umgegend aus.


Eine zu üppige Kultur, veranlaßt durch anhaltend starke Düngung, kann jedoch eine Überspannung der Gewebe veranlassen, welche dem Bildungsvorgange vorsteht, und in Folge dieser tritt dann das Absterben ein, welches sich zuerst durch Zersetzung der Stärke und dann durch völligen Tod der Säfte und des Gewebes manifestiert.

Die Ringelkrankheit gehört zu den gefährlichsten und unheilbarsten Krankheiten, denn die davon ergriffenen Theile können nicht mehr gerettet werden. Einige Praktiker schlagen das Ausschneiden des erkrankten Theiles vor, was jedoch schwerlich angeht, wenn die Krankheit einen großen Theil der Zwiebelscheibe zerstört hat. Die meisten Gärtner werfen die erkrankten Zwiebeln sogleich fort, und nur bei kostbaren und seltenen versucht man es, alles Krankhafte auszuschneiden und es gelingt dann auch zuweilen, daß man von den eingepflanzten Zwiebelstücken Brutzwiebeln erhält und so wenigstens die Sorte rettet. Man erhält jedoch, wie Herr Schneevoogt* zu Harlem sagt, von solcher, der kranken, sterbenden Mutter künstlich abgezwungenen Brut auch nur kränkliche und schwächliche Nachkommen; er wolle daher auch Niemanden rathen, so etwas zu thun, wenn ihm an der Erhaltung der Sorte nicht gar sehr viel gelegen sei. Herr Bayer (a. a. O. p. 120) schlägt dagegen vor, wenn solche Zwiebeln noch hart sind, flache Kreuzschnitte über den Zwiebelboden derselben zu machen und sie auf ein besonderes Beet, zwei Zoll tief, mit dem Halse nach Unten gerichtet, wieder einzupflanzen. Diese verkehrte Einpflanzung gewähre den Vorteil, daß die durch Fäulnis entstehende Flüssigkeit der Mutterzwiebeln sich nach unten entfernen und daher weniger nachtheilig für die jungen Brutzwiebeln werden könne.

Ansteckend ist die Ringelkrankheit wohl sicherlich nicht und wer seine Zwiebeln nicht zu stark treibt,

wird von dieser Krankheit auch wohl wenig Schaden zu erdulden haben. An erkrankten Zwiebeln möchte überhaupt wohl wenig für ihre Heilung zu thun sein; die Verhütung der Entstehung derselben wird aber wohl durch einen sehr wenig gedüngten, mehr sandigen Boden zweckt werden können.

XVI. Der Brand, Mortificatio. Sphacelus und Necrosis.

Der Brand besteht bei den Pflanzen, wie bei den Thieren, in einem vollkommenen Absterben der davon ergriffenen Pflanzenteile; alle Aeußerungen des Lebens hören in brandig gewordenen Theilen auf und die Substanz derselben verwest.


Schon in früheren Werken, welche über die Krankheiten der Pflanzen handeln, ist von Brandflecken, von feuchtem und von trocknem Brande u. s. w. die Rede,

Da der Brand seinem Wesen, wie seiner Form nach bei den Pflanzen ganz in derselben Art auftritt, wie bei dem Menschen, und da alle diese Zustände des erkrankten thierischen Körpers auf das genaueste untersucht und die Begriffe hierüber streng bestimmt sind, so wird es auch unumgänglich nöthig sein, daß wir, so viel dieses nur immer möglich ist, für die gleichartigen krankhaften Zustände auch gleiche Begriffe einführen.


1. Der feuchte Brand, Sphacelus humidus seu Putrificatio maligna.

Der feuchte Brand oder die Putrification ergreift die saftigen und weichen Gewächse, welche reich an Säften sind. Er befällt einzelne Theile der Gewächse und ist, je nachdem diese Theile zum Bestehen der Pflanzen mehr
oder weniger wichtig sind, auch mehr oder weniger tödlich für dieselben. Der feuchte Brand äußert sich in einer Verjauchung der erkrankten Theile und ist von einem höchst unangenehmen, penetranten Geruche begleitet, wobei zugleich die entstandene Jauche eine bräunliche bis braunschwarze Färbung annimmt.


Decerfz stellte hierauf Versuche an, ob sich diese

tödliche Krankheit durch Einimpfung der stinkenden Jauche fortpflanzen lassen würde und diese gaben ein sehr interessantes Resultat. Decerfz tauchte einen scharf zugespitzten hölzernen Stab in die stinkende Jauche und verletzte damit eine andere kräftige Balsaminen-Pflanze. Schon am andern Morgen zeigte sich an der verletzten Stelle ein livider Flecken von der Breite eines Centime's; derselbe nahm rasch an Ausdehnung zu und in 4 Tagen war fast die ganze Pflanze putrificirt. Dergleichen krautartige Pflanzen, wie Impatiens Balsamina, die spanische Kresse (Tropaeolum majus), der Sallat (Lactuca sativa), Sonchus oleraceus und Chelidonium majus starben stets 4—5 Tage nach der Einimpfung der Jauche ab. Andere Gewächse mit mehr holzigem Stengel, wie Tagetes erecta, Aster chinensis, Solidago virga-aurea und Erigeron canadense, wurden zwar ebenfalls durch Einimpfung der Jauche angesteckt, aber die Pflanzen wurden dadurch nicht ganz zerstört, sondern verloren zuweilen nur die geimpften Äeste und erholten sich nach einiger Zeit wieder. Endlich geschah die Inoculation auch noch bei Holzpflanzen, aber gänzlich ohne Erfolg; wahrscheinlich ward hier die Jauche in das Holz gebracht, wo natürlich die Krankheit nicht erregt werden konnte.

Der feuchte Brand oder die Putrification kommt an saftigen Pflanzen gar nicht so selten vor, wie dieses in großen Garten-Anlagen bekannt genug ist; bei fleischigen Gewächsen, wie bei Melocacten und Mammillarien, werden mitunter schöne und große Stöcke in wenigen Tagen vollkommen zerstört. Bei den Cacteen tritt die Putrification in dem saftigen Gewebe des Stammes auf, die Pflanze bleibt zurück, nimmt ein gelbgrünes Ansehen an, zeigt auf der Oberfläche einzelne Pusteln, welche aufbrechen und die übelriechende, bräunliche Jauche enthalten, die schon im Innern der Pflanze einen großen Theil des Gewebes zerstört hat.

Die Ursachen, welche diesen Brand herbeiführen, sucht man in einem zu fetten und zu feuchten Boden, doch die
Natur der Krankheit, aus welcher dieser Brand hervorgeht, kennen wir noch nicht, es scheint jedoch, daß es ein üppig vegetierender Zustand ist, in welchem sich eine Art von Wassersucht entwickelt.

Befällt die Putrification nur einzelne, leicht entbehrliche Theile, so kann die Pflanze durch frühzeitiges Abschneiden des brandigen Theiles gerettet werden, hat sich aber erst ein Theil der Jauche durch die zerstörten Spiralröhren u. s. w. weiter in der Pflanze verbreitet, so wird dieselbe, wenn es eine krautartige ist, schwerlich noch zu retten sein.

2. Der trockne Brand, Sphacelus siccus seu Mumiificatio et Necrosis.

Der trockene Brand befallt die weniger saftreichen Theile der Pflanzen und zeigt sich in einem Absterben und Vertrocknen oder Mumificiren derselben, welches mit dem Auftreten einer braunen und selbst einer schwarzen Farbe begleitet ist. Je nach der Natur der Theile, welche vom trocknen Brande ergriffen werden, ist dieser auch sehr verschieden und kann selbst durch die verschiedenartigsten entfernten Ursachen herbeigeführt werden. Die wichtigsten Differenzen des trocknen Brandes zeigen sich in folgenden 2 Formen:


Der necrotische Holzkörper, d. h. der Holzkörper, der durch trocknen Brand abgestorben ist, zeigt sich als eine trockene, leichte, zerreibliche, weiße, gelbliche, bräunliche, röthliche oder selbst braunschwärzliche Masse, die sich oftmals eine Reihe von Jahren erhält und eingeschlossen von gesunden Holzschichten auftritt, oder endlich in eine bräunlich-schwarze Substanz zerfällt und dann die sogenannte Holzerde liefert. Der durch trocknen Brand des Holzkörpers am häufigsten in den Stämmen der Bäume auftritt, so hat man diesen Zustand mit dem Namen der Stammfäule, Kernfäule oder Kernfäulnis belegt; wenn aber die Farbe des necrotischen Holzkörpers beschaffen ist, hat man diesen Zustand mit dem Namen der Weißfäule und der Rothfäule belegt, doch alle diese, mit so verschiedenen Namen belegten Zustände bestehen in einer Necrose des Holzkörpers.

Bei den Nadelhölzern nimmt das necrotische Holz eine röthliche Farbe an; da diese Bäume den größten Schatz unserer Waldungen ausmachen, so hat man auch an ihnen die krankhaften Zustände vielfach untersucht und genau mit Namen bezeichnet. Bekommt der Holzkörper in den Stämmen der Nadelhölzer, z. B. bei unseren Fichten und Kiefern, an dieser oder jener Stelle eine rothe Farbe, nennt man dergleichen Bäume Rothseitig, geht die Verderbnis jedoch weiter fort, so nennt man den Zustand die Rothfäule und wird das röthliche Holz dabei brüchig oder bröcklich, so nennt es der Forstmann Rothbrüchig.

Hat der Brand nur die innersten, um das Mark herumgelagerten Holzmassen ergriffen, so nennt man diesen Zustand die Kernfäulnis und die davon befallenen Stämme heißen kernfaul.

Unsere Bäume mit weissem Holze zeigen, wenn sie von trocknen Brande ergriffen werden, die Weißfäule des Holzkörpers, wie dieses z. B. bei den Weiden, den Linden u. s. w. ausgezeichnet schön zu sehen ist. Bei andern Bäumen finden sich jedoch zwischen der weissem

Fast in allen Schriften findet man die Stammfäule, Kernfäule u. s. w. als besondere Krankheitsformen aufgeführt; wohin sie aber offenbar nicht mehr gehören, denn die damit bezeichneten Zustände des Holzkörpers sind nur verschiedene Formen des, durch trocknen Brand oder Nekrose abgestorbenen Holzes, und eine Heilung oder Wiederherstellung desselben in einen gesunden Zustand ist nicht mehr möglich. Ebenso unrichtig sind die Bezeichnungen dieser Zustände durch Fäulnis, denn der Prozeß, durch welchen das gesunde Holz in jene trockne und leicht zerreibliche Masse umgewandelt wird, ist gar sehr verschieden von einer wahren Fäulnis. Indessen ist auch nicht zu läugnen, daß gar häufig dergleichen kernfaules Holz durch wirkliche Verjauchung zerstört wird; dieses ist aber rein zufällig und hängt ganz von der Feuchtigkeit ab, welche auf irgend einem Wege zu dem nekrotischen Holze gelangte.

Als Ursachen, welche die Nekrose des Holzkörpers herbeiführen, haben wir vor Allem das hohe Alter zu betrachten. Wir sehen, daß die Bäume unserer Wälder nicht alle ein gleich hohes Alter erreichen; wir sehen, daß sie nicht gleichmäßig schnell wachsen, sondern die einen entwickeln sich langsamer, die andern schneller und gewöhnlich pflegt das Alter oder die Lebensdauer der Bäume mit der Zeit, in welcher sie sich ausbilden, im geraden Verhältnisse zu stehen, d. h. die Lebensdauer der Bäume ist gewöhnlich um so kürzer, je schneller sie wachsen, wie man dieses besonders bei den Weiden, den Nadelnhölzern, den Pappeln u. s. w. sehen kann; dagegen ist die Lebensdauer um so länger, je langsamer die Bäume wachsen, wie z. B. bei den Eichen. Im Allgemeinen kann man
von unsern Waldbäumen, welche in dieser Hinsicht vielfach beobachtet sind, sagen, daß jede Baumart ihr gewisses Alter erreicht, bis zu welchem sie beständig zunimmt; über dieses Alter hinaus hört das kräftige Wachsen auf, und wenn auch ein solcher Baum noch eine Reihe von Jahren junge Zweige entwickelt und grünt, so ist doch eine Zunahme des Stammes in die Dicke kaum bemerkbar, er bekommt viele trockene Äste, die Rinde fängt an stark zu reißen, ganze Strecken derselben entfärbt sich, fallen ab und das Holz im Innern des Stammes und der Aeste fängt an abzusterben. Da die innersten Holzlagen zugleich die ältesten sind, so sterben diese zuerst ab und von ihnen aus erstreckt sich dann die Nekrose allmählich auf die zunächst folgenden Jahresringe, so daß sich endlich fast der ganze Holzkörper, von der Marke bis zur Rinde, in jene leichtzerreibliche morsche Substanz umwandelt und dann den Tod des ganzen Baumes zur Folge hat. Hat sich die Kernfäule schon in einem bedeutenden Grade ausgebildet und kommt sie an irgend einem Theile des Stammes, was gewöhnlich am Fufse des Baumes der Fall zu sein pflegt, bis in die Nähe der Rinde, so fängt diese an aufzureißen, bedeckt sich mit verschiedenartigen Pilzbildungen, besonders mit Telephoren und Tremellen, fällt endlich ab und die nekrotisch gewordene Holzmasse tritt an die Oberfläche, wo sie dann durch die Einflüsse der Witterung sehr bald zu verrotten beginnt, sich zuletzt in die bekannte bräunliche Holzerde umwandelt und im Innern des Stammes eine Höhle zurückläßt. Wer hat nicht an alten Weidenstämmen, an Buchen und Eichen dergleichen Fälle gesehen? Die Weidenstämmme sind häufig so stark ausgehöhlt und die Fläche der Höhle ist noch so stark mit jenem abgestorbenen, sogenannten Zunderholze bekleidet, daß man kaum begreift, wie sich dergleichen Bäume noch am Leben erhalten können. Die Beobachtung lehrt, daß in allen solchen Fällen die äußern Holzschichten, und wenn auch nur auf der einen Hälfte des Stammes, gesund sind und daß durch diese die Ernährung des
Ganzen bewirkt wird; bei den Weiden sieht man aber auch noch außerdem, daß das kernfaule morsche Holz gar häufig mit einer großen Anzahl von Wurzeln durchzogen ist, die sich von der Basis der gesunden Äste und zwar im Innern der Holzmasse entwickelt haben, und aus dem Zunderholze Nahrung ausziehen. Das kernfaule Holz ist um die Zeit, wenn sich dergleichen Wurzeln in demselben verbreiten, schon sehr morsch und leicht zu zerreiben, daher denn auch die Wurzelspitzen mit Leichtigkeit in dasselbe eindringen können.


In der vorhin genannten Schrift hat Herr Hartig, wie es schon der Titel sagt, zu zeigen gesucht, daß sich die Zellenmasse des Coniferen-Holzes in Pilz- und Schwamm-


Diese Pilzbildung im Innern des kernfaulen Holzes, welche ich jedoch wegen des Mangels aller eigenthümlichen Sporen-Bildung und wegen der Analogie in der Struktur für keine eigenthümliche Form, sondern nur für den Thallus anderer, höherer Pilze halten kann, geht sicherlich nicht, wie es Herr Hartig gesehen zu haben glaubt, aus der Umwandlung der Membranen der Holzzellen hervor, und die ganze Vorstellung, welche sich derselbe von dem Zusammenhange der Zellenmembran und dem Bau jenes Pilzes gemacht hat, ist mangelhaft. Da man in dem trocknen, kernfaulen Holze mancher Bäume oft auf weite Strecken auch keine Spur eines solchen Pilzes findet, so glauben wir mit Bestimmtheit annehmen zu können, daß der trockene Brand des Holzes weder durch jene schimmelartige Bildung hervorgerufen werde, welche oben mit Nyctomyces bezeichnet wurde, noch daß diese Schimmel-Bildung mit dem Absterben des Holzkörpers in unmittelbarem Zusammenhange stehe, wenngleich es mitunter der Fall ist, daß die Organisation des Holzkörpers um so mehr zerstört wird, je vollkommenm die Entwicklung jener Pilzbildung ist. Diese letztere Wahrnehmung kann man jedoch auch noch auf ganz anderem Wege erklären. Wer auf
die Entstehung des Mauerschwammes in großen Tiefen geachtet hat; wer die Bildung des Thallus der höheren Hutpilze auf dem Grunde hoher Misthaufen bemerkt hat, der wird es nicht unbegreiflich finden, daß sich auch im Innern der Baumstämme, in einem abgestorbenen aber noch feucht erhaltenen, morschen Holze ganz ähnliche Pilzgeflchte bilden können wie dort, und daß sich diese Pilzbildung um so mehr ausbreiten werde, je größer die Räume sind, in welchen sie sich zeigt, vorausgesetzt, daß Feuchtigkeit und einiger lösbarer organischer Stoff vorhanden ist. Es ist sehr wahr, was Herr Hartig bemerkt, daß sich in trocknen Brettern und in trocknen Balken dergleichen Pilzbildungen nicht zeigen, aber wenn sich dergleichen Holzkörper lange Zeit hindurch in sehr feuchter Luft befinden, wenn sie anfangen, im Innern zu verrotten und sich kleine oder große Höhlungen in der verrotteten Masse derselben bilden, dann ist auch eine ähnliche Pilzbildung daselbst vorzufinden.*)

Jenes körnfaule Holz der Buchen, welches unter dem Namen des Buchenzunders bekannt ist und von welchem vorhin die Rede war, ist von Herrn Hartig zuerst mikroskopisch untersucht. Er erkannte die schwammige Masse derselben als eine Anhäufung der von ihm sogenannten Nachtfaser-Pilze, die in jenem Falle undurchsichtig und braun gefärbt sind. Die Fäden sind in großer Anzahl in einander gefilzt und mit Überresten der Zellenmembranen durch-

*) Die schimmelartigen Fäden, von welchen hier die Rede ist, bilden das Mycelium verschiedener Rhizomorphien, auch wohl anderer, noch nicht vollständig erkannter Pilzarten, welche nur im Innern der modernen Holzkörper, als Nachtfaser-Gebilde vegetiren und daher mit der verschlossenen Fäulnis im engsten Zusammenhange stehen. Die bekannteste dieser Formen ist die Rhizomorpha subcorticalis Pers., unter welchem Namen mehrere verschiedene Bildungen zusammengefaßt werden. Eine andere Species, die Rhizomorpha subterranea, hat durch ihre Phosphoreszenz schon längst die Aufmerksamkeit der Naturforscher auf sich gezogen.

Der Herausgeber.
menge, welche noch überall um so deutlicher in ihrer ursprünglichen Bildung und Stellung auftreten, je unvollkommener die Pilzbildung und je härter und holziger das Stück ist.

Sehr häufig wird der trockene Brand des Holzes durch große Verletzungen der Bäume herbeigeführt. So findet man die gekappten ältern Bäume fast immer kernfaul, und durch das Abkappen großer Äste, besonders wenn dieses nicht unter gehörigen Vorsichtsmaßregeln stattfindet, wird das Absterben des Holzkörpers der Stämme sehr häufig herbeigeführt. Ist die Krone eines alten Baumes gekappt, vom Winde abgebrochen oder vom Blitze heruntergeschleudert, und ist der Holzkörper der Wundfläche so gelegen, daß er das auffallende Regenwasser aufnimmt, so wird der zurückgebliebene Stamm sicherlich sehr bald kernfaul, und eben dasselbe wird durch die Wunden großer gekappter Äste herbeigeführt, wenn diese das auffallende Regenwasser auffangen. Es stirbt dann zuerst der Holzkörper in dem zurückgebliebenen Aststumpfe ab und von diesem aus geht die Nekrose noch tief in den Stamm hinein; auf diese Weise entsteht dann der sogenannte Astschwamm oder der Astzünder, von welchem vorhin die Rede war. Ein Absterben der innern Holzmasse durch trocknen Brand findet übrigens in allen Fällen an den Stümpfen gekappter Äste statt, jedoch bei diesen Bäumen früher, bei jenen später, was sich meistens nach der Dicke der zurückgebliebenen Stämme richtet, so wie auch nach der Länge des Stumpfes. Je dünner und je kürzer der Stumpf ist, desto leichter wird derselbe durch die neuen Holzlagen überwallt und wenn dann keine Feuchtigkeit von Außen auf den Holzkörper eingedrungen ist, so wird sich auch derselbe noch sehr lange erhalten. Kann die Überwallung jedoch wegen der Dicke der Äste, oder auch wegen der zu großen Länge der Stümpfe, nicht stattfinden, so wird die Holzfäule um so eher eintreten.

Zu große Nässe des Bodens führt gleichfalls gar häufig das frühzeitige Absterben der Bäume herbei und zwar

Endlich haben wir noch die Kälte als eine der häufigsten Ursachen aufzuführen, welche das Absterben des Holzkörpers durch trocknen Brand veranlaßt, wovon im folgenden Abschnitte ausführlicher gesprochen werden wird.


Als Ursache dieser auffallenden Erscheinung pflegt man anzugeben, daß in dem Sommer, in welchem die Jahressringe entstanden, die später nekrotisch wurden, eine sehr schlechte, besonders anhaltend feuchtkalte Witterung herrschte, bei welcher, wie man sich auszudrücken pflegt, eine vollständige Erhärtung der Jahressringe nicht statt-

*) Man erinnere sich hierbei an die Phosphoreszenz der unterirdischen Rhizomorphen.

Der Herausgeber.
finden konnte. Wenn nach diesem schlechten Sommer, in welchem der neue Jahresring sehr unvollkommen ausgebildet zurückblieb, ein heftiger Winter folgt, so ist es höchst wahrscheinlich, daß das junge Holz abstirbt und dann in spätern Jahren die Kernschale veranlaßt.

II. Der schwarze trockne Brand, Mumificacion.

Die Mumification besteht in einem Absterben der Pflanzen oder einzelner Theile derselben, welches mit Verschumpfen, Vertrocknen und Schwarzwerden der absterbenden Theile begleitet ist. Die Mumification befällt nur die weniger saftreichen, zur Faulnifs nicht geeigneten Pflanzen oder deren einzelne Theile und kann die Folge sehr verschiedener Ursachen sein. Am häufigsten verursacht die Kälte den trocknen, schwarzen Brand; sie hebt durch ihre Wirkung den Lebensprozeß in dem ihr ausgesetzten Gewächse auf und die Folge davon ist der plötzlich eintretende Brand, welcher sich im höchsten Grade an allen, mehr trocknen, grünen oder gefärbten, blattartigen Organen als Mumificirung darstellt, während die saftigen Gewächse, oder einzelne saftreiche Theile derselben in Folge des Stockens und Verjauchens der reichlich vorhandenen Säfte in den feuchten Brand (S. 301) übergehen.

XVII. Von der Wirkung der Kälte oder niedr rer Wärmegrade auf die Pflanzen und den daraus hervorgehenden Krankheiten derselben.

Die Wirkungen der Kälte sind in unsern Gegenden so häufig die alleinigen Ursachen des Mißratthens dieses oder jenes Kulturzweiges und der Schaden, welcher mitunter durch strenge Kälte unsern Gärten und Ackerum erwächst, ist häufig nur zu unersetzlich, als daß wir an diesem Orte nicht mit besonderer Ausführlichkeit dieses Gegenstandes gedenken sollten.

In jedem Winter können wir die auffallende Erscheinung wahrnehmen, daß gewisse Pflanzen unserer Gegenenden schon bei den ersten eintretenden niedern Kältegraden
erfrieren und absterben, während andere von eben den- selben Kältegraden nur wenig leiden, und andere Gewächse selbst die höchsten, bei uns vorkommenden, Kältegrade ganz ohne allen Nachtheil ertragen können. Im Allgemeinen kann man sagen, daß die holzigen Gewächse sich besser gegen die Einwirkung der Kälte halten, als die krautartigen, und von diesen sind es wieder die, mit einer festen und lederartigen Textur, welche am meisten Kälte ertragen können, während die saftigen Pflanzen im Allgemeinen nur sehr wenig Kälte ohne Nachtheil aushalten. Dergleichen niedere und trockne, lederartige Gewächse, wie die Moose und Flechten, kommen dagegen selbst in den kältesten bisher besuchten Ländern vor und vegetieren dort eben so kräftig als bei uns. Betrachten wir nun noch das Verhalten der tropischen Pflanzen, welche bei uns in Gärten und in Gewächshäusern gezogen werden, so werden wir sehr bald zu der Ansicht kommen, daß einige Pflanzen sehr leicht, andere weniger und viele sogar nur selten erfrieren und daß sich dieses meistentheils nach dem Vaterlande richtet, in welchem diese Pflanzen vorkommen, d. h. die Pflanzen wärmerer Gegenden können weniger Kälte ertragen, als die der kälteren und der kältesten Länder, und wenn die Gewächse in ihrem Vaterlande durch Kälte leiden, so hängt dieses von besondern, abweichenden Witterungs-Verhältnissen ab, von denen in der Folge die Rede sein wird.

Wir sehen es nur zu oft, daß Pflanzen, die bei uns heimisch sind und mitunter zu den ganz gewöhnlichen gehören, deren Kultur sehr leicht auszuführen ist, daß auch diese Gewächse sowohl im Frühjahr als im Herbst durch späte Nachtfröste als im Herbst durch zu früh eingetretene Fröste mehr oder weniger leiden; die Spitzen der jungen Triebe erfrieren, werden schwarz, schrumpfen zusammen, die Blätter werden ebenfalls schwarz, kurz Alles vom Frost getötete mumifizirt, und dennoch sind diese Gewächse von der Natur selbst für Gegenden bestimmt, in welchen solche Unregelmäßigkeiten im Verlaufe der klimatischen Verhält-
nisse stattfinden. Obgleich sich solche Pflanzen seit Jahrtausenden in eben denselben Gegenden befinden und sich daselbst immer wieder von Neuem erzeugen, so haben sie sich denn doch an solche Abweichungen des Klima's noch nicht gewöhnen können. Schon diese wenigen und einfachen Beobachtungen möchten zum Beweise dienen, dafs eine völlige Akklimatisation der Gewächse, soviel auch hier von gesprochen wird, nicht stattfindet und dafs es also ganz fruchtlose Versuche sind, wenn man Gewächse der heüschen Gegenden in den kältern Ländern akklimatisiren will.

Nur zu häufig sprechen viele Gärtner von dem Akklimatisiren ihrer Gewächse, während andere, welche ihr Leben hindurch mit der Zucht großartiger Orangerien u. s. w. zu thun gehabt haben, von der Annahme einer Akklimatisation der Gewächse ganz und gar nichts wissen wollen, und eben so schroff stehen sich die Ansichten der Botaniker und Naturforscher über diesen Gegenstand entgegen. Viele von ihnen sind der Meinung, dafs das Akklimatisiren der Gewächse eine Erscheinung sei, welche sich ganz von selbst verstehe und weiter gar nicht mehr zu bezweifeln sei, die Andern dagegen sind der Meinung, dafs man auch nicht eine einzige Thatsache aufzuführen habe, wodurch die Akklimatisation von Gewächsen wirklich erwiesen werde, sondern dafs sich Alles vielmehr auf Angaben beschränke, welche man mit Leichtigkeit beseitigen könne. Herr Link*) hat noch vor wenigen Jahren durch eine Menge von vortrefflichen Beispielen zu zeigen gesucht, wie viele solcher Pflanzen, welche man hier und da für akklimatisirt hält, nur ein sehr weit verbreitetes Vaterland haben und daher schon an und für sich sehr verschiedene Klimate auszuhalten im Stande sind. Akklimatisiren heüsche eigentlich einen organischen Körper an ein Klima gewöhnen, welches ihm an und für sich nicht zuträglich ist, und um dieses zu erweisen, habe man wohl schwerlich irgend ein Beispiel an-


Wenn wir eine Menge einjähriger Gewächse der heisseren Gegenden in unsern nordischen für gewöhnlich kultiviren, und dieselben alljährlich gut gedeihen und reife Saamen ansetzen, so dürfen wir hieraus noch immer nicht den Schluf's ziehen, dass sich diese Gewächse für unsere Gegenden akklimatisirt haben. Wir ziehen diese Gewächse vielmehr nur innerhalb solcher Zeiten, in wel-
lichen die Temperatur auch bei uns sehr hoch und derjenigen mancher tropischen Gegenden nicht unähnlich ist, und dennoch bringen Pflanzen aus den heissen und feuchten Aequatorial-Gegenden, welche bei uns im Freien kultivirt werden, immer nur sehr selten reife Saamen, wenn sie deshalb nicht ganz besonders unter Schutz genommen werden. Die Pflanzen, welche aus andern Ländern zu uns gebracht werden, lassen bei uns nicht einmal von ihren Gewohnheiten ab, viel weniger gewöhnen sie sich an unser Klima.

So macht Herr Link mit Recht auf die vielen nordamerikanischen Sträucher und Bäume aufmerksam, welche bei uns zwar seit langer Zeit allgemein kultivirt werden, aber ganz bei den Eigenthümlichkeiten bleiben, welche sie in Hinsicht ihrer Entwicklungs-Perioden in ihrem Vaterlande zeigen. Wegen der eigenthümlichen klimatischen Verhältnisse in dem östlichen Nordamerika, wo das Frühjahr sehr spät eintritt, kommen jene Gewächse in ihrem Vaterlande auch sehr spät zur Entwicklung der Blätter und der Blüthen, dagegen behalten sie während des schönen und langle andauernden Herbstes ihr Laub um so länger und bringen häufig auch ihre Früchte erst spät zur Reife. Alle diese Eigenthümlichkeiten haben jene Nordamerikaner auch in unsern Gegenden genau beibehalten, und so lange sie auch bei uns schon kultivirt werden, sind doch noch keine Anzeichen vorhanden, dass sich dieselben in diesen Eigenthümlichkeiten abändern und sich mehr unserm Klima gemäss entwickeln werden.

Unsere Orangen-Bäume sind Gewächse der wärmeren Zone und schon oft hat man gewünscht, dass sie sich etwas akklimatisiren möchten, damit sie im Herbst länger im Freien gehalten werden könnten und im Winter nicht so viel Holz kosten möchten. In der That müssen unsere Orangen im Winter, wie im Sommer, mit weniger Wärme vorlieb nehmen, aber ihr ganzes jährliches Wachsthum ist denn auch bei uns so äußerst gering, dass wir diese Bäume, im Verhältnisse zu den großen Orangen-Bäumen der warmen Gegenden, nur als kümmernlich vegetirende Hospitaliten

Wir könnten noch so manches Beispiel aufführen, welches gegen die Annahme der Akklimatisation der Gewächse sprechen würde, doch halten wir dieses kaum mehr für nöthig und gehen gleich zur Betrachtung der Wirkungen über, welche der Einfluss der niedern Wärmegrade und der Kälte auf die Pflanzen hervorruft. Herr Göppert*) hat diesen Gegenstand in einem besonderen Werke sehr umständlich behandelt, auf welches ich auch alle diejenigen geehrten Leser meines Buches verweise muss, welche sich noch spezieller hierüber unterrichten wollen.

Die Pflanzen gefrieren, sobald die umgebende Luft die Temperatur unter dem Gefrierpunkte annimmt, ja viele tropische Pflanzen, besonders die mit weichen und mehr saftigen Blättern, werden schlaff und fangen an abzusterben, wenn sie nur eine Zeit hindurch einer Temperatur von einem oder einigen Gradern über den Gefrierpunkt ausgesetzt werden. Aber auch die tropischen Pflanzen verhalten sich in dieser Hinsicht ebenso verschieden, wie sich die, bei uns heimischen Gewächse ebenfalls gar sehr verschieden in der Empfindlichkeit gegen die einwirkende Kälte verhalten. Der Kälte ausgesetzt, gefrieren die Gewächse, die Flüssigkeiten im Innern derselben erstarrn zu Eis und dieses dringt bis in das Innerste der Gewächse, bis dieselben durch und durch gefroren sind. Dergleichen krautartige Gewächse, welche unsere Winterkälte ohne Nachtheil ertragen, geben hiez zu die schönsten Belege; nach lange anhaltender Kälte sind diese Pflanzen so stark gefroren, dass sie mitunter bei Anwendung der leichtesten Gewalt wie Glas springen und dann durch und durch die Eismasse zeigen. An Helleborus foetidus und an Braunkohl-Pflanzen habe ich dieses mehrmals gesehen, und eben-

so fand ich im Innern einer 89jährigen Kiefer, welche bei ziemlich anhaltender Kälte abgesägt wurde, durch und durch kleine Eiskrystalle. Alle diese Gewächse werden aber von der bei uns herrschenden Kälte nicht getötet, sie thauen wieder auf, wenn die umgebende Temperatur zunimmt, und vegetiren alsdann ganz ebenso, als wenn sie nicht gefroren gewesen wären. Bei so leicht anzustellenden Beobachtungen ist es unbegreiflich, daß manche Botaniker, und selbst praktische Forstleute, die Ansicht aus sprechen, dafs nur die vom Froste getödten Pflanzen im Innern gefrieren.

Wir haben kennen gelernt, wie schon vorhin angeführt wurde, dafs manche Pflanzen aus tropischen Gegenden schon bei den niedrigsten Wärmegraden, wenn diese eine längere Zeit hindurch einwirken, absterben; wir sehen ferner, dafs viele von den Gewächsen, welche bei uns heimisch sind, durch und durch gefrieren können, ohne dadurch zu leiden. Unter diesen sind aber viele, welche nur sehr kurze Zeit hindurch solche nachtheilige Einflüsse zu ertragen im Stande sind, während bei andern selbst die anhaltendste heftige Kälte keinen Nachtheil verursacht. Wir wissen aber nicht, worin der Grund der Erklärung dieser Erscheinungen zu suchen sein möchte. Für Pflanzen einer und derselben Gegend geht aus Herrn Göppert's Beobachtungen hervor, dafs diejenigen mit wässrigen, so genannten indifferenten Säften und zarten Blättern schneller gefrieren, als Pflanzen, die eine Menge salziger und harziger Bestandtheile enthalten.

Im Allgemeinen kann man sagen, dafs die Pflanzen um so weniger leiden, je kürzere Zeit sie der Einwirkung der Kälte ausgesetzt waren, und dieses gilt selbst von tropischen Gewächsen, die sich alsbald wieder erheben und kräftig fortvegetiren, wenn sie nur kurze Zeit hindurch vom Froste ergriffen waren. So hat man in Italien längst die Beobachtung gemacht, dafs Orangenbäume wenigstens eine Nacht hindurch ganz ohne Nachtheil eine Kälte von 7 Grad R. haben ertragen können, und ich selbst sah in der Nähe.
von Canton, daß die Pisang-Pflanzen durch Nachtfröste im Monat November so stark ergriffen wurden, daß ihre Blätter des Morgens schlaff und stark gebräunt vom Stamme herabhängten, sich aber zur Mittagszeit schon wieder emporgehoben hatten, allmählich wieder die grüne Farbe annahmen und weiter fortwuchsen.

Die Veränderungen, welche die Pflanzen durch die Einwirkung der Kälte erleiden, sind sehr mannigfaltig und beziehen sich bald auf die Farbe, bald auf die Struktur und bald hauptsächlich auf die chemische Beschaffenheit der Säfte; sie sind auch sehr wesentlich verschieden an den durch Struktur-Verhältnisse verschiedenen Theilen derselben. So werden knollige Wurzeln, saftige grüngefärbte Blätter und der Holzkörper der verschiedenen Pflanzen, wenn diese Theile auch von einem und denselben Kältegrade getödtet worden sind, sich dennoch ganz verschiedenartig verhalten müssen. Die gewöhnlichsten Erscheinungen, welche die Pflanzen darbieten, wenn sie erfrieren oder nur der Kälte ausgesetzt werden, sind folgende: Die Blätter und alle blattartigen Theile der Pflanzen werden schlaff; standen sie vorher, im gesunden Zustande, aufrecht, so sinken sie, vom Froste gerührt, nieder, oder sie schrumpfen zusammen, krümmen sich und fallen auch mitunter schnell ab. Die Farbe solcher gefrornten Pflanzen verändert sich, jedoch ist diese Veränderung bei verschiedenen Pflanzen einmal sehr verschieden, wie aus den vielen über diesen Gegenstand aufgeführten Beobachtungen Herrn Göppert's zu ersehen ist, und zweitens richtet sich dieselbe sehr nach der Dauer und der Heftigkeit der Kälte, welcher die Pflanzen ausgesetzt waren. Im Allgemeinen werden die grünen und die hellgefärbten Pflanzenteile mäßfarbig, erhalten ein schmutziges Ansehen, die Substanz derselben wird zuweilen etwas durchscheinend und in vielen Fällen nehmen sie das Ansehen an, als wenn sie gekocht wären. Sehr zarte Blätter, hellgefärbte Blumen-Blätter u. s. w. werden sehr bald schmutzig gelbräunlich gefärbt und erhalten bei längerer Einwirkung der
Kälte hie und da einzelne dunkle Flecken, oder ihre ganze Substanz wird mehr oder weniger tief braun-schwarz gefärbt. So sieht man im Frühjahr nach kalten Nachtfrösten, gar nicht selten, daß die grüngefärbten Blätter der jungen Triebe vieler unserer einheimischen und fremden Bäume und Sträucher in einer einzigen Nacht ganz schwarz gefärbt worden sind und mehr oder weniger zusammenge- schrumpft und unregelmäßig gekräuselt erscheinen. Nach dem Aufthauen dieser gefrorenen krautartigen Pflanzenteile zeigt sich sehr bald, was von ihnen durch den Frost getödtet ist und was unbeschadet sich wieder erholt und weiter fortwächst. Die erfrorrenen Blätter, Blüthen, Früchte u. s. w. bleiben schlaff, ihre Färbung wird immer schmutziger und in den meisten Fällen werden sie dunkelbraun und selbst ganz schwarz. Im Allgemeinen schrumpfen solche erfrorrenen Pflanzenteile sehr schnell zusammen und gehen mit Zunahme der braunen und schwarzen Färbung in denjenigen Zustand von Brand über, welchen man durch Mumification sehr treffend bezeichnet. Wenn jedoch die erfrorrenen Pflanzenteile sehr dick und fleischig oder überhaupt sehr saftreich sind, so gehen sie nach dem Aufthauen schnell in Gärung und Faulnis über, wie man dieses an erfrorrenen Kartoffeln, Aepfeln, an erfrornen Melocacten u. s. w. sehen kann.

Sind die erfrorrenen Pflanzen nicht mumificirt, so findet man die Elementarorgane derselben ganz unverletzt und es war durchaus irrig, wenn man die Wirkung der Kälte durch ein Zerreifsen der Zellen der Pflanzen erklären wollte. Das Mikroskop zeigt wohl, daß die Zellen, Spiralröhren und Gefäße in den erfrorrenen Pflanzen ganz unverletzt sind, aber man findet, daß diese Elementarorgane, welche früher innig mit einander verbunden waren, durch die Wirkung des Frostes mehr oder weniger vollständig von einander getrennt worden sind. Die Zellen, wenn sie früher in ihrer Verbindung kantig waren, nehmen eine mehr abgerundete Gestalt an und die Membranen zeigen nach der tödtenden Wirkung des Frostes ein

Meyen. Pathologie.

21
sehr eigenthümliches Verhalten; sie sind missfarben, sehr weich, bersten bei dem geringsten Drucke und obgleich man mit dem Mikroskope keine Oeffnungen in denselben bemerkt, so fließt doch beständig etwas Feuchtigkeit aus denselben aus. Dieses Letztere ist z. B. bei den gefrorenen Kartoffeln der Fall und es scheint auch mit die Ursache zu sein, daß das Vertrocknen oder die Mumifizierung erfrorner Pflanzenteile so ungemein rasch vor sich geht.


Der Schaden, welchen die Wirkung des Frostes herbeiführt, ist mitunter sehr groß, und die Heilung der Frostschäden beschränkt sich fast nur auf Vorbautungs-Mittel. Alle Kräuter und krautartigen Theile der Pflanzen, welche so stark vom Froste ergriffen sind, daß sie nach dem Aufthauen in Mumification oder in faulige Gährung übergehen, sind ohne Rettung verloren, und man muß suchen, dasjenige von ihnen noch zu retten, was sich nach den Regeln der Kunst erhalten läßt. Man kann aber zur Erhaltung der Pflanzen bei plötzlich eintretender Kälte Vieles thun, und selbst Gewächse noch erhalten, welche schon ganz entfärbt sind und deren Blätter welk und schlaff herabhängen. Das beste Mittel zur Wiederherstellung solcher erfrorner Pflanzen besteht in dem Bespritzen und, wo es sich ausführen läßt, in dem vollständigen Uebergießen mit Wasser. Man sehe darauf, daß das Aufthauen solcher gefrorenen Pflanzen ganz langsam erfolge und dieses wird auch durch das Bespritzen mit Wasser bewirkt. Bespritzt man die Gewächse bei plötzlich eintretender Kälte, wie z. B. bei frühen Nachtsfrösten im Herbst, in gehörigem Maaße und hält man mit dieser Operation dauernd
an, so ist man oft im Stande, sehr empfindliche Pflanzen in ihrer vollen Blüthenpracht durch starke Nachtfröste unbeschadet durchzuführen. Sind die Massen der Pflanzen, welche man zu schützen hat, nicht gar zu groß, so wird man durch blofes Bedecken mit Stroh, mit Matten, Decken, Säcken u. s. w., welche die Wärme-Ausstrahlung des Bodens verhindern, vollkommen ausreichen; doch im Großen, wo ganze Felder zu schützen sind, muß man sich der Wirkung des Klima's ergeben, oder man muß so vorsichtig sein und sich solchen Nachtheilen gar nicht aussetzen. Ist aber der Werth der Anlagen, welche durch den Frost zerstört werden könnten, sehr groß, wie z.B. in Weinbergen, in botanischen Gärten wärmerer Länder, wo man oft die tropischen Bäume im freien Boden zieht u. s. w., so ist es denn auch erforderlich, daß man noch größere Anstrengungen zum Schutze der Pflanzungen mache. Zum Schutze gegen die anhaltende Kälte des Winters werden solche Gewächse mit Stroh oder anderen schlechten Wärmeleitern eingeschüllt, und sind sie niedrig, oder lassen sie sich leicht niederbiegen, mit trocknem Laube, mit Erde u. s. w. bedeckt. Gegen plötzlich eintretende Kälte des Nachts wendet man die Schmauch-Feuer an.

XVIII. Wassersucht, Hydrops.

Auch die lange anhaltende Nässe bringt Krankheiten hervor, welche durch Ueberladung mit Flüssigkeit entstehen.

Du Hamel*) beschreibt schon die Folgen, welche eine zu große Nässe des Bodens auf die Pflanzen verursacht, und schildert diesen Zustand so genau, daß wir darin sicherlich denjenigen wiedererkennen, welcher von vielen Gärttern und Autoren unter dem freilich nicht sehr passenden Namen der Wassersucht aufgeführt wird. Die Blätter, heißt es bei du Hamel, fallen von den Bäumen, obgleich sie noch grün und dick sind; die Früchte bekommen keinen Wohlgeschmack, ja sie faulen noch ehe sie reif sind,

*) Die Naturgeschichte der Bäume etc. II. p. 266.
und die Zufälle von diesen allzugroßen Säftenmassen äußern sich stets um so stärker, je mehr die Ausdünstung vermindert ist. Selbst die Triebe bleiben weich, verholzen nicht gehörig und im Winter verderben oder verfaulen sie.

An sehr kräftig wachsenden, großblättrigen Ulmen sah du Hamel ein schnelles Absterben und fand als Ursache derselben, daß ein Theil der letzten Holzlagen abgestorben war und sich zwischen Rinde und Holz ein röthliches Wasser gesammelt hatte; er konnte keine andere entfernte Ursache dieser Krankheit auffinden, als zu große Vollsaftigkeit.
Anmerkungen des Herausgebers.


Meyen's Beobachtung enthält noch beiläufig einen neuen Beweis, daß das Cambium weder durch die Zellen, noch durch Gefässe (Spiralröhren) zugeführt werden könne, sondern durch Intercellulargänge in Lücken austrete. Lücken sind nämlich nichts anderes, als in's Unbestimmte erweiterte Intercellularräume.
Was übrigens unser Verf, S. 17 und 18 nach seiner Theorie für den einseitigen Ursprung der jüngsten Gefäßgeschichte aus der innern Rindenschichte vorträgt, läßt sich nicht vertheidigen.

(2) S. 32. Ratzeburg's unübertreffliches Werk: Die Forstinsecten, oder Abbildung und Beschreibung der in den Wäldern Preußens und der Nachbarstaaten als schädlich oder nützlich bekannt gewordenen Insecten u. s. w. Berlin 1837 und 1840, bis jetzt 2 Bände in 4to, hat der Verf. zwar gekannt (vergl. S. 37), aber nicht vollständig benutzen können. Es soll daher hier nur bemerkt werden, daß, obgleich der Titel dieses nicht ausdrücklich erklärt, die Beschädigung, welche die Forstbäume durch die beschriebenen Insecten erleiden, von Herrn Ratzeburg aufs gründlichste erörtert und physiologisch gedeutet werden.

Fall ist, dessen Fortwirken unterhalten und steigern könnte.

(4) S. 80. Mirbel (Élémens de botanique I. p. 118. t. 19. f. 1 and 2) hat zwei interessante Beispiele von solchen Umschlingungen und Verschnürun gen der Stämme durch Schlingpflanzen mitgetheilt. Eine solche Pflanze, wahrscheinlich zu Bauhinia gehörig, umschlang nicht nur den Stamm (einer Palme), sondern ihre Stengel wurden auch durch das feste Anschmiegen ganz abgeplattet und verwuchsen da, wo sie sich unter einander oder mit den Aesten berührten, dergestalt, daß sie ein unregelmäßiges Maschenwerk bildeten und im Groben das Bild eines netz-förmigen Pflanzengefässes darstellten. In diesem Falle litt der auf solche Weise umstrickte Stamm keinen Schaden, weil er einer Palme angehörte, die nur wenig in die Dicke wächst. Ein zweites Beispiel (a. a. O. Fig. 2) zeigt dagegen einen jungen Eichenstamm, welcher, von einer Lonicera Periclymenum eng umwunden, durch die hiedurch veranlaßten Wülste wie gedreht und durch eine tiefe und weite spiralig um ihn herumlaufende Aushö lung dermaßen verschmächtigt ist, daß er zu keiner regelmäßigen Entwicklung gelangen konnte und, wenn die Windungen der Schlingpflanze mehr horizontal liefen, wahrscheinlich an diesen Stellen zum Abbrechen durch Windstöße prädestiniert sein würde.

Wir sehen hieraus, daß auch in Europa die Beispiele von Erwürgung durch Schlingpflanzen nicht ganz fehlen.

Wer aber ein lebendiges Bild dieser Gesellung und Häufung verschiedenartiger Schling- und Schmarotzerpflanzen in den pflanzenreichen Theilen der Tropenwelt zu haben wünscht, der sehe die physiognomischen Tafeln zu Martius und Endlicher's Flora Brasiliensis und deren phantasieriche Erklärungen von Martius, besonders S. X. u. f. zu Tab. VI. In den hier geschilderten Fällen zeigt es sich, daß die nachtheiligen Wirkungen der sich also anhäufenden Schlinggewächse weniger auf den dadurch bewirkten Verschnürun gen, als auf der Verdampfung des
eingeschlossenen Baumes oder, nach Umständen, sogar auf dem Umsturz desselben durch das Gewicht der auf ihm lastenden Massen beruhe. Wäre das Wachsthum in jenen Lagen nicht rasch und kräftig, so daß die Krone des Baumes mit dem Laubdache des Urwaldes emporsteigt, so wäre ein solcher Baum dem unvermeidlichen Untergange überlassen. Ebensohäufig würden die dünneren Stämme durch die Menge der auf ihnen lastenden und sich in unregelmäßige Massen häufenden Schling- und Schnarotzerpflanzen, besonders bei eintretenden Sturmwinden, niedergestürzt werden, wenn sie nicht der dichte Bestand der Waldung dagegen schützte.


Durch den Keimact der Balanophore bildet sich auf der Wurzel der Nährpflanze (die Javanischen Arten wachsen meist auf den Wurzeln von Thibaudien, auch wohl Meliaceen und andern baumartigen Pflanzen) ein knollig verzweigter, mit regelmäßig im Quincunx stehenden Warzen besetzter, ziemlich ansehnlicher Auswuchs, welcher ganz aus parenchymatischen Zellen mit Zellenkernen besteht und ein doppeltes Gefäßsystem enthält. Die untern und äußern Gefäße entspringen aus dem Holzkörper der Nährwurzel, welche sich in einen unregelmäßigen Kreis ordnen und die poröse Beschaffenheit der Gefäße der Mutterpflanze beibehalten; diese Gefäßspartie verläuft bis dahin, wo sich der Wurzelknollen öffnet, um den hervorbrechenden Stengel der Pflanze hindurch zu lassen. Mehr nach innen und etwas weiter oben entspringt das eigne Gefäßsystem der Balanophore, welches, mit blindem, unterem

(6) S. 150. So wenig es auch der Beruf des Herausgebers ist, den Kritiker zu machen, so darf hier doch nicht unbemerkt bleiben, daß die hier aufgestellte Theorie sich in sich selbst, und dann wieder der Schlufsbearbeitung, dafs an eine Fortpflanzung der Aecidien durch sporrenartige Bläschen nicht zu denken sei, widerspricht. Dieses Letztere, wie es allerdings wahrscheinlich ist, angenommen, sieht niemand ein, was dann von dem Unterschiede männlicher und weiblicher Aecidien zu halten sei.

(7) S. 173. An diese Stelle gehört noch, was weiter unten, S. 182, von dem Wurzeltödter, der Gattung Rhizoctonia DeC. (Thanatophyrum N. v. E.) vorgebracht wird.

Fusarium heterosporum bezeichne, und ein inneres Zerfallen in sehr kleine, die Zellen des Eiweiskörpers erfüllende, runde Bläschen ergeben, welche letztere als das Product einer gesteigerten Amylumbildung, wobei die Amylunkörner selbst wieder in eine Vielheit von Bläschen zerfallen, zu betrachten ist.