California Code of Regulations
Title 24, Part 2, Volume 2 of 2

California Building Standards Commission
Based on the 2009 International Building Code®
2010 California Historical Building Code, Title 24, Part 8
2010 California Existing Building Code, Title 24, Part 10

Effective Date: January 1, 2011
(For Errata and Supplements, see History Note Appendix)
This document is Part 2 of 12 parts of the official triennial compilation and publication of the adoptions, amendments and repeal of administrative regulations to California Code of Regulations, Title 24, also referred to as the California Building Standards Code. This Part is known as the California Building Code.

The California Building Standards Code is published in its entirety every three years by order of the California legislature, with supplements published in intervening years. The California legislature delegated authority to various state agencies, boards, commissions and departments to create building regulations to implement the State’s statutes. These building regulations or standards, have the same force of law, and take effect 180 days after their publication unless otherwise stipulated. The California Building Standards Code applies to occupancies in the State of California as annotated.

A city, county or city and county may establish more restrictive building standards reasonably necessary because of local climatic, geological or topographical conditions. Findings of the local condition(s) and the adopted local building standard(s) must be filed with the California Building Standards Commission to become effective and may not be effective sooner than the effective date of this edition of California Building Standards Code. Local building standards that were adopted and applicable to previous editions of the California Building Standards Code do not apply to this edition without appropriate adoption and the required filing.

Should you find publication (e.g., typographical) errors or inconsistencies in this code or wish to offer comments toward improving its format, please address your comments to:

California Building Standards Commission
2525 Natomas Park Drive, Suite 130
Sacramento, CA 95833–2936

Phone: (916) 263–0916
Fax: (916) 263–0959

Web Page: www.bsc.ca.gov

ACKNOWLEDGMENTS

The 2010 California Building Standards Code (Code) was developed through the outstanding collaborative efforts of the Department of Housing and Community Development, the Division of State Architect, the Office of the State Fire Marshal, the Office of Statewide Health Planning and Development, the California Energy Commission, and the Building Standards Commission (Commission).

This collaborative effort included the assistance of the Commission’s Code Advisory Committees and many other volunteers that worked tirelessly to assist the Commission in the production of this Code.

Governor Arnold Schwarzenegger
Members of the Building Standards Commission
Acting Secretary Tom Sheehy – Chair

Isam Hasenin – Vice-Chair
James Barthman
Craig Dailey
Susan Dowty
Tony Hoffman

Christina Jamison
Stephen Jensen
Michael Paravagna
Richard Sawhill
Steven Winkel

David Walls – Executive Director
Thomas Morrison – Deputy Executive Director

For questions on California state agency amendments; please refer to the contact list on the following page.
California Code of Regulations, Title 24

California Agency Information Contact List

California Energy Commission
Energy Hotline ... (800) 772-3300
or (916) 654-5106
Building Efficiency Standards
Appliance Efficiency Standards
Compliance Manual/Forms

California State Lands Commission
Marine Oil Terminals (562) 499-6317

California State Library
Resources and Information (916) 654-0261
Government Publication Section (916) 654-0069

Corrections Standards Authority
Local Adult Jail Standards (916) 324-1914
Local Juvenile Facility Standards (916) 324-1914

Department of Consumer Affairs—Acupuncture Board
Office Standards (916) 445-3021

Department of Consumer Affairs—Board of Pharmacy
Pharmacy Standards (916) 574-7900

Department of Consumer Affairs—Bureau of Barbering and Cosmetology
Barber and Beauty Shop and (916) 574-7570
College Standards (800) 952-5210

Department of Consumer Affairs—Bureau of Home Furnishings and Thermal Insulation
Insulation Testing Standards (916) 574-2041

Department of Consumer Affairs—Structural Pest Control Board
Structural Standards (800) 737-8188
(916) 561-8708

Department of Consumer Affairs—Veterinary Medical Board
Veterinary Hospital Standards (916) 263-2610

Department of Food and Agriculture
Meat & Poultry Packing Plant Standards (916) 654-1447
Dairy Standards (916) 654-1447

Department of Public Health
Organized Camps Standards (916) 449-5661
Public Swimming Pools Standards (916) 449-5693
Asbestos Standards (510) 620-2874

Department of Housing and Community Development
Residential—Hotels, Motels, Apartments
Single-Family Dwellings (916) 445-9471
Permanent Structures in Mobilehome
and Special Occupancy Parks (916) 445-9471
Factory-Built Housing, Manufactured
Housing and Commercial Modular (916) 445-3338
Mobilehomes—Permits & Inspections
Northern Region (916) 255-2501
Southern Region (951) 782-4420
Employee Housing Standards (916) 445-9471

Department of Water Resources
Gray Water Installations Standards (916) 651-9667

Division of the State Architect—Access Compliance
Access Compliance Standards (916) 445-8100

Division of the State Architect—Structural Safety
Public Schools Standards (916) 445-8100
Essential Services Building Standards (916) 445-8100
Community College Standards (916) 445-8100

Division of the State Architect—State Historical Building Safety Board
Alternative Building Standards (916) 445-8100

Office of Statewide Health Planning and Development
Hospital Standards (916) 440-8409
Skilled Nursing Facility Standards (916) 440-8409
Clinic Standards (916) 440-8409
Permits .. (916) 440-8409

Office of the State Fire Marshal
Code Development and Analysis (916) 445-8200
Fire Safety Standards (916) 445-8200
Fireplace Standards (916) 445-8200
Day-Care Centers Standards (916) 445-8200
Exit Standards (916) 445-8200
EFFECTIVE USE OF THE IBC/CBC

Distilling the code review process down to a methodical, sequential list of considerations is generally problematic. In many cases, related provisions from various chapters of the code must be considered simultaneously, or reconsidered later in the process to arrive at the correct classification or determination. Any number of acceptable alternatives may exist for construction of the building and its specific features. Each choice provided by the code must be evaluated for its specific impact on other aspects of the building’s analysis. With a basic understanding of the interrelationship of the various chapters, the practiced code user will make an initial assessment of the building as a first step of the code review process. The following outline may be helpful as a guide for the effective use of the IBC, with the understanding that final resolution of each step is often dependent on subsequent steps.

The following process begins with a brief discussion of the key administrative areas of the code. The process addressing technical provisions is divided into two distinct areas of analysis, the nonstructural provisions of the IBC and the structural provisions. Although reference is not made to all provisions set forth in the IBC, the process is intended to be representative of an approach to using the IBC in an effective manner.

Administrative Provisions

Prior to any analysis based on the technical provisions of the IBC, it is important that the fundamental administrative aspects of the code be reviewed. It is critical that the basis of technical decisions be consistent with the approach established in IBC Chapter 1, including:

- Scope of the IBC
- Intent of the IBC
- Applicability of the IBC
- Duties and powers of the building official
- Alternate materials, designs and methods of construction

Nonstructural Provisions

1. Classify the building for occupancy and construction type. The first step in analyzing a building for code compliance is its proper classification based on anticipated use(s) and construction features.

Identify the distinct and varied uses of the building. The uses that will occur within the building must be identified, evaluated and classified into one or more of the distinct occupancy classifications established in the IBC. Some buildings will be classified as single-occupancy, where there is only one applicable occupancy classification. Others will be considered as mixed-occupancy due to the presence of two or more uses that are classified into different occupancy groups.

Sec. 302.1 Classify the building into one or more occupancy groups. Although there are 10 general occupancy groups, many of the groups are subdivided into sub-groups to allow for a more exacting analysis of the building under consideration.

Sec. 303 Group A
Sec. 304 Group B
Sec. 305 Group E
Sec. 306 Group F
Sec. 307 Group H
Sec. 308 Group I
Sec. 309 Group M
Sec. 310 Group R
Sec. 311 Group S
Sec. 312 Group U

Identify the building’s type of construction based on the materials of construction and degree of fire-resistance for the building’s major elements. The primary structural frame, exterior walls, interior walls, floor construction and roof construction, as applicable, must be evaluated in regard to their degree of fire-resistance and materials of construction in order to classify the building based upon type of construction.
Sec. 602.1 Classify the building into a single type of construction. Five general types of construction have been established and further subdivided into nine specific construction types. The classification of construction type is based on a combination of the degree of fire-resistance and the type of materials of the key building elements.

- Sec. 602 Type of construction based on materials of construction
- Table 601 Type of construction based on fire rating of the building elements
- Sec. 603 Combustible materials in Type I and II buildings

Sec. 1505 Verify classification of roof covering. Roof coverings are typically required to provide protection against moderate or light fire exposures from the exterior. Their minimum required classification is based upon the type of construction of the building.

2. Determine if the building is to be fully sprinklered. Many of the code provisions vary based upon the presence of an automatic sprinkler system throughout, or in specific portions of, the building.

- Sec. 903.2 Determine if the building requires a fire sprinkler system. Many of the mandates for the installation of a sprinkler system are based upon the occupancy or occupancies that occur within the building. The provisions will often require some degree of occupant load and fire area determination. Other conditions may also trigger a required sprinkler installation, such as building height or the lack of exterior openings. Table 903.2.13 should also be consulted.

If a sprinkler system is not required, review for potential code modifications if a sprinkler system is installed. There are a significant number of benefits provided by the code if a sprinkler system is installed. An initial analysis of the building will typically allow for an early determination of the value of such sprinkler benefits, including:

- Sec. 504.2 Story and height increase (reduced type of construction)
- Sec. 506.3 Allowable area increase (reduced type of construction)
- Sec. 507.3 Unlimited area building (reduced type of construction)
- Sec. 1018.1 Elimination of corridor fire-resistance rating

3. Locate the building on the site. The location of the building(s) on the lot is fundamental to the degree of fire exposure to and from adjoining buildings and lots. In addition, the building’s location influences the amount of fire department access that can be provided from the exterior of the building.

- Sec. 503.1.2 Determine the number of buildings on the site. Where two or more buildings are located on the same lot, they can be evaluated as a single building or multiple buildings. The type of construction requirements may differ based upon which of the two methods is utilized.

- Sec. 602.1 Determine minimum required fire rating of exterior walls. The fire separation distance is the measurement used in evaluating the necessary fire rating for exterior walls. It is measured from the building to the lot line, to the center line of a public way, or to an imaginary assumed line between two buildings on the same lot. Projections and parapets, if applicable, are also regulated.

- Sec. 704.8 Determine exterior opening protection requirements. Openings in exterior walls are regulated by the fire separation distance and the rating of the exterior wall in which they are located.

- Sec. 506.2 Determine frontage increase for allowable area purposes. Utilized primarily for fire department access, open space adjacent to a building’s perimeter provides for an increase in the allowable area.

4. Verify building’s construction type by determining the allowable building size. The permitted types of construction are primarily based upon the occupancy classifications involved, the building’s height and the building’s floor area. Other conditions may also affect the appropriate construction types, including the building’s location on the lot and the intended materials of construction. In buildings with mixed-occupancy conditions, the methods of addressing the relationship between the multiple occupancies indirectly affect construction type.

- Sec. 202 and 502 Calculate actual height of building in both ‘feet’ and ‘stories above grade plane’. The code specifically describes the method for assigning a building height, measure both in the number of feet and the number of stories above grade plane. The actual height must be compared with the allowable height to determine if the building’s type of construction is acceptable.

- Sec. 504 Determine allowable height permitted for ‘feet’ and ‘stories’

- Sec. 505 Determine if mezzanine provisions are applicable

- Sec. 504.3 Determine if any rooftop structures are in compliance

- Sec. 502 Calculate actual floor area of each story of building. The building area is typically the entire floor area that occurs within the surrounding exterior walls. The building area for each individual story must be calculated, as well as for the building as a whole.
EFFECTIVE USE OF THE IBC/CBC

Sec. 507 Determine if building qualifies as an unlimited area building

Sec. 506 Determine allowable area permitted for each story and building as a whole if:
- Sec. 506 Single-occupancy building
- Sec. 508.2 Multi-occupancy w/accessory occupancies
- Sec. 508.3 Multi-occupancy building w/nonseparated occupancies
- Sec. 508.4 Multi-occupancy building w/separated occupancies
- Sec. 706.1 Use of fire walls

Sec. 509 Determine if special provisions are to be applied for height and/or area. The general requirements for allowable height and area may be modified under limited conditions, typically where a parking garage is located in a building with other occupancies.

5. Identify extent of any special detailed occupancy requirements. Special types of buildings, special uses that occur within buildings, and special elements of a building are further regulated through specific requirements found in Chapter 4. Since these provisions are specific in nature, they apply in lieu of the general requirements found elsewhere in the code.

Chapter 4. Determine special detailed requirements based on occupancy. A number of the special provisions are applicable to a specific occupancy or group of similar occupancies.
- Sec. 402 Covered mall buildings
- Sec. 403 High-rise buildings
- Sec. 404 Atriums
- Sec. 405 Underground buildings
- Sec. 406 Motor-vehicle-related occupancies
- Sec. 407 Group I-2 occupancies
- Sec. 408 Group I-3 occupancies
- Sec. 411 Special amusement buildings
- Sec. 412 Aircraft-related occupancies
- Sec. 415 Group H occupancies
- Sec. 419 Live/work units
- Sec. 420 Groups I-1, R-1, R-2 and R-3
- Sec. 422 Ambulatory health care facilities

Table 508.2.5 Determine if building contains any incidental accessory occupancies. The uses identified in Table 508.5.2 are considered as a portion of the occupancy in which they are located, but special conditions required that they be addressed in a more specific manner.
- Sec. 508.2.5 Provide fire separation and/or fire-extinguishing system

6. Identify and evaluate fire and smoke protective elements. Where fire-resistance-rated construction and/or smoke protection is mandated by other provisions of the code, the provisions of Chapter 7 identify the appropriate methods for gaining compliance.

Chapter 7. Verify compliance w/details of fire and smoke resistance. The various elements of fire-resistance-rated and smoke-resistant construction are detailed, including walls, horizontal assemblies, shaft enclosures, including openings such as doors and windows, as well as the penetration of such elements by conduit, ducts, piping and other items.
- Sec. 704 Structural members
- Sec. 707 Fire barriers
- Sec. 709 Fire partitions
- Sec. 710 Smoke barriers
- Sec. 711 Smoke partitions
- Sec. 712 Horizontal assemblies
- Sec. 708 Shaft enclosures
- Sec. 713 Penetrations
- Sec. 714 Joint systems
- Sec. 715 Opening protective
- Sec. 716 Ducts and air transfer openings
7. Identify additional fire protection systems that may be required. In addition to automatic sprinkler systems, there are several other types of fire protection systems that may be required in a building.

Sec. 907.2. Determine compliance with fire alarm provisions. Fire alarm systems are typically mandated based upon the occupancy classification and the number of occupants.

Sec. 905.3. Determine if standpipe system is required. A standpipe system is required in buildings once a specified height is reached to provide for a more effective means of fighting a fire within the building.

Sec. 905.4.6. Verify location of standpipe hose connections.

8. Identify and evaluate materials utilized as interior floor, wall and ceiling finishes. Finish materials within the building are primarily regulated for flame spread and smoke development characteristics.

Sec. 803.9. Verify compliance of wall and ceiling finishes. Interior wall and ceiling finishes are regulated based upon the occupancy classification of the space and their location within the means of egress system. The classification may typically be reduced where sprinkler protection is provided.

Sec. 804.4. Verify compliance of floor finishes. While regulated differently than wall and ceiling finishes, floor finishes comprised of fibers are also controlled based upon their use in the egress system, the occupancy classification, and the presence of a sprinkler system.

9. Evaluate means of egress system based on anticipated occupant loads. The expected occupant load is the basis for the design of the means of egress system. The egress elements must provide for a direct, continuous, obvious, undiminished and unobstructed path of travel from any occupiable point in the building to the public way.

Sec. 1004. Determine the design occupant load. Although the primary use of an occupant load is in the design of the building's means of egress system, occupant load is also occasionally an important factor in occupancy classification, sprinkler system and fire alarm system requirements, and plumbing fixture counts.

Chapter 10. Verify compliance with means of egress provisions. The means of egress system is intended to provide the primary occupant protection from fire and other hazards. The system consists of two major components, egress components and egress design.

Sec. 1005.1 Egress width and distribution
Sec. 1006.3 Emergency lighting
Sec. 1007 Accessible means of egress
Sec. 1008.1.2 Door swing
Sec. 1008.1.9 Door operations
Sec. 1008.1.10 Panic hardware
Sec. 1009.1 Stairway width
Sec. 1009.4 Stairway treads and risers
Sec. 1011 Exit signs
Sec. 1012 Stairway and ramp handrails
Sec. 1013 Guards
Sec. 1014.2 Egress through intervening spaces
Sec. 1014.3 Common path of egress travel
Sec. 1015.1 Number of exit or exit access doorways
Sec. 1015.2 Egress separation
Sec. 1016.1 Travel distance
Sec. 1018.1 Corridor construction
Sec. 1021 Number of exits
Sec. 1022 Vertical exit enclosures
Sec. 1023 Exit passageways
Sec. 1025 Horizontal exits
Sec. 1026 Exterior exit stairways
Sec. 1027 Exit discharge
Sec. 1028 Egress from assembly occupancies
10. Identify any special use features of the building. The activities that occur within the building pose varying risks to the occupants. Special conditions are applicable when such activities are anticipated.

Chapter 4. Verify compliance with special detailed requirements. These provisions are often an extension of the general requirements found elsewhere in the code.

- Sec. 410 Stages and platforms
- Sec. 413 Combustible storage
- Sec. 414 Hazardous materials
- Sec. 416 Application of flammable finishes

11. Determine areas of building and site required to be accessible. In general, access to persons with disabilities is required for all buildings.

Chapter 11A and/or 11B. Verify compliance with accessibility provisions. In order to be considered as accessible, buildings and their individual elements must comply with the applicable technical provisions of Chapters 11A and/or 11B.

12. Determine extent of other miscellaneous provisions. Additional provisions may be applicable based upon each individual building and its characteristics.

- Sec. 2406.3. Verify safety glazing provided in hazardous locations. Safety glazing must be appropriately identified to ensure the proper glazing material is installed in areas considered as subject to human impact.

Chapter 24. Glass and glazing. General provisions for the installation of glazing materials and skylights.

Chapter 30. Elevators. Elevator hoistway provisions, including enclosure of hoistways, emergency operations and hoistway venting.

Chapter 31. Special construction. A variety of special conditions are addressed, including membrane structures, temporary structures, pedestrian walkways and tunnels, awnings and canopies, marquees, signs and swimming pool enclosures.

Structural Provisions

General Requirements

1. Design Loads.

The 2009 IBC references the national load standard, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7—05) with Supplement Number 2.

Determine the applicable design loads that the building structure is expected to be subjected to. Code prescribed loads are given in Chapter 16 and the referenced standard, ASCE/SEI 7. The code prescribed minimum live loads are given in IBC Table 1607.1.

The various code prescribed loads are probabilistic in nature. Environmental loads, such as flood, rain, snow, seismic and wind vary based on the location of the building site. The following table gives the IBC section and ASCE/SEI 7 chapter for various types of load.

<table>
<thead>
<tr>
<th>TYPE OF LOAD</th>
<th>IBC SECTION</th>
<th>ASCE/SEI 7 CHAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead loads</td>
<td>Section 1606</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Live loads</td>
<td>Section 1607, Table 1607.1</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Snow loads</td>
<td>Section 1608</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Wind loads</td>
<td>Section 1609</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Soil lateral loads</td>
<td>Section 1610</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Rain loads</td>
<td>Section 1611</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Flood loads</td>
<td>Section 1612</td>
<td>Chapter 51</td>
</tr>
<tr>
<td>Earthquake loads</td>
<td>Section 1613</td>
<td>Chapter 11-22</td>
</tr>
</tbody>
</table>

1. Section 1612 references ASCE 24 which references Chapter 5 of ASCE/SEI 7
2. Structural Materials.

The structural design begins with the selection of the type of structural materials to be used to support the building. Structural framing systems are constructed of concrete, masonry, steel or wood. Some miscellaneous or specialty structures and components, such as awnings, canopies and cladding, are often constructed of aluminum.

The design of various structural materials is covered in specific material chapters in the code which in turn reference design standards for the type of material involved. The referenced standards in the 2009 IBC for the structural materials are shown in the following table:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>IBC/CBC CHAPTER</th>
<th>REFERENCED STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>19</td>
<td>ACI 318—08 Building Code Requirements for Structural Concrete</td>
</tr>
<tr>
<td>Aluminum</td>
<td>20</td>
<td>ADM 1—05 Aluminum Design Manual</td>
</tr>
<tr>
<td>Masonry</td>
<td>21</td>
<td>TMS 402-08/ACI 530-08/ASCE 5-08 Building Code Requirements and Specification for Masonry Structures (MSJC Code)</td>
</tr>
<tr>
<td>Steel</td>
<td>22</td>
<td>AISC 360—05 Specification for Structural Steel Buildings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AISC 341—05 Seismic Provisions for Structural Steel Buildings, including Supplement No. 1 dated 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AISI S100—2007 North American Specification for the Design of Cold-Formed Steel Structural Members</td>
</tr>
<tr>
<td>Wood</td>
<td>23</td>
<td>AF&PA NDS—05 National Design Specification (NDS) for Wood Construction with 2005 Supplement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AF&PA SDPWS—08 Special Design Provisions for Wind and Seismic</td>
</tr>
</tbody>
</table>

1. The above table shows the main structural design standards for these structural materials. For a complete list of referenced standards, see IBC Chapter 35.

3. Structural Analysis, Design and Detailing.

Once the applicable loads are determined, the structural system of the building must be analyzed to determine the effects of the governing gravity and lateral loads that act on the structure. The structural system of a typical building consists of the roof and floor systems, walls, beams and columns, and the foundation. From the structural analysis, the next step is to design the structural members, elements and systems to provide the minimum level of resistance in accordance with the various load combinations prescribed in Section 1605.

Once the structural elements and systems are designed, the next step is to detail the load transfer connections to provide a complete load path from the point of origin to the resisting element. In general, the ultimate resisting element of buildings and structures is the foundation and supporting ground. The final step is to prepare a complete set of construction documents as required by Sections 107 and 1603. Construction documents are defined in Section 202 as “Written, graphic and pictorial documents prepared or assembled for describing the design, location and physical characteristics of the elements of a project necessary for obtaining a building permit.” In general, construction documents consist of plans, specifications and calculations.

Section 1603.1 requires construction documents to show the size, section and relative locations of structural members with floor levels, column centers and offsets dimensioned. Design loads required by Sections 1603.1.1 through 1603.1.9 must be indicated on the construction documents. If complete construction documents consisting of plans, specifications and calculations are provided, the items listed in Sections 1603.1.1 through 1603.9 are generally included.
The exception permits construction documents for buildings constructed in accordance with the conventional light-frame construction provisions of Section 2308 need only indicate the following:

- Floor and roof live loads
- Ground snow load, P_s
- Basic (3-second gust) wind speed (mph) and wind exposure category.
- Seismic design category and site class.
- Flood design data where sited in flood hazard areas
- Design load-bearing values of soils.

General Requirements

1. **Occupancy Category (IBC/CBC Table 1604.5).**

 Determine the occupancy category of the building based on Table 1604.5.

 Where a structure is occupied by two or more occupancies that are not the same occupancy category, the building must be classified in the highest occupancy category corresponding to the various occupancies.

 Where structures have two or more portions that are structurally separated, each separate portion should be separately classified.

 Where a separated portion of a structure provides required access or egress from another portion of the building with a higher occupancy category, both portions of the building must be assigned the higher occupancy category.

 Where a separated portion of a structure shares life safety components with another portion of the building with a higher occupancy category, both portions of the building must be assigned the higher occupancy category.

2. **Floor and roof live loads (IBC/CBC Table 1607.1).**

 Determine uniformly distributed and concentrated floor live load for the floor areas of the building in accordance with Section 1603.1.1 and Table 1607.1.

 Floor live load reduction in accordance with Section 1607.9 should be indicated for each type of live load that is reduced.

 Determine the roof live load for roof areas in accordance with Section 1607.11.

 Roof live load reduction in accordance with Section 1607.11.2 should be indicated for roof live loads that are reduced.

3. **Snow load (IBC/CBC Section 1608, ASCE/SEI 7 Section 7).**

 Determine the ground snow load, P_s, based on the location of the building site in accordance with Figure 1608.2 for the contiguous United States and Table 1608.2 for Alaska.

 In areas where the ground snow load, P_s, exceeds 10 psf, the following information should be determined:

 1. Flat-roof snow load, P_f.
 2. Snow exposure factor, C_e.
 4. Thermal factor, C_t.

4. **Wind speed and wind exposure category.**

 Determine the following information related to wind loads in accordance with Section 1603.1.4:

 1. Basic 3-second gust wind speed (mph).
 2. Wind importance factor, I.
 3. Wind exposure category (B, C, D). If more than one wind exposure is used, the wind exposure for each wind direction should be determined.
 4. The applicable internal pressure coefficient.
 5. The design wind pressure (psf) used for the design of exterior component and cladding materials not specifically designed by the registered design professional should be indicated.
5. Earthquake design requirements.

Determine the following information related to seismic loads regardless of whether seismic loads govern the design of the lateral-force-resisting system of the building:

1. Seismic importance factor, I, based on occupancy category.
2. Mapped spectral response accelerations, S_s and S_t.
3. Site class.
4. Design spectral response coefficients, S_{DS} and S_{DI}.
5. Seismic design category.
6. Basic seismic-force-resisting system(s).
7. Design base shear.
8. Seismic response coefficient(s), C_s.
9. Response modification factor(s), R.
10. Analysis procedure used.

The design load bearing values of soils shall be shown on the construction documents in accordance with Section 1603.1.6.

7. Special loads.

Determine any special loads that are applicable to the design of the building, structure or portions thereof along with the specific section of the code that addresses the special loading condition in accordance with Section 1603.1.8.

8. Load combinations.

Buildings and other structures and portions thereof are required to be designed to resist the load combinations specified in Section 1605.2 or 1605.3 and Chapters 18 through 23, and the special seismic load combinations with overstrength as required by Section 1605.1 and ASCE/SEI 7.

9. Wind and seismic detailing.

Lateral-force-resisting systems are required to conform to the seismic detailing requirements of the code and ASCE/SEI 7 (excluding Chapter 14 and Appendix 11A) even when wind load effects are greater than seismic load effects. See Section 1604.10.

10. Serviceability.

Structural systems and members shall be designed to have adequate stiffness to limit deflections and lateral drift. The deflection of structural members shall not exceed the more restrictive of the limitations of Sections 1604.3.2 through 1604.3.6 or that permitted by Table 1604.3. Structural systems shall be designed to have adequate stiffness to limit deformation and lateral drift due to earthquake loading in accordance with Section 12.12.1 of ASCE/SEI 7.

11. Foundation.

A foundation system must be designed that provides adequate support for gravity and lateral loads. Walls of buildings of conventional light frame construction, as defined in Section 202, are permitted to be supported by footings constructed in accordance with Table 1809.7. Otherwise, the foundation system must be designed in accordance with other provisions of Chapter 18. The following table gives a summary of applicable sections for foundation systems.

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>IBC SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presumptive load-bearing values of soils</td>
<td>1806, Table 1806.2</td>
</tr>
<tr>
<td>Foundation walls, retaining walls and embedded posts & poles</td>
<td>1807</td>
</tr>
<tr>
<td>General requirements for foundations</td>
<td>1808</td>
</tr>
<tr>
<td>Minimum concrete specified concrete strength</td>
<td>Table 1808.8.1</td>
</tr>
<tr>
<td>Minimum concrete cover</td>
<td>Table 1808.8.2</td>
</tr>
<tr>
<td>Shallow foundations (footings)</td>
<td>1809</td>
</tr>
<tr>
<td>Prescriptive footings for light frame walls</td>
<td>Table 1809.7</td>
</tr>
<tr>
<td>Deep foundations</td>
<td>1810</td>
</tr>
</tbody>
</table>
A geotechnical investigation is required where required by Section 1803.2 unless the building official determines that a soils investigation is not required in accordance with the exception. A geotechnical investigation is required for buildings assigned to Seismic Design Categories C, D, E and F in accordance with Sections 1803.5.11 and 1803.5.12.

12. Excavation, grading and fill

Requirements for excavation, grading and fill related to foundation construction are covered in Section 1804. General requirements for site grading are covered in Appendix J.

13. Flood design data.

Where required by Section 1612.5, buildings located in flood hazard areas as established in Section 1612.3 are required to provide documentation that includes the following information regardless of whether flood loads govern the design of the building:

1. In flood hazard areas not subject to high-velocity wave action, the elevation of the proposed lowest floor, including the basement; and the elevation to which any nonresidential building will be dry flood proofed.
2. In flood hazard areas not subject to high-velocity wave action, the elevation to which any nonresidential building will be dry floodproofed.
3. In flood hazard areas subject to high-velocity wave action, the proposed elevation of the bottom of the lowest horizontal structural member of the lowest floor, including the basement.

14. Special inspection.

Where special inspection, special inspection for seismic resistance, or structural testing for seismic resistance is required by Sections 1704, 1707 or 1708, the registered design professional in responsible charge is required to prepare a statement of special inspections in accordance with Section 1705. The statement of special inspections must be submitted by the permit applicant as a condition of permit issuance in accordance with Section 106.1.

A statement of special inspections is not required for structures designed and constructed in accordance with the conventional construction provisions of Section 2308 unless specific components in the structure require special inspection.

The statement of special inspections is permitted to be prepared by a qualified person approved by the building official for construction not designed by a registered design professional.

<table>
<thead>
<tr>
<th>SPECIAL INSPECTION REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF SPECIAL INSPECTION</td>
</tr>
<tr>
<td>Steel construction</td>
</tr>
<tr>
<td>Concrete construction</td>
</tr>
<tr>
<td>Masonry construction</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
<tr>
<td>Level 2</td>
</tr>
<tr>
<td>Wood construction</td>
</tr>
<tr>
<td>Soils</td>
</tr>
<tr>
<td>Driven deep foundations</td>
</tr>
<tr>
<td>Cast in place deep foundations</td>
</tr>
<tr>
<td>Helical pile foundations</td>
</tr>
<tr>
<td>Vertical masonry foundations</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sprayed fire resistant materials</td>
</tr>
<tr>
<td>Mastic and intumescent fire resistive coatings</td>
</tr>
<tr>
<td>Exterior insulation and finish (EIFS) systems</td>
</tr>
<tr>
<td>Special cases</td>
</tr>
<tr>
<td>Smoke control systems</td>
</tr>
</tbody>
</table>

Where required by the provisions of Section 1709.2 or 1709.3, the owner shall employ a registered design professional to perform structural observations as defined in Section 1702. At the conclusion of the work included in the permit, the structural observer shall submit a written statement to the building official that identifies any reported deficiencies that have not been resolved.
15. Special inspection for wind and seismic resistance.
Section 1706.1 requires special inspections for wind requirements based on wind speed and exposure category as prescribed in Sections 1706.2 through 1706.4, unless exempted by the exceptions to Section 1704.1.

Section 1707.1 requires special inspections for seismic resistance based on seismic design category as prescribed in Sections 1707.2 through 1707.9, unless exempted by the exceptions of Section 1704.1 or 1705.3.

16. Structural testing for seismic resistance.
Section 1708.1 requires specific testing and qualification for seismic resistance as prescribed in Sections 1708.2 through 1708.5, unless exempted from special inspections by the exceptions of Section 1704.1; 1705.3.

17. Structural observation.
Where required by the provisions of Section 1710.2 or 1710.3 the owner is required to employ a registered design professional to perform structural observations as defined in Section 1702. Section 1710.2 requires structural observations for seismic resistance for certain structures assigned to Seismic Design Category D, E or F; Section 1710.3 requires structural observations for wind requirements for certain structures sited where the wind speed exceeds 110 mph.

At the conclusion of the work included in the permit, the structural observer is required to submit a written statement to the building official that identifies any reported deficiencies that have not been resolved.

Prior to the commencement of observations, the structural observer is required to submit a written statement to the building official identifying the structural observations.

At the conclusion of the work included in the permit, the structural observer is required to submit a written statement to the building official indicating what site visits have been made, identifies any deficiencies that have not been resolved.

18. Contractor responsibility.
Section 1709 requires each contractor responsible for the construction of a main wind- or seismic-force-resisting system, designated seismic system or a wind- or seismic-resisting component listed in the statement of special inspections is required to submit a written statement of responsibility to the building official and the owner prior to the commencement of work on the system or component. (The term "designated seismic system" is defined in Section 1702 and Section 11.2 of ASCE/SEI 7). The contractor’s statement of responsibility is required to acknowledge awareness of the special requirements contained in the statement of special inspections.

19. Phased approvals.
Construction of foundations or other part of a building is permitted before the construction documents for the whole building or structure have been submitted, provided adequate information has been filed. The holder of such permit for the foundation or other part of a building proceeds at their own risk and without assurance that a permit for the entire structure will be granted.

20. Amended construction documents.
Work must be constructed in accordance with the approved construction documents and any changes made during construction that are not in compliance with the approved construction documents must be resubmitted for approval as amended construction documents.

Deferred submittals are items that are not submitted at the time of permit application and must have the prior approval of the building official in accordance with Section 107.3.4.2. The registered design professional in responsible charge is required to list the deferred submittals on the construction documents for review by the building official. Documents for deferred submittal items must be reviewed by the registered design professional in responsible charge who will forward them to the building official with a notation indicating that they have been reviewed and are in general conformance with the design of the building.
How to Distinguish Between Model Code Language and California Amendments

To distinguish between model code language and the incorporated California amendments, including exclusive California standards, California amendments will appear in italics.

[BSC] This symbol within a section identifies which State agency(s), by its “acronym,” has amended a section of the model code.

Legend of Acronyms of Adopting State Agencies

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>California Building Standards Commission</td>
</tr>
<tr>
<td>SFM</td>
<td>Office of the State Fire Marshal</td>
</tr>
<tr>
<td>HCD</td>
<td>Department of Housing and Community Development</td>
</tr>
<tr>
<td>DSA-AC</td>
<td>Division of the State Architect-Access Compliance</td>
</tr>
<tr>
<td>DSA-SS</td>
<td>Division of the State Architect-Structural Safety</td>
</tr>
<tr>
<td>DSA-SS/CC</td>
<td>Division of the State Architect-Structural Safety/Community Colleges</td>
</tr>
<tr>
<td>OSHPD</td>
<td>Office of Statewide Health Planning and Development</td>
</tr>
<tr>
<td>CSA</td>
<td>Corrections Standards Authority</td>
</tr>
<tr>
<td>DPH</td>
<td>Department of Public Health</td>
</tr>
<tr>
<td>AGR</td>
<td>Department of Food and Agriculture</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CA</td>
<td>Department of Consumer Affairs: Board of Barbering and Cosmetology, Board of Examiners in Veterinary Medicine, Board of Pharmacy, Acupuncture Board, Bureau of Home Furnishings, Structural Pest Control Board</td>
</tr>
<tr>
<td>SL</td>
<td>State Librarian</td>
</tr>
<tr>
<td>SLC</td>
<td>State Lands Commission</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
</tbody>
</table>

Symbols in the margins indicate the status of code changes as follows:

II This symbol indicates that a change has been made to a California amendment.

> This symbol indicates California deletion of California language.
California Matrix Adoption Tables

Format of the California Matrix Adoption Tables

The matrix adoption tables, which follow, show the user which state agencies have adopted and/or amended given sections of the model code. The building application determines which state agency’s adoptions apply. See Section’s 102 through 114 for building applications and enforcement responsibilities.

Agencies are grouped together, based on either local or state enforcement responsibilities. For example, regulations from SFM are enforced both at the state and local levels; therefore, SFM is listed twice in each adoption table indicating state enforcement responsibilities and local enforcement responsibilities.

The side headings identify the scope of state agencies’ adoption as follows:

Adopt the entire IBC chapter without state amendments.
If there is an “X” under a particular state agency’s acronym on this row; this means that particular state agency has adopted the entire model code chapter without any state amendments.

Example:

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>Adoptions</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td>S A M P L E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adopt the entire IBC chapter as amended, state-amended sections are listed below:
If there is an “X” under a particular state agency’s acronym on this row, it means that particular state agency has adopted the entire model code chapter; with state amendments.

Each state-amended section that the agency has added to that particular chapter is listed. There will be an “X” in the column, by that particular section, under the agency’s acronym, as well as an “X” by each section that the agency has adopted.

Example:

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>Adoptions</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td>S A M P L E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Section</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Adopt only those sections that are listed below:

If there is an “X” under a particular state agency’s acronym on this row, it means that particular state agency is adopting only specific model code or state-amended sections within this chapter. There will be an “X” in the column under the agency’s acronym, as well as an “X” by each section that the agency has adopted.

Example:

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td>S</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>X</td>
<td>X</td>
<td>S</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>C</td>
<td>O</td>
<td>N</td>
<td>T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORDINANCE

The International Codes are designed and promulgated to be adopted by reference by ordinance. Jurisdictions wishing to adopt the 2010 California Building Code as an enforceable regulation governing structures and premises should ensure that certain factual information is included in the adopting ordinance at the time adoption is being considered by the appropriate governmental body. The following sample adoption ordinance addresses several key elements of a code adoption ordinance, including the information required for insertion into the code text.

SAMPLE ORDINANCE FOR ADOPTION OF THE CALIFORNIA BUILDING CODE ORDINANCE NO._________

An ordinance of the [JURISDICTION] adopting the 2010 edition of the California Building Code, regulating and governing the conditions and maintenance of all property, buildings and structures; by providing the standards for supplied utilities and facilities and other physical things and conditions essential to ensure that structures are safe, sanitary and fit for occupation and use; and the condemnation of buildings and structures unfit for human occupancy and use and the demolition of such structures in the [JURISDICTION]; providing for the issuance of permits and collection of fees therefor; repealing Ordinance No. _____ of the [JURISDICTION] and all other ordinances and parts of the ordinances in conflict therewith.

The [GOVERNING BODY] of the [JURISDICTION] does ordain as follows:

Section 1. That a certain document, three (3) copies of which are on file in the office of the [TITLE OF JURISDICTION'S KEEPER OF RECORDS] of [NAME OF JURISDICTION], being marked and designated as the California Building Code, 2010 edition, including Appendix Chapters [FILL IN THE APPENDIX CHAPTERS BEING ADOPTED] (see California Building Code Section 101.2.1, 2010 edition), as published by the International Code Council, be and is hereby adopted as the Building Code of the [JURISDICTION], in the State of California for regulating and governing the conditions and maintenance of all property, buildings and structures; by providing the standards for supplied utilities and facilities and other physical things and conditions essential to ensure that structures are safe, sanitary and fit for occupation and use; and the condemnation of buildings and structures unfit for human occupancy and use and the demolition of such structures as herein provided; providing for the issuance of permits and collection of fees therefor; and each and all of the regulations, provisions, penalties, conditions and terms of said Building Code on file in the office of the [JURISDICTION] are hereby referred to, adopted, and made a part hereof, as if fully set out in this ordinance, with the additions, insertions, deletions and changes, if any, prescribed in Section 2 of this ordinance.

Section 2. The following sections are hereby revised:

Section 101.1. Insert: [NAME OF JURISDICTION]
Section 1612.3. Insert: [NAME OF JURISDICTION]
Section 1612.3. Insert: [DATE OF ISSUANCE]
Section 3412.2. Insert: [DATE IN ONE LOCATION]

Section 3. That Ordinance No. _____ of [JURISDICTION] entitled [FILL IN HERE THE COMPLETE TITLE OF THE ORDINANCE OR ORDINANCES IN EFFECT AT THE PRESENT TIME SO THAT THEY WILL BE REPEALED BY DEFINITE MENTION] and all other ordinances or parts of ordinances in conflict herewith are hereby repealed.

Section 4. That if any section, subsection, sentence, clause or phrase of this ordinance is, for any reason, held to be unconstitutional, such decision shall not affect the validity of the remaining portions of this ordinance. The [GOVERNING BODY] hereby declares that it would have passed this ordinance, and each section, subsection, clause or phrase thereof, irrespective of the fact that any one or more sections, subsections, sentences, clauses and phrases be declared unconstitutional.

Section 5. That nothing in this ordinance or in the Building Code hereby adopted shall be construed to affect any suit or proceeding impending in any court, or any rights acquired, or liability incurred, or any cause or causes of action acquired or existing, under any act or ordinance hereby repealed as cited in Section 3 of this ordinance; nor shall any just or legal right or remedy of any character be lost, impaired or affected by this ordinance.

Section 6. That the [JURISDICTION'S KEEPER OF RECORDS] is hereby ordered and directed to cause this ordinance to be published. (An additional provision may be required to direct the number of times the ordinance is to be published and to specify that it is to be in a newspaper in general circulation. Posting may also be required.)

Section 7. That this ordinance and the rules, regulations, provisions, requirements, orders and matters established and adopted hereby shall take effect and be in full force and effect [TIME PERIOD] from and after the date of its final passage and adoption.

2010 CALIFORNIA BUILDING CODE xix
TABLE OF CONTENTS

VOLUME 1

CHAPTER 1 SCOPE AND ADMINISTRATION 3

DIVISION I CALIFORNIA ADMINISTRATION 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Building Standards Commission</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Corrections Standards Authority</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Department of Consumer Affairs</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Reserved</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Department of Food and Agriculture</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>California Department of Public Health</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Department of Housing and Community Development</td>
<td>7</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Authority and Abbreviations</td>
<td>7</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Local Enforcing Agency</td>
<td>8</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Permits, Fees, Applications and Inspections</td>
<td>9</td>
</tr>
<tr>
<td>1.8.5</td>
<td>Right-of-Entry for Enforcement</td>
<td>10</td>
</tr>
<tr>
<td>1.8.6</td>
<td>Local Modification by Ordinance or Regulation</td>
<td>10</td>
</tr>
<tr>
<td>1.8.7</td>
<td>Alternate Materials, Designs, Tests and Methods of Construction</td>
<td>10</td>
</tr>
<tr>
<td>1.8.8</td>
<td>Appeals Board</td>
<td>11</td>
</tr>
<tr>
<td>1.8.9</td>
<td>Unsafe Buildings or Structures</td>
<td>12</td>
</tr>
<tr>
<td>1.8.10</td>
<td>Other Building Regulations</td>
<td>12</td>
</tr>
<tr>
<td>1.9</td>
<td>Division of the State Architect</td>
<td>12</td>
</tr>
<tr>
<td>1.10</td>
<td>Office of Statewide Health Planning and Development</td>
<td>15</td>
</tr>
<tr>
<td>1.11</td>
<td>Office of the State Fire Marshal</td>
<td>16</td>
</tr>
<tr>
<td>1.12</td>
<td>State Librarian</td>
<td>20</td>
</tr>
<tr>
<td>1.13</td>
<td>Reserved</td>
<td>20</td>
</tr>
<tr>
<td>1.14</td>
<td>California State Lands Commission</td>
<td>20</td>
</tr>
</tbody>
</table>

DIVISION II SCOPE AND ADMINISTRATION 21

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>General</td>
<td>21</td>
</tr>
<tr>
<td>102</td>
<td>Applicability</td>
<td>21</td>
</tr>
<tr>
<td>103</td>
<td>Department of Building Safety</td>
<td>22</td>
</tr>
<tr>
<td>104</td>
<td>Duties and Powers of Building Officials</td>
<td>22</td>
</tr>
<tr>
<td>105</td>
<td>Permits</td>
<td>23</td>
</tr>
<tr>
<td>106</td>
<td>Floor and Roof Design Loads</td>
<td>25</td>
</tr>
<tr>
<td>107</td>
<td>Submittal Documents</td>
<td>25</td>
</tr>
<tr>
<td>108</td>
<td>Temporary Structures and Uses</td>
<td>27</td>
</tr>
<tr>
<td>109</td>
<td>Fees</td>
<td>27</td>
</tr>
<tr>
<td>110</td>
<td>Inspections</td>
<td>27</td>
</tr>
<tr>
<td>111</td>
<td>Certificate of Occupancy</td>
<td>28</td>
</tr>
<tr>
<td>112</td>
<td>Service Utilities</td>
<td>29</td>
</tr>
<tr>
<td>113</td>
<td>Board of Appeals</td>
<td>29</td>
</tr>
<tr>
<td>114</td>
<td>Violations</td>
<td>29</td>
</tr>
<tr>
<td>115</td>
<td>Stop Work Order</td>
<td>29</td>
</tr>
<tr>
<td>116</td>
<td>Unsafe Structures and Equipment</td>
<td>29</td>
</tr>
</tbody>
</table>

CHAPTER 2 DEFINITIONS 39

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>General</td>
<td>39</td>
</tr>
<tr>
<td>202</td>
<td>Definitions</td>
<td>39</td>
</tr>
</tbody>
</table>

CHAPTER 3 USE AND OCCUPANCY CLASSIFICATION 59

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>General</td>
<td>59</td>
</tr>
<tr>
<td>302</td>
<td>Classification</td>
<td>59</td>
</tr>
<tr>
<td>303</td>
<td>Assembly Group A</td>
<td>59</td>
</tr>
<tr>
<td>304</td>
<td>Business Group B</td>
<td>60</td>
</tr>
<tr>
<td>305</td>
<td>Educational Group E</td>
<td>60</td>
</tr>
<tr>
<td>306</td>
<td>Factory Group F</td>
<td>61</td>
</tr>
<tr>
<td>307</td>
<td>High-Hazard Group H</td>
<td>61</td>
</tr>
<tr>
<td>308</td>
<td>Institutional Group I</td>
<td>70</td>
</tr>
<tr>
<td>309</td>
<td>Mercantile Group M</td>
<td>71</td>
</tr>
<tr>
<td>310</td>
<td>Residential Group R</td>
<td>71</td>
</tr>
<tr>
<td>311</td>
<td>Storage Group S</td>
<td>74</td>
</tr>
<tr>
<td>312</td>
<td>Utility and Miscellaneous Group U</td>
<td>75</td>
</tr>
<tr>
<td>313</td>
<td>Laboratories Group L [SFM]</td>
<td>75</td>
</tr>
</tbody>
</table>

CHAPTER 4 SPECIAL DETAILED REQUIREMENTS BASED ON USE AND OCCUPANCY 81

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>Scope</td>
<td>81</td>
</tr>
<tr>
<td>402</td>
<td>Covered Mall and Open Mall Buildings</td>
<td>81</td>
</tr>
<tr>
<td>403</td>
<td>High-Rise Buildings and Group I-2 Occupancies Having Occupied Floors Located more than 75 Feet Above the Lowest Level of Fire Department Vehicle Access</td>
<td>84</td>
</tr>
<tr>
<td>404</td>
<td>Atriums</td>
<td>88</td>
</tr>
<tr>
<td>405</td>
<td>Underground Buildings</td>
<td>88</td>
</tr>
<tr>
<td>406</td>
<td>Motor-Vehicle-Related Occupancies</td>
<td>89</td>
</tr>
<tr>
<td>407</td>
<td>Group I-2</td>
<td>93</td>
</tr>
</tbody>
</table>

2010 CALIFORNIA BUILDING CODE xxii
TABLE OF CONTENTS

408 Group I-3 ... 96
409 Motion Picture Projection Rooms 99
410 Stages and Platforms 100
411 Special Amusement Buildings 102
412 Aircraft-Related Occupancies 102
413 Combustible Storage 105
414 Hazardous Materials 105
415 Groups H-1, H-2, H-3, H-4 and H-5 109
416 Application of Flammable Finishes 122
417 Drying Rooms ... 122
418 Organic Coatings 122
419 Live/Work Units 123
420 Groups R-1, R-2, R-2.1, R-3, R-3.1 and R-4 123
421 Hydrogen Cutoff Rooms 124
422 Ambulatory Health Care Facilities 125
423 Storm Shelters .. 125
424 Special Provisions for Residential Hotels [HCD I & HCD I-AC] .. 125
425 Special Provisions for Licensed 24-Hour Care Facilities in a Group R-2.1, R-3.1, R-4 [SFM] 125
426 Group I-4 [SFM] .. 128
427 Reserved .. 129
428 Reserved .. 129
429 Reserved .. 129
430 Horse Racing Stables [SFM] 129
431 Pet Kennels [SFM] 129
432 Combustion Engines and Gas Turbines [SFM] 129
433 Fixed Guideway Transit Systems [SFM] 130
434 Explosives [SFM] 133
435 Reserved .. 136
436 Winery Caves [SFM] 136
437 Reserved .. 137
438 Reserved .. 137
439 Public Libraries [SL AND SFM] 137
440 Group C [SFM] .. 138
441 Reserved .. 140
442 Group E [SFM] .. 140
443 Group L [SFM] .. 141
444 Reserved .. 144
445 Large Family Day-Care Homes [SFM] 144

CHAPTER 5 GENERAL BUILDING
HEIGHTS AND AREAS 149

Section
501 General ... 149
502 Definitions .. 149
503 General Building Height and Area Limitations ... 149
504 Building Height 149
505 Mezzanines ... 151
506 Building Area Modifications 152
507 Unlimited Area Buildings 153
508 Mixed Use and Occupancy 154
509 Special Provisions 156

CHAPTER 6 TYPES OF CONSTRUCTION 163

Section
601 General ... 163
602 Construction Classification 163
603 Combustible Material in Type I and II Construction 165

CHAPTER 7 FIRE AND SMOKE
PROTECTION FEATURES 169

Section
701 General ... 169
702 Definitions .. 169
703 Fire-Resistance Ratings and Fire Tests 170
704 Fire-Resistance Rating of Structural Members 171
705 Exterior Walls 173
706 Fire Walls .. 177
707 Fire Barriers .. 179
708 Shaft Enclosures 180
709 Fire Partitions 184
710 Smoke Barriers 185
711 Smoke Partitions 185
712 Horizontal Assemblies 186
713 Penetrations 187
714 Fire-Resistant Joint Systems 189
715 Opening Protectives 190
716 Ducts and Air Transfer Openings 194
717 Concealed Spaces 199
718 Fire-Resistance Requirements for Plaster 201
719 Thermal- and Sound-Insulating Materials 201
720 Prescriptive Fire Resistance 202
721 Calculated Fire Resistance 224
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1131B</td>
<td>Passenger Drop-off and Loading Zones</td>
<td>506</td>
</tr>
<tr>
<td>1132B</td>
<td>Outdoor Occupancies</td>
<td>506</td>
</tr>
<tr>
<td>1133B</td>
<td>General Accessibility for Entrances, Exits and Paths of Travel</td>
<td>508</td>
</tr>
<tr>
<td>1134B</td>
<td>Accessibility for Existing Buildings</td>
<td>515</td>
</tr>
<tr>
<td>1135B</td>
<td>Historic Preservation—Special Standards of Accessibility for Buildings with Historical Significance</td>
<td>516</td>
</tr>
<tr>
<td>CHAPTER 11C</td>
<td>STANDARDS FOR CARD READERS AT GASOLINE FUEL-DISPENSING FACILITIES</td>
<td>587</td>
</tr>
<tr>
<td>1101C</td>
<td>Card-Reader Devices at Fuel-Dispensing Equipment</td>
<td>587</td>
</tr>
<tr>
<td>1102C</td>
<td>Application</td>
<td>587</td>
</tr>
<tr>
<td>1103C</td>
<td>Number of Accessible Card-Reading Devices Required</td>
<td>587</td>
</tr>
<tr>
<td>1104C</td>
<td>Required Features</td>
<td>587</td>
</tr>
<tr>
<td>CHAPTER 12</td>
<td>INTERIOR ENVIRONMENT</td>
<td>593</td>
</tr>
<tr>
<td>1201</td>
<td>General</td>
<td>593</td>
</tr>
<tr>
<td>1202</td>
<td>Definitions</td>
<td>593</td>
</tr>
<tr>
<td>1203</td>
<td>Ventilation</td>
<td>593</td>
</tr>
<tr>
<td>1204</td>
<td>Temperature Control</td>
<td>594</td>
</tr>
<tr>
<td>1205</td>
<td>Lighting</td>
<td>595</td>
</tr>
<tr>
<td>1206</td>
<td>Yards or Courts</td>
<td>595</td>
</tr>
<tr>
<td>1207</td>
<td>Sound Transmission</td>
<td>596</td>
</tr>
<tr>
<td>1208</td>
<td>Interior Space Dimensions</td>
<td>598</td>
</tr>
<tr>
<td>1209</td>
<td>Access to Unoccupied Spaces</td>
<td>599</td>
</tr>
<tr>
<td>1210</td>
<td>Surrounding Materials</td>
<td>599</td>
</tr>
<tr>
<td>1211</td>
<td>Garage Door Springs</td>
<td>599</td>
</tr>
<tr>
<td>1212</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1213</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1214</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1215</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1216</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1217</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1218</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1219</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1220</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1221</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1222</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1223</td>
<td>Reserved</td>
<td>600</td>
</tr>
<tr>
<td>1224</td>
<td>Hospitals</td>
<td>600</td>
</tr>
<tr>
<td>1225</td>
<td>Skilled Nursing and Intermediate-Care Facilities</td>
<td>628</td>
</tr>
<tr>
<td>1226</td>
<td>Clinics</td>
<td>633</td>
</tr>
<tr>
<td>1227</td>
<td>Correctional Treatment Centers</td>
<td>636</td>
</tr>
<tr>
<td>1228</td>
<td>Reserved</td>
<td>641</td>
</tr>
<tr>
<td>1229</td>
<td>Reserved</td>
<td>641</td>
</tr>
<tr>
<td>1230</td>
<td>Minimum Standards for Juvenile Facilities</td>
<td>641</td>
</tr>
<tr>
<td>1231</td>
<td>Local Detention</td>
<td>645</td>
</tr>
<tr>
<td>1232</td>
<td>Reserved</td>
<td>651</td>
</tr>
<tr>
<td>1233</td>
<td>Reserved</td>
<td>651</td>
</tr>
<tr>
<td>1234</td>
<td>Reserved</td>
<td>651</td>
</tr>
<tr>
<td>1235</td>
<td>Sanitary Control of Shellfish (Plants and Operations)</td>
<td>651</td>
</tr>
<tr>
<td>1236</td>
<td>Laboratory Animal Quarters</td>
<td>651</td>
</tr>
<tr>
<td>1237</td>
<td>Wild Animal Quarantine Facilities</td>
<td>652</td>
</tr>
<tr>
<td>1238</td>
<td>Reserved</td>
<td>652</td>
</tr>
<tr>
<td>1239</td>
<td>Reserved</td>
<td>652</td>
</tr>
<tr>
<td>1240</td>
<td>Meat and Poultry Processing Plants</td>
<td>652</td>
</tr>
<tr>
<td>1241</td>
<td>Collection Centers and Facilities</td>
<td>654</td>
</tr>
<tr>
<td>1242</td>
<td>Renderers</td>
<td>654</td>
</tr>
<tr>
<td>1243</td>
<td>Horsemeat and Pet Food Establishments</td>
<td>654</td>
</tr>
<tr>
<td>1244</td>
<td>Reserved</td>
<td>655</td>
</tr>
<tr>
<td>1245</td>
<td>Reserved</td>
<td>655</td>
</tr>
<tr>
<td>1246</td>
<td>Reserved</td>
<td>655</td>
</tr>
<tr>
<td>1247</td>
<td>Reserved</td>
<td>655</td>
</tr>
<tr>
<td>1248</td>
<td>Reserved</td>
<td>655</td>
</tr>
<tr>
<td>1249</td>
<td>Reserved</td>
<td>655</td>
</tr>
<tr>
<td>1250</td>
<td>Pharmacies</td>
<td>655</td>
</tr>
<tr>
<td>1251</td>
<td>Veterinary Facilities</td>
<td>655</td>
</tr>
<tr>
<td>1252</td>
<td>Barber Colleges and Shops</td>
<td>656</td>
</tr>
<tr>
<td>1253</td>
<td>Schools of Cosmetology, Cosmetological Establishments and Satellite Classrooms</td>
<td>656</td>
</tr>
<tr>
<td>1254</td>
<td>Acupuncture Offices</td>
<td>657</td>
</tr>
<tr>
<td>CHAPTER 13</td>
<td>ENERGY EFFICIENCY</td>
<td>659</td>
</tr>
<tr>
<td>CHAPTER 14</td>
<td>EXTERIOR WALLS</td>
<td>663</td>
</tr>
<tr>
<td>1401</td>
<td>General</td>
<td>663</td>
</tr>
<tr>
<td>1402</td>
<td>Definitions</td>
<td>633</td>
</tr>
<tr>
<td>1403</td>
<td>Performance Requirements</td>
<td>663</td>
</tr>
<tr>
<td>1404</td>
<td>Materials</td>
<td>664</td>
</tr>
<tr>
<td>1405</td>
<td>Installation of Wall Coverings</td>
<td>665</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1406</td>
<td>Combustible Materials on the Exterior Side of Exterior Walls</td>
<td>669</td>
</tr>
<tr>
<td>1407</td>
<td>Metal Composite Materials (MCM)</td>
<td>670</td>
</tr>
<tr>
<td>1408</td>
<td>Exterior Insulation and Finish Systems (EIFS)</td>
<td>671</td>
</tr>
<tr>
<td>1409</td>
<td>[DSA-SS and DSA-SS/CC, OSHPD 1, 2 & 4] Additional Requirements for Anchored and Adhered Veneer</td>
<td>671</td>
</tr>
<tr>
<td>CHAPTER 15 ROOF ASSEMBLIES AND ROOFTOP STRUCTURES</td>
<td></td>
<td>675</td>
</tr>
<tr>
<td>1501</td>
<td>General</td>
<td>675</td>
</tr>
<tr>
<td>1502</td>
<td>Definitions</td>
<td>675</td>
</tr>
<tr>
<td>1503</td>
<td>Weather Protection</td>
<td>675</td>
</tr>
<tr>
<td>1504</td>
<td>Performance Requirements</td>
<td>676</td>
</tr>
<tr>
<td>1505</td>
<td>Fire Classification</td>
<td>677</td>
</tr>
<tr>
<td>1506</td>
<td>Materials</td>
<td>678</td>
</tr>
<tr>
<td>1507</td>
<td>Requirements for Roof Coverings</td>
<td>678</td>
</tr>
<tr>
<td>1508</td>
<td>Roof Insulation</td>
<td>687</td>
</tr>
<tr>
<td>1509</td>
<td>Rooftop Structures</td>
<td>688</td>
</tr>
<tr>
<td>1510</td>
<td>Reroofing</td>
<td>689</td>
</tr>
<tr>
<td>1511</td>
<td>[DSA-SS and OSHPD 1, 2 & 4] Seismic Anchorage of Slate Shingle, Clay and Concrete Tile Roof Coverings</td>
<td>690</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td>691</td>
</tr>
<tr>
<td>HISTORY NOTE</td>
<td></td>
<td>731</td>
</tr>
<tr>
<td>VOLUME 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER 16 STRUCTURAL DESIGN</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1601</td>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>1602</td>
<td>Definitions and Notations</td>
<td>5</td>
</tr>
<tr>
<td>1603</td>
<td>Construction Documents</td>
<td>6</td>
</tr>
<tr>
<td>1604</td>
<td>General Design Requirements</td>
<td>7</td>
</tr>
<tr>
<td>1605</td>
<td>Load Combinations</td>
<td>10</td>
</tr>
<tr>
<td>1606</td>
<td>Dead Loads</td>
<td>11</td>
</tr>
<tr>
<td>1607</td>
<td>Live Loads</td>
<td>11</td>
</tr>
<tr>
<td>1608</td>
<td>Snow Loads</td>
<td>17</td>
</tr>
<tr>
<td>1609</td>
<td>Wind Loads</td>
<td>20</td>
</tr>
<tr>
<td>1610</td>
<td>Soil Lateral Loads</td>
<td>33</td>
</tr>
<tr>
<td>1611</td>
<td>Rain Loads</td>
<td>34</td>
</tr>
<tr>
<td>1612</td>
<td>Flood Loads</td>
<td>40</td>
</tr>
<tr>
<td>1613</td>
<td>Earthquake Loads</td>
<td>42</td>
</tr>
<tr>
<td>1614</td>
<td>Structural Integrity</td>
<td>48</td>
</tr>
<tr>
<td>1615</td>
<td>Additional Requirements [DSA-SS/CC]</td>
<td>69</td>
</tr>
<tr>
<td>CHAPTER 16A STRUCTURAL DESIGN</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>1601A</td>
<td>General</td>
<td>79</td>
</tr>
<tr>
<td>1602A</td>
<td>Definitions and Notations</td>
<td>79</td>
</tr>
<tr>
<td>1603A</td>
<td>Construction Documents</td>
<td>81</td>
</tr>
<tr>
<td>1604A</td>
<td>General Design Requirements</td>
<td>82</td>
</tr>
<tr>
<td>1605A</td>
<td>Load Combinations</td>
<td>84</td>
</tr>
<tr>
<td>1606A</td>
<td>Dead Loads</td>
<td>86</td>
</tr>
<tr>
<td>1607A</td>
<td>Live Loads</td>
<td>86</td>
</tr>
<tr>
<td>1608A</td>
<td>Snow Loads</td>
<td>91</td>
</tr>
<tr>
<td>1609A</td>
<td>Wind Loads</td>
<td>94</td>
</tr>
<tr>
<td>1610A</td>
<td>Soil Lateral Loads</td>
<td>104</td>
</tr>
<tr>
<td>1611A</td>
<td>Rain Loads</td>
<td>104</td>
</tr>
<tr>
<td>1612A</td>
<td>Flood Loads</td>
<td>110</td>
</tr>
<tr>
<td>1613A</td>
<td>Earthquake Loads</td>
<td>112</td>
</tr>
<tr>
<td>1614A</td>
<td>Structural Integrity</td>
<td>117</td>
</tr>
<tr>
<td>1615A</td>
<td>Modifications to ASCE 7</td>
<td>119</td>
</tr>
<tr>
<td>CHAPTER 17 STRUCTURAL TESTS AND SPECIAL INSPECTIONS</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>1701</td>
<td>General</td>
<td>129</td>
</tr>
<tr>
<td>1702</td>
<td>Definitions</td>
<td>129</td>
</tr>
<tr>
<td>1703</td>
<td>Approvals</td>
<td>129</td>
</tr>
<tr>
<td>1704</td>
<td>Special Inspections</td>
<td>130</td>
</tr>
<tr>
<td>1705</td>
<td>Statement of Special Inspections</td>
<td>141</td>
</tr>
<tr>
<td>1706</td>
<td>Special Inspections for Seismic Resistance</td>
<td>143</td>
</tr>
<tr>
<td>1707</td>
<td>Structural Testing for Seismic Resistance</td>
<td>144</td>
</tr>
<tr>
<td>1708</td>
<td>Structural Testing for Seismic Resistance</td>
<td>145</td>
</tr>
<tr>
<td>1709</td>
<td>Contractor Responsibility</td>
<td>145</td>
</tr>
<tr>
<td>1710</td>
<td>Structural Observations</td>
<td>145</td>
</tr>
<tr>
<td>1711</td>
<td>Design Strengths of Materials</td>
<td>145</td>
</tr>
<tr>
<td>1712</td>
<td>Alternative Test Procedure</td>
<td>145</td>
</tr>
<tr>
<td>1713</td>
<td>Test Safe Load</td>
<td>146</td>
</tr>
<tr>
<td>1714</td>
<td>In-Situ Load Tests</td>
<td>146</td>
</tr>
<tr>
<td>1715</td>
<td>Preconstruction Load Tests</td>
<td>146</td>
</tr>
<tr>
<td>1716</td>
<td>Material and Test Standards</td>
<td>147</td>
</tr>
<tr>
<td>CHAPTER 17A STRUCTURAL TESTS AND SPECIAL INSPECTIONS</td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>1701A</td>
<td>General</td>
<td>151</td>
</tr>
<tr>
<td>1702A</td>
<td>Definitions</td>
<td>151</td>
</tr>
<tr>
<td>1703A</td>
<td>Approvals</td>
<td>152</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1704A</td>
<td>Special Inspections</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>1705A</td>
<td>Statement of Special Inspections</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>1706A</td>
<td>Special Inspections for Wind Requirements</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>1707A</td>
<td>Special Inspections for Seismic Resistance</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>1708A</td>
<td>Structural Testing for Seismic Resistance</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>1709A</td>
<td>Contractor Responsibility</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>1710A</td>
<td>Structural Observations</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>1711A</td>
<td>Design Strengths of Materials</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>1712A</td>
<td>Alternative Test Procedure</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1713A</td>
<td>Test Safe Load</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1714A</td>
<td>In-Situ Load Tests</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1715A</td>
<td>Construction Joint Tests</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1716A</td>
<td>Material and Test Standards</td>
<td></td>
<td>171</td>
</tr>
</tbody>
</table>

CHAPTER 18 SOILS AND FOUNDATIONS | 175 |
Section			
1801	General		175
1802	Definitions		175
1803	Geotechnical Investigations		175
1804	Excavation, Grading and Fill		178
1805	Dampproofing and Waterproofing		179
1806	Presumptive Load-Bearing Values of Soils		180
1807	Foundation Walls, Retaining Walls and Embedded Posts and Poles		181
1808	Foundations		187
1809	Shallow Foundations		189
1810	Deep Foundations		192

CHAPTER 18A SOILS AND FOUNDATIONS | 207 |
Section			
1801A	General		207
1802A	Definitions		207
1803A	Geotechnical Investigations		208
1804A	Excavation, Grading and Fill		211
1805A	Dampproofing and Waterproofing		211
1806A	Presumptive Load-Bearing Values of Soils		213
1807A	Foundation Walls, Retaining Walls and Embedded Posts and Poles		213
1808A	Foundations		215
1809A	Shallow Foundations		218
1810A	Deep Foundations		219
1811A	Prestressed Rock and Soil Foundation Anchors		231

CHAPTER 19 CONCRETE | 235 |
Section			
1901	General		235
1902	Definitions		235
1903	Specifications for Tests and Materials		235
1904	Durability Requirements		236
1905	Concrete Quality, Mixing and Construction Joints		236
1906	Formwork, Embedded Pipes and Construction Joints		238
1907	Details of Reinforcement		238
1908	Modifications to ACI 318		239
1909	Structural Plain Concrete		241
1910	Minimum Slab Provisions		242
1911	Anchorage to Concrete—Allowable Stress Design		242
1912	Anchorage to Concrete—Strength Design		243
1913	Shotcrete		244
1914	Reinforced Gypsum Concrete		245
1915	Concrete-Filled Pipe Columns		245
1916	Additional Requirements [DSA-SS/CC]		246

CHAPTER 19A CONCRETE | 253 |
Section			
1902A	General		253
1902A	Definitions		253
1903A	Specifications for Tests and Materials		255
1904A	Durability Requirements		255
1905A	Concrete Quality, Mixing and Construction Joints		262
1906A	Formwork, Embedded Pipes and Construction Joints		263
1907A	Details of Reinforcement		257
1908A	Modifications to ACI 318		258
1909A	Structural Plain Concrete Not Permitted by OSHPD and DSA-SS		262
1910A	Minimum Slab Provisions		262
1911A	Anchorage to Concrete—Allowable Stress Design		263
1912A	Anchorage to Concrete—Strength Design		263
1913A	Shotcrete		264
1914A	Reinforced Gypsum Concrete		265
1915A	Concrete-Filled Pipe Columns		265
1916A	Concrete, Reinforcement and Anchor Testing		266
1917A	Existing Concrete Structures		267
TABLE OF CONTENTS

CHAPTER 20 ALUMINUM
- Section 2001 General ... 271
- Section 2002 Materials ... 271
- Section 2003 Inspection ... 271

CHAPTER 21 MASONRY
- Section 2101 General ... 275
- Section 2102 Definitions and Notations 275
- Section 2103 Masonry Construction Materials 278
- Section 2104 Construction .. 280
- Section 2105 Quality Assurance 280
- Section 2106 Seismic Design 281
- Section 2107 Strength Design of Masonry 282
- Section 2108 Empirical Design of Masonry 282
- Section 2109 Glass Unit Masonry 284
- Section 2110 Masonry Fireplaces 284
- Section 2111 Masonry Heaters 287
- Section 2112 Masonry Chimneys 287
- Section 2113 Additional Requirements [DSA-SS/CC] 291

CHAPTER 21A MASONRY
- Section 2101A General .. 297
- Section 2102A Definitions .. 298
- Section 2103A Masonry Construction Materials 301
- Section 2104A Construction 302
- Section 2105A Quality Assurance 305
- Section 2106A Seismic Design 306
- Section 2107A Allowable Stress Design 307
- Section 2108A Strength Design of Masonry 308
- Section 2109A Empirical Design of Masonry Not Permitted by OSHPD and DSA-SS 309
- Section 2110A Glass Unit Masonry 309
- Section 2111A Masonry Fireplaces 309
- Section 2112A Masonry Heaters 311
- Section 2113A Masonry Chimneys 312
- Section 2114A Nonbearing Walls 316
- Section 2115A Masonry Screen Walls 316

CHAPTER 22 STEEL
- Section 2201 General ... 319
- Section 2202 Definitions ... 319
- Section 2203 Identification and Protection of Steel for Structural Purposes 319
- Section 2204 Connections .. 319
- Section 2205 Structural Steel 320
- Section 2206 Steel Joists ... 320
- Section 2207 Steel Cable Structures 321
- Section 2208 Steel Storage Racks 321
- Section 2209 Cold-Formed Steel 321
- Section 2210 Cold-Formed Steel Light-Frame Construction 321
- Section 2211 Additional Requirements [DSA-SS/CC] 291

CHAPTER 22A STEEL
- Section 2201A General .. 327
- Section 2202A Definitions 327
- Section 2203A Identification and Protection of Steel for Structural Purposes 327
- Section 2204A Connections 327
- Section 2205A Structural Steel 328
- Section 2206A Steel Joists 330
- Section 2207A Steel Cable Structures 331
- Section 2208A Steel Storage Racks 331
- Section 2209A Cold-Formed Steel 331
- Section 2210A Cold-Formed Steel Light-Frame Construction 331
- Section 2211A Light Modular Steel Moment Frames for Public Elementary and Secondary Schools, and Community Colleges 332
- Section 2212A Testing .. 333

CHAPTER 23 WOOD
- Section 2301 General ... 337
- Section 2302 Definitions ... 337
- Section 2303 Minimum Standards and Quality 339
- Section 2304 General Construction Requirements 343
- Section 2305 General Design Requirements for Lateral-Force-Resisting Systems 354
- Section 2306 Allowable Stress Design 357
Table of Contents

Chapter 31A Reserved

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101B</td>
<td>Scope</td>
<td>477</td>
</tr>
<tr>
<td>3102B</td>
<td>Definitions</td>
<td>477</td>
</tr>
<tr>
<td>3103B</td>
<td>Special Pool Classifications</td>
<td>478</td>
</tr>
<tr>
<td>3104B</td>
<td>Accessibility to the Physically Handicapped Person</td>
<td>478</td>
</tr>
<tr>
<td>3105B</td>
<td>Alternate Equipment, Materials and Methods of Construction</td>
<td>478</td>
</tr>
<tr>
<td>3106B</td>
<td>Pool Construction</td>
<td>478</td>
</tr>
<tr>
<td>3107B</td>
<td>Additional Requirements for a Temporary Training Pool</td>
<td>479</td>
</tr>
<tr>
<td>3108B</td>
<td>Pool Geometry</td>
<td>479</td>
</tr>
<tr>
<td>3109B</td>
<td>Permanent Markings</td>
<td>479</td>
</tr>
<tr>
<td>3110B</td>
<td>Steps, Recessed Steps, Ladders and Recessed Stairs (Treads)</td>
<td>482</td>
</tr>
<tr>
<td>3111B</td>
<td>Handholds</td>
<td>483</td>
</tr>
<tr>
<td>3112B</td>
<td>Diving Boards</td>
<td>483</td>
</tr>
<tr>
<td>3113B</td>
<td>Pool Decks</td>
<td>483</td>
</tr>
<tr>
<td>3114B</td>
<td>Pool Lighting</td>
<td>483</td>
</tr>
<tr>
<td>3115B</td>
<td>Bathhouse Dressing, Shower and Toilet Facilities</td>
<td>484</td>
</tr>
<tr>
<td>3116B</td>
<td>Drinking Fountains</td>
<td>484</td>
</tr>
<tr>
<td>3117B</td>
<td>Hose Bibbs</td>
<td>484</td>
</tr>
<tr>
<td>3118B</td>
<td>Enclosure of Pool Area</td>
<td>484</td>
</tr>
<tr>
<td>3119B</td>
<td>Signs</td>
<td>485</td>
</tr>
<tr>
<td>3120B</td>
<td>Indoor Pool Ventilation</td>
<td>487</td>
</tr>
<tr>
<td>3121B</td>
<td>Foundations For Pool Equipment</td>
<td>487</td>
</tr>
<tr>
<td>3122B</td>
<td>Gas Chlorination Equipment Room</td>
<td>487</td>
</tr>
<tr>
<td>3123B</td>
<td>General Requirements</td>
<td>487</td>
</tr>
<tr>
<td>3124B</td>
<td>Turnover Time</td>
<td>487</td>
</tr>
<tr>
<td>3125B</td>
<td>Recirculation Piping System and Components</td>
<td>487</td>
</tr>
<tr>
<td>3126B</td>
<td>Recirculation Pump Capacity</td>
<td>488</td>
</tr>
<tr>
<td>3127B</td>
<td>Water Supply Inlets</td>
<td>488</td>
</tr>
<tr>
<td>3128B</td>
<td>Filters (All Types)</td>
<td>488</td>
</tr>
<tr>
<td>3129B</td>
<td>Rapid Sand Pressure Filters</td>
<td>488</td>
</tr>
<tr>
<td>3130B</td>
<td>Diatomaceous Earth Filters</td>
<td>489</td>
</tr>
<tr>
<td>3131B</td>
<td>High-Rate Sand Filters</td>
<td>489</td>
</tr>
<tr>
<td>3132B</td>
<td>Chemical Feeders</td>
<td>489</td>
</tr>
<tr>
<td>3133B</td>
<td>Disinfectant Feeders</td>
<td>489</td>
</tr>
<tr>
<td>3134B</td>
<td>Pool Fittings</td>
<td>490</td>
</tr>
<tr>
<td>3135B</td>
<td>Spa Pool Special Requirements</td>
<td>491</td>
</tr>
<tr>
<td>3136B</td>
<td>Cleaning Systems</td>
<td>491</td>
</tr>
<tr>
<td>3137B</td>
<td>Waste Water Disposal</td>
<td>491</td>
</tr>
<tr>
<td>3138B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3139B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3140B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3141B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3142B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3143B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3144B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3145B</td>
<td>Reserved</td>
<td>491</td>
</tr>
<tr>
<td>3146B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3147B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3148B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3149B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3150B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3151B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3152B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3153B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3154B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3155B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3156B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3157B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3158B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3159B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3160B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3161B</td>
<td>Reserved</td>
<td>492</td>
</tr>
<tr>
<td>3162B</td>
<td>Anti-Entrapment Devices and Systems</td>
<td>493</td>
</tr>
</tbody>
</table>

Chapter 31B Public Swimming Pools

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101B</td>
<td>Scope</td>
<td>477</td>
</tr>
<tr>
<td>3102B</td>
<td>Definitions</td>
<td>477</td>
</tr>
<tr>
<td>3103B</td>
<td>Special Pool Classifications</td>
<td>478</td>
</tr>
<tr>
<td>3104B</td>
<td>Accessibility to the Physically Handicapped Person</td>
<td>478</td>
</tr>
<tr>
<td>3105B</td>
<td>Alternate Equipment, Materials and Methods of Construction</td>
<td>478</td>
</tr>
<tr>
<td>3106B</td>
<td>Pool Construction</td>
<td>478</td>
</tr>
<tr>
<td>3107B</td>
<td>Additional Requirements for a Temporary Training Pool</td>
<td>479</td>
</tr>
<tr>
<td>3108B</td>
<td>Pool Geometry</td>
<td>479</td>
</tr>
<tr>
<td>3109B</td>
<td>Permanent Markings</td>
<td>479</td>
</tr>
</tbody>
</table>

Chapter 31C Radiation

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101C</td>
<td>Scope</td>
<td>499</td>
</tr>
<tr>
<td>3102C</td>
<td>Radiation Shielding Barriers</td>
<td>499</td>
</tr>
<tr>
<td>3103C</td>
<td>Medical Radiographic and Photofluorographic Installations</td>
<td>499</td>
</tr>
<tr>
<td>3104C</td>
<td>Medical Therapeutic X-Ray Installations</td>
<td>499</td>
</tr>
</tbody>
</table>

Chapter 31D Food Establishments

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101D</td>
<td>Scope</td>
<td>503</td>
</tr>
<tr>
<td>3102D</td>
<td>Definitions</td>
<td>503</td>
</tr>
<tr>
<td>3103D</td>
<td>Building and Structures</td>
<td>503</td>
</tr>
</tbody>
</table>

Chapter 31E Reserved

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101E</td>
<td>Introduction</td>
<td>505</td>
</tr>
</tbody>
</table>

Chapter 31F Marine Oil Terminals

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101F</td>
<td>Introduction</td>
<td>509</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

3102F Audit and Inspection 510
3103F Structural Loading Criteria 521
3104F Seismic Analysis and Structural Performance 536
3105F Mooring and Berthing Analysis and Design 543
3106F Geotechnical Hazards and Foundations 548
3107F Structural Analysis and Design of Components 552
3108F Fire Prevention, Detection and Suppression 566
3109F Piping and Pipelines 570
3110F Mechanical and Electrical Equipment 573
3111F Electrical Systems .. 576

CHAPTER 32 ENCROACHMENTS INTO THE PUBLIC RIGHT-OF-WAY 581
Section
3201 General .. 581
3202 Encroachments ... 581

CHAPTER 33 SAFEGUARDS DURING CONSTRUCTION 585
Section
3301 General .. 585
3302 Construction Safeguards 585
3303 Demolition .. 585
3304 Site Work .. 585
3305 Sanitary ... 585
3306 Protection of Pedestrians 586
3307 Protection of Adjoining Property 587
3308 Temporary Use of Streets, Alleys and Public Property 587
3309 Fire Extinguishers .. 587
3310 Means of Egress ... 588
3311 Standpipes ... 588
3312 Automatic Sprinkler System 588

CHAPTER 34 EXISTING STRUCTURES 591
Section
3401 General .. 591
3402 Definitions .. 592
3403 Additions .. 593
3404 Alterations .. 593
3405 Repairs ... 594
3406 Fire Escapes ... 596
3407 Glass Replacement .. 596
3408 Change of Occupancy ... 596
3409 Historic Buildings ... 597
3410 Moved Structures ... 597
3411 Accessibility for Existing Buildings 597
3412 Compliance Alternatives 599
3413 Existing Group R-1 and Group R-2 Occupancies [SFM] 608
3414 Existing High-Rise Buildings [SFM] 611
3415 Existing Group I Occupancies [SFM] 613
3416 Existing Group L Occupancies [SFM] 614
3417 Earthquake Evaluation and Design for Retrofit of Existing Buildings ... 614
3418 Definitions .. 617
3419 Seismic Criteria Selection for Existing Buildings 618
3420 Method A .. 621
3421 Method B .. 621
3422 Peer Review Requirements 622
3423 Additional Requirements for Public Schools and Community Colleges ... 623

CHAPTER 34A EXISTING STRUCTURES 627
Section
3401A General .. 627
3402A Definitions .. 627
3403A Additions .. 628
3404A Alterations .. 629
3405A Repairs .. 630
3406A Fire Escapes ... 631
3407A Glass Replacement ... 631
3408A Change of Occupancy .. 631
3409A Historic Buildings ... 632
3410A Moved Structures ... 632
3411A Additions, Alterations, Repairs and Seismic Retrofit to Existing Buildings or Structures Designed in Accordance with Pre-1973 Building Code ... 632
3412A Compliance Alternatives for Additions, Alterations, Repairs and Seismic Retrofit to Existing Structures ... 632
3413A Modifications to ASCE 41 634
3414A Peer Review Requirements 636
3415A Earthquake Monitoring Instruments for Existing Buildings ... 637
TABLE OF CONTENTS

CHAPTER 35 REFERENCED STANDARDS 641

APPENDIX A EMPLOYEE QUALIFICATIONS 671

Section

A101 Building Official Qualifications 671
A102 Referenced Standards 671

APPENDIX B BOARD OF APPEALS 675

Section

B101 General .. 675

APPENDIX C GROUP U—AGRICULTURAL BUILDINGS .. 679

Section

C101 General .. 679
C102 Allowable Height and Area 679
C103 Mixed Occupancies 679
C104 Exits .. 679

APPENDIX D FIRE DISTRICTS 683

Section

D101 General .. 683
D102 Building Restrictions 683
D103 Changes to Buildings 684
D104 Buildings Located Partially in the Fire District ... 684
D105 Exceptions to Restrictions in Fire District 684
D106 Referenced Standards 685

APPENDIX E RESERVED 689

APPENDIX F RODENTPROOFING 693

Section

F101 General .. 693

APPENDIX G FLOOD-RESISTANT CONSTRUCTION 697

Section

G101 Administration 697
G102 Applicability 697
G103 Powers and Duties 697
G104 Permits .. 698
G105 Variances .. 698
G201 Definitions 699
G301 Subdivisions 700
G401 Site Improvement 700
G501 Manufactured Homes 700
G601 Recreational Vehicles 700
G701 Tanks .. 701
G801 Other Building Work 701
G901 Temporary Structures and Temporary Storage 701
G1001 Utility and Miscellaneous Group U 701
G1101 Referenced Standards 702

APPENDIX H SIGNS 705

Section

H101 General .. 705
H102 Definitions 705
H103 Location .. 705
H104 Identification 705
H105 Design and Construction 706
H106 Electrical ... 706
H107 Combustible Materials 706
H108 Animated Devices 706
H109 Ground Signs 706
H110 Roof Signs .. 707
H111 Wall Signs .. 707
H112 Projecting Signs 707
H113 Marquee Signs 708
H114 Portable Signs 708
H115 Referenced Standards 708

APPENDIX I PATIO COVERS 711

Section

I101 General .. 711
I102 Definitions 711
I103 Exterior Openings 711
I104 Structural Provisions 711

APPENDIX J GRADING 715

Section

J101 General .. 715
J102 Definitions 715
J103 Permits Required 715
J104 Permit Application and Submittals 715
J105 Inspections 716
J106 Excavations 716
J107 Fills .. 719
J108 Setbacks .. 721
J109 Drainage and Terracing 721

2010 CALIFORNIA BUILDING CODE
APPENDIX K GROUP R-3 AND GROUP R-3.1
OCCUPANCIES PROTECTED
BY THE FACILITIES OF THE
CENTRAL VALLEY FLOOD
PROTECTION PLAN 723

Section
K101 Scope 723
K102 Definitions 723
K103 Structural Stability 724
K104 Evacuation Locations 724
K105 Space within the Building 724
K106 Decks and Balconies that are
 Evacuation Locations 724
K107 Rooftop Evacuation Locations 727
K108 Attics that are Evacuation Locations 727
K109 Alternate Means of Protection 727

INDEX .. 729

HISTORY NOTE 769
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 16 - STRUCTURAL DESIGN

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Chapter/Section

1601.1.1	X			
1601.1.2	X			
1601.1.3	X			
1601.1.4	X			
1601.2	X	X		
1601.3	X	X		
1602.1	X			
1603.1	X			
1607.1, Table 1607.1	X			
1607.7	X	X	X	
1607.7.2	X	X	X	X
1612.3	X			
1613.1	X			
1613.1.1	X			
1613.1.2	X			
1613.3.1	X			
1613.5.1	X			
1613.5.6	X			
1613.5.6.1	X			
1613.5.6.2	X			
1613.6.3	X			
1613.6.9	X			
1615.1.1	X			
1615.1.2	X			
1615.1.3	X			
1615.2.1.1	X			
1615.2.1.2	X			
1615.2.1.3	X			
1615.3.1	X			
1615.4	X			
1615.5.1.1	X			
1615.5.1.2	X			
1615.5.1.3	X			
1615.5.1.4	X			
1615.5.1.5	X			
1615.5.1.6	X			

(continued)
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 16 – STRUCTURAL DESIGN—continued

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD 1</th>
<th>HCD 2</th>
<th>HCD 1-AC</th>
<th>DSA AC</th>
<th>SS</th>
<th>SS/CC</th>
<th>CSA 1</th>
<th>CSA 2</th>
<th>CSA 3</th>
<th>CSA 4</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>1615.5.2</td>
<td></td>
</tr>
<tr>
<td>1615.6</td>
<td></td>
</tr>
<tr>
<td>1615.7.1</td>
<td></td>
</tr>
<tr>
<td>1615.7.2</td>
<td></td>
</tr>
<tr>
<td>1615.8</td>
<td></td>
</tr>
<tr>
<td>1615.9.1</td>
<td></td>
</tr>
<tr>
<td>1615.9.2 - Active Earthquake Fault</td>
<td></td>
</tr>
<tr>
<td>1615.9.2 - Base</td>
<td></td>
</tr>
<tr>
<td>1615.9.2 - Distance for an Active Earthquake Fault</td>
<td></td>
</tr>
<tr>
<td>1615.9.2 - Irregular Structure</td>
<td></td>
</tr>
<tr>
<td>1615.9.2 - Next Generation Attenuation (NGA)</td>
<td></td>
</tr>
<tr>
<td>1615.9.2 - Structural Elements</td>
<td></td>
</tr>
<tr>
<td>1615.9.3</td>
<td></td>
</tr>
<tr>
<td>1615.9.4</td>
<td></td>
</tr>
<tr>
<td>1615.9.4.1</td>
<td></td>
</tr>
<tr>
<td>1615.9.4.2</td>
<td></td>
</tr>
<tr>
<td>1615.9.5</td>
<td></td>
</tr>
<tr>
<td>1615.9.6</td>
<td></td>
</tr>
<tr>
<td>1615.10</td>
<td></td>
</tr>
<tr>
<td>1615.10.1</td>
<td></td>
</tr>
<tr>
<td>1615.10.2</td>
<td></td>
</tr>
<tr>
<td>1615.10.3</td>
<td></td>
</tr>
<tr>
<td>1615.10.4</td>
<td></td>
</tr>
<tr>
<td>1615.10.5</td>
<td></td>
</tr>
<tr>
<td>1615.10.6</td>
<td></td>
</tr>
<tr>
<td>1615.10.7</td>
<td></td>
</tr>
<tr>
<td>1615.10.8</td>
<td></td>
</tr>
<tr>
<td>1615.10.9</td>
<td></td>
</tr>
<tr>
<td>1615.10.10</td>
<td></td>
</tr>
<tr>
<td>1615.10.11</td>
<td></td>
</tr>
<tr>
<td>1615.10.12</td>
<td></td>
</tr>
<tr>
<td>1615.10.13</td>
<td></td>
</tr>
<tr>
<td>1615.10.14</td>
<td></td>
</tr>
<tr>
<td>1615.10.15</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Chapter 16 - Structural Design—continued

Adopting agency

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Chapter/Section

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>1615.10.16</th>
<th>1615.10.17</th>
<th>1615.10.18</th>
<th>1615.10.19</th>
<th>1615.10.20</th>
<th>1615.10.21</th>
<th>1615.10.22</th>
<th>1615.10.23</th>
<th>1615.10.24</th>
<th>1615.10.25</th>
<th>1615.10.26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
SECTION 1601
GENERAL

1601.1 Scope. The provisions of this chapter shall govern the structural design of buildings, structures and portions thereof regulated by this code.

1601.1.1 Application. [DSA-SS/CC] The scope of application of Chapter 16 is as follows:

Community college buildings regulated by the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC), as listed in Section 1.9.2.2.

1601.1.2 Identification of amendments. [DSA-SS/CC] Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC) amendments appear in this chapter preceded with the appropriate acronym, as follows:

Division of the State Architect-Structural Safety/Community Colleges: [DSA-SS/CC] - For community college buildings listed in Section 1.9.2.2.

1601.1.3 Reference to other chapters. [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 17 and 18, the provisions in Chapters 17A and 18A respectively shall apply instead.

1601.1.4 Amendments. [DSA-SS/CC] See Section 1615 for additional requirements.

1601.2 References. [DSA-SS/CC, OSHPD 2] All referenced codes and standards listed in Chapter 35 shall include all the modifications contained in this code to referenced standards. In the event of any discrepancy between this code and a referenced standard, refer to Section 1.1.7.

1601.3 Enforcement agency approval. [DSA-SS/CC, OSHPD 2] In addition to requirements of CCR Title 24, Parts 1 & 2, any aspect of project design, construction, quality assurance or quality control programs for which this code requires approval by the design professional are also subject to approval by the enforcement agency.

SECTION 1602
DEFINITIONS AND NOTATIONS

1602.1 Definitions. The following words and terms shall, for the purposes of this chapter, have the meanings shown herein.

ALLOWABLE STRESS DESIGN. A method of proportioning structural members, such that elastically computed stresses produced in the members by \textit{nominal loads} do not exceed specified allowable stresses (also called "working stress design").

DEAD LOADS. The weight of materials of construction incorporated into the building, including but not limited to walls, floors, roofs, ceilings, stairways, built-in partitions, finishes, cladding and other similarly incorporated architectural and structural items, and the weight of fixed service equipment, such as cranes, plumbing stacks and risers, electrical feeders, heating, ventilating and air-conditioning systems and automatic sprinkler systems.

DESIGN STRENGTH. The product of the nominal strength and a resistance factor (or strength reduction factor).

DIAPHRAGM. A horizontal or sloped system acting to transmit lateral forces to the vertical-resisting elements. When the term "diaphragm" is used, it shall include horizontal bracing systems.

\textit{Diaphragm, blocked}. In light-frame construction, a diaphragm in which all sheathing edges not occurring on a framing member are supported on and fastened to blocking.

\textit{Diaphragm boundary}. In light-frame construction, a location where shear is transferred into or out of the diaphragm sheathing. Transfer is either to a boundary element or to another force-resisting element.

\textit{Diaphragm chord}. A diaphragm boundary element perpendicular to the applied load that is assumed to take axial stresses due to the diaphragm moment.

\textit{Diaphragm flexible}. A diaphragm is flexible for the purpose of distribution of story shear and torsional moment where so indicated in Section 12.3.1 of ASCE 7, as modified in Section 1613.6.1.

\textit{Diaphragm rigid}. A diaphragm is rigid for the purpose of distribution of story shear and torsional moment when the lateral deformation of the diaphragm is less than or equal to two times the average story drift.

DURATION OF LOAD. The period of continuous application of a given load, or the aggregate of periods of intermittent applications of the same load.

\textit{ENFORCEMENT AGENT}. [OSHPD 2] That individual within the agency or organization charged with responsibility for agency or organization compliance with the requirements of this code. Used interchangeably with "Building Official" or "Code Official."

ESSENTIAL FACILITIES. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

FABRIC PARTITION. A partition consisting of a finished surface made of fabric, without a continuous rigid backing, that is directly attached to a framing system in which the vertical framing members are spaced greater than 4 feet (1219 mm) on center.

FACTORED LOAD. The product of a nominal load and a load factor.

GUARD. See Section 1002.1.
IMPACT LOAD. The load resulting from moving machinery, elevators, cranes, vehicles and other similar forces and kinetic loads, pressure and possible surcharge from fixed or moving loads.

LIMIT STATE. A condition beyond which a structure or member becomes unfit for service and is judged to be no longer useful for its intended function (serviceability limit state) or to be unsafe (strength limit state).

LIVE LOADS. Those loads produced by the use and occupancy of the building or other structure and do not include construction or environmental loads such as wind load, snow load, rain load, earthquake load, flood load or dead load.

LIVE LOADS (ROOF). Those loads produced (1) during maintenance by workers, equipment and materials; and (2) during the life of the structure by movable objects such as planters and by people.

LOAD AND RESISTANCE FACTOR DESIGN (LRFD). A method of proportioning structural members and their connections using load and resistance factors such that no applicable limit state is reached when the structure is subjected to appropriate load combinations. The term “LRFD” is used in the design of steel and wood structures.

LOAD EFFECTS. Forces and deformations produced in structural members by the applied loads.

LOAD FACTOR. A factor that accounts for deviations of the actual load from the nominal load, for uncertainties in the analysis that transforms the load into a load effect, and for the probability that more than one extreme load will occur simultaneously.

LOADS. Forces or other actions that result from the weight of building materials, occupants and their possessions, environmental effects, differential movement and restrained dimensional changes. Permanent loads are those loads in which variations over time are rare or of small magnitude, such as dead loads. All other loads are variable loads (see also “Nominal loads”).

NOMINAL LOADS. The magnitudes of the loads specified in this chapter (dead, live, soil, wind, snow, rain, flood and earthquake).

OCCUPANCY CATEGORY. A category used to determine structural requirements based on occupancy.

OTHER STRUCTURES. Structures, other than buildings, for which loads are specified in this chapter.

PANEL (PART OF A STRUCTURE). The section of a floor, wall or roof comprised between the supporting frame of two adjacent rows of columns and girders or column bands of floor or roof construction.

RESISTANCE FACTOR. A factor that accounts for deviations of the actual strength from the nominal strength and the manner and consequences of failure (also called “strength reduction factor”).

STRENGTH, NOMINAL. The capacity of a structure or member to resist the effects of loads, as determined by computations using specified material strengths and dimensions and equations derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.

STRENGTH, REQUIRED. Strength of a member, cross section or connection required to resist factored loads or related internal moments and forces in such combinations as stipulated by these provisions.

STRENGTH DESIGN. A method of proportioning structural members such that the computed forces produced in the members by factored loads do not exceed the member design strength [also called “load and resistance factor design” (LRFD)]. The term “strength design” is used in the design of concrete and masonry structural elements.

VEHICLE BARRIER SYSTEM. A system of building components near open sides of a garage floor or ramp or building walls that act as restraints for vehicles.

NOTATIONS.

\[D = \text{Dead load} \]
\[E = \text{Combined effect of horizontal and vertical earthquake induced forces as defined in Section 12.4.2 of ASCE 7} \]
\[F = \text{Load due to fluids with well-defined pressures and maximum heights} \]
\[F_a = \text{Flood load in accordance with Chapter 5 of ASCE 7} \]
\[H = \text{Load due to lateral earth pressures, ground water pressure or pressure of bulk materials} \]
\[L = \text{Live load, except roof live load, including any permitted live load reduction} \]
\[L_r = \text{Roof live load including any permitted live load reduction} \]
\[R = \text{Rain load} \]
\[S = \text{Snow load} \]
\[T = \text{Self-straining force arising from contraction or expansion resulting from temperature change, shrinkage, moisture change, creep in component materials, movement due to differential settlement or combinations thereof} \]
\[W = \text{Load due to wind pressure} \]

SECTION 1603 CONSTRUCTION DOCUMENTS

1603.1 General. Construction documents shall show the size, section and relative locations of structural members with floor levels, column centers and offsets dimensioned. The design loads and other information pertinent to the structural design required by Sections 1603.1.1 through 1603.1.9 shall be indicated on the construction documents.

Exception: Construction documents for buildings constructed in accordance with the conventional light-frame construction provisions of Section 2308 shall indicate the following structural design information:

1. Floor and roof live loads.
2. Ground snow load, \(P_s \).
3. Basic wind speed (3-second gust), miles per hour (mph) (km/hr) and wind exposure.
4. Seismic design category and site class.
5. Flood design data, if located in flood hazard areas established in Section 1612.3.
6. Design load-bearing values of soils.

(OSHPD 2) Additional requirements are included in Sections 7-115 and 7-125 of the California Administrative Code (Part I, Title 24, C.C.R).

1603.1.1 Floor live load. The uniformly distributed, concentrated and impact floor live load used in the design shall be indicated for floor areas. Use of live load reduction in accordance with Section 1607.9 shall be indicated for each type of live load used in the design.

1603.1.2 Roof live load. The roof live load used in the design shall be indicated for roof areas (Section 1607.11).

1603.1.3 Roof snow load. The ground snow load, P_s, shall be indicated. In areas where the ground snow load, P_s, exceeds 10 pounds per square foot (psf) (0.479 kN/m²), the following additional information shall also be provided, regardless of whether snow loads govern the design of the roof:
1. Flat-roof snow load, P_f.
2. Snow exposure factor, C_e.
4. Thermal factor, C_t.

1603.1.4 Wind design data. The following information related to wind loads shall be shown, regardless of whether wind loads govern the design of the lateral-force-resisting system of the building:
1. Basic wind speed (3-second gust), miles per hour (km/hr).
2. Wind importance factor, I, and occupancy category.
3. Wind exposure. Where more than one wind exposure is utilized, the wind exposure and applicable wind direction shall be indicated.
4. The applicable internal pressure coefficient.
5. Components and cladding. The design wind pressures in terms of psf (kN/m²) to be used for the design of exterior component and cladding materials not specifically designed by the registered design professional.

1603.1.5 Earthquake design data. The following information related to seismic loads shall be shown, regardless of whether seismic loads govern the design of the lateral-force-resisting system of the building:
1. Seismic importance factor, I, and occupancy category.
2. Mapped spectral response accelerations, S_s and S_t.
3. Site class.
4. Spectral response coefficients, S_{ps} and S_{p1}.
5. Seismic design category.
6. Basic seismic-force-resisting system(s).
7. Design base shear.
8. Seismic response coefficient(s), C_s.
9. Response modification factor(s), R.
10. Analysis procedure used.

1603.1.6 Geotechnical information. The design load-bearing values of soils shall be shown on the construction documents.

1603.1.7 Flood design data. For buildings located in whole or in part in flood hazard areas as established in Section 1612.3, the documentation pertaining to design, if required in Section 1612.5, shall be included and the following information, referenced to the datum on the community's Flood Insurance Rate Map (FIRM), shall be shown, regardless of whether flood loads govern the design of the building:
1. In flood hazard areas not subject to high-velocity wave action, the elevation of the proposed lowest floor, including the basement.
2. In flood hazard areas not subject to high-velocity wave action, the elevation to which any nonresidential building will be dry floodproofed.
3. In flood hazard areas subject to high-velocity wave action, the proposed elevation of the bottom of the lowest horizontal structural member of the lowest floor, including the basement.

1603.1.8 Special loads. Special loads that are applicable to the design of the building, structure or portions thereof shall be indicated along with the specified section of this code that addresses the special loading condition.

1603.1.9 Systems and components requiring special inspections for seismic resistance. Construction documents or specifications shall be prepared for those systems and components requiring special inspection for seismic resistance as specified in Section 1707.1 by the registered design professional responsible for their design and shall be submitted for approval in accordance with Section 107.1, Chapter 1, Division II. Reference to seismic standards in lieu of detailed drawings is acceptable.

SECTION 1604
GENERAL DESIGN REQUIREMENTS

1604.1 General. Building, structures and parts thereof shall be designed and constructed in accordance with strength design, load and resistance factor design, allowable stress design, empirical design or conventional construction methods, as permitted by the applicable material chapters.

1604.2 Strength. Buildings and other structures, and parts thereof, shall be designed and constructed to support safely the factored loads in load combinations defined in this code without exceeding the appropriate strength limit states for the materials of construction. Alternatively, buildings and other structures, and parts thereof, shall be designed and constructed to support safely the nominal loads in load combinations defined in this code without exceeding the appropriate specified allowable stresses for the materials of construction.
STRICTURAL DESIGN

Loads and forces for occupancies or uses not covered in this chapter shall be subject to the approval of the building official.

1604.3 Serviceability. Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift. See Section 12.12.1 of ASCE 7 for drift limits applicable to earthquake loading.

1604.3.1 Deflections. The deflections of structural members shall not exceed the more restrictive of the limitations of Sections 1604.3.2 through 1604.3.5 or that permitted by Table 1604.3.

<table>
<thead>
<tr>
<th>TABLE 1604.3 DEFLECTION LIMITSb, c, h, i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION</td>
</tr>
<tr>
<td>Roof members:e</td>
</tr>
<tr>
<td>Supporting plaster ceiling</td>
</tr>
<tr>
<td>Supporting nonplaster ceiling</td>
</tr>
<tr>
<td>Not supporting ceiling</td>
</tr>
<tr>
<td>Floor members</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Exterior walls and interior partitions:</td>
</tr>
<tr>
<td>With brittle finishes</td>
</tr>
<tr>
<td>With flexible finishes</td>
</tr>
<tr>
<td>Farm buildings</td>
</tr>
<tr>
<td>Greenhouses</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

a. For structural roofing and siding made of formed metal sheets, the total load deflection shall not exceed l/60. For secondary roof structural members supporting formed metal roofing, the live load deflection shall not exceed l/150. For secondary wall members supporting formed metal siding, the design wind load deflection shall not exceed l/90. For roofs, this exception only applies when the metal sheets have no roof covering.

b. Interior partitions not exceeding 6 feet in height and flexible, folding and portable partitions are not governed by the provisions of this section. The deflection criterion for interior partitions is based on the horizontal load defined in Section 1607.13.

c. See Section 2403 for glass supports.

d. For wood structural members having a moisture content of less than 16 percent at time of installation and used under dry conditions, the deflection resulting from L + 0.5D is permitted to be substituted for the deflection resulting from L + D.

e. The above deflections do not ensure against ponding. Roofs that do not have sufficient slope or camber to assure adequate drainage shall be investigated for ponding. See Section 1611 for rain and ponding requirements and Section 1503.4 for roof drainage requirements.

f. The wind load is permitted to be taken as 0.7 times the "component and cladding" loads for the purpose of determining deflection limits herein.

g. For steel structural members, the dead load shall be taken as zero.

h. For aluminum structural members or aluminum panels used in skylights and sloped glazing framing, roofs or walls of sunroom additions or patio covers, not supporting edge of glass or aluminum sandwich panels, the total load deflection shall not exceed l/60. For continuous aluminum structural members supporting edge of glass, the total load deflection shall not exceed l/175 for each glass lite or l/60 for the entire length of the member, whichever is more stringent. For aluminum sandwich panels used in roofs or walls of sunroom additions or patio covers, the total load deflection shall not exceed l/120.

i. For cantilever members, l shall be taken as twice the length of the cantilever.

1604.3.2 Reinforced concrete. The deflection of reinforced concrete structural members shall not exceed that permitted by ACI 318.

1604.3.3 Steel. The deflection of steel structural members shall not exceed that permitted by AISC 360, AISI S100, ASCE 3, ASCE 8, SIJ CJ-1.0, SIJ HG-1.1, SIJ K-1.1 or SIJ LH/DLH-1.1, as applicable.

1604.3.4 Masonry. The deflection of masonry structural members shall not exceed that permitted by TMS 402/ACI 530/ASCE 5.

1604.3.5 Aluminum. The deflection of aluminum structural members shall not exceed that permitted by AA ADM1.

1604.3.6 Limits. Deflection of structural members over span, l, shall not exceed that permitted by Table 1604.3.

1604.4 Analysis. Load effects on structural members and their connections shall be determined by methods of structural analysis that take into account equilibrium, general stability, geometric compatibility and both short- and long-term material properties.

Members that tend to accumulate residual deformations under repeated service loads shall have included in their analysis the added eccentricities expected to occur during their service life.

Any system or method of construction to be used shall be based on a rational analysis in accordance with well-established principles of mechanics. Such analysis shall result in a system that provides a complete load path capable of transferring loads from their point of origin to the load-resisting elements.

The total lateral force shall be distributed to the various vertical elements of the lateral-force-resisting system in proportion to their rigidities, considering the rigidity of the horizontal bracing system or diaphragm. Rigid elements assumed not to be a part of the lateral-force-resisting system are permitted to be incorporated into buildings provided their effect on the action of the system is considered and provided for in the design. Except where diaphragms are flexible, or are permitted to be analyzed as flexible, provisions shall be made for the increased forces induced on resisting elements of the structural system resulting from torsion due to eccentricity between the center of application of the lateral forces and the center of rigidity of the lateral-force-resisting system.

Every structure shall be designed to resist the overturning effects caused by the lateral forces specified in this chapter. See Section 1609 for wind loads, Section 1610 for lateral soil loads and Section 1613 for earthquake loads.

1604.5 Occupancy category. Each building and structure shall be assigned an occupancy category in accordance with Table 1604.5.

1604.5.1 Multiple occupancies. Where a building or structure is occupied by two or more occupancies not included in the same occupancy category, it shall be assigned the classification of the highest occupancy category corresponding to the various occupancies. Where buildings or structures have two or more portions that are structurally separated, each portion shall be separately classified. Where a separated portion of a building or structure provides required access to, required egress from or shares life safety components with another portion having a higher occupancy category, both portions shall be assigned to the higher occupancy category.

1604.6 In-situ load tests. The building official is authorized to require an engineering analysis or a load test, or both, of any construction whenever there is reason to question the safety of
the construction for the intended occupancy. Engineering analysis and load tests shall be conducted in accordance with Section 1714.

1604.7 Preconstruction load tests. Materials and methods of construction that are not capable of being designed by approved engineering analysis or that do not comply with the applicable material design standards listed in Chapter 35, or alternative test procedures in accordance with Section 1712, shall be load tested in accordance with Section 1715.

1604.8 Anchorage.

1604.8.1 General. Anchorage of the roof to walls and columns, and of walls and columns to foundations, shall be provided to resist the uplift and sliding forces that result from the application of the prescribed loads.

1604.8.2 Walls. Walls shall be anchored to floors, roofs and other structural elements that provide lateral support for the wall. Such anchorage shall provide a positive direct connection capable of resisting the horizontal forces specified in this chapter but not less than the minimum strength design horizontal force specified in Section 11.7.3 of ASCE 7, substituted for “E” in the load combinations of Section 1605.2 or 1605.3. Concrete and masonry walls shall be designed to resist bending between anchors where the anchor spacing exceeds 4 feet (1219 mm). Required anchors in masonry walls of hollow units or cavity walls shall be embedded in a reinforced grouted structural element of the wall. See Sections 1609 for wind design requirements and 1613 for earthquake design requirements.

1604.8.3 Decks. Where supported by attachment to an exterior wall, decks shall be positively anchored to the primary structure and designed for both vertical and lateral loads as applicable. Such attachment shall not be accomplished by the use of toenails or nails subject to withdrawal. Where

<table>
<thead>
<tr>
<th>OCCUPANCY CATEGORY</th>
<th>NATURE OF OCCUPANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Buildings and other structures that represent a low hazard to human life in the event of failure, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>- Agricultural facilities.</td>
</tr>
<tr>
<td></td>
<td>- Certain temporary facilities.</td>
</tr>
<tr>
<td></td>
<td>- Minor storage facilities.</td>
</tr>
<tr>
<td>II</td>
<td>Buildings and other structures except those listed in Occupancy Categories I, III and IV</td>
</tr>
<tr>
<td>III</td>
<td>Buildings and other structures that represent a substantial hazard to human life in the event of failure, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures whose primary occupancy is public assembly with an occupant load greater than 300.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures containing elementary school, secondary school or day care facilities with an occupant load greater than 250.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures containing adult education facilities, such as colleges and universities, with an occupant load greater than 500.</td>
</tr>
<tr>
<td></td>
<td>- Group I-2 occupancies with an occupant load of 50 or more resident patients but not having surgery or emergency treatment facilities.</td>
</tr>
<tr>
<td></td>
<td>- Group I-3 occupancies.</td>
</tr>
<tr>
<td></td>
<td>- Any other occupancy with an occupant load greater than 5,000.</td>
</tr>
<tr>
<td></td>
<td>- Power-generating stations, water treatment facilities for potable water, waste water treatment facilities and other public utility facilities not included in Occupancy Category IV.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures not included in Occupancy Category IV containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released.</td>
</tr>
<tr>
<td>IV</td>
<td>Buildings and other structures designated as essential facilities, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>- Group I-2 occupancies having surgery or emergency treatment facilities. [OSHPD 3] For OSHPD 3 facilities, see Section 308.3.2.</td>
</tr>
<tr>
<td></td>
<td>- Fire, rescue, ambulance and police stations and emergency vehicle garages.</td>
</tr>
<tr>
<td></td>
<td>- Designated earthquake, hurricane or other emergency shelters.</td>
</tr>
<tr>
<td></td>
<td>- Designated emergency preparedness, communications and operations centers and other facilities required for emergency response.</td>
</tr>
<tr>
<td></td>
<td>- Power-generating stations and other public utility facilities required as emergency backup facilities for Occupancy Category IV structures.</td>
</tr>
<tr>
<td></td>
<td>- Structures containing highly toxic materials as defined by Section 307 where the quantity of the material exceeds the maximum allowable quantities of Table 307.1(2).</td>
</tr>
<tr>
<td></td>
<td>- Aviation control towers, air traffic control centers and emergency aircraft hangars.</td>
</tr>
<tr>
<td></td>
<td>- Buildings and other structures having critical national defense functions.</td>
</tr>
<tr>
<td></td>
<td>- Water storage facilities and pump structures required to maintain water pressure for fire suppression.</td>
</tr>
</tbody>
</table>

a. For purposes of occupant load calculation, occupancies required by Table 1004.1.1 to use gross floor area calculations shall be permitted to use net floor areas to determine the total occupant load.
positive connection to the primary building structure cannot be verified during inspection, decks shall be self-supporting. Connections of decks with cantilevered framing members to exterior walls or other framing members shall be designed for both of the following:

1. The reactions resulting from the dead load and live load specified in Table 1607.1, or the snow load specified in Section 1608, in accordance with Section 1605, acting on all portions of the deck.

2. The reactions resulting from the dead load and live load specified in Table 1607.1, or the snow load specified in Section 1608, in accordance with Section 1605, acting on the cantilevered portion of the deck, and no live load or snow load on the remaining portion of the deck.

1604.9 Counteracting structural actions. Structural members, systems, components and cladding shall be designed to resist forces due to earthquake and wind, with consideration of overturning, sliding and uplift. Continuous load paths shall be provided for transmitting these forces to the foundation. Where sliding is used to isolate the elements, the effects of friction between sliding elements shall be included as a force.

1604.10 Wind and seismic detailing. Lateral-force-resisting systems shall meet seismic detailing requirements and limitations prescribed in this code and ASCE 7, excluding Chapter 14 and Appendix 11A, even when wind load effects are greater than seismic load effects.

SECTON 1605
LOAD COMBINATIONS

1605.1 General. Buildings and other structures and portions thereof shall be designed to resist:

1. The load combinations specified in Section 1605.2, 1605.3.1 or 1605.3.2,

2. The load combinations specified in Chapters 18 through 23, and

3. The load combinations with overstrength factor specified in Section 12.4.3.2 of ASCE 7 where required by Section 12.2.5.2, 12.3.3.3 or 12.10.2.1 of ASCE 7. With the simplified procedure of ASCE 7 Section 12.14, the load combinations with overstrength factor of Section 12.14.3.2 of ASCE 7 shall be used.

Applicable loads shall be considered, including both earthquake and wind, in accordance with the specified load combinations. Each load combination shall also be investigated with one or more of the variable loads set to zero.

Where the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7 apply, they shall be used as follows:

1. The basic combinations for strength design with overstrength factor in lieu of Equations 16-5 and 16-7 in Section 1605.2.1.

2. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16-12, 16-13 and 16-15 in Section 1605.3.1.

3. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16-20 and 16-21 in Section 1605.3.2.

1605.1.1 Stability. Regardless of which load combinations are used to design for strength, where overall structure stability (such as stability against overturning, sliding, or buoyancy) is being verified, use of the load combinations specified in Section 1605.2 or 1605.3 shall be permitted. Where the load combinations specified in Section 1605.2 are used, strength reduction factors applicable to soil resistance shall be provided by a registered design professional. The stability of retaining walls shall be verified in accordance with Section 1807.2.3.

1605.2 Load combinations using strength design or load and resistance factor design.

1605.2.1 Basic load combinations. Where strength design or load and resistance factor design is used, structures and portions thereof shall resist the most critical effects from the following combinations of factored loads:

\[1.4(D + F) \quad (\text{Equation 16-1}) \]
\[1.2(D + F + T) + 1.6(L + H) + 0.5(L, \text{ or } S \text{ or } R) \quad (\text{Equation 16-2}) \]
\[1.2D + 1.6(L, \text{ or } S \text{ or } R) + (f_1L \text{ or } 0.8W) \quad (\text{Equation 16-3}) \]
\[1.2D + 1.6W + f_1L + 0.5(L, \text{ or } S \text{ or } R) \quad (\text{Equation 16-4}) \]
\[1.2D + 1.0E + f_1L + f_2S \quad (\text{Equation 16-5}) \]
\[0.9D + 1.6W + 1.6H \quad (\text{Equation 16-6}) \]
\[0.9D + 1.0E + 1.6H \quad (\text{Equation 16-7}) \]

where:

\[
\begin{align*}
 f_1 & = 1 \text{ for floors in places of public assembly, for live loads in excess of 100 pounds per square foot (4.79 kN/m}^2, \\
 & \text{and for parking garage live load, and} \\
 & = 0.5 \text{ for other live loads.} \\
 f_2 & = 0.7 \text{ for roof configurations (such as saw tooth) that do not shed snow off the structure, and} \\
 & = 0.2 \text{ for other roof configurations.}
\end{align*}
\]

Exception: Where other factored load combinations are specifically required by the provisions of this code, such combinations shall take precedence.

1605.2.2 Flood loads. Where flood loads, \(F_n \), are to be considered in the design, the load combinations of Section 2.3.3 of ASCE 7 shall be used.

1605.3 Load combinations using allowable stress design.

1605.3.1 Basic load combinations. Where allowable stress design (working stress design), as permitted by this code, is used, structures and portions thereof shall resist the most critical effects resulting from the following combinations of loads:

\[D + F \quad (\text{Equation 16-8}) \]
\[D + H + F + L + T \quad (\text{Equation 16-9}) \]
\[D + H + F + (L, \text{ or } S \text{ or } R) \quad (\text{Equation 16-10}) \]
1. Crane hook loads need not be combined with roof live load or with more than three-fourths of the snow load or one-half of the wind load.

2. Flat roof snow loads of 30 psf (1.44 kN/m²) or less and roof live loads of 30 psf or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m²), 20 percent shall be combined with seismic loads.

1605.3.1.1 Stress increases. Increases in allowable stresses specified in the appropriate material chapter or the referenced standards shall not be used with the load combinations of Section 1605.3.1, except that increases shall be permitted in accordance with Chapter 23.

1605.3.1.2 Flood loads. Where flood loads, \(F_a \), are to be considered in design, the load combinations of Section 2.4.2 of ASCE 7 shall be used.

1605.3.2 Alternative basic load combinations. In lieu of the basic load combinations specified in Section 1605.3.1, structures and portions thereof shall be permitted to be designed for the most critical effects resulting from the following combinations. When using these alternative basic load combinations that include wind or seismic loads, allowable stresses are permitted to be increased or load combinations reduced where permitted by the material chapter of this code or the referenced standards. For load combinations that include the counteracting effects of dead and wind loads, only two-thirds of the minimum dead load likely to be in place during a design wind event shall be used. Where wind loads are not calculated in accordance with Chapter 6 of ASCE 7, the coefficient \(\omega \) in the following equations shall be taken as 1.3. For other wind loads, \(\omega \) shall be taken as 1. When using these alternative load combinations to evaluate sliding, overturning and soil bearing at the soil-structure interface, the reduction of foundation overturning from Section 12.13.4 in ASCE 7 shall not be used. When using these alternative basic load combinations for proportioning foundations, which include seismic loads, the vertical seismic load effect, \(E_v \), in Equation 12.4-4 of ASCE 7 is permitted to be taken equal to zero.

\[
\begin{align*}
D + H + F + 0.75(L + T) + 0.75(L, or S or R) & \quad \text{(Equation 16-11)} \\
D + H + F + (W or 0.7E) & \quad \text{(Equation 16-12)} \\
D + H + F + 0.75(W or 0.7E) + 0.75L + 0.75(L, or S or R) & \quad \text{(Equation 16-13)} \\
0.6D + W + H & \quad \text{(Equation 16-14)} \\
0.6D + 0.7E + H & \quad \text{(Equation 16-15)} \\
D + L + (L, or S or R) & \quad \text{(Equation 16-16)} \\
D + L + (\omega W) & \quad \text{(Equation 16-17)} \\
D + L + \omega W + S/2 & \quad \text{(Equation 16-18)} \\
D + L + S + \omega W/2 & \quad \text{(Equation 16-19)} \\
D + L + S + E/1.4 & \quad \text{(Equation 16-20)} \\
0.9D + E/1.4 & \quad \text{(Equation 16-21)}
\end{align*}
\]

Exceptions:

1. Crane hook loads need not be combined with roof live loads or with more than three-fourths of the snow load or one-half of the wind load.

2. Flat roof snow loads of 30 psf (1.44 kN/m²) or less and roof live loads of 30 psf or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m²), 20 percent shall be combined with seismic loads.

1605.3.2.1 Other loads. Where \(F, H \) or \(T \) are to be considered in the design, each applicable load shall be added to the combinations specified in Section 1605.3.2.

1605.4 Heliports and heliostops. Heliport and helistop landing areas shall be designed for the following loads, combined in accordance with Section 1605:

1. Dead load, \(D \), plus the gross weight of the helicopter, \(D_h \), plus snow load, \(S \).

2. Dead load, \(D \), plus two single concentrated impact loads, \(L \), approximately 8 feet (2438 mm) apart applied anywhere on the touchdown pad (representing each of the helicopter’s two main landing gear, whether skid type or wheeled type), having a magnitude of 0.75 times the gross weight of the helicopter. Both loads acting together total 1.5 times the gross weight of the helicopter.

3. Dead load, \(D \), plus a uniform live load, \(L \), of 100 psf (4.79 kN/m²).

Exception: Landing areas designed for helicopters with gross weights not exceeding 3,000 pounds (13.34 kN) in accordance with Items 1 and 2 shall be permitted to be designed using a 40 psf (1.92 kN/m²) uniform live load in Item 3, provided the landing area is identified with a 3,000-pound (13.34 kN) weight limitation. This 40 psf (1.92 kN/m²) uniform live load shall not be reduced. The landing area weight limitation shall be indicated by the numeral “3” (kips) located in the bottom right corner of the landing area as viewed from the primary approach path. The indication for the landing area weight limitation shall be a minimum 5 feet (1524 mm) in height.

SECTION 1606 DEAD LOADS

1606.1 General. Dead loads are those loads defined in Section 1602.1. Dead loads shall be considered permanent loads.

1606.2 Design dead load. For purposes of design, the actual weights of materials of construction and fixed service equipment shall be used. In the absence of definite information, values used shall be subject to the approval of the building official.

SECTION 1607 LIVE LOADS

1607.1 General. Live loads are those loads defined in Section 1602.1.
TABLE 1607.1
MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, L_o, AND
MINIMUM CONCENTRATED LIVE LOADS9

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apartments (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. Access floor systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office use</td>
<td>50</td>
<td>2,000</td>
</tr>
<tr>
<td>Computer use</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>3. Armories and drill rooms</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>4. Assembly areas and theaters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed seats (fastened to floor)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Follow spot, projections and control rooms</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Lobbies</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Movable seats</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Stages and platforms</td>
<td>125</td>
<td>—</td>
</tr>
<tr>
<td>Other assembly areas</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>5. Balconies (exterior) and decksb</td>
<td>Same as occupancy served</td>
<td>—</td>
</tr>
<tr>
<td>6. Bowling alleys</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>7. Catwalks</td>
<td>40</td>
<td>300</td>
</tr>
<tr>
<td>8. Cornices</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>9. Corridors, except as otherwise indicated</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>10. Dance halls and ballrooms</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>11. Dining rooms and restaurants</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>12. Dwellings (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13. Elevator machine room grating (on area of 4 in²)</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>14. Finish light floor plate construction (on area of 1 in²)</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>15. Fire escapes</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>On single-family dwellings only</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>16. Garages (passenger vehicles only)</td>
<td>40</td>
<td>Note a</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>See Section 1607.6</td>
<td>—</td>
</tr>
<tr>
<td>17. Grandstands (see stadium and arena bleachers)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18. Gymnasiums, main floors and balconies</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>19. Handrails, guards and grab bars</td>
<td>See Section 1607.7</td>
<td>—</td>
</tr>
<tr>
<td>20. Hospitals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Operating rooms, laboratories</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>Patient rooms</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>21. Hotels (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22. Libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Reading rooms</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>Stack rooms</td>
<td>150b</td>
<td>—</td>
</tr>
<tr>
<td>23. Manufacturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>250</td>
<td>—</td>
</tr>
<tr>
<td>Light</td>
<td>125</td>
<td>—</td>
</tr>
</tbody>
</table>

Note:
- **a***: See Section 1607.6 for details.
- **b**: See Section 1607.7 for details.
- **c**: Note c
- **d**: See Section 1607.8 for details.
- **e**: See Section 1607.9 for details.
- **f**: See Section 1607.10 for details.
- **g**: See Section 1607.11 for details.
- **h**: See Section 1607.12 for details.
- **i**: See Section 1607.13 for details.
- **j**: See Section 1607.14 for details.
- **k**: See Section 1607.15 for details.
For attics with limited storage and constructed with trusses, this live load need only be provided that each of the following criteria is met:

1. Roof areas used for other special purposes shall be designed for appropriate loads as approved by the building official.

m. \([\text{OSHPD 2}] \) The minimum vertical design live load shall be as follows:

Paper media:
- 12-inch-deep (305 mm) shelf: 33 pounds per linear foot (482 N/m)
- 15-inch-deep (381 mm) shelf: 41 pounds per linear foot (598 N/m), or 33 pounds per cubic foot (5183 N/m) per total volume of the rack or cabinet, whichever is less.

Film media:
- 16-inch-deep (406 mm) shelf: 100 pounds per linear foot (1459 N/m), or 50 pounds per cubic foot (7853 N/m) per total volume of the rack or cabinet, whichever is less.

Other media:
- 20 pounds per cubic foot (311 N/m) or 20 pounds per square foot (958 Pa), whichever is less, but not less than actual loads.

1607.2 Loads not specified. For occupancies or uses not designated in Table 1607.1, the live load shall be determined in accordance with a method approved by the building official.

1607.3 Uniform live loads. The live loads used in the design of buildings and other structures shall be the maximum loads expected by the intended use or occupancy but shall in no case be less than the minimum uniformly distributed unit loads required by Table 1607.1.

1607.4 Concentrated loads. Floors and other similar surfaces shall be designed to support the uniformly distributed live loads prescribed in Section 1607.3 or the concentrated load, in pounds (kilonewtons), given in Table 1607.1, whichever produces the greater load effects. Unless otherwise specified, the indicated concentration shall be assumed to be uniformly distributed over an area 2\(\frac{1}{2}\) feet by 2\(\frac{1}{2}\) feet (610 by 610 mm) for the entire area under the structure. The partition load shall not be less than a uniformly distributed load of 15 psf (0.74 kN/m²).

1607.5 Partition loads. In office buildings and in other buildings where partition locations are subject to change, provisions for partition weight shall be made, whether or not partitions are shown on the construction documents, unless the specified live load exceeds 80 psf (3.83 kN/m²). The partition load shall not be less than a uniformly distributed live load of 15 psf (0.74 kN/m²).

1607.6 Truck and bus garages. Minimum live loads for garages having trucks or buses shall be as specified in Table 1607.6, but shall not be less than 50 psf (2.40 kN/m²), unless other loads are specifically justified and approved by the building official. Actual loads shall be used where they are greater than the loads specified in the table.

1607.6.1 Truck and garage live load application. The concentrated load and uniform load shall be uniformly distributed over a 10-foot (3048 mm) width on a line normal to the centerline of the lane placed within a 12-foot-wide (3658 mm) lane. The loads shall be placed within their individual lanes so as to produce the maximum stress in each structural member. Single spans shall be designed for the uniform load in Table 1607.6 and one simultaneous concentrated load positioned to produce the maximum effect. Multiple spans shall be designed for the uniform load in Table 1607.6 on the spans and two simultaneous concentrated loads in two spans positioned to produce the maximum negative moment effect. Multiple span design loads, for other effects, shall be the same as for single spans.
1607.7 Loads on handrails, guards, grab bars, shower seats, dressing room bench seats and vehicle barrier systems. Handrails, guards, grab bars, accessible seats, accessible benches and vehicle barrier systems shall be designed and constructed to the structural loading conditions set forth in this section.

1607.7.1 Handrails and guards. Handrails and guards shall be designed to resist a load of 50 pounds per linear foot (0.73 kN/m) applied in any direction at the top and to transfer this load through the supports to the structure. Glass handrail assemblies and guards shall also comply with Section 2407.

Exceptions:

1. For one- and two-family dwellings, only the single concentrated load required by Section 1607.7.1.1 shall be applied.
2. In Group I-3, F, H and S occupancies, for areas that are not accessible to the general public and that have an occupant load less than 50, the minimum load shall be 20 pounds per foot (0.29 kN/m).

1607.7.3 Vehicle barrier systems. Vehicle barrier systems for passenger vehicles shall be designed to resist a single load of 6,000 pounds (26.70 kN) applied horizontally in any direction to the barrier system and shall have anchorage or attachment capable of transmitting this load to the structure. For design of the system, two loading conditions shall be analyzed. The first condition shall apply the load at a height of 1 foot, 6 inches (457 mm) above the floor or ramp surface. The second loading condition shall apply the load at 2 feet, 3 inches (686 mm) above the floor or ramp surface. The more severe load condition shall govern the design of the barrier restraint system. The load shall be assumed to act concurrently with any handrail or guard loadings specified in Section 1607.7.1. Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for traffic railings.

1607.8 Impact loads. The live loads specified in Section 1607.3 include allowance for impact conditions. Provisions shall be made in the structural design for uses and loads that involve unusual vibration and impact forces.

1607.8.1 Elevators. Elevator loads shall be increased by 100 percent for impact and the structural supports shall be designed within the limits of deflection prescribed by ASME A17.1.

1607.8.2 Machinery. For the purpose of design, the weight of machinery and moving loads shall be increased as follows to allow for impact: (1) elevator machinery, 100 percent; (2) light machinery, shaft- or motor-driven, 20 percent; (3) reciprocating machinery or power-driven units, 50 percent; (4) hangers for floors or balconies, 33 percent. Percentages shall be increased where specified by the manufacturer.

1607.9 Reduction in live loads. Except for uniform live loads at roofs, all other minimum uniformly distributed live loads, L_{u}, in Table 1607.1 are permitted to be reduced in accordance with Section 1607.9.1 or 1607.9.2. Roof uniform live loads, other than special purpose roofs of Section 1607.11.2, are permitted to be reduced in accordance with Section 1607.11.2. Roof uniform live loads of special purpose roofs are permitted to be reduced in accordance with Section 1607.9.1 or 1607.9.2.

1607.9.1 General. Subject to the limitations of Sections 1607.9.1 through 1607.9.4, members for which a value of K_{LL}A_{T} is 400 square feet (37.16 m²) or more are permitted to be designed for a reduced live load in accordance with the following equation:

$$ L = L_{o} \left(0.25 + \frac{15}{\sqrt{K_{LL}A_{T}}} \right) \quad \text{(Equation 16-22)} $$

For SI: $$ L = L_{o} \left(0.25 + \frac{4.57}{\sqrt{K_{LL}A_{T}}} \right) $$

where:

$$ L = \text{Reduced design live load per square foot (meter) of area supported by the member.} $$

TABLE 1607.6

<table>
<thead>
<tr>
<th>LOADING CLASS</th>
<th>UNIFORM LOAD (pounds/linear foot of lane)</th>
<th>CONCENTRATED LOAD (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOADING</td>
<td>FOR MOMENT</td>
</tr>
<tr>
<td></td>
<td>CLASS</td>
<td>DESIGN</td>
</tr>
<tr>
<td>H20-44 and HS20-44</td>
<td>640</td>
<td>18,000</td>
</tr>
<tr>
<td>H15-44 and HS15-44</td>
<td>480</td>
<td>13,500</td>
</tr>
</tbody>
</table>

For SI: 1 pound per linear foot = 0.01459 kN/m, 1 pound = 0.004449 kN, 1 ton = 8.90 kN.

a. An H loading class designates a two-axle truck with a semitrailer. An HS loading class designates a tractor truck with a semitrailer. The numbers following the letter classification indicate the gross weight in tons of the standard truck and the year the loadings were instituted.

b. See Section 1607.6.1 for the loading of multiple spans.

1607.7.3 Vehicle barrier systems. Vehicle barrier systems for passenger vehicles shall be designed to resist a single load of 6,000 pounds (26.70 kN) applied horizontally in any direction to the barrier system and shall have anchorage or attachment capable of transmitting this load to the structure. For design of the system, two loading conditions shall be analyzed. The first condition shall apply the load at a height of 1 foot, 6 inches (457 mm) above the floor or ramp surface. The second loading condition shall apply the load at 2 feet, 3 inches (686 mm) above the floor or ramp surface. The more severe load condition shall govern the design of the barrier restraint system. The load shall be assumed to act concurrently with any handrail or guard loadings specified in Section 1607.7.1. Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for traffic railings.

1607.8 Impact loads. The live loads specified in Section 1607.3 include allowance for impact conditions. Provisions shall be made in the structural design for uses and loads that involve unusual vibration and impact forces.

1607.8.1 Elevators. Elevator loads shall be increased by 100 percent for impact and the structural supports shall be designed within the limits of deflection prescribed by ASME A17.1.

1607.8.2 Machinery. For the purpose of design, the weight of machinery and moving loads shall be increased as follows to allow for impact: (1) elevator machinery, 100 percent; (2) light machinery, shaft- or motor-driven, 20 percent; (3) reciprocating machinery or power-driven units, 50 percent; (4) hangers for floors or balconies, 33 percent. Percentages shall be increased where specified by the manufacturer.

1607.9 Reduction in live loads. Except for uniform live loads at roofs, all other minimum uniformly distributed live loads, L_{u}, in Table 1607.1 are permitted to be reduced in accordance with Section 1607.9.1 or 1607.9.2. Roof uniform live loads, other than special purpose roofs of Section 1607.11.2, are permitted to be reduced in accordance with Section 1607.11.2. Roof uniform live loads of special purpose roofs are permitted to be reduced in accordance with Section 1607.9.1 or 1607.9.2.

1607.9.1 General. Subject to the limitations of Sections 1607.9.1 through 1607.9.4, members for which a value of K_{LL}A_{T} is 400 square feet (37.16 m²) or more are permitted to be designed for a reduced live load in accordance with the following equation:

$$ L = L_{o} \left(0.25 + \frac{15}{\sqrt{K_{LL}A_{T}}} \right) \quad \text{(Equation 16-22)} $$

For SI: $$ L = L_{o} \left(0.25 + \frac{4.57}{\sqrt{K_{LL}A_{T}}} \right) $$

where:

$$ L = \text{Reduced design live load per square foot (meter) of area supported by the member.} $$

TABLE 1607.6

<table>
<thead>
<tr>
<th>LOADING CLASS</th>
<th>UNIFORM LOAD (pounds/linear foot of lane)</th>
<th>CONCENTRATED LOAD (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOADING</td>
<td>FOR MOMENT</td>
</tr>
<tr>
<td></td>
<td>CLASS</td>
<td>DESIGN</td>
</tr>
<tr>
<td>H20-44 and HS20-44</td>
<td>640</td>
<td>18,000</td>
</tr>
<tr>
<td>H15-44 and HS15-44</td>
<td>480</td>
<td>13,500</td>
</tr>
</tbody>
</table>

For SI: 1 pound per linear foot = 0.01459 kN/m, 1 pound = 0.004449 kN, 1 ton = 8.90 kN.

a. An H loading class designates a two-axle truck with a semitrailer. An HS loading class designates a tractor truck with a semitrailer. The numbers following the letter classification indicate the gross weight in tons of the standard truck and the year the loadings were instituted.

b. See Section 1607.6.1 for the loading of multiple spans.
107.9.1 One-way slabs. The tributary area, \(A_t \), for use in Equation 16-22 for one-way slabs shall not exceed an area defined by the slab span times a width normal to the span of 1.5 times the slab span.

107.9.2 Heavy live loads. Live loads that exceed 100 psf (4.79 kN/m²) shall not be reduced.

Exceptions:
1. The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \(L \) as calculated in Section 1607.9.1.

2. For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

107.9.3 Passenger vehicle garages. The live loads shall not be reduced in passenger vehicle garages.

Exception: The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \(L \) as calculated in Section 1607.9.1.

107.9.4 Group A occupancies. Live loads of 100 psf (4.79 kN/m²) and at areas where fixed seats are located shall not be reduced in Group A occupancies.

107.9.5 Roof members. Live loads of 100 psf (4.79 kN/m²) or less shall not be reduced for roof members except as specified in Section 1607.11.2.

Table 1607.9.1: Live Load Element Factor, \(K_{ll} \)

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>(K_{ll})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior columns</td>
<td>4</td>
</tr>
<tr>
<td>Exterior columns without cantilever slabs</td>
<td>4</td>
</tr>
<tr>
<td>Edge columns with cantilever slabs</td>
<td>3</td>
</tr>
<tr>
<td>Corner columns with cantilever slabs</td>
<td>2</td>
</tr>
<tr>
<td>Edge beams without cantilever slabs</td>
<td>2</td>
</tr>
<tr>
<td>Interior beams</td>
<td>2</td>
</tr>
<tr>
<td>All other members not identified above including:</td>
<td>1</td>
</tr>
<tr>
<td>Edge beams with cantilever slabs</td>
<td></td>
</tr>
<tr>
<td>Cantilever beams</td>
<td></td>
</tr>
<tr>
<td>One-way slabs</td>
<td></td>
</tr>
<tr>
<td>Two-way slabs</td>
<td></td>
</tr>
<tr>
<td>Members without provisions for continuous shear transfer normal to their span</td>
<td></td>
</tr>
</tbody>
</table>

107.9.6 Distribution of floor loads. Where uniform floor live loads are involved in the design of structural members arranged so as to create continuity, the minimum applied loads shall be the full dead loads on all spans in combination with the floor live loads on spans selected to produce the greatest effect at each location under consideration. It shall be permitted to reduce floor live loads in accordance with Section 1607.9.
1607.11 Roof loads. The structural supports of roofs and marquees shall be designed to resist wind and, where applicable, snow and earthquake loads, in addition to the dead load of construction and the appropriate live loads as prescribed in this section, or as set forth in Table 1607.1. The live loads acting on a sloping surface shall be assumed to act vertically on the horizontal projection of that surface.

1607.11.1 Distribution of roof loads. Where uniform roof live loads are reduced to less than 20 psf (0.96 kN/m²) in accordance with Section 1607.11.2.1 and are applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, whichever produces the most unfavorable load effect. See Section 1607.11.2 for reductions in minimum roof live loads and Section 7.5 of ASCE 7 for partial snow loading.

1607.11.2 Reduction in roof live loads. The minimum uniformly distributed live loads of roofs and marquees, \(L_{\text{r}} \), in Table 1607.1 are permitted to be reduced in accordance with Section 1607.11.2.1 or 1607.11.2.2.

1607.11.2.1 Flat, pitched and curved roofs. Ordinary flat, pitched and curved roofs, and awnings and canopies other than of fabric construction supported by lightweight rigid skeleton structures, are permitted to be designed for a reduced roof live load as specified in the following equations or other controlling combinations of loads in Section 1605, whichever produces the greater load. In structures such as greenhouses, where special scaffolding is used as a work surface for workers and materials during maintenance and repair operations, a lower roof load than specified in the following equations shall not be used unless approved by the building official. Such structures shall be designed for a minimum roof live load of 12 psf (0.58 kN/m²).

\[
L_r = L_{\text{r}} R_1 R_2
\]

(Equation 16-25)

where: \(12 \leq L_r \leq 20 \)

For SI: \(L_r = L_{\text{r}} R_1 R_2 \)

where: \(0.58 \leq L_r \leq 0.96 \)

\(L_{\text{r}} \) = Reduced live load per square foot (m²) of horizontal projection in pounds per square foot (kN/m²).

The reduction factors \(R_1 \) and \(R_2 \) shall be determined as follows:

\(R_1 = 1 \) for \(A_r \leq 200 \) square feet \((18.58 \text{ m}^2) \)

(Equation 16-26)

\(R_1 = 1.2 - 0.001A_r \) for 200 square feet \(< A_r < 600 \) square feet

(Equation 16-27)

For SI: \(1.2 - 0.011A_r \) for 18.58 square meters \(< A_r < 55.74 \) square meters

\(R_2 = 0.6 \) for \(A_r \geq 600 \) square feet \((55.74 \text{ m}^2) \)

(Equation 16-28)

where:

\(A_r \) = Tributary area (span length multiplied by effective width) in square feet (m²) supported by any structural member, and

\(R_2 = 1 \) for \(F \leq 4 \)

(Equation 16-29)

\(R_2 = 1.2 - 0.05F \) for \(4 < F < 12 \)

(Equation 16-30)

\(R_2 = 0.6 \) for \(F \geq 12 \)

(Equation 16-31)

where:

\(F \) = For a sloped roof, the number of inches of rise per foot (for SI: \(F = 0.12 \times \) slope, with slope expressed as a percentage), or for an arch or dome, the rise-to-span ratio multiplied by 32.

1607.11.2.2 Special-purpose roofs. Roofs used for promenade purposes, roof gardens, assembly purposes or other special purposes, and marquees, shall be designed for a minimum live load, \(L_{\text{r}} \), as specified in Table 1607.1. Such live loads are permitted to be reduced in accordance with Section 1607.9. Live loads of 100 psf (4.79 kN/m²) or more at areas of roofs classified as Group A occupancies shall not be reduced.

1607.11.3 Landscaped roofs. Where roofs are to be landscaped, the uniform design live load in the landscaped area shall be 20 psf (0.958 kN/m²). The weight of the landscaping materials shall be considered as dead load and shall be computed on the basis of saturation of the soil.

1607.11.4 Awnings and canopies. Awnings and canopies shall be designed for uniform live loads as required in Table 1607.1 as well as for snow loads and wind loads as specified in Sections 1608 and 1609.

1607.12 Crane loads. The crane live load shall be the rated capacity of the crane. Design loads for the runway beams, including connections and support brackets, of moving bridge cranes and monorail cranes shall include the maximum wheel loads of the crane and the vertical impact, lateral and longitudinal forces induced by the moving crane.

1607.12.1 Maximum wheel load. The maximum wheel loads shall be the wheel loads produced by the weight of the bridge, as applicable, plus the sum of the rated capacity and the weight of the trolley with the trolley positioned on its runway at the location where the resulting load effect is maximum.

1607.12.2 Vertical impact force. The maximum wheel loads of the crane shall be increased by the percentages shown below to determine the induced vertical impact or vibration force:

- Monorail cranes (powered) 25 percent
- Cab-operated or remotely operated bridge cranes (powered) 25 percent
- Pendant-operated bridge cranes (powered) 10 percent
- Bridge cranes or monorail cranes with hand-geared bridge, trolley and hoist 0 percent

1607.12.3 Lateral force. The lateral force on crane runway beams with electrically powered trolleys shall be calculated...
as 20 percent of the sum of the rated capacity of the crane and the weight of the hoist and trolley. The lateral force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction perpendicular to the beam, and shall be distributed according to the lateral stiffness of the runway beam and supporting structure.

1607.12.4 Longitudinal force. The longitudinal force on crane runway beams, except for bridge cranes with hand-geared bridges, shall be calculated as 10 percent of the maximum wheel loads of the crane. The longitudinal force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction parallel to the beam.

1607.13 Interior walls and partitions. Interior walls and partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength to resist the loads to which they are subjected but not less than a horizontal load of 5 psf (0.240 kN/m²).

Exception: Fabric partitions complying with Section 1607.13.1 shall not be required to resist the minimum horizontal load of 5 psf (0.24 kN/m²).

1607.13.1 Fabric partitions. Fabric partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength to resist the following load conditions:

1. A horizontal distributed load of 5 psf (0.24 kN/m²) applied to the partition framing. The total area used to determine the distributed load shall be the area of the fabric face between the framing members to which the fabric is attached. The total distributed load shall be uniformly applied to such framing members in proportion to the length of each member.

2. A concentrated load of 40 pounds (0.176 kN) applied to an 8-inch diameter (203 mm) area [50.3 square inches (32 452 mm²)] of the fabric face at a height of 54 inches (1372 mm) above the floor.

SECTION 1608 SNOW LOADS

1608.1 General. Design snow loads shall be determined in accordance with Chapter 7 of ASCE 7, but the design roof load shall not be less than that determined by Section 1607.

1608.2 Ground snow loads. The ground snow loads to be used in determining the design snow loads for roofs shall be determined in accordance with ASCE 7 or Figure 1608.2 for the contiguous United States and Table 1608.2 for Alaska. Site-specific case studies shall be made in areas designated “CS” in Figure 1608.2. Ground snow loads for sites at elevations above the limits indicated in Figure 1608.2 and for all sites within the CS areas shall be approved. Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2-percent annual probability of being exceeded (50-year mean recurrence interval). Snow loads are zero for Hawaii, except in mountainous regions as approved by the building official.

| TABLE 1608.2 GROUND SNOW LOADS, \(p_g \), FOR ALASKAN LOCATIONS |
|------------------|------------------|------------------|------------------|------------------|
| LOCATION | POUNDS PER SQUARE FOOT | LOCATION | POUNDS PER SQUARE FOOT | LOCATION | POUNDS PER SQUARE FOOT |
| Adak | 30 | Galena | 60 | Petersburg | 150 |
| Anchorage | 50 | Gulkana | 70 | St. Paul Islands | 40 |
| Angoon | 70 | Homer | 40 | Seward | 50 |
| Barrow | 25 | Juneau | 60 | Shemya | 25 |
| Barter Island | 35 | Kenai | 70 | Sitka | 50 |
| Bethel | 40 | Kodiak | 30 | Talkeetna | 120 |
| Big Delta | 50 | Kotzebue | 60 | Unalakleet | 50 |
| Cold Bay | 25 | McGrath | 70 | Valdez | 160 |
| Cordova | 100 | Nenana | 80 | Whittier | 300 |
| Fairbanks | 60 | Nome | 70 | Wrangell | 60 |
| Fort Yukon | 60 | Palmer | 50 | Yakutat | 150 |

For SI: 1 pound per square foot = 0.0479 kN/m².
In CS areas, site-specific Case Studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Numbers in parentheses represent the upper elevation limits in feet for the ground snow load values presented below. Site-specific case studies are required to establish ground snow loads at elevations not covered.

To convert lb/sq ft to kNm2, multiply by 0.0479.

To convert feet to meters, multiply by 0.3048.

FIGURE 1608.2
GROUND SNOW LOADS, p_{gn}, FOR THE UNITED STATES (psf)
FIGURE 1608.2—continued
GROUND SNOW LOADS, p_{gw}, FOR THE UNITED STATES (psf)
SECTION 1609
WIND LOADS

1609.1 Applications. Buildings, structures and parts thereof shall be designed to withstand the minimum wind loads prescribed herein. Decreases in wind loads shall not be made for the effect of shielding by other structures.

1609.1.1 Determination of wind loads. Wind loads on every building or structure shall be determined in accordance with Chapter 6 of ASCE 7 or provisions of the alternate all-heights method in Section 1609.6. The type of opening protection required, the basic wind speed and the exposure category for a site is permitted to be determined in accordance with Section 1609 or ASCE 7. Wind shall be assumed to come from any horizontal direction and wind pressures shall be assumed to act normal to the surface considered.

Exceptions:
1. Subject to the limitations of Section 1609.1.1.1, the provisions of ICC 600 shall be permitted for applicable Group R-2 and R-3 buildings.
2. Subject to the limitations of Section 1609.1.1.1, residential structures using the provisions of the AF&PA WFCM.
3. Subject to the limitations of Section 1609.1.1.1, residential structures using the provisions of AISI S230.
6. Wind tunnel tests in accordance with Section 6.6 of ASCE 7, subject to the limitations in Section 1609.1.1.2.

1609.1.1.1 Applicability. The provisions of ICC 600 are applicable only to buildings located within Exposure B or C as defined in Section 1609.4. The provisions of ICC 600, AF&PA WFCM and AISI S230 shall not apply to buildings sited on the upper half of an isolated hill, ridge or escarpment meeting the following conditions:
1. The hill, ridge or escarpment is 60 feet (18 288 mm) or higher if located in Exposure B or 30 feet (9144 mm) or higher if located in Exposure C;
2. The maximum average slope of the hill exceeds 10 percent; and
3. The hill, ridge or escarpment is unobstructed upwind by other such topographic features for a distance from the high point of 50 times the height of the hill or 1 mile (1.61 km), whichever is greater.

1609.1.1.2 Wind tunnel test limitations. The lower limit on pressures for main wind-force-resisting systems and components and cladding shall be in accordance with Sections 1609.1.1.2.1 and 1609.1.1.2.2.

1609.1.1.2.1 Lower limits on main wind-force-resisting system. Base overturning moments determined from wind tunnel testing shall be limited to not less than 80 percent of the design base overturning moments determined in accordance with Section 6.5 of ASCE 7, unless specific testing is performed that demonstrates it is the aerodynamic coefficient of the building, rather than shielding from other structures, that is responsible for the lower values. The 80-percent limit shall be permitted to be adjusted by the ratio of the frame load at critical wind directions as determined from wind tunnel testing without specific adjacent buildings, but including appropriate upwind roughness, to that determined in Section 6.5 of ASCE 7.

1609.1.1.2.2 Lower limits on components and cladding. The design pressures for components and cladding on walls or roofs shall be selected as the greater of the wind tunnel test results or 80 percent of the pressure obtained for Zone 4 for walls and Zone 1 for roofs as determined in Section 6.5 of ASCE 7, unless specific testing is performed that demonstrates it is the aerodynamic coefficient of the building, rather than shielding from nearby structures, that is responsible for the lower values. Alternatively, limited tests at a few wind directions without specific adjacent buildings, but in the presence of an appropriate upwind roughness, shall be permitted to be used to demonstrate that the lower pressures are due to the shape of the building and not to shielding.

1609.1.2 Protection of openings. In wind-borne debris regions, glazing in buildings shall be impact resistant or protected with an impact-resistant covering meeting the requirements of an approved impact-resistant standard or ASTM E 1996 and ASTM E 1886 referenced herein as follows:
1. Glazed openings located within 30 feet (9144 mm) of grade shall meet the requirements of the large missile test of ASTM E 1996.
2. Glazed openings located more than 30 feet (9144 mm) above grade shall meet the provisions of the small missile test of ASTM E 1996.

Exceptions:
1. Wood structural panels with a minimum thickness of 3/16 inch (11.1 mm) and maximum panel span of 8 feet (2438 mm) shall be permitted for opening protection in one- and two-story buildings classified as Group R-3 or R-4 occupancy. Panels shall be precut so that they shall be attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be precut as required for the anchorage method and shall be secured with the attachment hardware provided. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building. Attachment in accordance with Table 1609.1.2 with corrosion-resistant attachment hardware provided and anchors permanently installed on the building is permitted for buildings with a mean roof height of 45 feet (13 716 mm) or less where wind speeds do not exceed 140 mph (63 m/s).
2. Glazing in Occupancy Category I buildings as defined in Section 1604.5, including greenhouses that are occupied for growing plants on a production or research basis, without public access shall be permitted to be unprotected.

3. Glazing in Occupancy Category II, III or IV buildings located over 60 feet (18 288 mm) above the ground and over 30 feet (9 144 mm) above aggregate surface roofs located within 1,500 feet (458 m) of the building shall be permitted to be unprotected.

1609.1.2.1 Louvers. Louvers protecting intake and exhaust ventilation ducts not assumed to be open that are located within 30 feet (9 144 mm) of grade shall meet requirements of an approved impact-resisting standard or the large missile test of ASTM E 1996.

1609.1.2.2 Garage doors. Garage door glazed opening protection for wind-borne debris shall meet the requirements of an approved impact-resisting standard or ANSI/DASMA 115.

1609.2 Definitions. The following words and terms shall, for the purposes of Section 1609, have the meanings shown herein.

<table>
<thead>
<tr>
<th>TABLE 1609.2</th>
<th>WIND-BORNE DEBRIS PROTECTION FASTENING SCHEDULE FOR WOOD STRUCTURAL PANELS<sup>a, b, c, d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTENER TYPE</td>
<td>FASTENER SPACING (inches)</td>
</tr>
<tr>
<td></td>
<td>Panel Span ≤ 4 feet</td>
</tr>
<tr>
<td>No. 8 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>No. 10 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>1/4-inch diameter lag-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N, 1 mile per hour = 0.447 m/s.

- a. This table is based on 140 mph wind speeds and a 45-foot mean roof height.
- b. Fasteners shall be installed at opposing ends of the wood structural panel. Fasteners shall be located a minimum of 1 inch from the edge of the panel.
- c. Anchors shall penetrate through the exterior wall covering with an embedment length of 2 inches minimum into the building frame. Fasteners shall be located a minimum of 2' /2 inches from the edge of concrete block or concrete.
- d. Where panels are attached to masonry or masonry/stucco, they shall be attached using vibration-resistant anchors having a minimum ultimate withdrawal capacity of 1,500 pounds.

HURRICANE-PRONE REGIONS. Areas vulnerable to hurricanes defined as:

1. The U. S. Atlantic Ocean and Gulf of Mexico coasts where the basic wind speed is greater than 90 mph (40 m/s) and
2. Hawaii, Puerto Rico, Guam, Virgin Islands and American Samoa.

WIND-BORNE DEBRIS REGION. Portions of hurricane-prone regions that are within 1 mile (1.61 km) of the coastal mean high water line where the basic wind speed is 110 mph (48 m/s) or greater; or portions of hurricane-prone regions where the basic wind speed is 120 mph (53 m/s) or greater; or Hawaii.

1609.3 Basic wind speed. The basic wind speed, in mph, for the determination of the wind loads shall be determined by Figure 1609. Basic wind speed for the special wind regions indicated, near mountainous terrain and near gorges shall be in accordance with local jurisdiction requirements. Basic wind speeds determined by the local jurisdiction shall be in accordance with Section 6.5.4 of ASCE 7.

In nonhurricane-prone regions, when the basic wind speed is estimated from regional climatic data, the basic wind speed shall be not less than the wind speed associated with an annual probability of 0.02 (50-year mean recurrence interval), and the estimate shall be adjusted for equivalence to a 3-second gust wind speed at 33 feet (10 m) above ground in Exposure Category C. The data analysis shall be performed in accordance with Section 6.5.4.2 of ASCE 7.

1609.3.1 Wind speed conversion. When required, the 3-second gust basic wind speeds of Figure 1609 shall be converted to fastest-mile wind speeds, V_{fm}, using Table 1609.3.1 or Equation 16-32.

$$V_{fm} = \frac{V_{3S} - 10.5}{105}$$

(Equation 16-32)

where:

V_{3S} = 3-second gust basic wind speed from Figure 1609.

1609.4 Exposure category. For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features.

<table>
<thead>
<tr>
<th>TABLE 1609.3.1</th>
<th>EQUIVALENT BASIC WIND SPEEDS<sup>a, b, c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{3S}</td>
<td>85</td>
</tr>
<tr>
<td>V_{fm}</td>
<td>71</td>
</tr>
</tbody>
</table>

For SI: 1 mile per hour = 0.447 m/s.

- a. Linear interpolation is permitted.
- b. V_{3S} is the 3-second gust wind speed (mph).
- c. V_{fm} is the fastest mile wind speed (mph).
FIGURE 1609
BASIC WIND SPEED (3-SECOND GUST)
Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10 m) above ground for Exposure C category.
2. Linear Interpolation between wind contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

FIGURE 1609—continued
BASIC WIND SPEED (3-SECOND GUST)
Special Wind Region Notes:

1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10 m) above ground for Exposure C category.
2. Linear interpolation between wind contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10 m) above ground for Exposure C category.
2. Linear interpolation between wind contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10 m) above ground for Exposure C category.
2. Linear interpolation between wind contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
1609.4.1 Wind directions and sectors. For each selected wind direction at which the wind loads are to be evaluated, the exposure of the building or structure shall be determined for the two upwind sectors extending 45 degrees (0.79 rad) either side of the selected wind direction. The exposures in these two sectors shall be determined in accordance with Sections 1609.4.2 and 1609.4.3 and the exposure resulting in the highest wind loads shall be used to represent winds from that direction.

1609.4.2 Surface roughness categories. A ground surface roughness within each 45-degree (0.79 rad) sector shall be determined for a distance upwind of the site as defined in Section 1609.4.3 from the categories defined below, for the purpose of assigning an exposure category as defined in Section 1609.4.3.

Surface Roughness B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Surface Roughness C. Open terrain with scattered obstructions having heights generally less than 30 feet (9144 mm). This category includes flat open country, grasslands, and all water surfaces in hurricane-prone regions.

Surface Roughness D. Flat, unobstructed areas and water surfaces outside hurricane-prone regions. This category includes smooth mud flats, salt flats and unbroken ice.

1609.4.3 Exposure categories. An exposure category shall be determined in accordance with the following:

Exposure B. Exposure B shall apply where the ground surface roughness condition, as defined by Surface Roughness B, prevails in the upwind direction for a distance of at least 2,600 feet (792 m) or 20 times the height of the building, whichever is greater.

Exception: For buildings whose mean roof height is less than or equal to 30 feet (9144 mm), the upwind distance is permitted to be reduced to 1,500 feet (457 m).

Exposure C. Exposure C shall apply for all cases where Exposures B or D do not apply.

Exposure D. Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance of at least 5,000 feet (1524 m) or 20 times the height of the building, whichever is greater. Exposure D shall extend inland from the shoreline for a distance of 600 feet (183 m) or 20 times the height of the building, whichever is greater.

1609.5 Roof systems.

1609.5.1 Roof deck. The roof deck shall be designed to withstand the wind pressures determined in accordance with ASCE 7.

1609.5.2 Roof coverings. Roof coverings shall comply with Section 1609.5.1.

Exception: Rigid tile roof coverings that are air permeable and installed over a roof deck complying with Section 1609.5.1 are permitted to be designed in accordance with Section 1609.5.3.

Asphalt shingles installed over a roof deck complying with Section 1609.5.1 shall comply with the wind-resistance requirements of Section 1507.2.7.1.

1609.5.3 Rigid tile. Wind loads on rigid tile roof coverings shall be determined in accordance with the following equation:

\[
M_a = q_h C_L b L_a \left[1.0 - G_{C_p} \right] \tag{Equation 16-33}
\]

For SI:

\[
M_a = \frac{q_h C_L b L_a \left[1.0 - G_{C_p} \right]}{1,000}
\]

where:

\(b \) = Exposed width, feet (mm) of the roof tile.

\(C_L \) = Lift coefficient. The lift coefficient for concrete and clay tile shall be 0.2 or shall be determined by test in accordance with Section 1716.2.

\(G_{C_p} \) = Roof pressure coefficient for each applicable roof zone determined from Chapter 6 of ASCE 7. Roof coefficients shall not be adjusted for internal pressure.

\(L \) = Length, feet (mm) of the roof tile.

\(L_a \) = Moment arm, feet (mm) from the axis of rotation to the point of uplift on the roof tile. The point of uplift shall be taken at 0.76\(L \) from the head of the tile and the middle of the exposed width. For roof tiles with nails or screws (with or without a tail clip), the axis of rotation shall be taken as the head of the tile for direct deck application or as the top edge of the batten for battened applications. For roof tiles fastened only by a nail or screw along the side of the tile, the axis of rotation shall be determined by testing. For roof tiles installed with battens and fastened only by a clip near the tail of the tile, the moment arm shall be determined about the top edge of the batten with consideration given for the point of rotation of the tiles based on straight bond or broken bond and the tile profile.

\(M_a \) = Aerodynamic uplift moment, feet-pounds (N-mm) acting to raise the tail of the tile.

\(q_h \) = Wind velocity pressure, psf (kN/m²) determined from Section 6.5.10 of ASCE 7.

Concrete and clay roof tiles complying with the following limitations shall be designed to withstand the aerodynamic uplift moment as determined by this section:

1. The roof tiles shall be either loose laid on battens, mechanically fastened, mortar set or adhesive set.

2. The roof tiles shall be installed on solid sheathing which has been designed as components and cladding.

3. An underlayment shall be installed in accordance with Chapter 15.
4. The tile shall be single lapped interlocking with a minimum head lap of not less than 2 inches (51 mm).
5. The length of the tile shall be between 1.0 and 1.75 feet (305 mm and 533 mm).
6. The exposed width of the tile shall be between 0.67 and 1.25 feet (204 mm and 381 mm).
7. The maximum thickness of the tail of the tile shall not exceed 1.3 inches (33 mm).
8. Roof tiles using mortar set or adhesive set systems shall have at least two-thirds of the tile’s area free of mortar or adhesive contact.

1609.6 Alternate all-heights method. The alternate wind design provisions in this section are simplifications of the ASCE 7 Method 2—Analytical Procedure.

1609.6.1 Scope. As an alternative to ASCE 7 Section 6.5, the following provisions are permitted to be used to determine the wind effects on regularly shaped buildings, or other structures that are regularly shaped, which meet all of the following conditions:
1. The building or other structure is less than or equal to 75 feet (22 860 mm) in height with a height-to-least-width ratio of 4 or less, or the building or other structure has a fundamental frequency greater than or equal to 1 hertz.
2. The building or other structure is not sensitive to dynamic effects.
3. The building or other structure is not located on a site for which channeling effects or buffeting in the wake of upwind obstructions warrant special consideration.
4. The building shall meet the requirements of a simple diaphragm building as defined in ASCE 7 Section 6.2, where wind loads are only transmitted to the main wind-force-resisting system (MWFRS) at the diaphragms.
5. For open buildings, multispans, gable roofs, stepped roofs, sawtooth roofs, domed roofs, roofs with slopes greater than 45 degrees (0.79 rad), solid free-standing walls and solid signs, and rooftop equipment, apply ASCE 7 provisions.

1609.6.1.1 Modifications. The following modifications shall be made to certain subsections in ASCE 7: in Section 1609.6.2, symbols and notations that are specific to this section are used in conjunction with the symbols and notations in ASCE 7 Section 6.3.

1609.6.2 Symbols and notations. Coefficients and variables used in the alternative all-heights method equations are as follows:

\[C_{net} = \text{Net-pressure coefficient based on } K_d \left[(G) \left(\frac{C_p}{(G_{C_p})}\right)\right], \text{in accordance with Table 1609.6.2(2)}. \]

\[G = \text{Gust effect factor for rigid structures in accordance with ASCE 7 Section 6.5.8.1}. \]

\[K_d = \text{Wind directionality factor in accordance with ASCE 7 Table 6-4}. \]

\[P_{net} = \text{Design wind pressure to be used in determination of wind loads on buildings or other structures or their components and cladding, in psf (kN/m^2)} \]

\[q_s = \text{Wind stagnation pressure in psf (kN/m^2) in accordance with Table 1609.6.2(1)}. \]

1609.6.3 Design equations. When using the alternative all-heights method, the MWFRS, and components and cladding of every structure shall be designed to resist the effects of wind pressures on the building envelope in accordance with Equation 16-34.

\[P_{net} = q_s K_c C_{net} [I/K_d] \quad \text{(Equation 16-34)} \]

Design wind forces for the MWFRS shall not be less than 10 psf (0.48 kN/m^2) multiplied by the area of the structure projected on a plane normal to the assumed wind direction (see ASCE 7 Section 6.1.4 for criteria). Design net wind pressure for components and cladding shall not be less than 10 psf (0.48 kN/m^2) acting in either direction normal to the surface.

1609.6.4 Design procedure. The MWFRS and the components and cladding of every building or other structure shall be designed for the pressures calculated using Equation 16-34.

1609.6.4.1 Main wind-force-resisting systems. The MWFRS shall be investigated for the torsional effects identified in ASCE 7 Figure 6-9.

1609.6.4.2 Determination of \(K_c \) and \(K_{ar} \). Velocity pressure exposure coefficient, \(K_{ar} \), shall be determined in accordance with ASCE 7 Section 6.5.6.6 and the topographic factor, \(K_{ar} \), shall be determined in accordance with ASCE 7 Section 6.5.7.

1. For the windward side of a structure, \(K_{ar} \) and \(K_{ar} \) shall be based on height \(z \).
2. For leeward and sidewalls, and for windward and leeward roofs, \(K_{ar} \) and \(K_{ar} \) shall be based on mean roof height \(h \).

<table>
<thead>
<tr>
<th>TABLE 1609.6.2(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC WIND SPEED (mph)</td>
</tr>
<tr>
<td>PRESSURE, (q_s) (psf)</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 mph = 0.44 m/s, 1 psf = 47.88 Pa.
a. For basic wind speeds not shown, use \(q_s = 0.00256 \ V^2 \).
TABLE 1609.6.2(2)
NET PRESSURE COEFFICIENTS, C_{net}^a,b

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>C_{net} FACTOR</th>
<th>Enclosed</th>
<th>Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Internal</td>
<td>- Internal</td>
<td>+ Internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pressure</td>
<td>pressure</td>
<td>pressure</td>
</tr>
<tr>
<td>Windward wall</td>
<td></td>
<td>0.43</td>
<td>0.73</td>
<td>0.11</td>
</tr>
<tr>
<td>Leeward wall</td>
<td></td>
<td>-0.51</td>
<td>-0.21</td>
<td>-0.83</td>
</tr>
<tr>
<td>Sidewall</td>
<td></td>
<td>-0.66</td>
<td>-0.35</td>
<td>-0.97</td>
</tr>
<tr>
<td>Parapet wall</td>
<td>Windward</td>
<td>1.28</td>
<td></td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Leeward</td>
<td>-0.85</td>
<td></td>
<td>-0.85</td>
</tr>
<tr>
<td>Roofs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Internal</td>
<td>- Internal</td>
<td>+ Internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pressure</td>
<td>pressure</td>
<td>pressure</td>
</tr>
<tr>
<td>Wind perpendicular to ridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leeward roof or flat roof</td>
<td></td>
<td>-0.66</td>
<td>-0.35</td>
<td>-0.97</td>
</tr>
<tr>
<td>Windward roof slopes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope < 2:12 (10°)</td>
<td>Condition 1</td>
<td>-1.09</td>
<td>-0.79</td>
<td>-1.41</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>-0.28</td>
<td>0.02</td>
<td>-0.60</td>
</tr>
<tr>
<td>Slope = 4:12 (18°)</td>
<td>Condition 1</td>
<td>-0.73</td>
<td>-0.42</td>
<td>-1.04</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>-0.05</td>
<td>0.25</td>
<td>-0.37</td>
</tr>
<tr>
<td>Slope = 5:12 (23°)</td>
<td>Condition 1</td>
<td>-0.58</td>
<td>-0.28</td>
<td>-0.90</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.03</td>
<td>0.34</td>
<td>-0.29</td>
</tr>
<tr>
<td>Slope = 6:12 (27°)</td>
<td>Condition 1</td>
<td>-0.47</td>
<td>-0.16</td>
<td>-0.78</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.06</td>
<td>0.37</td>
<td>-0.25</td>
</tr>
<tr>
<td>Slope = 7:12 (30°)</td>
<td>Condition 1</td>
<td>-0.37</td>
<td>-0.06</td>
<td>-0.68</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.07</td>
<td>0.37</td>
<td>-0.25</td>
</tr>
<tr>
<td>Slope = 9:12 (37°)</td>
<td>Condition 1</td>
<td>-0.27</td>
<td>0.04</td>
<td>-0.58</td>
</tr>
<tr>
<td></td>
<td>Condition 2</td>
<td>0.14</td>
<td>0.44</td>
<td>-0.18</td>
</tr>
<tr>
<td>Slope 12:12 (45°)</td>
<td></td>
<td>0.14</td>
<td>0.44</td>
<td>-0.18</td>
</tr>
<tr>
<td>Wind parallel to ridge and flat roofs</td>
<td></td>
<td>-1.09</td>
<td>-0.79</td>
<td>-1.41</td>
</tr>
</tbody>
</table>

Nonbuilding Structures: Chimneys, Tanks and Similar Structures:

<table>
<thead>
<tr>
<th>h/D</th>
<th>1</th>
<th>7</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square (Wind normal to face)</td>
<td>0.99</td>
<td>1.07</td>
<td>1.53</td>
</tr>
<tr>
<td>Square (Wind on diagonal)</td>
<td>0.77</td>
<td>0.84</td>
<td>1.15</td>
</tr>
<tr>
<td>Hexagonal or Octagonal</td>
<td>0.81</td>
<td>0.97</td>
<td>1.13</td>
</tr>
<tr>
<td>Round</td>
<td>0.65</td>
<td>0.81</td>
<td>0.97</td>
</tr>
<tr>
<td>Open signs and lattice frameworks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of solid to gross area</td>
<td>< 0.1</td>
<td>0.1 to 0.29</td>
<td>0.3 to 0.7</td>
</tr>
<tr>
<td>Flat</td>
<td>1.45</td>
<td>1.30</td>
<td>1.16</td>
</tr>
<tr>
<td>Round</td>
<td>0.87</td>
<td>0.94</td>
<td>1.08</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>ENCLOSLED</th>
<th>PARTIALLY ENCLOSLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof elements and slopes</td>
<td>Gable or hipped configurations (Zone 1)</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Flat < Slope < 6:12 (27°)</td>
<td>See ASCE 7 Figure 6-11C Zone 1</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
<td>0.89</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.00</td>
<td>-1.32</td>
</tr>
<tr>
<td>Overhang: Flat < Slope < 6:12 (27°)</td>
<td>See ASCE 7 Figure 6-11B Zone 1</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.45</td>
<td></td>
</tr>
<tr>
<td>6:12 (27°) < Slope < 12:12 (45°)</td>
<td>See ASCE 7 Figure 6-11D Zone 1</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.92</td>
<td>1.23</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.00</td>
<td>-1.32</td>
</tr>
<tr>
<td>Tall flat-topped roofs h > 60’</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 2:12 (10°) (Zone 1)</td>
<td>See ASCE 7 Figure 6-17 Zone 1</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.34</td>
<td>-1.66</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-0.92</td>
<td>-1.23</td>
</tr>
</tbody>
</table>

Table 1609.6.2(2)—continued
TABLE 1609.6.2(2)—continued

**NET PRESSURE COEFFICIENTS, \(C_{n\text{et}}\)^{a,b}

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>(C_{n\text{et}}) FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof elements and slopes</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Gable or hipped configurations at ridges, eaves and rakes (Zone 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.68</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.17</td>
</tr>
<tr>
<td>Overhang for Slope Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.87</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.87</td>
</tr>
<tr>
<td>6:12 (27°) < Slope < 12:12 (45°) Figure 6-11D</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.83</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.17</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.00</td>
</tr>
<tr>
<td>Overhang for 6:12 (27°) < Slope < 12:12 (45°) See ASCE 7 Figure 6-11D Zone 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.70</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-1.53</td>
</tr>
<tr>
<td>Monosloped configurations at ridges, eaves and rakes (Zone 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 7:12 (30°) See ASCE 7 Figure 6-14B Zone 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.51</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.43</td>
</tr>
<tr>
<td>Tall flat topped roofs (h > 60')</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Flat < Slope < 2:12 (10°) (Zone 2) See ASCE 7 Figure 6-17 Zone 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-2.11</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-1.51</td>
</tr>
<tr>
<td>Gable or hipped configurations at corners (Zone 3) See ASCE 7 Figure 6-11C Zone 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 6:12 (27°)</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-2.53</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.85</td>
</tr>
</tbody>
</table>

(continued)
TABLE 1609.6.2(2)—continued
NET PRESSURE COEFFICIENTS, \(C_{\text{net}} \)

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>(C_{\text{net}}) FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhang for Slope Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 3</td>
<td>Negative</td>
<td>10 square feet or less -3.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more -2.13</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less 0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more 0.83</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less -1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more -1.00</td>
</tr>
<tr>
<td></td>
<td>Overhang for 6:12 (27°) < Slope < 12:12 (45°) See ASCE 7 Figure 6-11D Zone 3</td>
<td>Enclosed</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less -1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more -1.53</td>
</tr>
<tr>
<td></td>
<td>Overhang for 6:12 (27°) < Slope < 12:12 (45°)</td>
<td>Enclosed</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less 0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more 0.41</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less -2.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more -1.85</td>
</tr>
<tr>
<td>Monosloped Configurations at corners (Zone 3) See ASCE 7 Figure 6-14B Zone 3</td>
<td>Flat < Slope < 7:12 (30°)</td>
<td>Enclosed</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less 0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more 0.41</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less -1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more -0.83</td>
</tr>
<tr>
<td>Tall flat topped roofs (h > 60')</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>Flat < Slope < 2:12 (10°) (Zone 3) See ASCE 7 Figure 6-17 Zone 3</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less -2.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more -2.11</td>
</tr>
<tr>
<td>Wall Elements: (h = 60') (Zone 4) Figure 6-11A</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more 0.75</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less -1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more -0.83</td>
</tr>
<tr>
<td>Wall Elements: (h > 60') (Zone 4) See ASCE 7 Figure 6-17 Zone 4</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>20 square feet or less 0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more 0.66</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>20 square feet or less -0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more -0.75</td>
</tr>
<tr>
<td>Parapet Walls</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>-1.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.00</td>
</tr>
</tbody>
</table>
1609.6.4.3 Determination of net pressure coefficients, \(C_{net} \)

For the design of the MWFRS and for components and cladding, the sum of the internal and external net pressure shall be based on the net pressure coefficient, \(C_{net} \).

1. The pressure coefficient, \(C_{net} \), for walls and roofs shall be determined from Table 1609.6.2(2).

2. Where \(C_{net} \) has more than one value, the more severe wind load condition shall be used for design.

1609.6.4.4 Application of wind pressures

When using the alternative all-heights method, wind pressures shall be applied simultaneously on, and in a direction normal to, all building envelope wall and roof surfaces.

1609.6.4.4.1 Components and cladding

Wind pressure for each component or cladding element is applied as follows using \(C_{net} \) values based on the effective wind area, \(A \), contained within the zones in areas of discontinuity of width and/or length “a,” “2a” or “4a” at: corners of roofs and walls; edge strips for ridges, rakes and eaves; or field areas on walls or roofs as indicated in figures in tables in ASCE 7 as referenced in Table 1609.6.2(2) in accordance with the following:

1. Calculated pressures at local discontinuities acting over specific edge strips or corner boundary areas.

2. Include “field” (Zone 1, 2 or 4, as applicable) pressures applied to areas beyond the boundaries of the areas of discontinuity.

3. Where applicable, the calculated pressures at discontinuities (Zones 2 or 3) shall be combined with design pressures that apply specifically on rakes or eave overhangs.

SECTION 1610

SOIL LATERAL LOADS

1610.1 General. Foundation walls and retaining walls shall be designed to resist lateral soil loads. Soil loads specified in Table 1610.1 shall be used as the minimum design lateral soil loads unless determined otherwise by a geotechnical investigation in accordance with Section 1803. Foundation walls and other walls in which horizontal movement is restricted at the top shall be designed for at-rest pressure. Retaining walls free to move and rotate at the top shall be permitted to be designed for active pressure. Design lateral pressure from surcharge loads shall be added to the lateral earth pressure load. Design lateral pressure shall be increased if soils at the site are expansive. Foundation walls shall be designed to support the weight of the full hydrostatic pressure of undrained backfill unless a drainage system is installed in accordance with Sections 1805.4.2 and 1805.4.3.

Exception: Foundation walls extending not more than 8 feet (2438 mm) below grade and laterally supported at the top by flexible diaphragms shall be permitted to be designed for active pressure.
TABLE 1610.1
LATERAL SOIL LOAD

<table>
<thead>
<tr>
<th>DESCRIPTION OF BACKFILL MATERIAL</th>
<th>UNIFIED SOIL CLASSIFICATION</th>
<th>DESIGN LATERAL SOIL LOAD* (pound per square foot per foot of depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-graded, clean gravels; gravel-sand mixes</td>
<td>GW</td>
<td>30 60</td>
</tr>
<tr>
<td>Poorly graded clean gravels; gravel-sand mixes</td>
<td>GP</td>
<td>30 60</td>
</tr>
<tr>
<td>Silty gravels, poorly graded gravel-sand mixes</td>
<td>GM</td>
<td>40 60</td>
</tr>
<tr>
<td>Clayey gravels, poorly graded gravel-and-clay mixes</td>
<td>GC</td>
<td>45 60</td>
</tr>
<tr>
<td>Well-graded, clean sands; gravelly sand mixes</td>
<td>SW</td>
<td>30 60</td>
</tr>
<tr>
<td>Poorly graded clean sands; sand-gravel mixes</td>
<td>SP</td>
<td>30 60</td>
</tr>
<tr>
<td>Silty sands, poorly graded sand-clay mixes</td>
<td>SM</td>
<td>45 60</td>
</tr>
<tr>
<td>Sand-silt clay mix with plastic fines</td>
<td>SM-SC</td>
<td>45 100</td>
</tr>
<tr>
<td>Clayey sands, poorly graded sand-clay mixes</td>
<td>SC</td>
<td>60 100</td>
</tr>
<tr>
<td>Inorganic silts and clayey silts</td>
<td>ML</td>
<td>45 100</td>
</tr>
<tr>
<td>Mixture of inorganic silt and clay</td>
<td>ML-CL</td>
<td>60 100</td>
</tr>
<tr>
<td>Inorganic clays of low to medium plasticity</td>
<td>CL</td>
<td>60 100</td>
</tr>
<tr>
<td>Organic silts and silt clays, low plasticity</td>
<td>OL</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clayey silts, elastic silts</td>
<td>MH</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clays of high plasticity</td>
<td>CH</td>
<td>Note b</td>
</tr>
<tr>
<td>Organic clays and silty clays</td>
<td>OH</td>
<td>Note b</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot per foot of depth = 0.157 kPa/m, 1 foot = 304.8 mm.

- Design lateral soil loads are given for moist conditions for the specified soils at their optimum densities. Actual field conditions shall govern. Submerged or saturated soil pressures shall include the weight of the buoyant soil plus the hydrostatic loads.
- Unsuitable as backfill material.
- The definition and classification of soil materials shall be in accordance with ASTM D 2487.

SECTION 1611
RAIN LOADS

1611.1 Design rain loads. Each portion of a roof shall be designed to sustain the load of rainwater that will accumulate on it if the primary drainage system for that portion is blocked plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow. The design rainfall shall be based on the 100-year hourly rainfall rate indicated in Figure 1611.1 or on other rainfall rates determined from approved local weather data.

\[R = 5.2(d_s + d_h) \]

(Equation 16-35)

For SI: \[R = 0.0098(d_s + d_h) \]

where:

- \(d_s \) = Additional depth of water on the undeflected roof above the inlet of secondary drainage system at its design flow (i.e., the hydraulic head), in inches (mm).
- \(d_h \) = Depth of water on the undeflected roof up to the inlet of secondary drainage system when the primary drainage system is blocked (i.e., the static head), in inches (mm).

\(R \) = Rain load on the undeflected roof, in psf (kN/m²).

When the phrase “undeflected roof” is used, deflections from loads (including dead loads) shall not be considered when determining the amount of rain on the roof.

1611.2 Ponding instability. For roofs with a slope less than \(\frac{1}{4} \) inch per foot [1.19 degrees (0.0208 rad)], the design calculations shall include verification of adequate stiffness to preclude progressive deflection in accordance with Section 8.4 of ASCE 7.

1611.3 Controlled drainage. Roofs equipped with hardware to control the rate of drainage shall be equipped with a secondary drainage system at a higher elevation that limits accumulation of water on the roof above that elevation. Such roofs shall be designed to sustain the load of rainwater that will accumulate on them to the elevation of the secondary drainage system plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow determined from Section 1611.1. Such roofs shall also be checked for ponding instability in accordance with Section 1611.2.
For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.
100-YEAR, 1-HOUR RAINFALL (INCHES) WESTERN UNITED STATES

For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.
SECTION 1612
FLOOD LOADS

1612.1 General. Within flood hazard areas as established in Section 1612.3, all new construction of buildings, structures and portions of buildings and structures, including substantial improvement and restoration of substantial damage to buildings and structures, shall be designed and constructed to resist the effects of flood hazards and flood loads. For buildings that are located in more than one flood hazard area, the provisions associated with the most restrictive flood hazard area shall apply.

1612.2 Definitions. The following words and terms shall, for the purposes of this section, have the meanings shown herein.

BASE FLOOD. The flood having a 1-percent chance of being equalized or exceeded in any given year.

BASE FLOOD ELEVATION. The elevation of the base flood, including wave height, relative to the National Geodetic Vertical Datum (NGVD), North American Vertical Datum (NAVD) or other datum specified on the Flood Insurance Rate Map (FIRM).

BASEMENT. The portion of a building having its floor subgrade (below ground level) on all sides.

DESIGN FLOOD. The flood associated with the greater of the following two areas:

1. Area with a flood plain subject to a 1-percent or greater chance of flooding in any year; or
2. Area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

DESIGN FLOOD ELEVATION. The elevation of the “design flood,” including wave height, relative to the datum specified on the community’s legally designated flood hazard map. In areas designated as Zone AO, the design flood elevation shall be the elevation of the highest existing grade of the building’s perimeter plus the depth number (in feet) specified on the flood hazard map. In areas designated as Zone AO where a depth number is not specified on the map, the depth number shall be taken as being equal to 2 feet (610 mm).

DRY FLOODPROOFING. A combination of design modifications that results in a building or structure, including the attendant utility and sanitary facilities, being water tight with walls substantially impermeable to the passage of water and with structural components having the capacity to resist loads as identified in ASCE 7.

EXISTING CONSTRUCTION. Any buildings and structures which for which the “start of construction” commenced before the effective date of the community’s first flood plain management code, ordinance or standard. “Existing construction” is also referred to as “existing structures.”

EXISTING STRUCTURE. See “Existing construction.”

FLOOD or FLOODING. A general and temporary condition of partial or complete inundation of normally dry land from:

1. The overflow of inland or tidal waters.
2. The unusual and rapid accumulation or runoff of surface waters from any source.

FLOOD DAMAGE-RESISTANT MATERIALS. Any construction material capable of withstanding direct and prolonged contact with floodwaters without sustaining any damage that requires more than cosmetic repair.

FLOOD HAZARD AREA. The greater of the following two areas:

1. The area within a flood plain subject to a 1-percent or greater chance of flooding in any year.
2. The area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

FLOOD HAZARD AREA SUBJECT TO HIGH-VELOCITY WAVE ACTION. Area within the flood hazard area that is subject to high-velocity wave action, and shown on a Flood Insurance Rate Map (FIRM) or other flood hazard map as Zone V, VO, VE or V1-30.

FLOOD INSURANCE RATE MAP (FIRM). An official map of a community on which the Federal Emergency Management Agency (FEMA) has delineated both the special flood hazard areas and the risk premium zones applicable to the community.

FLOOD INSURANCE STUDY. The official report provided by the Federal Emergency Management Agency containing the Flood Insurance Rate Map (FIRM), the Flood Boundary and Floodway Map (FBFM), the water surface elevation of the base flood and supporting technical data.

FLOODWAY. The channel of the river, creek or other watercourse and the adjacent land areas that must be reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than a designated height.

LOWEST FLOOR. The floor of the lowest enclosed area, including basement, but excluding any unfinished or flood-resistant enclosure, usable solely for vehicle parking, building access or limited storage provided that such enclosure is not built so as to render the structure in violation of this section.

SPECIAL FLOOD HAZARD AREA. The land area subject to flood hazards and shown on a Flood Insurance Rate Map or other flood hazard map as Zone A, AE, A1-30, A99, AR, AO, AH, V, VO, VE or V1-30.

START OF CONSTRUCTION. The date of issuance for new construction and substantial improvements to existing structures, provided the actual start of construction, repair, reconstruction, rehabilitation, addition, placement or other improvement is within 180 days after the date of issuance. The actual start of construction means the first placement of permanent construction of a building (including a manufactured
SUBSTANTIAL DAMAGE. Damage of any origin sustained by a structure whereby the cost of restoring the structure to its before-damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred.

SUBSTANTIAL IMPROVEMENT. Any repair, reconstruction, rehabilitation, addition or improvement of a building or structure, the cost of which equals or exceeds 50 percent of the market value of the structure before the improvement or repair is started. If the structure has sustained substantial damage, any repairs are considered substantial improvement regardless of the actual repair work performed. The term does not, however, include either:

1. Any project for improvement of a building required to correct existing health, sanitary or safety code violations identified by the building official and that are the minimum necessary to assure safe living conditions.

2. Any alteration of a historic structure provided that the alteration will not preclude the structure’s continued designation as a historic structure.

1612.3 Establishment of flood hazard areas. To establish flood hazard areas, the applicable governing authority shall adopt a flood hazard map and supporting data. The flood hazard map shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency in an engineering report entitled “The Flood Insurance Study for [INSERT NAME OF JURISDICTION],” dated [INSERT DATE OF ISSUANCE], as amended or revised with the accompanying Flood Insurance Rate Map (FIRM) and Flood Boundary and Floodway Map (FBFM) and related supporting data along with any revisions thereto. The adopted flood hazard map and supporting data are hereby adopted by reference and declared to be part of this section.

Exception: [OSHPD 2] The flood hazard map shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency’s Flood Insurance Study (FIS) adopted by the local authority having jurisdiction where the project is located.

1612.3.1 Design flood elevations. Where design flood elevations are not included in the flood hazard areas established in Section 1612.3, or where floodways are not designated, the building official is authorized to require the applicant to:

1. Obtain and reasonably utilize any design flood elevation and floodway data available from a federal, state or other source; or

2. Determine the design flood elevation and/or floodway in accordance with accepted hydrologic and hydraulic engineering practices used to define special flood hazard areas. Determinations shall be undertaken by a registered design professional who shall document that the technical methods used reflect currently accepted engineering practice.

1612.3.2 Determination of impacts. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the applicant shall provide a floodway analysis that demonstrates that the proposed work will not increase the design flood elevation more than 1 foot (305 mm) at any point within the jurisdiction of the applicable governing authority.

1612.4 Design and construction. The design and construction of buildings and structures located in flood hazard areas, including flood hazard areas subject to high-velocity wave action, shall be in accordance with Chapter 5 of ASCE 7 and with ASCE 24.

1612.5 Flood hazard documentation. The following documentation shall be prepared and sealed by a registered design professional and submitted to the building official:

1. For construction in flood hazard areas not subject to high-velocity wave action:

 1.1. The elevation of the lowest floor, including the basement, as required by the lowest floor elevation inspection in Section 110.3.3, Chapter 1, Division II.

 1.2. For fully enclosed areas below the design flood elevation where provisions to allow for the automatic entry and exit of floodwaters do not meet the minimum requirements in Section 2.6.2.1 of ASCE 24, construction documents shall include a statement that the design will provide for equalization of hydrostatic flood forces in accordance with Section 2.6.2.2 of ASCE 24.

 1.3. For dry floodproofed nonresidential buildings, construction documents shall include a statement that the dry floodproofing is designed in accordance with ASCE 24.

2. For construction in flood hazard areas subject to high-velocity wave action:

 2.1. The elevation of the bottom of the lowest horizontal structural member as required by the lowest floor elevation inspection in Section 110.3.3, Chapter 1, Division II.

 2.2. Construction documents shall include a statement that the building is designed in accordance with ASCE 24, including that the pile or column foundation and building or structure to be attached thereto is designed to be anchored to resist flotation, collapse and lateral movement due to the effects of wind and flood loads acting simultaneously on all building components, and other load requirements of Chapter 16.
2.3. For breakaway walls designed to resist a nominal load of less than 10 psf (0.48 kN/m²) or more than 20 psf (0.96 kN/m²), construction documents shall include a statement that the breakaway wall is designed in accordance with ASCE 24.

SECTION 1613
EARTHQUAKE LOADS

1613.1 Scope. Every structure, and portion thereof, including nonstructural components that are permanently attached to structures and their supports and attachments, shall be designed and constructed to resist the effects of earthquake motions in accordance with ASCE 7, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure is permitted to be determined in accordance with Section 1613 or ASCE 7.

Exceptions:

1. Detached one- and two-family dwellings, assigned to Seismic Design Category A, B, or C, or located where the mapped short-period spectral response acceleration, S_s, is less than or equal to 0.4 g.

2. The seismic-force-resisting system of wood-frame buildings that conform to the provisions of Section 2308 are not required to be analyzed as specified in this section. [OSHPD 2] Not permitted by OSHPD, see Section 2308.

3. Agricultural storage structures intended only for incidental human occupancy.

4. Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

5. [OSHPD 2] Seismic Design Category shall be in accordance with exception to Section 1613.5.6.

1613.1.1 Scope. [SL] For applications listed in Section 1.12 regulated by the State Librarian, only the provisions of ASCE 7 Table 13.5-1 and Table 1607.1, as amended, of this code shall apply.

1613.1.2 State-owned buildings. State-owned buildings, including those of the University of California, CSU and Judicial Council, shall not be constructed where any portion of the foundation would be within a mapped area of earthquake-induced liquefaction of landsliding or within 50 feet of a mapped fault rupture hazard as established by Section 1802.7.

1613.2 Definitions. The following words and terms shall, for the purposes of this section, have the meanings shown herein.

DESIGN EARTHQUAKE GROUND MOTION. The earthquake ground motion that buildings and structures are specifically proportioned to resist in Section 1613.

MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION. The most severe earthquake effects considered by this code.

MECHANICAL SYSTEMS. For the purposes of determining seismic loads in ASCE 7, mechanical systems shall include plumbing systems as specified therein.

ORTHOGONAL. To be in two horizontal directions, at 90 degrees (1.57 rad) to each other.

SEISMIC DESIGN CATEGORY. A classification assigned to a structure based on its occupancy category and the severity of the design earthquake ground motion at the site.

SEISMIC-FORCE-RESISTING SYSTEM. That part of the structural system that has been considered in the design to provide the required resistance to the prescribed seismic forces.

SITE CLASS. A classification assigned to a site based on the types of soils present and their engineering properties as defined in Section 1613.5.2.

SITE COEFFICIENTS. The values of F_a and F_s, indicated in Tables 1613.5.3(1) and 1613.5.3(2), respectively.

1613.3 Existing buildings. Additions, alterations, repairs or change of occupancy of existing buildings shall be in accordance with Chapter 34.

1613.3.1 Existing state buildings. Additions, alterations, repairs or change of occupancy category of existing buildings shall be in accordance with Chapter 34.

1613.4 Special inspections. Where required by Sections 1705.3 through 1705.3.5, the statement of special inspections shall include the special inspections required by Section 1705.3.6.

1613.5 Seismic ground motion values. Seismic ground motion values shall be determined in accordance with this section.

1613.5.1 Mapped acceleration parameters. The parameters S_s and S_l shall be determined from the 0.2 and 1-second spectral response accelerations shown on Figures 1613.5(1) through 1613.5(14). Where S_s is less than or equal to 0.04 and S_l is less than or equal to 0.15, the structure is permitted to be assigned to Seismic Design Category A.

Exception: [OSHPD 2] Seismic Design Category shall be in accordance with exception to Section 1613.5.6.

1613.5.2 Site class definitions. Based on the site soil properties, the site shall be classified as either Site Class A, B, C, D, E or F in accordance with Table 1613.5.2. When the soil properties are not known in sufficient detail to determine the site class, Site Class D shall be used unless the building official or geotechnical data determines that Site Class E or F soil is likely to be present at the site.
TABLE 1613.5.2
SITE CLASS DEFINITIONS

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>SOIL PROFILE NAME</th>
<th>AVERAGE PROPERTIES IN TOP 100 feet, SEE SECTION 1613.5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Hard rock</td>
<td>Soil shear wave velocity, (\bar{v}_s) (ft/s)</td>
</tr>
<tr>
<td>B</td>
<td>Rock</td>
<td>2,500 < (\bar{v}_s) ≤ 5,000</td>
</tr>
<tr>
<td>C</td>
<td>Very dense soil and soft rock</td>
<td>1,200 < (\bar{v}_s) ≤ 2,500</td>
</tr>
<tr>
<td>D</td>
<td>Stiff soil profile</td>
<td>(\bar{v}_s) ≤ 1,200</td>
</tr>
<tr>
<td>E</td>
<td>Soft soil profile</td>
<td>(\bar{v}_s) < 600</td>
</tr>
</tbody>
</table>

- \(\bar{v}_s \): Soil shear wave velocity (ft/s)
- \(\bar{N} \): Standard penetration resistance
- \(\bar{s}_u \): Soil undrained shear strength (psf)

Commentary

- Any profile with more than 10 feet of soil having the following characteristics:
 1. Plasticity index \(PI > 20 \),
 2. Moisture content \(w \geq 40\% \), and
 3. Undrained shear strength \(\bar{s}_u < 500 \) psf

- Any profile containing soils having one or more of the following characteristics:
 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils.
 2. Peats and/or highly organic clays \((H > 10 \) feet of peat and/or highly organic clay where \(H \) = thickness of soil)\)
 3. Very high plasticity clays \((H > 25 \) feet with plasticity index \(PI > 75 \))
 4. Very thick soft/medium stiff clays \((H > 120 \) feet)

Table 1613.5.3(1)
VALUES OF SITE COEFFICIENT \(F_a \)

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>(S_s) ≤ 0.25</th>
<th>(S_s) = 0.50</th>
<th>(S_s) = 0.75</th>
<th>(S_s) = 1.00</th>
<th>(S_s) ≥ 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
</tr>
</tbody>
</table>

- \(S_s \): Mapped spectral response acceleration at short period
- a. Use straight-line interpolation for intermediate values of \(S_s \)
- b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.

Table 1613.5.3(2)
VALUES OF SITE COEFFICIENT \(F_v \)

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>(S_s) ≤ 0.1</th>
<th>(S_s) = 0.2</th>
<th>(S_s) = 0.3</th>
<th>(S_s) = 0.4</th>
<th>(S_s) ≥ 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
</tr>
</tbody>
</table>

- \(S_s \): Mapped spectral response acceleration at 1-second period
- a. Use straight-line interpolation for intermediate values of \(S_s \)
- b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.
1613.5.3 Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters. The maximum considered earthquake spectral response acceleration for short periods, S_{MS}, and at 1-second period, S_{MI}, adjusted for site class effects shall be determined by Equations 16-36 and 16-37, respectively:

$$ S_{MS} = F_v S_s $$ \hspace{1cm} \text{(Equation 16-36)} \\
$$ S_{MI} = F_v S_l $$ \hspace{1cm} \text{(Equation 16-37)}

where:
- F_v = Site coefficient defined in Table 1613.5.3(1).
- F_v = Site coefficient defined in Table 1613.5.3(2).
- S_s = The mapped spectral accelerations for short periods as determined in Section 1613.5.1.
- S_l = The mapped spectral accelerations for a 1-second period as determined in Section 1613.5.1.

1613.5.4 Design spectral response acceleration parameters. Five-percent damped design spectral response acceleration at short periods, S_{DS}, and at 1-second period, S_{DI}, shall be determined from Equations 16-38 and 16-39, respectively:

$$ S_{DS} = \frac{2}{3} S_{MS} $$ \hspace{1cm} \text{(Equation 16-38)} \\
$$ S_{DI} = \frac{2}{3} S_{MI} $$ \hspace{1cm} \text{(Equation 16-39)}

where:
- S_{MS} = The maximum considered earthquake spectral response accelerations for short period as determined in Section 1613.5.3.
- S_{MI} = The maximum considered earthquake spectral response accelerations for 1-second period as determined in Section 1613.5.3.

1613.5.5 Site classification for seismic design. Site classification for Site Class C, D or E shall be determined from Table 1613.5.5.

The notations presented below apply to the upper 100 feet (30 480 mm) of the site profile. Profiles containing distinctly different soil and/or rock layers shall be subdivided into those layers designated by a number that ranges from 1 to n at the bottom where there is a total of n distinct layers in the upper 100 feet (30 480 mm). The symbol i then refers to any one of the layers between 1 and n.

$$ v_s = \text{The shear wave velocity in feet per second (m/s).} $$ \\
$$ d_i = \text{The thickness of any layer between 0 and 100 feet (30 480 mm).} $$

where:
- $v_s = \sum_{i=1}^{n} \frac{d_i}{\sum_{i=1}^{n} v_s i}$ \hspace{1cm} \text{(Equation 16-40)}
- $\sum_{i=1}^{n} d_i = 100$ feet (30 480 mm)

N_i is the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/foot (328 blows/m) as directly measured in the field without corrections. When refusal is met for a rock layer, N_i shall be taken as 100 blows/foot (328 blows/m).

$$ N = \sum_{i=1}^{n} \frac{d_i}{\sum_{i=1}^{n} N_i} $$ \hspace{1cm} \text{(Equation 16-41)}

where N_i and d_i in Equation 16-41 are for cohesionless soil, cohesive soil and rock layers.

$$ N_{ch} = \frac{d_s}{\sum_{i=1}^{m} N_i} $$ \hspace{1cm} \text{(Equation 16-42)}

where:
- $\sum_{i=1}^{m} d_i = d_s$
- Use d_i and N_i for cohesionless soil layers only in Equation 16-42.

$$ d_s = \text{The total thickness of cohesionless soil layers in the top 100 feet (30 480 mm).} $$ \\
$$ m = \text{The number of cohesionless soil layers in the top 100 feet (30 480 mm).} $$

TABLE 1613.5.5

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>\bar{v}_s</th>
<th>\bar{N} or \bar{N}_{ch}</th>
<th>\bar{s}_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>< 600 ft/s</td>
<td>< 15</td>
<td>< 1,000 psf</td>
</tr>
<tr>
<td>D</td>
<td>600 to 1,200 ft/s</td>
<td>15 to 50</td>
<td>1,000 to 2,000 psf</td>
</tr>
<tr>
<td>C</td>
<td>1,200 to 2,500 ft/s</td>
<td>> 50</td>
<td>> 2,000</td>
</tr>
</tbody>
</table>

For SI: 1 foot per second = 304.8 mm per second, 1 pound per square foot = 0.0479kN/m2.

a. If the \bar{s}_s method is used and the \bar{N}_{ch} and \bar{v}_s criteria differ, select the category with the softer soils (for example, use Site Class E instead of D).
\(s_{ui} \) = The undrained shear strength in psf (kPa), not to exceed 5,000 psf (240 kPa), ASTM D 2166 or D 2850.

\[
\bar{s}_u = \frac{d_c}{\sum_{i=1}^{k} \frac{d_i}{s_{ui}}}
\]

(Equation 16-43)

where:

\[
\sum_{i=1}^{k} d_i = d_c
\]

\(d_c \) = The total thickness of cohesive soil layers in the top 100 feet (30 480 mm).

\(k \) = The number of cohesive soil layers in the top 100 feet (30 480 mm).

\(PI \) = The plasticity index, ASTM D 4318.

\(w \) = The moisture content in percent, ASTM D 2216.

Where a site does not qualify under the criteria for Site Class F and there is a total thickness of soft clay greater than 10 feet (3048 mm) where a soft clay layer is defined by: \(\bar{s}_s < 500 \text{psf} \) (24 kPa), \(w \geq 40 \) percent, and PI > 20, it shall be classified as Site Class E.

The shear wave velocity for rock, Site Class B, shall be either measured on site or estimated by a geotechnical engineer or engineering geologist/seismologist for competent rock with moderate fracturing and weathering. Softer and more highly fractured and weathered rock shall either be measured on site for shear wave velocity or classified as Site Class C.

The hard rock category, Site Class A, shall be supported by shear wave velocity measurements either on site or on profiles of the same rock type in the same formation with an equal or greater degree of weathering and fracturing. Where hard rock conditions are known to be continuous to a depth of 100 feet (30 480 mm), surficial shear wave velocity measurements are permitted to be extrapolated to assess \(\bar{v}_s \).

The rock categories, Site Classes A and B, shall not be used if there is more than 10 feet (3048 mm) of soil between the rock surface and the bottom of the spread footing or mat foundation.

1613.5.5.1 Steps for classifying a site.

1. Check for the four categories of Site Class F requiring site-specific evaluation. If the site corresponds to any of these categories, classify the site as Site Class F and conduct a site-specific evaluation.

2. Check for the existence of a total thickness of soft clay > 10 feet (3048 mm) where a soft clay layer is defined by: \(\bar{s}_s < 500 \text{psf} \) (24 kPa), \(w \geq 40 \) percent and PI > 20. If these criteria are satisfied, classify the site as Site Class E.

3. Categorize the site using one of the following three methods with \(\bar{v}_s \), \(N \), and \(s_u \) and computed in all cases as specified.

1613.5.6 Determination of seismic design category. Structures classified as Occupancy Category I, II or III that are located where the mapped spectral response acceleration parameter at 1-second period, \(s_i \), is greater than or equal to 0.75 shall be assigned to Seismic Design Category E. Structures classified as Occupancy Category IV that are located where the mapped spectral response acceleration parameter at 1-second period, \(s_i \), is greater than or equal to 0.75 shall be assigned to Seismic Design Category F. All other structures shall be assigned to a seismic design category based on their occupancy category and the design spectral response acceleration coefficients, \(S_{DS} \) and \(S_{DI} \), determined in accordance with Table 1613.5.6(1) and 1613.5.6(2), irrespective of the fundamental period of vibration of the structure, \(T \).

Table 1613.5.6(1)

<table>
<thead>
<tr>
<th>VALUE OF (S_{DS})</th>
<th>OCCUPANCY CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{DS} < 0.167g)</td>
<td>I or II III IV</td>
</tr>
<tr>
<td>(0.167g \leq S_{DS} < 0.33g)</td>
<td>B B B C</td>
</tr>
<tr>
<td>(0.33g \leq S_{DS} < 0.50g)</td>
<td>C C C D</td>
</tr>
<tr>
<td>(0.50g \leq S_{DS})</td>
<td>D D D D</td>
</tr>
</tbody>
</table>

Table 1613.5.6(2)

<table>
<thead>
<tr>
<th>VALUE OF (S_{DI})</th>
<th>OCCUPANCY CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{DI} < 0.067g)</td>
<td>I or II III IV</td>
</tr>
<tr>
<td>(0.067g \leq S_{DI} < 0.133g)</td>
<td>B B B C</td>
</tr>
<tr>
<td>(0.133g \leq S_{DI} < 0.20g)</td>
<td>C C C D</td>
</tr>
<tr>
<td>(0.20g \leq S_{DI})</td>
<td>D D D D</td>
</tr>
</tbody>
</table>

Exception: [OSHPD 2] Structures not assigned to seismic design category E or F above shall be assigned to seismic design category D.

1613.5.6.1 Alternative seismic design category determination. Where \(s_i \) is less than 0.75, the seismic design...
category is permitted to be determined from Table 1613.5.6(1) alone when all of the following apply:

1. In each of the two orthogonal directions, the approximate fundamental period of the structure, \(T_a \), in each of the two orthogonal directions determined in accordance with Section 12.8.2.1 of ASCE 7, is less than 0.8 \(T_c \), determined in accordance with Section 11.4.5 of ASCE 7.

2. In each of the two orthogonal directions, the fundamental period of the structure used to calculate the story drift is less than \(T_s \).

3. Equation 12.8-2 of ASCE 7 is used to determine the seismic response coefficient, \(C_s \).

4. The diaphragms are rigid as defined in Section 12.3.1 of ASCE 7 or, for diaphragms that are flexible, the distances between vertical elements of the seismic-force-resisting system do not exceed 40 feet (12 192 mm).

Exception: [OSHPD 2] Seismic design category shall be determined in accordance with exception to Section 1613.5.6.

1613.5.6.2 Simplified design procedure. Where the alternate simplified design procedure of ASCE 7 is used, the seismic design category shall be determined in accordance with ASCE 7.

Exception: [OSHPD 2] Seismic design category shall be determined in accordance with exception to Section 1613.5.6.

1613.6 Alternatives to ASCE 7. The provisions of Section 1613.6 shall be permitted as alternatives to the relevant provisions of ASCE 7.

1613.6.1 Assumption of flexible diaphragm. Add the following text at the end of Section 12.3.1.1 of ASCE 7.

Diaphragms constructed of wood structural panels or untopped steel decking shall also be permitted to be idealized as flexible, provided all of the following conditions are met:

1. Toppings of concrete or similar materials are not placed over wood structural panel diaphragms except for nonstructural toppings no greater than \(1\frac{1}{2} \) inches (38 mm) thick.

2. Each line of vertical elements of the seismic-force-resisting system complies with the allowable story drift of Table 12.12-1.

3. Vertical elements of the seismic-force-resisting system are light-frame walls sheathed with wood structural panels rated for shear resistance or steel sheets.

4. Portions of wood structural panel diaphragms that cantilever beyond the vertical elements of the lateral-force-resisting system are designed in accordance with Section 4.2.5.2 of AF&PA SDPWS.

1613.6.2 Additional seismic-force-resisting systems for seismically isolated structures. Add the following exception to the end of Section 17.5.4.2 of ASCE 7:

Exception: For isolated structures designed in accordance with this standard, the Structural System Limitations and the Building Height Limitations in Table 12.2-1 for ordinary steel concentrically braced frames (OCBFs) as defined in Chapter 11 and ordinary moment frames (OMFs) as defined in Chapter 11 are permitted to be taken as 160 feet (48 768 mm) for structures assigned to Seismic Design Category D, E or F, provided that the following conditions are satisfied:

1. The value of \(R \) as defined in Chapter 17 is taken as 1.

2. For OMFs and OCBFs, design is in accordance with AISC 341.

1613.6.3 Automatic sprinkler systems. Automatic sprinkler systems designed and installed in accordance with NFPA 13 shall be deemed to meet the requirements of Section 13.6.8 of ASCE 7.

1613.6.4 Autoclaved aerated concrete (AAC) masonry shear wall design coefficients and system limitations. Add the following text at the end of Section 12.2.1 of ASCE 7:

For ordinary reinforced AAC masonry shear walls used in the seismic-force-resisting system of structures, the response modification factor, \(R \), shall be permitted to be taken as 2, the deflection amplification factor, \(C_d' \), shall be permitted to be taken as 2 and the system overstrength factor, \(\Omega_s \), shall be permitted to be taken as \(2^{1/2} \) Ordinary reinforced AAC masonry shear walls shall not be limited in height for buildings assigned to Seismic Design Category B, shall be limited in height to 35 feet (10 668 mm) for buildings assigned to Seismic Design Category C and are not permitted for buildings assigned to Seismic Design Categories D, E and F.

For ordinary plain (unreinforced) AAC masonry shear walls used in the seismic-force-resisting system of structures, the response modification factor, \(R \), shall be permitted to be taken as \(1^{1/2} \), the deflection amplification factor, \(C_d' \), shall be permitted to be taken as \(1^{1/2} \) and the system overstrength factor, \(\Omega_s \), shall be permitted to be taken as \(2^{1/2} \). Ordinary plain (unreinforced) AAC masonry shear walls shall not be limited in height for buildings assigned to Seismic Design Category B and are not permitted for buildings assigned to Seismic Design Categories C, D, E and F.

1613.6.5 Seismic controls for elevators. Seismic switches in accordance with Section 8.4.10 of ASME A17.1 shall be deemed to comply with Section 13.6.10.3 of ASCE 7.

1613.6.6 Steel plate shear wall height limits. Modify Section 12.2.5.4 of ASCE 7 to read as follows:

12.2.5.4 Increased building height limit for steel-braced frames, special steel plate shear walls and special reinforced concrete shear walls. The height limits in Table 12.2-1 are permitted to be increased from 160 feet (48 768 mm) to 240 feet (75 152 mm) for structures assigned to Seismic Design Category D or E and from 100 feet (30 480 mm) to 160 feet (48 768 mm) for structures assigned to Seismic Design Category F that have
steel-braced frames, special steel plate shear walls or special reinforced concrete cast-in-place shear walls and that meet both of the following requirements:

1. The structure shall not have an extreme torsional irregularity as defined in Table 12.2-1 (horizontal structural irregularity Type 1b).

2. The braced frames or shear walls in any one plane shall resist no more than 60 percent of the total seismic forces in each direction, neglecting accidental torsional effects.

1613.6.7 Minimum distance for building separation. All buildings and structures shall be separated from adjoining structures. Separations shall allow for the maximum inelastic response displacement (δₘ). δₘ shall be determined at critical locations with consideration for both translational and torsional displacements of the structure using Equation 16-44.

\[\delta_m = \frac{C_d \delta_{\text{max}}}{I} \]
(Equation 16-44)

where:

- \(C_d \) = Deflection amplification factor in Table 12.2-1 of ASCE 7.
- \(\delta_{\text{max}} \) = Maximum displacement defined in Section 12.8.4.3 of ASCE 7.
- \(I \) = Importance factor in accordance with Section 11.5.1 of ASCE 7.

Adjacent buildings on the same property shall be separated by a distance not less than \(\delta_{\text{Mfr}} \), determined by Equation 16-45.

\[\delta_{\text{Mfr}} = \sqrt{(\delta_{M_1})^2 + (\delta_{M_2})^2} \]
(Equation 16-45)

where:

- \(\delta_{M_1}, \delta_{M_2} \) = The maximum inelastic response displacements of the adjacent buildings in accordance with Equation 16-44.

Where a structure adjoins a property line not common to a public way, the structure shall also be set back from the property line by not less than the maximum inelastic response displacement, \(\delta_m \), of that structure.

Exceptions:

1. Smaller separations or property line setbacks shall be permitted when justified by rational analyses.

2. Buildings and structures assigned to Seismic Design Category A, B or C.

1613.6.8 HVAC ductwork with \(I_p = 1.5 \). Seismic supports are not required for HVAC ductwork with \(I_p = 1.5 \) if either of the following conditions is met for the full length of each duct run:

1. HVAC ducts are suspended from hangers 12 inches (305 mm) or less in length with hangers detailed to avoid significant bending of the hangers and their attachments, or

2. HVAC ducts have a cross-sectional area of less than 6 square feet (0.557 m²).

1613.6.9 Exceptions for nonstructural components. [BSC] Replace ASCE 7 Section 13.1.3 by the following items:

Exemptions: The following nonstructural components are exempt from the requirements of this section:

1. Furniture (except storage cabinets as noted in Table 13.5-1).

2. Temporary or moveable equipment.

3. Architectural components in Seismic Design Category B other than parapets supported by bearing walls or shear walls, provided that the component importance factor \(I_p \) is equal to 1.0.

4. Mechanical and electrical components in Seismic Design Category B.

5. Mechanical and electrical components in Seismic Design Category C, provided that the component importance factor, \(I_p \), is equal to 1.0.

6. Mechanical and electrical components in Seismic Design Category D, E or F where all of the following apply:

 a. The component importance factor, \(I_p \), is equal to 1.0;

 b. The component is positively attached to the structure;

 c. Flexible connections are provided between the component and associated ductwork, piping and conduit; and either:

 i. The component weighs 400 lb (1780 N) or less and has a center of mass located 4 ft (1.22 m) or less above the adjacent floor level; or

 ii. The component weighs 20 lb (89 N) or less, or, in the case of a distributed system, 5 lb/ft (73 N/m) or less.

1613.6.10 Exceptions for nonstructural components. [BSC] Replace Items 4 and 5 of ASCE 7 Section 13.1.4 with the following items:

4. Mechanical and electrical components in Seismic Design Category D, E or F where all of the following apply:

 a. The component importance factor, \(I_p \), is equal to 1.0;

 b. The component is positively attached to the structure;

 c. Flexible connections are provided between the component and associated ductwork, piping and conduit; and either:

 i. The component weighs 400 lb (1780 N) or less and has a center of mass located 4 ft (1.22 m) or less above adjacent floor level.
48

ii. The component weights 20 lb (89 N) or less, or, in the case of a distributed system, 5 lb/ft (73 N/m) or less.

1613.7 ASCE 7, Section 11.7.5. Modify ASCE 7, Section 11.7.5 to read as follows:

11.7.5 Anchorage of walls. Walls shall be anchored to the roof and all floors and members that provide lateral support for the wall or that are supported by the wall. The anchorage shall provide a direct connection between the walls and the roof or floor construction. The connections shall be capable of resisting the forces specified in Section 11.7.3 applied horizontally, substituted for E in load combinations of Section 2.3 or 2.4.

SECTION 1614
STRUCTURAL INTEGRITY

1614.1 General. Buildings classified as high-rise buildings in accordance with Section 403 and assigned to Occupancy Category III or IV shall comply with the requirements of this section. Frame structures shall comply with the requirements of Section 1614.4. Bearing wall structures shall comply with the requirements of Section 1614.4.

1614.2 Definitions. The following words and terms shall, for the purposes of Section 1614, have the meanings shown herein.

BEARING WALL STRUCTURE. A building or other structure in which vertical loads from floors and roofs are primarily supported by walls.

FRAME STRUCTURE. A building or other structure in which vertical loads from floors and roofs are primarily supported by columns.

1614.3 Frame structures. Frame structures shall comply with the requirements of this section.

1614.3.1 Concrete frame structures. Frame structures constructed primarily of reinforced or prestressed concrete, or cast-in-place or precast, or a combination of these, shall conform to the requirements of ACI 318 Sections 7.13, 13.3.8.5, 13.3.8.6, 16.5, 18.12.6, 18.12.7 and 18.12.8 as applicable. Where ACI 318 requires that nonprestressed reinforcing or prestressing steel pass through the region bounded by the longitudinal column reinforcement, that reinforcing or prestressing steel shall have a minimum nominal tensile strength equal to two-thirds of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

Exception: Where concrete slabs with continuous reinforcing having an area not less than 0.0015 times the concrete area in each of two orthogonal directions are present and are either monolithic with or equivalently bonded to beams, girders or columns, the longitudinal reinforcing or prestressing steel passing through the column reinforcement shall have a nominal tensile strength of one-third of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

1614.3.2 Structural steel, open web steel joist or joist girder, or composite steel and concrete frame structures. Frame structures constructed with a structural steel frame or a frame composed of open web steel joists, joist girders with or without other structural steel elements or a frame composed of composite steel or composite steel joists and reinforced concrete elements shall conform to the requirements of this section.

1614.3.2.1 Columns. Each column splice shall have the minimum design strength in tension to transfer the design dead and live load tributary to the column between the splice and the splice or base immediately below.

1614.3.2.2 Beams. End connections of all beams and girders shall have a minimum nominal axial tensile strength equal to the required vertical shear strength for allowable stress design (ASD) or two-thirds of the required shear strength for load and resistance factor design (LRFD) but not less than 10 kips (45 kN). For the purpose of this section, the shear force and the axial tensile force need not be considered to act simultaneously.

Exception: Where beams, girders, open web joist and joist girders support a concrete slab or concrete slab on metal deck that is attached to the beam or girder with not less than ½-inch-diameter (9.5 mm) headed shear studs, at a spacing of not more than 12 inches (305 mm) on center, averaged over the length of the member, or other attachment having equivalent shear strength, and the slab contains continuous distributed reinforcement in each of two orthogonal directions with an area not less than 0.0015 times the concrete area, the nominal axial tension strength of the end connection shall be permitted to be taken as half the required vertical shear strength for ASD or one-third of the required shear strength for LRFD, but not less than 10 kips (45 kN).

1614.4 Bearing wall structures. Bearing wall structures shall have vertical ties in all load-bearing walls and longitudinal ties, transverse ties and perimeter ties at each floor level in accordance with this section and as shown in Figure 1614.4.

1614.4.1 Concrete wall structures. Precast bearing wall structures constructed solely of reinforced or prestressed concrete, or combinations of these shall conform to the requirements of Sections 7.13, 13.3.8.5 and 16.5 of ACI 318.

1614.4.2 Other bearing wall structures. Ties in bearing wall structures other than those covered in Section 1614.4.1 shall conform to this section.

1614.4.2.1 Longitudinal ties. Longitudinal ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Longitudinal ties shall extend across interior load-bearing walls and shall connect to exterior load-bearing walls and shall be spaced at not greater than 10 feet (3038 mm) on center. Ties shall have a minimum nominal tensile strength,
Given by Equation 16-46. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[T_n = \alpha T \]
\[\text{where:} \]
\[L = \text{The span of the horizontal element in the direction of the tie, between bearing walls, feet (m).} \]
\[w = \text{The weight per unit area of the floor or roof in the span being tied to or across the wall, psf (N/m}^2 \). \]
\[S = \text{The spacing between ties, feet (m).} \]
\[\alpha = \text{A coefficient with a value of 1,500 pounds per foot (2.25 kN/m) for masonry bearing wall structures and a value of 375 pounds per foot (0.6 kN/m) for structures with bearing walls of cold-formed steel light-frame construction.} \]

1614.4.2.2 Transverse ties. Transverse ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Transverse ties shall be placed no farther apart than the spacing of load-bearing walls. Transverse ties shall have minimum nominal tensile strength \(T_n \) given by Equation 16-46. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[T_n = wLS \leq \alpha T \]
\[\text{(Equation 16-46)} \]

1614.4.2.3 Perimeter ties. Perimeter ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Ties around the perimeter of each floor and roof shall be located within 4 feet (1219 mm) of the edge and shall provide a nominal strength in tension not less than \(T_p \), given by Equation 16-47. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[T_p = 200w \leq \beta T \]
\[\text{(Equation 16-47)} \]

For SI:

\[T_p = 90.7w \leq \beta T \]
\[\text{where:} \]
\[w = \text{As defined in Section 1614.4.2.1.} \]
\[\beta = \text{A coefficient with a value of 16,000 pounds (7200 kN) for structures with masonry bearing walls and a value of 4,000 pounds (1300 kN) for structures with bearing walls of cold-formed steel light-frame construction.} \]

1614.4.2.4 Vertical ties. Vertical ties shall consist of continuous or spliced reinforcing, continuous or spliced members, wall sheathing or other engineered systems. Vertical tension ties shall be provided in bearing walls and shall be continuous over the height of the building. The minimum nominal tensile strength for vertical ties within a bearing wall shall be equal to the weight of the wall within that storey plus the weight of the diaphragm tributary to the wall in the storey below. No fewer than two ties shall be provided for each wall. The strength of each tie need not exceed 3,000 pounds per foot (450 kN/m) of wall tributary to the tie for walls of masonry construction or 750 pounds per foot (140 kN/m) of wall tributary to the tie for walls of cold-formed steel light-frame construction.
The acceleration values contoured on this map are for the random horizontal component of acceleration. For design purposes, the reference site condition for the map is Site Class B. Selected contours have been deleted for clarity. Regional maps should be used where additional detail is required.

Leyendecker, Fennke, and Rukstales (2001, 2004) have prepared a CD-ROM that contains software to allow determination of Site Class B map values for latitude-longitude. The software on the CD contains site coefficients that allow the site to adjust map values for different Site Classes. Additional maps at different scales are also included on the CD. The CD was prepared using the same data as that used to prepare the Maximum Considered Earthquake Ground Motion maps. The National Seismic Hazard Mapping Project Web Site, http://eqhazmap.usgs.gov, contains electronic versions of the map and includes documentation, guided tours, and PDF versions used to make the maps more accessible.

The National Seismic Hazard Map of the Conterminous United States of America was produced jointly with the California Geological Survey.

Map prepared by U.S. Geological Survey.

REFERENCES

FIGURE 1613.5(1)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.5(1)—continued
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
The acceleration values contoured on this map are for the maximum horizontal component of acceleration. For design purposes, the reference site condition for the map is to be taken as Site Class B. Selected contours have been deleted for clarity. Regional maps should be used when additional detail is required.

Leyendecker, Franke, and Rukstales (2001, 2004) have prepared a CD-ROM that contains software to allow determination of Site Class B map values by latitude-longitude. The software on the CD contains site coefficients that allow the user to adjust map values for different Site Classes. Additional maps at different scales are also included on the CD. The CD was prepared using the same data as that used to prepare the Maximum Considered Earthquake Ground Motion maps. Additional regional maps are also available. The California portion of the map was produced jointly with the California Geological Survey. Map prepared by U.S. Geological Survey.

REFERENCES

FIGURE 1613.5(2)—continued
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES
OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
Areas with a constant spectral response acceleration of 1.50 g

Point value of spectral response acceleration expressed as a percent of gravity.

Contour of spectral response acceleration expressed as a percent of gravity. Hachures point in direction of decreasing values.

Locations of faults (see DISCUSSION)

Note: contours are irregularly spaced

The number on the fault is the deterministic median spectral response acceleration times 1.5, expressed as a percent of gravity.

Selected contours near faults have been deleted for clarity. In these instances, interpolation may be done using fault values and the nearest adjacent contour.

Discussed contours near faults have been deleted for clarity. In these instances, interpolation may be done using fault values and the nearest adjacent contour.

Refer to the map of Maximum Considered Earthquake Ground Motion for the Continental United States of 0.2 sec Spectral Response Acceleration (Figure 1613.5(3)) for additional discussion and references.

FIGURE 1613.5(3)—continued

MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 1 OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.5(4)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 1 OF
1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
Contour intervals, g

- 150
- 120
- 100
- 80
- 70
- 60
- 50
- 40
- 30
- 20
- 10
- 5
- 4
- 3
- 2
- 1
- 0

Note: contours are irregularly spaced.

- Areas with a contour spectral response acceleration of 0% g
- Peak value of spectral response acceleration expressed as a percent of gravity
- Contours of spectral response acceleration expressed as a percent of gravity. The heavy solid is in the direction of decreasing values.
- Locations of faults (see DISCUSSION). The number on the fault is the deterministic median spectral response acceleration, expressed as a percent of gravity.

DISCUSSION

A line shown as a fault location is the projection to the earth's surface of the edge of the fault rupture area located closest to the earth's surface. Only the portion of the fault used in defining design values is shown. The number on the fault is the deterministic median spectral response acceleration times 1.5. The values on the fault projection may be used for interpolation purposes. Selected contours near faults have been deleted for clarity. In these instances, interpolation may be done using fault values and the nearest adjacent contour.

FIGURE 1613.5(4)—continued
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 1 OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.5(5)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 2 OF
0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

Explanation

Contour intervals, % g
- 50
- 25
- 10
- 5
- 1
- 0

Note: contours are irregularly spaced

\[+ \]

Point value of spectral response acceleration expressed as a percent of gravity

\[- \]

Contours of spectral response acceleration expressed as a percent of gravity. Hachure point in direction of decreasing values.

DISCUSSION
Refer to the map of Maximum Considered Earthquake Ground Motions for the Continental United States of 0.2 sec Spectral Response Acceleration (Figure 14.3.51) for discussion and references.
FIGURE 1613.5(6)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 2 OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.5(7)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 3 OF
0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% PERCENT OF CRITICAL DAMPING), SITE CLASS B

Explanation
Contour intervals, % g

- 300
- 275
- 250
- 225
- 200
- 175
- 150
- 125
- 100
- 90
- 80
- 65
- 50
- 35
- 30
- 25
- 20
- 15
- 10
- 5
- 0

Note: contours are irregularly spaced

Areas with a constant spectral response acceleration of 150% g

Point value of spectral response acceleration expressed as a percent of gravity

Contours of spectral response acceleration represented as percent spectral response acceleration in direction of decreasing values.

DISCUSSION
Refer to the map of Maximum Considered Earthquake Ground Motion for the Continental United States of 0.2 sec Spectral Response Acceleration (Figure 1613.5(1)) for discussion and references.

Index map showing location of study area
FIGURE 1613.5(8)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 3 OF
1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING)

1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING)

Explanation

+ 6.2
--- 10
----- 10

Contour Intervals, % g
-200
-175
-150
-125
-100
-75
-50
-35
-30
-25
-20
-15
-10
-5
0

DISCUSSION

Refer to the maps of Maximum Considered Earthquake Ground Motion for the Contiguous United States of 0.2 and 1.0 Sec Spectral Response Acceleration (Figures 1613.5(1) and 1613.5(2)) for discussion and references.

FIGURE 1613.5(9)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION 4 OF 0.2 AND 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
STRUCTURAL DESIGN

Figure 1613.5(10)
Maximum Considered Earthquake Ground Motion for Hawaii of 0.2 and 1.0 Sec Spectral Response Acceleration (5% of Critical Damping), Site Class B

Explanation

<table>
<thead>
<tr>
<th>Value</th>
<th>Contour of spectral response acceleration expressed as a percent of gravity. Midwest point in direction of decreasing values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Discussion

The acceleration values contoured on this map are for the median horizontal component of acceleration. The design procedure, the seismic site conditions, and the map data are contained in the Seismic Design Parameters of the 2010 California Building Code.

The two areas shown as zone boundaries are the projection to the earth's surface of horizontal rupture planes of 5% drop. Spectral accelerations are constant within the boundaries of the zones. The number on the boundary and inside the zone is the median spectral response acceleration times 1.5, expressed as a percent of gravity. Locations of deterministic zone boundaries (see Discussion). The number on the boundary and inside the zone is the median spectral response acceleration times 1.5, expressed as a percent of gravity.

Areas with a constant spectral response acceleration of 150g.

Areas with a constant spectral response acceleration of 60g.

Note: Contours are irregularly spaced.

References

DISCUSSION

The acceleration values contoured on this map are for the random horizontal component of acceleration. For design purposes, the reference site condition for the map is Site Class B.

REFERENCE

The National Seismic Hazard Mapping Project Web Site, http://eqhazmaps.usgs.gov, contains electronic versions of this map and others. Documentation, gridded values, and Arc/Info coverage used to make the maps are also available.

FIGURE 1613.5(11)

MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR ALASKA OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
The seismic values contained in the maps are for the minimum horizontal component of acceleration. For design purposes, the reference site condition for the maps is the site on the line in Site Class B. For Site Class C sites, the site condition shall be modified to increase the velocity and horizontal component of the accelerations shown on the map. The values on the fault portions shown may be used for interpretation purposes.

Values at selected corners near faults have been deleted for clarity. In these instances, interpolation may be done using fault values and the nearest adjacent contour values.

REFERENCES

U.S. Geological Survey

FIGURE 1613.5(12)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR ALASKA OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

Map prepared by U.S. Geological Survey.
DISCUSSION

The acceleration values contoured on this map are for the random horizontal component of acceleration. For design purposes, the reference site condition for the map is to be taken as Site Class B. Leyendecker, Franke, and Rukstales (2001, 2004) have prepared a CD-ROM that contains software to allow determination of Site Class B map values by latitude-longitude. The software on the CD contains site coefficients that allow the user to select map values for different Site Classes. Additional maps at different scales also are included on the CD. The CD was prepared using the same data as that used to prepare the Maximum Considered Earthquake Ground Motion maps. The National Seismic Hazard Mapping Project Web Site, http://eqhazmap.usgs.gov, contains electronic versions of this map and others. Documentation, gridded values, and ArcINFO coverage used to make the maps are also available.

Map prepared by U.S. Geological Survey.

REFERENCES

FIGURE 1613.5(13)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR PUERTO RICO, CULEBRA, VIEQUES, ST. THOMAS, ST. JOHN AND ST. CROIX OF 0.2 AND 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

66 2010 CALIFORNIA BUILDING CODE
DISCUSSION

Leyendecker, North, and Subbaiah (2001, 2004) have prepared a CD-ROM that contains software to allow determination of Site Class B map values by either latitudinal or longitudinal coordinates. The software in the CD-ROM are coefficients that allow the user to adjust map values for different Site Classes.

Map prepared by U.S. Geological Survey.

REFERENCES

FIGURE 1613.5(14)
MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR GUAM AND TUTUILLA OF 0.2 AND 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1614.4
LONGITUDINAL, PERIMETER, TRANSVERSE AND VERTICAL TIES

T = Transverse
L = Longitudinal
V = Vertical
P = Perimeter
SECTION 1615
ADDITIONAL REQUIREMENTS [DSA-SS/CC]

1615.1 Construction documents.

1615.1.1 Additional requirements for construction documents are included in Sections 4-210 and 4-317 of the Building Standards Administrative Code (Part I, Title 24, C.C.R).

1615.1.2 Connections. Connections that resist design seismic forces shall be designed and detailed on the design drawings.

1615.1.3 Construction procedures. Where unusual erection or construction procedures are considered essential by the project structural engineer or architect in order to accomplish the intent of the design or influence the design, such procedure shall be indicated on the plans or in the specifications.

1615.2 General design requirements.

1615.2.1 Lateral load deflections.

1615.2.1.1 Horizontal diaphragms. The maximum span-width ratio for any roof or floor diaphragm shall not exceed those given in Table 2305.2 or Table 4.2.4 of AF & PA SDPWS for wood sheathed diaphragms. For other diaphragms, test data and design calculations acceptable to the enforcement agency shall be submitted and approved for span-width ratios.

1615.2.1.2 Veneers. The deflection shall not exceed the limits in Section 1405.10 for veneered walls, anchored veneers and adhered veneers over 1 inch (25 mm) thick, including the mortar backing.

1615.2.1.3 Occupancy Category of buildings and other structures. Occupancy Category IV includes structures as defined in C.C.R. Title 24, Part I, Section 4-207 and all structures required for their continuous operation or access/egress.

1615.3 Load combinations.

1615.3.1 Stability. When checking stability under the provisions of Section 1605.1.1 using allowable stress design, the factor of safety for soil bearing values shall not be less than the overstrength factor of the structures supported.

1615.4 Roof dead loads. The design dead load shall provide for the weight of at least one additional roof covering in addition to other applicable loadings if the new roof covering is permitted to be applied over the original roofing without its removal, in accordance with Section 1510.

1615.5 Live loads.

1615.5.1 Modifications to Table 1607.1.

1615.5.1.1 Item 4. Assembly areas and theaters. The following minimum loads for stage accessories apply:

1. Gridirons and fly galleries: 75 pounds per square foot uniform live load.
2. Loft block wells: 250 pounds per lineal foot vertical load and lateral load.

3. Head block wells and sheave beams: 250 pounds per lineal foot vertical load and lateral load. Head block wells and sheave beams shall be designed for all tributary loft block well loads. Sheave blocks shall be designed with a safety factor of five.

4. Scenery beams where there is no gridiron: 300 pounds per lineal foot vertical load and lateral load.

5. Ceiling framing over stages shall be designed for a uniform live load of 20 pounds per square foot. For members supporting a tributary area of 200 square feet or more, this additional load may be reduced to 15 pounds per square foot (0.72 kN/m²).

The minimum uniform live load for a press box floor or accessible roof with railing is 100 psf.

1615.5.1.2 Item 22. Libraries. The minimum vertical design live load shall be as follows:

Paper media:
- 12-inch-deep (305 mm) shelf – 33 pounds per lineal foot (482 N/m)
- 15-inch-deep (381 mm) shelf – 41 pounds per lineal foot (598 N/m), or
- 33 pounds per cubic foot (5183 N/m³) per total volume of the rack or cabinet, whichever is less.

Film media:
- 18-inch-deep (457 mm) shelf – 100 pounds per lineal foot (1459 N/m), or
- 50 pounds per cubic foot (7853 N/m³) per total volume of the rack or cabinet, whichever is less.

Other media:
- 20 pounds per cubic foot (311 N/m³) or 20 pounds per square foot (958 Pa), whichever is less, but not less than actual loads.

1615.5.1.3 Item 25. Office buildings. The minimum vertical design live load shall conform to Section 1615.5.1.2.

1615.5.1.4 Item 28. Reviewing stands, grandstands and bleachers. The minimum uniform live load for a press box floor or accessible roof with railing is 100 psf.

1615.5.1.5 Item 40. Yards and terraces, pedestrians. Item 40 applies to pedestrian bridges and walkways that are not subjected to uncontrolled vehicle access.

1615.5.1.6 Item 41. Storage racks and wall-hung cabinets. The minimum vertical design live load shall conform to Section 1615.5.1.2.

1615.5.2 Uncovered open-frame roof structures. Uncovered open-frame roof structures shall be designed for a vertical live load of not less than 10 pounds per square foot (0.48 kN/m²) of the total area encompassed by the framework.
1615.6 Determination of snow loads. The ground snow load or the design snow load for roofs shall conform with the adopted ordinance of the city, county, or city and county in which the project site is located, and shall be approved by DSA. 1615.7 Wind loads.

1615.7.1 Special wind regions. The basic wind speed for projects located in special wind regions as defined in Figure 1609 shall conform with the adopted ordinance of the city, county, or city and county in which the project site is located, and shall be approved by DSA-SS/CC.

1615.7.2 Story drift for wind loads. The calculated story drift due to wind pressures shall not exceed 0.005 times the story height for buildings less than 65 feet (19 812 mm) in height or 0.004 times the story height for buildings 65 feet (19 812 mm) or greater in height.

1615.8 Establishment of flood hazard areas. Flood hazard maps shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency’s Flood Insurance Study (FIS) adopted by the local authority having jurisdiction where the project is located, as amended or revised with the accompanying Flood Insurance Rate Map (FIRM) and Flood Boundary and Floodway Map (FBFM) and related supporting data along with any revisions thereto.

1615.9 Earthquake loads.

1615.9.1 Seismic design category. The seismic design category for a structure shall be determined in accordance with Section 1613.

1615.9.2 Definitions. In addition to the definitions in Section 1613.2, the following words and terms shall, for the purposes of this section, have the meanings shown herein.

ACTIVE EARTHQUAKE FAULT. A fault that has been the source of earthquakes or is recognized as a potential source of earthquakes, including those that have exhibited surface displacement within Holocene time (about 11,000 years) as determined by California Geological Survey (CGS) under the Alquist-Priolo Earthquake Fault Zoning Act, those included as type A or type B faults for the U.S. Geological Survey (USGS) National Seismic Hazard Maps, and faults considered to have been active in Holocene time by an authoritative source, federal, state or local governmental agency.

BASE. The level at which the horizontal seismic ground motions are considered to be imparted to the structure or the level at which the structure as a dynamic vibrator is supported. This level does not necessarily coincide with the ground level.

DISTANCE FROM AN ACTIVE EARTHQUAKE FAULT. Distance measured from the nearest point of the building to the closest edge of an Alquist-Priolo Earthquake fault zone for an active fault, if such a map exists, or to the closest mapped splay of the fault.

IRREGULAR STRUCTURE. A structure designed as having one or more plan or vertical irregularities per ASCE 7 Section 12.3.

NEXT GENERATION ATTENUATION (NGA). Attenuation relations used for the 2008 United States Geological Survey (USGS) seismic hazards maps (for the Western United States) or their equivalent as determined by the enforcement agency.

STRUCTURAL ELEMENTS. Floor or roof diaphragms, decking, joists, slabs, beams, or girders, columns, bearing walls, retaining walls, masonry or concrete nonbearing walls exceeding one story in height, foundations, shear walls or other lateral-force-resisting members, and any other elements necessary to the vertical and lateral strength or stability of either the building as a whole or any of its parts, including connection between such elements.

1615.9.3 Mapped acceleration parameters. Seismic Design Category shall be determined in accordance with Section 1613.5.6.

1615.9.4 Determination of seismic design category. Structures not assigned to Seismic Design Category E or F in accordance with Section 1613.5 shall be assigned to Seismic Design Category D.

1615.9.4.1 Alternative seismic design category determination. The alternative Seismic Design Category determination procedure of Section 1613.5.6.1 is not permitted by DSA-SS/CC.

1615.9.4.2 Simplified design procedure. The simplified design procedure of Section 1613.5.6.2 is not permitted by DSA-SS/CC.

1615.9.5 Automatic sprinkler systems. The allowable values for design of anchors, hangers and bracing elements shall be determined in accordance with material chapters of this code in lieu of those in NFPA 13.

1615.9.6 Anchorage of walls. The modification of ASCE 7, Section 11.7.5 in Section 1613.7 not adopted by DSA-SS/CC.

1615.10 Modifications to ASCE 7. The text of ASCE 7 shall be modified as indicated in Sections 1615.10.1 through 1615.10.26.

1615.10.1 ASCE 7, Section 11.1. Modify ASCE 7 Section 11.1 by adding Section 11.1.5 as follows:

11.1.5 Structural design criteria. Where design reviews are required in ASCE 7, Chapters 16, 17 or 18, the ground motion, analysis and design methods, material assumptions and acceptance criteria proposed by the engineer shall be submitted to the enforcement agency in the form of structural design criteria for approval.

1615.10.2 ASCE 7, Section 11.4.7. Modify ASCE 7 Section 11.4.7 as follows:

11.4.7 Site-specific ground motion procedures. The site-specific ground motion procedure set forth in ASCE 7 Chapter 21 as modified in Section 1803A.6 of this code is permitted to be used to determine ground motion for any structure.

Unless otherwise approved, the site-specific procedure per ASCE 7 Chapter 21 as modified by Section
1803A.6 of this code shall be used where any of the following conditions apply:

1) A site response analysis shall be performed per Section 21.1 and a ground motion hazard analysis shall be performed in accordance with Section 21.2 for the following structures:
 a) Structure located in Type E soils and mapped MCE spectral acceleration at short periods \(S_s \) exceeds 2.0g.
 b) Structures located in Type F soils.

 Exception:
 1) Where \(S_s \) is less than 0.20g, use of Type E soil profile shall be permitted.
 2) Where exception to Section 20.3.1 is applicable except for base isolated buildings.

2) A ground motion hazard analysis shall be performed in accordance with Section 21.2 when:
 a) A time history response analysis of the building is performed as part of the design.
 b) The building site is located in an area identified in Section 4-317(e) of the California Administrative Code (Part 1, Title 24, C.C.R).
 c) For seismically isolated structures and for structures with damping systems.

1615.10.3 ASCE 7, Table 12.2-1. Modify ASCE 7 Table 12.2-1 as follows:

A. BEARING WALL SYSTEMS

14. Light-framed walls with shear panels of all other materials – Not permitted by DSA-SS/CC.

B. BUILDING FRAME SYSTEMS

24. Light-framed walls with shear panels of all other materials – Not permitted by DSA-SS/CC.

 Exception:
 1) Systems listed in this section can be used as an alternative system when pre-approved by the enforcement agency.
 2) Rooftop or other supported structures not exceeding two stories in height and 10 percent of the total structure weight can use the systems in this section when designed as components per ASCE 7 Chapter 13.
 3) Systems listed in this section can be used for seismically isolated buildings when permitted by Section 1613.6.2.

1615.10.4 ASCE 7, Section 12.2.3.1. Modify ASCE 7 Section 12.2.3.1 by adding the following additional requirements for a two stage equivalent lateral force procedure or modal response spectrum procedure:

 e. Where design of elements of the upper portion is governed by special seismic load combinations, the special loads shall be considered in the design of the lower portions.

1615.10.5 ASCE 7, Section 12.3.3. Modify ASCE 7 Section 12.3.3.1 as follows:

12.3.3.1 **Prohibited horizontal and vertical irregularities for Seismic Design Categories D through F.** Structures assigned to Seismic Design Category E or F having horizontal structural irregularity Type 1b of Table 12.3-1 or vertical structural irregularities Type 1b, 5a or 5b of Table 12.3-2 shall not be permitted. Structures assigned to Seismic Design Category D having vertical irregularity Type 1b or 5b of Table 12.3-2 shall not be permitted.

1615.10.6 ASCE 7, Section 12.7.2. Modify ASCE 7 Section 12.7.2 by adding Item 5 to read as follows:

5. Where buildings provide lateral support for walls retaining earth, and the exterior grades on opposite sides of the building differ by more than 6 feet (1829 mm), the load combination of the seismic increment of earth pressure due to earthquake acting on the higher side, as determined by a Geotechnical engineer qualified in soils engineering, plus the difference in earth pressures shall be added to the lateral forces provided in this section.

1615.10.7 ASCE 7, Section 12.8.7. Modify ASCE 7 Section 12.8.7 by replacing Equation 12.8-16 as follows:

\[
\theta = \frac{P x \Delta I}{V_s h_a C_d} \tag{12.8-16}
\]

1615.10.8 ASCE 7, Section 12.9.4. Replace ASCE 7 Section 12.9.4 as follows:

12.9.4 **Scaling design values of combined response.** Modal base shear shall not be less than the base shear calculated using the equivalent lateral force procedure of Section 12.8.

1615.10.9 ASCE 7, Section 12.13.1. Modify ASCE 7 Section 12.13.1 by adding Section 12.13.1.1 as follows:

12.13.1.1 **Foundations and superstructure-to-foundation connections.** The foundation shall be capable of transmitting the design base shear and the overturning forces from the structure into the supporting soil. Stability against overturning and sliding shall be in accordance with Section 1605.1.1.

In addition, the foundation and the connection of the superstructure elements to the foundation shall have the strength to resist, in addition to gravity loads, the lesser of the following seismic loads:

1. The strength of the superstructure elements
2. The maximum forces that would occur in the fully yielded structural system

3. Forces from the Load Combinations with overstrength factor in accordance with ASCE 7 Section 12.4.3.2

Exceptions:
1. Where referenced standards specify the use of higher design loads.
2. When it can be demonstrated that inelastic deformation of the foundation and superstructure-to-foundation connection will not result in a weak story or cause collapse of the structure.
3. Where basic structural system consists of light-framed walls with shear panels.

Where the computation of the seismic overturning moment is by the equivalent lateral-force method or the modal analysis method, reduction in overturning moment is by the equivalent lateral-force method or the

structural interpretation of the foundation as well as deformation of the superstructure-to-foundation connection shall be considered in the drift and deformation compatibility analyses.

1615.10.11 ASCE 7, Section 13.3.2. Modify ASCE 7 Section 13.3.2 by adding the following:

The seismic relative displacements to be used in design of displacement sensitive nonstructural components is Dp instead of Dp, where Dp is given by Equations 13.3-5 to 13.3-8 and I is the building importance factor given in Section 11.5.

1615.10.12 ASCE 7, Section 13.4.5. Replace ASCE 7 Section 13.4.5 by the following:

13.4.5 Power actuated fasteners. Power actuated fasteners in concrete shall not be used for gravity tension loads exceeding 100 lb (445 N) in Seismic Design Categories D, E or F unless approved for seismic loading. Power actuated fasteners in steel are permitted in Seismic Design Category D, E or F if the gravity tension load on any fastener does not exceed 250 lbs (1123 N) unless approved for seismic loading. Power actuated fasteners in masonry are not permitted unless approved for seismic loading.

1615.10.13 ASCE 7, Section 13.5.6. Replace ASCE 7, Section 13.5.6 by the following:

13.5.6 Suspended ceilings. Suspended ceilings shall be in accordance with this section.

13.5.6.1 Seismic forces. The weight of the ceiling, Wp, shall include the ceiling grid; ceiling tiles or panels; light fixtures if attached to, clipped to, or laterally supported by the ceiling grid; and other components that are laterally supported by the ceiling. Wp shall be taken as not less than 4 psf (19 N/m^2).

The seismic force, Fp, shall be transmitted through the ceiling attachments to the building structural elements or the ceiling-structure boundary.

13.5.6.2 Industry standard construction for acoustical tile or lay-in panel ceilings. Unless designed in accordance with ASTM E 580 Section 5.2.8.8, or seismically qualified in accordance with Sections 13.2.5 or 13.2.6,
acoustical tile or lay-in panel ceilings shall be designed and constructed in accordance with this section.

13.5.6.2.1 Seismic Design Categories D through F. Acoustical tile or lay-in panel ceilings in Seismic Design Categories D, E and F shall be designed and installed in accordance with ASTM C 635, ASTM C 636, and ASTM E 580, Section 5 - Seismic Design Categories D, E and F as modified by this section.

13.5.6.2.2 Modification to ASTM E 580. Modify ASTM E 580 by the following:

1. Exitways. Lay-in ceiling assemblies in exitways of hospitals and essential services buildings shall be installed with a main runner or cross runner surrounding all sides of each piece of tile, board or panel and each light fixture or grille. A cross runner that supports another cross runner shall be considered as a main runner for the purpose of structural classification. Splices or intersections of such runners shall be attached with through connectors such as pop rivets, screws, pins, plates with end tabs or other approved connectors.

2. Corridors and lobbies. Expansion joints shall be provided in the ceiling at intersections of corridors and at junctions of corridors and lobbies or other similar areas.

3. Lay-in panels. Metal panels and panels weighing more than 1/2 pounds per square foot (24 N/m²) other than acoustical tiles shall be positively attached to the ceiling suspension runners.

4. Lateral force bracing. Lateral force bracing is required for all ceiling areas except that they shall be permitted to be omitted in rooms with floor areas up to 144 square feet where perimeter support is provided in accordance with ASTM E 580 Sections 5.2.2 and 5.2.3 and perimeter walls are designed to carry the ceiling lateral forces.

5. Ceiling fixtures. Fixtures installed in acoustical tile or lay-in panel ceilings shall be mounted in a manner that will not compromise ceiling performance.

 All recessed or drop-in light fixtures and grilles shall be supported directly from the fixture housing to the structure above with a minimum of two 12-gage wires located at diagonally opposite corners. Leveling and positioning of fixtures may be provided by the ceiling grid. Fixture support wires may be slightly loose to allow the fixture to seat in the grid system. Fixtures shall not be supported from main runners or cross runners if the weight of the fixtures causes the total dead load to exceed the deflection capability of the ceiling suspension system.

 Fixtures shall not be installed so that the main runners or cross runners will be eccentrically loaded.

 Surface-mounted fixtures shall be attached to the main runner with at least two positive clampings devices made of material with a minimum of 14 gage. Rotational spring catches do not comply. A 12-gage suspension wire shall be attached to each clamping device and to the structure above.

6. Partitions. Where the suspended ceiling system is required to provide lateral support for the permanent or relocatable partitions, the connection of the partition to the ceiling system, the ceiling system members and their connections, and the lateral force bracing shall be designed to support the reaction force of the partition from prescribed loads applied perpendicular to the face of the partition. Partition connectors, the suspended ceiling system and the lateral-force bracing shall all be engineered to suit the individual partition application and shall be shown or defined in the drawings or specifications.

1615.10.14 ASCE 7, Section 13.6.5. Modify ASCE 7, Section 13.6.5 by deleting Item #6 in Section 13.6.5.5 and adding Section 13.6.5.6 as follows:

13.6.5.6 Conduit, cable tray, and other electrical distribution systems (raceways). Raceways shall be designed for seismic forces and seismic relative displacements as required in Section 13.3. Conduit greater than 2.5 inches (64 mm) trade size and attached to panels, cabinets or other equipment subject to seismic relative displacement, Dp, shall be provided with flexible connections or designed for seismic forces and seismic relative displacements as required in Section 13.3.

Exceptions:

1. Design for the seismic forces and relative displacements of Section 13.3 shall not be required for raceways where either:

 a. Trapeze assemblies are used to support raceways and the total weight of the raceway supported by trapeze assemblies is less than 10 lb/ft (146 N/m), or

 b. The raceway is supported by hangers and each hanger in the raceway run is 12 in. (305 mm) or less in length from the raceway support point to the supporting structure. Where rod hangers are used, they shall be equipped with swivels to prevent inelastic bending in the rod.

2. Design for the seismic forces and relative displacements of Section 13.3 shall not be required for conduit, regardless of the value of Lp, where the conduit is less than 2.5 in. (64 mm) trade size.

1615.10.15 ASCE 7, Section 13.6.7. Replace ASCE 7, Section 13.6.7 by the following:

13.6.7 Ductwork. HVAC and other ductwork shall be designed for seismic forces and seismic relative displacements as required in Section 13.3. Ductwork designed to carry toxic, highly toxic or explosive gases,
or used for smoke control shall be designed and braced without considering the exceptions noted below.

Exceptions:

1. Design for the seismic forces and relative displacements of Section 13.3 shall not be required for ductwork where either:
 a. Trapeze assemblies are used to support ductwork and the total weight of the ductwork supported by trapeze assemblies is less than 10 lb/ft (146 N/m); or
 b. The ductwork is supported by hangers and each hanger in the duct run is 12 in. (305 mm) or less in length from the duct support point to the supporting structure. Where rod hangers are used, they shall be equipped with swivels to prevent inelastic bending in the rod.

2. Design for the seismic forces and relative displacements of Section 13.3 shall not be required where provisions are made to avoid impact with larger ducts or mechanical components or to protect the ducts in the event of such impact; and HVAC ducts have a cross-sectional area of 6 ft² (0.557 m²) or less, or weigh 10 lb/ft (146 N/m) or less.

HVAC duct systems fabricated and installed in accordance with standards approved by the authority having jurisdiction shall be deemed to meet the lateral bracing requirements of this section.

Components that are installed in-line with the duct system and have an operating weight greater than 75 lb (334 N), such as fans, heat exchangers and humidifiers, shall be supported and laterally braced independent of the duct system, and such braces shall meet the force requirements of Section 13.3. Appurtenances such as dampers, louvers and diffusers shall be positively attached with mechanical fasteners. Unbraced piping attached to in-line equipment shall be provided with adequate flexibility to accommodate the seismic relative displacements.

1615.10.16 ASCE 7, Section 13.6.8. Replace ASCE 7, Section 13.6.8 by the following:

13.6.8 Piping systems. Unless otherwise noted in this section, piping systems shall be designed for the seismic forces and seismic relative displacements of Section 13.3. ASME pressure piping systems shall satisfy the requirements of Section 13.6.8.1. Fire protection sprinkler piping shall satisfy the requirements of Section 13.6.8.2. Elevator system piping shall satisfy the requirements of Section 13.6.10.

Where other applicable material standards or recognized design bases are not used, piping design including consideration of service loads shall be based on the following allowable stresses:

- a. For piping constructed with ductile materials (e.g., steel, aluminum or copper), 90 percent of the minimum specified yield strength.
- b. For threaded connections in piping constructed with ductile materials, 70 percent of the minimum specified yield strength.
- c. For piping constructed with nonductile materials (e.g., cast iron or ceramics), 10 percent of the material minimum specified tensile strength.
- d. For threaded connections in piping constructed with nonductile materials, 8 percent of the material minimum specified tensile strength.

Piping not detailed to accommodate the seismic relative displacements at connections to other components shall be provided with connections having sufficient flexibility to avoid failure of the connection between the components.

13.6.8.1 ASME Pressure piping systems. Pressure piping systems, including their supports, designed and constructed in accordance with ASME B 31 shall be deemed to meet the force, displacement and other requirements of this section. In lieu of specific force and displacement requirements provided in ASME B 31, the force and displacement requirements of Section 13.3 shall be used.

13.6.8.2 Fire protection sprinkler piping systems. Fire protection sprinkler piping designed and constructed in accordance with NFPA 13 shall be deemed to meet the force and displacement requirements of this section. The exceptions of Section 13.6.8.3 shall not apply.

Exception: Pipe hangers, bracing and anchor capacities shall be determined in accordance with material chapters of the California Building Code, in lieu of using those in NFPA 13. The force and displacement requirements of Section 13.3 or those in the NFPA 13 may be used for design.

13.6.8.3 Exceptions. Design of piping systems and attachments for the seismic forces and relative displacements of Section 13.3 shall not be required where one of the following conditions apply:

1. Trapeze assemblies are used to support piping whereby no single pipe exceeds the limits set forth in 3a. or b. below and the total weight of the piping supported by the trapeze assemblies is less than 10 lb/ft (146 N/m).
2. The piping is supported by hangers and each hanger in the piping run is 12 in. (305 mm) or less in length from the top of the pipe to the supporting structure. Where pipes are supported on a trapeze, the trapeze shall be supported by hangers having a length of 12 in. (305 mm) or less. Where rod hangers are used, they shall be equipped with swivels, eye nuts or other devices to prevent bending in the rod.
3. Piping having an \(R_p \) in Table 13.6.1 of 4.5 or greater is used and provisions are made to avoid impact with other structural or nonstructural components or to protect the piping in the event of such impact and where the following size requirements are satisfied:

a. For Seismic Design Categories D, E or F and values of \(I_p \) greater than one, the nominal pipe size shall be 1 inch (25 mm) or less.

b. For Seismic Design Categories D, E or F where \(I_p = 1.0 \) the nominal pipe size shall be 3 inches (80 mm) or less.

The exceptions above shall not apply to elevator piping.

13.6.8.4 Other piping systems. Piping not designed and constructed in accordance with ASME B 31 or NFPA 13 shall comply with the requirements of Section 13.6.11.

1615.10.17 ASCE 7, Section 13.6.10.1. Modify ASCE 7 Section 13.6.10.1 by adding Section 13.6.10.1.1 as follows:

13.6.10.1.1 Elevators guide rail support. The design of guide rail support bracket fastenings and the supporting structural framing shall use the weight of the counterweight or maximum weight of the car plus not more than 40 percent of its rated load. The seismic forces shall be assumed to be distributed one-third to the top guiding members and two-thirds to the bottom guiding members of cars and counterweights, unless other substantiating data are provided. In addition to the requirements of ASCE 7 Section 13.6.10.1, the minimum seismic forces shall be 0.5g acting in any horizontal direction.

1615.10.18 ASCE 7, Section 13.6.10.4. Replace ASCE 7 Section 13.6.10.4 as follows:

13.6.10.4 Retainer plates. Retainer plates are required at the top and bottom of the car and counterweight, except where safety devices acceptable to the enforcement agency are provided which meet all requirements of the retainer plates, including full engagement of the machined portion of the rail. The design of the car, cab stabilizers, counterweight guide rails and counterweight frames for seismic forces shall be based on the following requirements:

1. The seismic force shall be computed per the requirements of ASCE 7 Section 13.6.10.1. The minimum horizontal acceleration shall be 0.5g for all buildings.

2. \(W_p \) shall equal the weight of the counterweight or the maximum weight of the car plus not less than 40 percent of its rated load.

3. With the car or counterweight located in the most adverse position, the stress in the rail shall not exceed the limitations specified in these regulations, nor shall the deflection of the rail relative to its supports exceed the deflection listed below:

<table>
<thead>
<tr>
<th>RAIL SIZE (weight per foot of length, pounds)</th>
<th>WIDTH OF MACHINED SURFACE (inches)</th>
<th>ALLOWABLE RAIL DEFLECTION (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1⅜</td>
<td>0.20</td>
</tr>
<tr>
<td>11</td>
<td>1½</td>
<td>0.30</td>
</tr>
<tr>
<td>12</td>
<td>1⅝</td>
<td>0.40</td>
</tr>
<tr>
<td>15</td>
<td>1⅞</td>
<td>0.50</td>
</tr>
<tr>
<td>18½</td>
<td>2⅜</td>
<td>0.50</td>
</tr>
<tr>
<td>22½</td>
<td>2⅜</td>
<td>0.50</td>
</tr>
<tr>
<td>30</td>
<td>2⅜</td>
<td>0.50</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25 mm, 1 foot = 305 mm, 1 pound = 0.454 kg.

Note: Deflection limitations are given to maintain a consistent factor of safety against disengagement of retainer plates from the guide rails during an earthquake.

4. Where guide rails are continuous over supports and rail joints are within 2 feet (610 mm) of their supporting brackets, a simple span may be assumed.

5. The use of spreader brackets is allowed.

6. Cab stabilizers and counterweight frames shall be designed to withstand computed lateral load with a minimum horizontal acceleration of 0.5g.

1615.10.19 ASCE 7, Section 16.1.3.2. Modify ASCE 7 Section 16.1.3.2 by the following:

Where next generation attenuation relations are used in accordance with CBC Section 1802A.6.2, each pair of motion shall be scaled such that for each period between 0.2T and 1.5T, the average of the SRRSS spectra from all horizontal component pairs does not fall below the corresponding ordinate of the maximum considered earthquake (MCE) response spectrum determined using NGA relations.

At sites within 5 km of an active fault that controls the hazard, each pair of components shall be rotated to the fault-normal and fault-parallel direction of the causative fault, and shall be scaled so that average of the fault-normal components is not less than the MCE response spectrum for each period between 0.2T and 1.5T.

1615.10.20 ASCE 7, Section 16.1.4. Modify ASCE 7 Section 16.1.4 by the following:

For each ground motion analyzed, the individual response parameters shall be multiplied by the following scalar quantities:

a. Force response parameters shall be multiplied by \(I/R \), where \(I \) is the importance factor determined in
accordance with Section 11.5.1, and R is the Response Modification Coefficient selected in accordance with Section 12.2.1.

b. Drift quantities shall be multiplied by \(C_d R \), where \(C_d \) is the deflection amplification factor specified in Table 12.2-1.

The distribution of horizontal shear shall be in accordance with Section 12.8.4.

1615.10.21 ASCE 7, Section 16.2.4. Modify ASCE 7 Section 16.2.4 by the following:

a) Where site is located within 3.1 miles (5 km) of an active fault at least seven ground motions shall be analyzed and response parameters shall be based on larger of the average of the maximum response with ground motions applied as follows:

1. Each of the ground motions shall have their maximum component at the fundamental period aligned in one direction.

2. Each of the ground motions shall have their maximum component at the fundamental period aligned in one direction.

b) Where site is located more than 3.1 miles (5 km) from an active fault at least 10 ground motions shall be analyzed. The ground motions shall be applied such that one-half shall have their maximum component aligned in one direction and the other half aligned in the orthogonal direction. The average of the maximum response of all the analyses shall be used for design.

1615.10.22 ASCE 7, Section 17.2.1. Modify ASCE 7 Section 17.2.1 by adding the following:

The importance factor, \(I_p \), for parts and portions of a seismically isolated building shall be the same as that required for a fixed-base building of the same occupancy category.

1615.10.23 ASCE 7 Section 17.2.4.7. Modify ASCE 7 Section 17.2.4.7 by adding the following:

The effects of uplift and/or rocking shall be explicitly accounted for in the analysis and in the testing of the isolator units.

1615.10.24 ASCE 7, Section 17.2.5.2. Modify ASCE 7, Section 17.2.5.2 by adding the following:

The separation requirements for the building above the isolation system and adjacent buildings shall be the sum of the factored displacements for each building. The factors to be used in determining separations shall be:

1. For seismically isolated buildings, the deformation resulting from the analyses using the maximum considered earthquake unmodified by \(R \).

2. For fixed based buildings, \(C_d \) times the elastic deformations resulting from an equivalent static analysis using the seismic base shear computed via ASCE 7 Section 12.8.

1615.10.25 ASCE 7, Section 17.3.2. Modify ASCE 7, Section 17.3.2 by adding the following:

Where next generation attenuation relations are used in accordance with Section 1803A.6.2, each pair of motion shall be scaled such that for each period between 0.5\(T_D \) and 1.25\(T_M \) (where \(T_D \) and \(T_M \) are defined in Section 17.5.3), the average of the SRSS spectra from all horizontal component pairs does not fall below the corresponding ordinate of the maximum considered earthquake (MCE) response spectrum determined using NGA relations.

At sites with in 5 km of an active fault that controls the hazard, each pair of components shall be rotated to the fault-normal and fault-parallel direction of the causative fault, and shall be scaled so that average of the fault-normal components is not less than the MCE response spectrum for each period between 0.5\(T_D \) and 1.25\(T_M \).

1615.10.26 ASCE 7, Section 21.4. Replace ASCE 7, Section 21.4 by the following:

21.4 Design Acceleration Parameters. Where the site-specific procedure is used to determine the design ground motion in accordance with Section 21.3, the parameter \(S_{DS} \) shall be taken as the spectral acceleration, \(S_o \) obtained from the site-specific spectra at a period of 0.2 sec, except that it shall not be taken less than 90 percent of the peak spectral acceleration, \(S_o \) at any period larger than 0.2 second. The parameter \(S_{DI} \) shall be taken as the greater of the spectral acceleration, \(S_o \) at a period of 1 sec or two times the spectral acceleration, \(S_o \) at a period of 2 sec.

For use with the Equivalent Lateral Force Procedure, the site specific spectral acceleration, \(S_o \) at \(T \) shall be permitted to replace \(S_{DS} \) in Equation 12.8-3 and \(S_{DI} \) in Equation 12.8-4. The parameter \(S_{DS} \) calculated per this section shall be permitted to be used in Equations 12.8-2 and 12.8-5. The mapped value of \(S_o \) shall be used in Equation 12.8-6. The parameters \(S_{MS} \) and \(S_{DI} \) shall be taken as 1.5 times \(S_{DS} \) and \(S_{DI} \) respectively. The values so obtained shall not be less than 80 percent of the values determined in accordance with Section 11.4.3 for \(S_{MS} \) and \(S_{DI} \) and Section 11.4.4 for \(S_{DS} \) and \(S_{DI} \).

2010 CALIFORNIA BUILDING CODE
<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD 1 2 1-AC</th>
<th>DSA AC</th>
<th>SS</th>
<th>OSHPD SS/CC 1 2 3 4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td>1607A.7.2</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 16A

STRUCTURAL DESIGN

SECTION 1601A
GENERAL

1601A.1 Scope. The provisions of this chapter shall govern the structural design of buildings, structures and portions thereof regulated by this code.

1601A.1.1 Application. The scope of application of Chapter 16A is as follows:

1. Applications listed in Section 1.9.2.1, regulated by the Division of the State Architect-Structural Safety (DSA-SS). These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Applications listed in Sections 1.10.1 and 1.10.4, regulated by the Office of Statewide Health Planning and Development (OSHPD). These applications include hospitals, skilled nursing facilities, intermediate care facilities, and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 16 and any applicable amendments therein.

1601A.1.2 Amendments in this chapter. DSA-SS and OSHPD adopt this chapter and all amendments.

Exception: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

1. Division of the State Architect-Structural Safety:

[DSA-SS] – For applications listed in Section 1.9.2.1.

2. Office of Statewide Health Planning and Development:

[OSHPD 1] – For applications listed in Section 1.10.1.
[OSHPD 4] – For applications listed in Section 1.10.4.

1601A.2 References. All referenced codes and standards listed in Chapter 35 shall include all the modifications contained in this code to referenced standards. In the event of any discrepancy between this code and a referenced standard, refer to Section 1.1.7.

1601A.3 Enforcement agency approval. In addition to the requirements of California Code of Regulations (C.C.R.) Title 24, Parts 1 and 2, any aspect of project design, construction, quality assurance or quality control programs for which this code requires approval by the design professional are also subject to approval by the enforcement agency.

SECTION 1602A
DEFINITIONS AND NOTATIONS

1602A.1 Definitions. The following words and terms shall, for the purposes of this chapter, have the meanings shown herein.

ALLOWABLE STRESS DESIGN. A method of proportioning structural members, such that elastically computed stresses produced in the members by nominal loads do not exceed specified allowable stresses (also called “working stress design”).

ALTERNATIVE SYSTEM. [OSHPD 1 & 4] Alternative materials, design and methods of construction in accordance with Section 104.11, Section 11.1.4 of ASCE 7 or structural design criteria as approved by the enforcement agency.

DEAD LOADS. The weight of materials of construction incorporated into the building, including but not limited to walls, floors, roofs, ceilings, stairways, built-in partitions, finishes, cladding and other similarly incorporated architectural and structural items, and the weight of fixed service equipment, such as cranes, plumbing stacks and risers, electrical feeders, heating, ventilating and air-conditioning systems and automatic sprinkler systems.

DESIGN STRENGTH. The product of the nominal strength and a resistance factor (or strength reduction factor).

DIAPHRAGM. A horizontal or sloped system acting to transmit lateral forces to the vertical-resisting elements. When the term “diaphragm” is used, it shall include horizontal bracing systems.

Diaphragm, blocked. In light-frame construction, a diaphragm in which all sheathing edges not occurring on a framing member are supported on and fastened to blocking.

Diaphragm boundary. In light-frame construction, a location where shear is transferred into or out of the diaphragm sheathing. Transfer is either to a boundary element or to another force-resisting element.

Diaphragm chord. A diaphragm boundary element perpendicular to the applied load that is assumed to take axial stresses due to the diaphragm moment.

Diaphragm flexible. A diaphragm is flexible for the purpose of distribution of story shear and torsional moment where so indicated in Section 12.3.1 of ASCE 7, as modified in Section 1613A.6.1.

Diaphragm, rigid. A diaphragm is rigid for the purpose of distribution of story shear and torsional moment when the lateral deformation of the diaphragm is less than or equal to two times the average story drift.

DURATION OF LOAD. The period of continuous application of a given load, or the aggregate of periods of intermittent applications of the same load.

ENFORCEMENT AGENT. That individual within the agency or organization charged with responsibility for agency or organization compliance with the requirements of this code.
Used interchangeably with “Building Official” and “Code Official.”

ESSENTIAL FACILITIES. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

FABRIC PARTITION. A partition consisting of a finished surface made of fabric, without a continuous rigid backing, that is directly attached to a framing system in which the vertical framing members are spaced greater than 4 feet (1219 mm) on center.

FACTORED LOAD. The product of a nominal load and a load factor.

GUARD. See Section 1002.1.

HOSPITAL BUILDING. Any building defined in Section 129725, Health and Safety Code.

IMPACT LOAD. The load resulting from moving machinery, elevators, craneways, vehicles and other similar forces and kinetic loads, pressure and possible surcharge from fixed or moving loads.

LIMIT STATE. A condition beyond which a structure or member becomes unfit for service and is judged to be no longer useful for its intended function (serviceability limit state) or to be unsafe (strength limit state).

LIVE LOADS. Those loads produced by the use and occupancy of the building or other structure and do not include construction or environmental loads such as wind load, snow load, rain load, earthquake load, flood load or dead load.

LIVE LOADS (ROOF). Those loads produced (1) during maintenance by workers, equipment and materials; and (2) during the life of the structure by movable objects such as planters and by people.

LOAD AND RESISTANCE FACTOR DESIGN (LRFD). A method of proportioning structural members and their connections using load and resistance factors such that no applicable limit state is reached when the structure is subjected to appropriate load combinations. The term “LRFD” is used in the design of steel and wood structures.

LOAD EFFECTS. Forces and deformations produced in structural members by the applied loads.

LOAD FACTOR. A factor that accounts for deviations of the actual load from the nominal load, for uncertainties in the analysis that transforms the load into a load effect, and for the probability that more than one extreme load will occur simultaneously.

LOADS. Forces or other actions that result from the weight of building materials, occupants and their possessions, environmental effects, differential movement and restrained dimensional changes. Permanent loads are those loads in which variations over time are rare or of small magnitude, such as dead loads. All other loads are variable loads (see also “Nominal loads”).

Nominal Loads. The magnitudes of the loads specified in this chapter (dead, live, soil, wind, snow, rain, flood and earthquake).

OCCUPANCY CATEGORY. A category used to determine structural requirements based on occupancy.

OTHER STRUCTURES. Structures, other than buildings, for which loads are specified in this chapter.

PANEL (PART OF A STRUCTURE). The section of a floor, wall or roof comprised between the supporting frame of two adjacent rows of columns and girders or column bands of floor or roof construction.

RESISTANCE FACTOR. A factor that accounts for deviations of the actual strength from the nominal strength and the manner and consequences of failure (also called “strength reduction factor”).

STRENGTH, NOMINAL. The capacity of a structure or member to resist the effects of loads, as determined by computations using specified material strengths and dimensions and equations derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.

STRENGTH, REQUIRED. Strength of a member, cross section or connection required to resist factored loads or related internal moments and forces in such combinations as stipulated by these provisions.

STRENGTH DESIGN. A method of proportioning structural members such that the computed forces produced in the members by factored loads do not exceed the member design strength [also called “load and resistance factor design” (LRFD)]. The term “strength design” is used in the design of concrete and masonry structural elements.

VEHICLE BARRIER SYSTEM. A system of building components near open sides of a garage floor or ramp or building walls that act as restraints for vehicles.

NOTATIONS.

\[
\begin{align*}
D & = \text{Dead load.} \\
E & = \text{Combined effect of horizontal and vertical earthquake induced forces as defined in Section 12.4.2 of ASCE 7.} \\
F & = \text{Load due to fluids with well-defined pressures and maximum heights.} \\
F_a & = \text{Flood load in accordance with Chapter 5 of ASCE 7.} \\
H & = \text{Load due to lateral earth pressures, ground water pressure or pressure of bulk materials.} \\
L & = \text{Live load, except roof live load, including any permitted live load reduction.} \\
L_r & = \text{Roof live load including any permitted live load reduction.} \\
R & = \text{Rain load.} \\
S & = \text{Snow load.} \\
T & = \text{Self-straining force arising from contraction or expansion resulting from temperature change, shrinkage, moisture change, creep in component materials, movement due to differential settlement or combinations thereof.} \\
W & = \text{Load due to wind pressure.}
\end{align*}
\]
SECTION 1603A
CONSTRUCTION DOCUMENTS

1603A.1 General. Construction documents shall show the size, section and relative locations of structural members with floor levels, column centers and offsets dimensioned. The design loads and other information pertinent to the structural design required by Sections 1603A.1.1 through 1603A.1.9 shall be indicated on the construction documents.

Exception: Construction documents for buildings constructed in accordance with the conventional light-frame construction provisions of Section 2308 shall indicate the following structural design information:

1. Floor and roof live loads.
2. Ground snow load, \(P_s \).
3. Basic wind speed (3-second gust), miles per hour (mph) (km/hr) and wind exposure.
4. Seismic design category and site class.
5. Flood design data, if located in flood hazard areas established in Section 1612A.3.
6. Design load-bearing values of soils.

[DSA-SS] Additional requirements are included in Section 4-210 and 4-317 of the California Administrative Code (Part I, Title 24, C.C.R).

[OSHPD 1] Additional requirements are included in Section 7-115 and 7-125 of the California Administrative Code (Part I, Title 24, C.C.R).

1603A.1.1 Floor live load. The uniformly distributed, concentrated and impact floor live load used in the design shall be indicated for floor areas. Use of live load reduction in accordance with Section 1607A.9 shall be indicated for each type of live load used in the design.

1603A.1.2 Roof live load. The roof live load used in the design shall be indicated for roof areas (Section 1607A.11).

1603A.1.3 Roof snow load. The ground snow load, \(P_s \), shall be indicated. In areas where the ground snow load, \(P_s \), exceeds 10 pounds per square foot (psf) (0.479 kN/m\(^2\)), the following additional information shall also be provided, regardless of whether snow loads govern the design of the roof:

1. Flat-roof snow load, \(P_f \).
2. Snow exposure factor, \(C_e \).
3. Snow load importance factor, \(I \).
4. Thermal factor, \(C_t \).

1603A.1.4 Wind design data. The following information related to wind loads shall be shown, regardless of whether wind loads govern the design of the lateral-force-resisting system of the building:

1. Basic wind speed (3-second gust), miles per hour (km/hr).
2. Wind importance factor, \(I \), and occupancy category.
3. Wind exposure. Where more than one wind exposure is utilized, the wind exposure and applicable wind direction shall be indicated.
4. The applicable internal pressure coefficient.
5. Components and cladding. The design wind pressures in terms of psf (kN/m\(^2\)) to be used for the design of exterior component and cladding materials not specifically designed by the registered design professional.

1603A.1.5 Earthquake design data. The following information related to seismic loads shall be shown, regardless of whether seismic loads govern the design of the lateral-force-resisting system of the building:

1. Seismic importance factor, \(I \), and occupancy category.
2. Mapped spectral response accelerations, \(S_s \) and \(S_r \).
3. Site class.
4. Spectral response coefficients, \(S_{DS} \) and \(S_{DP} \).
5. Seismic design category.
6. Basic seismic-force-resisting system(s).
7. Design base shear.
8. Seismic response coefficient(s), \(C_p \).
9. Response modification factor(s), \(R \).
10. Analysis procedure used.
11. Applicable horizontal structural irregularities.

1603A.1.5.1 Connections. Connections that resist design seismic forces shall be designed and detailed on the design drawings.

1603A.1.6 Geotechnical information. The design load-bearing values of soils shall be shown on the construction documents.

1603A.1.7 Flood design data. For buildings located in whole or in part in flood hazard areas as established in Section 1612A.3, the documentation pertaining to design, if required in Section 1612A.5, shall be included and the following information, referenced to the datum on the community’s Flood Insurance Rate Map (FIRM), shall be shown, regardless of whether flood loads govern the design of the building:

1. In flood hazard areas not subject to high-velocity wave action, the elevation of the proposed lowest floor, including the basement.
2. In flood hazard areas not subject to high-velocity wave action, the elevation to which any nonresidential building will be dry floodproofed.
3. In flood hazard areas subject to high-velocity wave action, the proposed elevation of the bottom of the lowest horizontal structural member of the lowest floor, including the basement.

1603A.1.8 Special loads. Special loads that are applicable to the design of the building, structure or portions thereof shall be indicated along with the specified section of this code that addresses the special loading condition.

1603A.1.9 Systems and components requiring special inspections for seismic resistance. Construction docu-
ments or specifications shall be prepared for those systems and components requiring special inspection for seismic resistance as specified in Section 1707.1 by the registered design professional responsible for their design and shall be submitted for approval in accordance with Section 107.1. Reference to seismic standards in lieu of detailed drawings is acceptable.

1603A.1.10 Construction procedures. Where unusual erection or construction procedures are considered essential by the project structural engineer or architect in order to accomplish the intent of the design or influence the design, such procedure shall be indicated on the construction document.

SECTION 1604A
GENERAL DESIGN REQUIREMENTS

1604A.1 General. Building, structures and parts thereof shall be designed and constructed in accordance with strength design, load and resistance factor design, allowable stress design, empirical design or conventional construction methods, as permitted by the applicable material chapters.

1604A.2 Strength. Buildings and other structures, and parts thereof, shall be designed and constructed to support safely the factored loads in load combinations defined in this code without exceeding the appropriate strength limit states for the materials of construction. Alternatively, buildings and other structures, and parts thereof, shall be designed and constructed to support safely the nominal loads in load combinations defined in this code without exceeding the appropriate specified allowable stresses for the materials of construction.

Loads and forces for occupancies or uses not covered in this chapter shall be subject to the approval of the building official.

1604A.3 Serviceability. Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift. See Section 12.12.1 of ASCE 7 for drift limits applicable to earthquake loading.

1604A.3.1 Deflections. The deflections of structural members shall not exceed the more restrictive of the limitations of Sections 1604A.3.2 through 1604A.3.6 or that permitted by Table 1604A.3.4.

1604A.3.2 Reinforced concrete. The deflection of reinforced concrete structural members shall not exceed that permitted by ACI 318.

1604A.3.3 Steel. The deflection of steel structural members shall not exceed that permitted by AISC 360, AISI S100, ASCE 3, ASCE 8, SJI CJ-1.0, SJI JG-1.1, SJI K-1.1 or SJI LH/DLH-1.1, as applicable.

1604A.3.4 Masonry. The deflection of masonry structural members shall not exceed that permitted by TMS 402/ACI 530/ASCE 5.

1604A.3.5 Aluminum. The deflection of aluminum structural members shall not exceed that permitted by AA ADM1.

1604A.3.6 Limits. Deflection of structural members over span, l, shall not exceed that permitted by Table 1604A.3.

1604A.3.7 Horizontal diaphragms. The maximum span-width ratio for any roof or floor diaphragm shall not exceed those given in Table 4.2.4 of AF & PA SDPWS or ICC-ES AC 43 unless test data and design calculations acceptable to the enforcement agency are submitted and approved for the use of other span-width ratios. Concrete diaphragm shall not exceed span-width ratios for equivalent composite floor diaphragm in ICC-ES AC 43.

1604A.3.8 Deflections. Deflection criteria for materials not specified shall be developed by the project architect or structural engineer in a manner consistent with the provisions of this section and approved by the enforcement agency.

TABLE 1604A.3
DEFLECTION LIMITS

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>L</th>
<th>S or W</th>
<th>$D + L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof members:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting plaster ceiling</td>
<td>$l/360$</td>
<td>$l/360$</td>
<td>$l/240$</td>
</tr>
<tr>
<td>Supporting nonplaster ceiling</td>
<td>$l/240$</td>
<td>$l/240$</td>
<td>$l/180$</td>
</tr>
<tr>
<td>Not supporting ceiling</td>
<td>$l/180$</td>
<td>$l/180$</td>
<td>$l/120$</td>
</tr>
<tr>
<td>Floor members</td>
<td>$l/360$</td>
<td>—</td>
<td>$l/240$</td>
</tr>
<tr>
<td>Exterior walls and interior partitions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With brittle finishes</td>
<td>—</td>
<td>$l/240$</td>
<td>—</td>
</tr>
<tr>
<td>With flexible finishes</td>
<td>—</td>
<td>$l/120$</td>
<td>—</td>
</tr>
<tr>
<td>Veneered walls, anchored veneers and adhered veneers over 1 inch (25 mm) thick, including the mortar backing</td>
<td>Section 1405.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm buildings</td>
<td>—</td>
<td>—</td>
<td>$l/180$</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>—</td>
<td>—</td>
<td>$l/120$</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

a. For structural roofing and siding made of formed metal sheets, the total load deflection shall not exceed $l/60$. For secondary roof structural members supporting formed metal roofing, the live load deflection shall not exceed $l/150$. For secondary wall members supporting formed metal siding, the design wind load deflection shall not exceed $l/90$. For roofs, this exception only applies when the metal sheets have no roof covering.

b. Interior partitions not exceeding 6 feet in height and flexible and portable partitions are not governed by the provisions of this section. The deflection criterion for interior partitions is based on the horizontal load defined in Section 1607A.13.

c. See Section 2403 for glass supports.

d. For wood structural members having a moisture content of less than 16 percent at time of installation and used under dry conditions, the deflection resulting from $L + 0.5D$ is permitted to be substituted for the deflection resulting from $L + D$.

e. The above deflections do not ensure against ponding. Roofs that do not have sufficient slope or camber to assure adequate drainage shall be investigated for ponding. See Section 1611A for rain and ponding requirements and Section 1503.4 for roof drainage requirements.

f. The wind load is permitted to be taken as 0.7 times the "component and cladding" loads for the purpose of determining deflection limits herein.

g. For steel structural members, the dead load shall be taken as zero.

h. For aluminum structural members or aluminum panels used in skylights and sloped glazing framing, roofs or walls of sunroom additions or patio covers, not supporting edge of glass or aluminum sandwich panels, the total load deflection shall not exceed $l/60$. For continuous aluminum structural members supporting edge of glass, the total load deflection shall not exceed $l/175$ for each glass lite or $l/60$ for the entire length of the member, whichever is more stringent. For aluminum sandwich panels used in roofs or walls of sunroom additions or patio covers, the total load deflection shall not exceed $l/120$.

i. For cantilever members, l shall be taken as twice the length of the cantilever.
1604A.4 Analysis. Load effects on structural members and their connections shall be determined by methods of structural analysis that take into account equilibrium, general stability, geometric compatibility and both short- and long-term material properties.

Members that tend to accumulate residual deformations under repeated service loads shall have included in their analysis the added eccentricities expected to occur during their service life.

Any system or method of construction to be used shall be based on a rational analysis in accordance with well-established principles of mechanics. Such analysis shall result in a system that provides a complete load path capable of transferring loads from their point of origin to the load-resisting elements.

The total lateral force shall be distributed to the various vertical elements of the lateral-force-resisting system in proportion to their rigidities, considering the rigidity of the horizontal bracing system or diaphragm. Rigid elements assumed not to be part of the lateral-force-resisting system are permitted to be incorporated into buildings provided their effect on the action of the system is considered and provided for in the design. Except where diaphragms are flexible, or are permitted to be analyzed as flexible, provisions shall be made for the increased forces induced on resisting elements of the structural system resulting from torsion due to eccentricity between the center of application of the lateral forces and the center of rigidity of the lateral-force-resisting system.

Every structure shall be designed to resist the overturning effects caused by the lateral forces specified in this chapter. See Section 1609A for wind loads, Section 1610A for lateral soil loads and Section 1613A for earthquake loads.

1604A.5 Occupancy category. Each building and structure shall be assigned an occupancy category in accordance with Table 1604A.5.

1604A.5.1 Multiple occupancies. Where a building or structure is occupied by two or more occupancies not included in the same occupancy category, it shall be assigned the classification of the highest occupancy category corresponding to the various occupancies. Where buildings or structures have two or more portions that are structurally separated, each portion shall be separately classified. Where a separated portion of a building or structure provides required access to, required egress from, or shares life safety components with another portion having a higher occupancy category, both portions shall be assigned to the higher occupancy category.

1604A.6 In-situ load tests. The building official is authorized to require an engineering analysis or a load test, or both, of any construction whenever there is reason to question the safety of the construction for the intended occupancy. Engineering analysis and load tests shall be conducted in accordance with Section 1714.

1604A.7 Preconstruction load tests. Materials and methods of construction that are not capable of being designed by approved engineering analysis or that do not comply with the applicable material design standards listed in Chapter 35, or alternative test procedures in accordance with Section 1712A, shall be load tested in accordance with Section 1715A.

1604A.8 Anchorage.

1604A.8.1 General. Anchorage of the roof to walls and columns, and of walls and columns to foundations, shall be provided to resist the uplift and sliding forces that result from the application of the prescribed loads.

1604A.8.2 Walls. Walls shall be anchored to floors, roofs and other structural elements that provide lateral support for the wall. Such anchorage shall provide a positive direct connection capable of resisting the horizontal forces specified in this chapter but not less than the minimum strength design horizontal force specified in Section 11.7.3 of ASCE 7, substituted for "E" in the load combinations of Section 1605A.2 or 1605A.3. Concrete and masonry walls shall be designed to resist bending between anchors where the anchor spacing exceeds 4 feet (1219 mm). Required anchors in masonry walls of hollow units or cavity walls shall be embedded in a reinforced grouted structural element of the wall. See Sections 1609A for wind design requirements and 1613A for earthquake design requirements.

1604A.8.3 Decks. Where supported by attachment to an exterior wall, decks shall be positively anchored to the primary structure and designed for both vertical and lateral loads as applicable. Such attachment shall not be accomplished by the use of toenails or nails subject to withdrawal. Where positive connection to the primary building structure cannot be verified during inspection, decks shall be self-supporting. Connections of decks with cantilevered framing members to exterior walls or other framing members shall be designed for both of the following:

1. The reactions resulting from the dead load and live load specified in Table 1607A.1, or the snow load specified in Section 1608A, in accordance with Section 1605A, acting on all portions of the deck.
2. The reactions resulting from the dead load and live load specified in Table 1607A.1, or the snow load specified in Section 1608A, in accordance with Section 1605A, acting on the cantilevered portion of the deck, and no live load or snow load on the remaining portion of the deck.

1604A.9 Counteracting structural actions. Structural members, systems, components and cladding shall be designed to resist forces due to earthquake and wind, with consideration of overturning, sliding and uplift. Continuous load paths shall be provided for transmitting these forces to the foundation. Where sliding is used to isolate the elements, the effects of friction between sliding elements shall be included as a force.

1604A.10 Wind and seismic detailing. Lateral-force-resisting systems shall meet seismic detailing requirements and limitations prescribed in this code and ASCE 7, excluding Chapter 14 and Appendix 11A, even when wind load effects are greater than seismic load effects.
TABLE 1604A.5
OCCUPANCY CATEGORY OF BUILDINGS AND OTHER STRUCTURES

<table>
<thead>
<tr>
<th>OCCUPANCY CATEGORY</th>
<th>NATURE OF OCCUPANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Buildings and other structures that represent a low hazard to human life in the event of failure, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>• Agricultural facilities.</td>
</tr>
<tr>
<td></td>
<td>• Certain temporary facilities.</td>
</tr>
<tr>
<td></td>
<td>• Minor storage facilities.</td>
</tr>
<tr>
<td>II</td>
<td>Buildings and other structures except those listed in Occupancy Categories I, III and IV</td>
</tr>
<tr>
<td>III</td>
<td>Buildings and other structures that represent a substantial hazard to human life in the event of failure, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>• Buildings and other structures whose primary occupancy is public assembly with an occupant load greater than 300.</td>
</tr>
<tr>
<td></td>
<td>• Buildings and other structures containing elementary school, secondary school or day care facilities with an occupant load greater than 250.</td>
</tr>
<tr>
<td></td>
<td>• Buildings and other structures containing adult education facilities, such as colleges and universities with an occupant load greater than 500.</td>
</tr>
<tr>
<td></td>
<td>• Group I-3 occupancies.</td>
</tr>
<tr>
<td></td>
<td>• Any other occupancy with an occupant load greater than 5,000*.</td>
</tr>
<tr>
<td></td>
<td>• Power-generating stations, water treatment facilities for potable water, waste water treatment facilities and other public utility facilities not included in Occupancy Category IV.</td>
</tr>
<tr>
<td></td>
<td>• Buildings and other structures not included in Occupancy Category IV containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released.</td>
</tr>
<tr>
<td>IV</td>
<td>Buildings and other structures designated as essential facilities, including but not limited to:</td>
</tr>
<tr>
<td></td>
<td>• [OSHPD I & 4] Hospital Buildings as defined in C.C.R. Title 24, Part I, Section 7-111 and all structures required for their continuous operation or access/egress.</td>
</tr>
<tr>
<td></td>
<td>• Fire, rescue, ambulance and police stations and emergency vehicle garages.</td>
</tr>
<tr>
<td></td>
<td>• Designated earthquake, hurricane or other emergency shelters.</td>
</tr>
<tr>
<td></td>
<td>• Designated emergency preparedness, communications and operations centers and other facilities required for emergency response [DSA-SS] as defined in C.C.R. Title 24, Part I, Section 4-207 and all structures required for their continuous operation or access/egress.</td>
</tr>
<tr>
<td></td>
<td>• Power-generating stations and other public utility facilities required as emergency backup facilities for Occupancy Category IV structures.</td>
</tr>
<tr>
<td></td>
<td>• Structures containing highly toxic materials as defined by Section 307 where the quantity of the material exceeds the maximum allowable quantities of Table 307.1(2).</td>
</tr>
<tr>
<td></td>
<td>• Aviation control towers, air traffic control centers and emergency aircraft hangars.</td>
</tr>
<tr>
<td></td>
<td>• Buildings and other structures having critical national defense functions.</td>
</tr>
<tr>
<td></td>
<td>• Water storage facilities and pump structures required to maintain water pressure for fire suppression.</td>
</tr>
</tbody>
</table>

* For purposes of occupant load calculation, occupancies required by Table 1004.1.1 to use gross floor area calculations shall be permitted to use net floor areas to determine the total occupant load.

SECTION 1605A
LOAD COMBINATIONS

1605A.1 General. Buildings and other structures and portions thereof shall be designed to resist:

1. The load combinations specified in Section 1605A.2, 1605A.3.1 or 1605A.3.2,
2. The load combinations specified in Chapters 18 through 23, and
3. The load combinations with overstrength factor specified in Section 12.4.3.2 of ASCE 7 where required by Section 12.2.5.2, 12.3.3.3 or 12.10.2.1 of ASCE 7. With the simplified procedure of ASCE 7 Section 12.14, the load combinations with overstrength factor of Section 12.14.3.2 of ASCE 7 shall be used.

Applicable loads shall be considered, including both earthquake and wind, in accordance with the specified load combinations. Each load combination shall also be investigated with one or more of the variable loads set to zero.

Where the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7 apply, they shall be used as follows:

1. The basic combinations for strength design with overstrength factor in lieu of Equations 16A-5 and 16A-7 in Section 1605A.2.1.
2. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16A-12, 16A-13 and 16A-15 in Section 1605A.3.1.
3. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16A-20 and 16A-21 in Section 1605A.3.2.

1605A.1.1 Stability. Regardless of which load combinations are used to design for strength, where overall structure
stability (such as stability against overturning, sliding, or buoyancy) is being verified, use of the load combinations specified in Section 160A.2 or 160A.3 shall be permitted. Where the load combinations specified in Section 160A.2 are used, strength reduction factors applicable to soil resistance shall be provided by a registered design professional. The stability of retaining walls shall be verified in accordance with Section 1807A.2.3. When using allowable stress design, factor of safety for soil bearing values shall not be less than the overstrength factor of the structures supported.

160SA.2 Load combinations using strength design or load and resistance factor design.

160SA.2.1 Basic load combinations. Where strength design or load and resistance factor design is used, structures and portions thereof shall resist the most critical effects from the following combinations of factored loads:

\[D + H + F + (W \text{ or } 0.7E) \]
\[D + H + F + 0.75(W \text{ or } 0.7E) + 0.75L + 0.75(L, \text{ or } S \text{ or } R) \]
\[0.6D + W + H \]
\[0.6D + 0.7E + H \]

Equations:

1. Crane hook loads need not be combined with roof live load or with more than three-fourths of the snow load or one-half of the wind load.
2. Flat roof snow loads of 30 psf (1.44 kN/m²) or less and roof live loads of 30 psf or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m²), 20 percent shall be combined with seismic loads.

160SA.3.1.1 Stress increases. Increases in allowable stresses specified in the appropriate material chapter or the referenced standards shall not be used with the load combinations of Section 160SA.3.1, except that increases shall be permitted in accordance with Chapter 23.

160SA.3.1.2 Flood loads. Where flood loads, \(F_w \), are to be considered in design, the load combinations of Section 2.4.2 of ASCE 7 shall be used.

160SA.3.2 Alternative basic load combinations. In lieu of the basic load combinations specified in Section 160SA.3.1, structures and portions thereof shall be permitted to be designed for the most critical effects resulting from the following combinations. When using these alternative basic load combinations that include wind or seismic loads, allowable stresses are permitted to be increased or load combinations reduced where permitted by the material chapter or the referenced standards. For load combinations that include the counteracting effects of dead and wind loads, only two-thirds of the minimum dead load likely to be in place during a design wind event shall be used. Where wind loads are calculated in accordance with Chapter 6 of ASCE 7, the coefficient \(\omega \) in the following equations shall be taken as 1.3. For other wind loads, \(\omega \) shall be taken as 1. When using these alternative load combinations to evaluate sliding, overturning and soil bearing at the soil-structure interface, the reduction of foundation overturning from Section 12.13.4 in ASCE 7 shall not be used. When using these alternative basic load combinations for proportioning foundations for loadings, which include seismic loads, the vertical seismic load effect, \(E_v \), in Equation 12.4-4 of ASCE 7 is permitted to be taken equal to zero.

\[D + L + (L, \text{ or } S \text{ or } R) \]
\[D + L + (\omega W) \]
\[D + L + \omega W + S/2 \]
\[D + L + S + \omega W/2 \]
\[D + L + S + E/1.4 \]
0.9D + E/1.4

(Equation 16A-21)

Exceptions:

1. Crane hook loads need not be combined with roof live loads or with more than three-fourths of the snow load or one-half of the wind load.

2. Flat roof snow loads of 30 psf (1.44 kN/m²) or less and roof live loads of 30 psf or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m²), 20 percent shall be combined with seismic loads.

1605A.3.2.1 Other loads. Where F, H or T are to be considered in the design, each applicable load shall be added to the combinations specified in Section 1605A.3.2.

1605A.4 Heliports and helistops. Heliport and helistop landing areas shall be designed for the following loads, combined in accordance with Section 1605A:

1. Dead load, D, plus the gross weight of the helicopter, Dₙ, plus snow load, S.

2. Dead load, D, plus two single concentrated impact loads, L, approximately 8 feet (2.438 mm) apart applied anywhere on the touchdown pad (representing each of the helicopter's two main landing gear, whether skid type or wheeled type), having a magnitude of 0.75 times the gross weight of the helicopter. Both loads acting together total 1.5 times the gross weight of the helicopter.

3. Dead load, D, plus a uniform live load, L, of 100 psf (4.79 kN/m²).

SECTION 1606A
DEAD LOADS

1606A.1 General. Dead loads are those loads defined in Section 1602A.1. Dead loads shall be considered permanent loads.

1606A.2 Design dead load. For purposes of design, the actual weights of materials of construction and fixed service equipment shall be used. In the absence of definite information, values used shall be subject to the approval of the building official.

1606A.3 Roof dead loads. The design dead load shall provide for the weight of at least one additional roof covering in addition to other applicable loadings if the new roof covering is permitted to be applied over the original roofing without its removal, in accordance with Section 1510.

SECTION 1607A
LIVE LOADS

1607A.1 General. Live loads are those loads defined in Section 1602A.1.

1607A.2 Loads not specified. For occupancies or uses not designated in Table 1607A.1, the live load shall be determined in accordance with a method approved by the building official.

1607A.3 Uniform live loads. The live loads used in the design of buildings and other structures shall be the maximum loads expected by the intended use or occupancy but shall in no case be less than the minimum uniformly distributed unit loads required by Table 1607A.1.
TABLE 1607A.1—continued

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. Hotels (see residential)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>Reading rooms</td>
<td>60</td>
<td>1,000</td>
</tr>
<tr>
<td>Stack rooms</td>
<td>150</td>
<td>1,000</td>
</tr>
<tr>
<td>23. Manufacturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>250</td>
<td>3,000</td>
</tr>
<tr>
<td>Light</td>
<td>125</td>
<td>2,000</td>
</tr>
<tr>
<td>24. Marquees</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>25. Office buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>2,000</td>
</tr>
<tr>
<td>File and computer rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shall be designed for heavier loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>based on anticipated occupancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobbies and first-floor corridors</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>Offices</td>
<td>50</td>
<td>2,000</td>
</tr>
<tr>
<td>26. Penal institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell blocks</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Corridors</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>27. Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One- and two-family dwellings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninhabitable attics without storage</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Uninhabitable attic with limited</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitable attics and sleeping areas</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>All other areas</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Hotels and multifamily dwellings</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Private rooms and corridors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>serving them</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Public rooms and corridors serving</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>them</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Reviewing stands, grandstands and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bleachers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Roofs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All roof surfaces subject to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maintenance workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awnings and canopies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric construction supported by a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lightweight rigid skeleton</td>
<td>5</td>
<td>nonreducible</td>
</tr>
<tr>
<td>structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All other construction</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Ordinary flat, pitched, and curved</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>roofs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary roof members, exposed to a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>work floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single panel point of lower chord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of roof trusses or any point along</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary structural members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>supporting roofs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over manufacturing, storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>warehouses, and repair</td>
<td>2,000</td>
<td>300</td>
</tr>
<tr>
<td>garages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All other occupancies</td>
<td>Note 1</td>
<td>Note 1</td>
</tr>
<tr>
<td>Roofs used for other special purposes</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Roofs used for promenade purposes</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Roofs used for roof gardens or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>assembly purposes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Schools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td>40</td>
<td>1,000</td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>First-floor corridors</td>
<td>100</td>
<td>1,000</td>
</tr>
</tbody>
</table>

TABLE 1607A.1—continued

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. Scurtles, skylight ribs and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>accessible ceilings</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>32. Sidewalks, vehicular driveways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and yards, subject to trucking</td>
<td>8,000</td>
<td></td>
</tr>
<tr>
<td>33. Skating rinks</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>34. Stadiums and arenas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleachers</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fixed seats (fastened to floor)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>35. Stairs and exits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One- and two-family dwellings</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>All other</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>36. Storage warehouses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(shall be designed for heavier loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if required for anticipated storage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>37. Stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td>Upper floors</td>
<td>75</td>
<td>1,000</td>
</tr>
<tr>
<td>Wholesale, all floors</td>
<td>125</td>
<td>1,000</td>
</tr>
<tr>
<td>38. Vehicle barrier systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Section 1607A.7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. Walkways and elevated platforms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(other than exitways)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>40. Yards and terraces, pedestrians</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>41. Storage racks and wall-hung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cabinets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm², 1 square foot = 0.0929 m², 1 pound per square foot = 0.0479 kN/m², 1 pound per cubic foot = 16 kg/m³

- a. Floors in garages or portions of buildings used for the storage of motor vehicles shall be designed for the uniformly distributed live loads of Table 1607A.1 or the following concentrated loads: (1) for garages restricted to passenger vehicles accommodating not more than nine passengers, 1,000 pounds acting on an area of 4.5 inches by 4.5 inches; (2) for mechanical parking structures without slab or deck which are used for storing passenger vehicles only, 2,250 pounds per wheel.
- b. The loading applies to stack room floors that support nonmobile, double-faced library bookstacks, subject to the following limitations:
 1. The nominal bookstack unit height shall not exceed 90 inches;
 2. The nominal shelf depth shall not exceed 12 inches for each face; and
 3. Parallel rows of double-faced bookstacks shall be separated by aisles not less than 36 inches wide.
- c. Design in accordance with ICC 300.
- d. Other uniform loads in accordance with an approved method which contains provisions for truck loadings shall also be considered where appropriate.
- e. The concentrated wheel load shall be applied on an area of 4.5 inches by 4.5 inches.
- f. Minimum concentrated load on stair treads (on area of 4 square inches) is 300 pounds.
- g. Where snow loads occur that are in excess of the design conditions, the structure shall be designed to support the loads due to the increased loads caused by drift buildup or a greater snow design determined by the building official (see Section 1608A).
- h. See Section 1604.8.3 for decks attached to exterior walls.
- i. Attics without storage are those where the maximum clear height between the joist and rafter is less than 42 inches, or where there are not two or more adjacent trusses with the same web configuration capable of containing a rectangle 42 inches high by 2 feet wide, or greater, located within the plane of the truss. For attics without storage, this live load need not be assumed to act concurrently with any other live load requirements.
- j. For attics with limited storage and constructed with trusses, this live load need only be applied to those portions of the bottom chord where there are two or more adjacent trusses with the same web configuration capable of containing a rectangle 42 inches high by 2 feet wide or greater, located within the plane of the truss. The rectangle shall fit between the top of the bottom chord and the bottom of any other truss member, provided that each of the following criteria is met:
The attic area is accessible by a pull-down stairway or framed opening in accordance with Section 1209.2, and
ii. The truss shall have a bottom chord pitch less than 2:12.
iii. Bottom chords of trusses shall be designed for the greater of actual imposed dead load or 10 psf, uniformly distributed over the entire span.
k. Attic spaces served by a fixed stair shall be designed to support the minimum live load specified for habitable attics and sleeping rooms.
l. Roofs used for other special purposes shall be designed for appropriate loads as approved by the building official.
m. The minimum vertical design live load shall be as follows:

<table>
<thead>
<tr>
<th>Type of Load</th>
<th>Minimum Vertical Design Live Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper media:</td>
<td>12-inch-deep shelf: 33 psf per linear foot</td>
</tr>
<tr>
<td></td>
<td>15-inch-deep shelf: 41 psf per linear foot, or 33 psf per cubic foot per total volume of the rack or cabinet, whichever is less.</td>
</tr>
<tr>
<td></td>
<td>18-inch-deep shelf: 100 psf per linear foot, or 50 pounds per cubic foot per total volume of the rack or cabinet, whichever is less.</td>
</tr>
<tr>
<td></td>
<td>Other media: 20 pounds per cubic foot or 20 pounds per square foot, whichever is less, but not less than actual loads.</td>
</tr>
</tbody>
</table>

n. [DSA-SS] The following minimum loads for stage accessories apply:
1. Gridirons and fly galleries: 75 pounds per square foot live uniform live load.
2. Loft block wells: 230 pounds per linear foot vertical load and lateral load.
3. Head block wells and sheave beams: 230 pounds per linear foot vertical load and lateral load. Head block wells and sheave beams shall be designed for all tributary load block well loads. Sheave blocks shall be designed with a safety factor of five.
4. Scenery beams where there is no gridiron: 300 pounds per linear foot vertical load and lateral load.
5. Ceiling framing over stages shall be designed for a uniform live load of 20 pounds per square foot. For members supporting a tributary area of 100 square feet or more, this additional load may be reduced to 15 pounds per square foot.

1607A.4 Concentrated loads. Floors and other similar surfaces shall be designed to support the uniformly distributed live loads prescribed in Section 1607A.3 or the concentrated load, in pounds (kilonewtons), given in Table 1607A.1, whichever produces the greater load effects. Unless otherwise specified, the indicated concentration shall be assumed to be uniformly distributed over an area 21/4 feet by 21/4 feet (61/4 square feet (0.58 m²)) and shall be located so as to produce the maximum load effects in the structural members.

1607A.5 Partition loads. In office buildings and in other buildings where partition locations are subject to change, provisions for partition weight shall be made, whether or not partitions are shown on the construction documents, unless the specified live load exceeds 80 psf (3.83 kN/m²). The partition load shall not be less than a uniformly distributed live load of 15 psf (0.74 kN/m²).

1607A.6 Truck and bus garages. Minimum live loads for garages having trucks or buses shall be as specified in Table 1607A.6, but shall not be less than 50 psf (2.40 kN/m²), unless other loads are specifically justified and approved by the building official. Actual loads shall be used where they are greater than the loads specified in the table.

1607A.6.1 Truck and bus garage live load application. The concentrated load and uniform load shall be uniformly distributed over a 10-foot (3048 mm) width on a line normal to the centerline of the lane placed within a 12-foot-wide (3658 mm) lane. The loads shall be placed within their individual lanes so as to produce the maximum stress in each structural member. Single spans shall be designed for the uniform load in Table 1607A.6 and one simultaneous concentrated load positioned to produce the maximum effect.

Multiple spans shall be designed for the uniform load in Table 1607A.6 on the spans and two simultaneous concentrated loads in two spans positioned to produce the maximum negative moment effect. Multiple span design loads, for other effects, shall be the same as for single spans.

Table 1607A.6

<table>
<thead>
<tr>
<th>Uniform Load</th>
<th>Concentrated Load (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For moment design</td>
<td>For shear design</td>
</tr>
<tr>
<td>H20-44 and HS20-44</td>
<td>640</td>
</tr>
<tr>
<td>H15-44 and HS15-44</td>
<td>480</td>
</tr>
</tbody>
</table>

For SI: 1 pound per linear foot = 0.01459 kN/m, 1 pound = 0.004448 kN, 1 ton = 8.90 kN.

a. An H loading class designates a two-axle truck with a semitrailer. An HS loading class designates a tractor truck with a semitrailer. The numbers following the letter classification indicate the gross weight in tons of the standard truck and the year the loadings were instituted.
b. See Section 1607A.6.1 for the loading of multiple spans.

1607A.7 Loads on handrails, guards, grab bars, shower seats, dressing room bench seats and vehicle barrier systems. Handrails, guards, grab bars, accessible seats, accessible benches and vehicle barrier systems shall be designed and constructed to the structural loading conditions set forth in this section.

1607A.7.1 Handrails and guards. Handrails and guards shall be designed to resist a load of 50 pounds per linear foot (p.l.f.) (0.73 kN/m) applied in any direction at the top and to transfer this load through the supports to the structure. Glass handrail assemblies and guards shall also comply with Section 2407.

Exceptions:
1. For one- and two-family dwellings, only the single concentrated load required by Section 1607A.7.1.1 shall be applied.
2. In Group I-3, F, H and S occupancies, for areas that are not accessible to the general public and that have an occupant load less than 50, the minimum load shall be 20 pounds per foot (0.29 kN/m).

1607A.7.1.1 Concentrated load. Handrails and guards shall be able to resist a single concentrated load of 200 pounds (0.89 kN), applied in any direction at any point along the top, and to transfer this load through the supports to the structure. This load need not be assumed to act concurrently with the loads specified in Section 1607A.7.1.

1607A.7.1.2 Components. Intermediate rails (all those except the handrail), balusters and panel fillers shall be designed to withstand a horizontally applied normal load of 50 pounds (0.22 kN) on an area equal to 1 square foot (0.093 m²), including openings and space between rails. Reactions due to this loading are not required to be superimposed with those of Section 1607A.7.1 or 1607A.7.1.1.

1607A.7.2 Grab bars, shower seats and dressing room bench seats. Grab bars, shower seats and dressing room bench seat systems shall be designed to resist a single concentrated load of 250 pounds (1.11 kN) applied in any direction.
at any point. [DSA-AC] See Chapter 11A, Section 1127A.4, and Chapter 11B, Sections 1115B.7.2 and 1117B.8, for grab bars, shower seats and dressing room bench seats, as applicable.

1607A.7.3 Vehicle barrier systems. Vehicle barrier systems for passenger vehicles shall be designed to resist a single load of 6,000 pounds (26.70 kN) applied horizontally in any direction to the barrier system and shall have anchorage or attachment capable of transmitting this load to the structure. For design of the system, two loading conditions shall be analyzed. The first condition shall apply the load at a height of 1 foot, 6 inches (457 mm) above the floor or ramp surface. The second loading condition shall apply the load at 2 feet, 3 inches (686 mm) above the floor or ramp surface. The more severe load condition shall govern the design of the barrier restraint system. The load shall be assumed to act on an area not to exceed 1 square foot (0.0929 m²), and is not required to be assumed to act concurrently with any handrail or guard loadings specified in Section 1607A.7.1. Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for traffic railings.

1607A.8 Impact loads. The live loads specified in Section 1607A.3 include allowance for impact conditions. Provisions shall be made in the structural design for uses and loads that involve unusual vibration and impact forces.

1607A.8.1 Elevators. Elevator loads shall be increased by 100 percent for impact and the structural supports shall be designed within the limits of deflection prescribed by ASME A17.1.

1607A.8.2 Machinery. For the purpose of design, the weight of machinery and moving loads shall be increased as follows to allow for impact: (1) elevator machinery, 100 percent; (2) light machinery, shaft- or motor-driven, 20 percent; (3) reciprocating machinery or power-driven units, 50 percent; (4) hangers for floors or balconies, 33 percent. Percentages shall be increased where specified by the manufacturer.

1607A.9 Reduction in live loads. Except for uniform live loads at roofs, all other minimum uniformly distributed live loads, \(L_o \) in Table 1607A.1 are permitted to be reduced in accordance with Section 1607A.9.1 or 1607A.9.2. Roof uniform live loads, other than special purpose roofs of Section 1607A.11.2.2, are permitted to be reduced in accordance with Section 1607A.11.2. Roof uniform live loads of special purpose roofs are permitted to be reduced in accordance with Section 1607A.9.1 or 1607A.9.2.

1607A.9.1 General. Subject to the limitations of Sections 1607A.9.1 through 1607A.9.1.4, members for which a value of \(K_{UL}A_T \) is 400 square feet (37.16 m²) or more are permitted to be designed for a reduced live load in accordance with the following equation:

\[
L = L_o \left(0.25 + \frac{15}{\sqrt{K_{UL}A_T}}\right) \quad \text{(Equation 16A-22)}
\]

For SI: \(L = L_o \left(0.25 + \frac{4.57}{\sqrt{K_{UL}A_T}}\right) \)

where:

\(L \) = Reduced design live load per square foot (meter) of area supported by the member.

\(L_o \) = Unreduced design live load per square foot (meter) of area supported by the member (see Table 1607A.1).

\(K_{UL} \) = Live load element factor (see Table 1607A.9.1).

\(A_T \) = Tributary area, in square feet (square meters).

\(L \) shall not be less than 0.50\(L_o \) for members supporting one floor and \(L \) shall not be less than 0.40\(L_o \) for members supporting two or more floors.

Table 1607A.9.1

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>(K_{UL})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior columns</td>
<td>4</td>
</tr>
<tr>
<td>Exterior columns without cantilever slabs</td>
<td>4</td>
</tr>
<tr>
<td>Edge columns with cantilever slabs</td>
<td>3</td>
</tr>
<tr>
<td>Corner columns with cantilever slabs</td>
<td>2</td>
</tr>
<tr>
<td>Edge beams without cantilever slabs</td>
<td>2</td>
</tr>
<tr>
<td>Interior beams</td>
<td>2</td>
</tr>
<tr>
<td>All other members not identified above including:</td>
<td></td>
</tr>
<tr>
<td>Edge beams with cantilever slabs</td>
<td></td>
</tr>
<tr>
<td>Cantilever beams</td>
<td></td>
</tr>
<tr>
<td>One-way slabs</td>
<td></td>
</tr>
<tr>
<td>Two-way slabs</td>
<td></td>
</tr>
<tr>
<td>Members without provisions for continuous shear transfer normal to their span</td>
<td>1</td>
</tr>
</tbody>
</table>

1607A.9.1.1 One-way slabs. The tributary area, \(A_T \), for use in Equation 16A-22 for one-way slabs shall not exceed an area defined by the slab span times a width normal to the span of 1.5 times the slab span.

1607A.9.1.2 Heavy live loads. Live loads that exceed 100 psf (4.79 kN/m²) shall not be reduced.

Exceptions:

1. The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \(L \) as calculated in Section 1607A.9.1.

2. For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

1607A.9.1.3 Passenger vehicle garages. The live loads shall not be reduced in passenger vehicle garages.

Exception: The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \(L \) as calculated in Section 1607A.9.1.

1607A.9.1.4 Group A occupancies. Live loads of 100 psf (4.79 kN/m²) and at areas where fixed seats are located shall not be reduced in Group A occupancies.

1607A.9.1.5 Roof members. Live loads of 100 psf (4.79 kN/m²) or less shall not be reduced for roof members except as specified in Section 1607A.11.2.
1607A.9.2 Alternate floor live load reduction. As an alternative to Section 1607A.9.1, floor live loads are permitted to be reduced in accordance with the following provisions. Such reductions shall apply to slab systems, beams, girders, columns, piers, walls and foundations.

1. A reduction shall not be permitted in Group A occupancies.
2. A reduction shall not be permitted where the live load exceeds 100 psf (4.79 kN/m²) except that the design live load for members supporting two or more floors is permitted to be reduced by 20 percent.

Exception: For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

3. A reduction shall not be permitted in passenger vehicle parking garages except that the live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent.

4. For live loads not exceeding 100 psf (4.79 kN/m²), the design live load for any structural member supporting 150 square feet (13.94 m²) or more is permitted to be reduced in accordance with Equation 16A-23.

5. For one-way slabs, the area, A, for use in Equation 16A-23 shall not exceed the product of the slab span and a width normal to the span of 0.5 times the slab span.

\[
R = 0.08(A - 150) \quad \text{(Equation 16A-23)}
\]

For SI: \(R = 0.861(A - 13.94) \)

Such reduction shall not exceed the smallest of:

1. 40 percent for horizontal members;
2. 60 percent for vertical members; or
3. \(R \) as determined by the following equation.

\[
R = 23.1(1 + D/L_o) \quad \text{(Equation 16A-24)}
\]

where:

\(A = \) Area of floor supported by the member, square feet (m²).

\(D = \) Dead load per square foot (m²) of area supported.

\(L_o = \) Unreduced live load per square foot (m²) of area supported.

\(R = \) Reduction in percent.

1607A.10 Distribution of floor loads. Where uniform floor live loads are involved in the design of structural members arranged so as to create continuity, the minimum applied loads shall be the full dead loads on all spans in combination with the floor live loads on spans selected to produce the greatest effect at each location under consideration. It shall be permitted to reduce floor live loads in accordance with Section 1607A.9.

1607A.11 Roof loads. The structural supports of roofs and marquees shall be designed to resist wind and, where applicable, snow and earthquake loads, in addition to the dead load of construction and the appropriate live loads as prescribed in this section, or as set forth in Table 1607A.1. The live loads acting on a sloping surface shall be assumed to act vertically on the horizontal projection of that surface.

1607A.11.1 Distribution of roof loads. Where uniform roof live loads are reduced to less than 20 psf (0.96 kN/m²) in accordance with Section 1607A.11.2.1 and are applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, whichever produces the most unfavorable load effect. See Section 1607A.11.2 for reductions in minimum roof live loads and Section 7.5 of ASCE 7 for partial snow loading.

1607A.11.2 Reduction in roof live loads. The minimum uniformly distributed live loads of roofs and marquees, \(L_o \), in Table 1607A.1 are permitted to be reduced in accordance with Section 1607A.11.2.1 or 1607A.11.2.2.

1607A.11.2.1 Flat, pitched and curved roofs. Ordinary flat, pitched and curved roofs, and awnings and canopies other than of fabric construction supported by lightweight rigid skeleton structures, are permitted to be designed for a reduced roof live load as specified in the following equations or other controlling combinations of loads in Section 1605A, whichever produces the greater load.

In structures such as greenhouses, where special scaffolding is used as a work surface for workers and materials during maintenance and repair operations, a lower roof load than specified in the following equations shall not be used unless approved by the building official. Such structures shall be designed for a minimum roof live load of 12 psf (0.58 kN/m²).

\[
L_r = L_o R_1 R_2 \quad \text{(Equation 16A-25)}
\]

where: \(12 \leq L_r \leq 20 \)

For SI: \(L_r = L_o R_1 R_2 \)

where: \(0.58 \leq L_r \leq 0.96 \)

\(L_r = \) Reduced live load per square foot (m²) of horizontal projection in pounds per square foot (kN/m²).

The reduction factors \(R_1 \) and \(R_2 \) shall be determined as follows:

\[
R_1 = 1 \text{ for } A_r \leq 200 \text{ square feet (18.58 m²)} \quad \text{(Equation 16A-26)}
\]

\[
R_1 = 1.2 - 0.001 A_r \text{ for } 200 \text{ square feet } < A_r < 600 \text{ square feet} \quad \text{(Equation 16A-27)}
\]

For SI: \(R_1 = 1.2 - 0.011 A_r \) for 18.58 square meters \(< A_r < 55.74 \) square meters

\[
R_1 = 0.6 \text{ for } A_r \geq 600 \text{ square feet (55.74 m²)} \quad \text{(Equation 16A-28)}
\]

where:

\(A_r = \) Tributary area (span length multiplied by effective width) in square feet (m²) supported by any structural member, and

\[
R_2 = 1 \text{ for } F \leq 4 \quad \text{(Equation 16A-29)}
\]

\[
R_2 = 1.2 - 0.05 F \text{ for } 4 < F < 12 \quad \text{(Equation 16A-30)}
\]
where:

\[F = \text{For a sloped roof, the number of inches of rise per foot (for SI: } F = 0.12 \times \text{slope, with slope expressed as a percentage), or for an arch or dome, the rise-to-span ratio multiplied by 32.} \]

1607A.11.2.2 Special-purpose roofs. Roofs used for promenade purposes, roof gardens, assembly purposes or other special purposes, and marquees, shall be designed for a minimum live load, \(L_w \), as specified in Table 1607A.1. Such live loads are permitted to be reduced in accordance with Section 1607A.9. Live loads of 100 psf (4.79 kN/m²) or more at areas of roofs classified as Group A occupancies shall not be reduced.

1607A.11.3 Landscaped roofs. Where roofs are to be landscaped, the uniform design live load in the landscaped area shall be 20 psf (0.958 kN/m²). The weight of the landscaping materials shall be considered as dead load and shall be computed on the basis of saturation of the soil.

1607A.11.4 Awnings and canopies. Awnings and canopies shall be designed for uniform live loads as required in Table 1607A.1 as well as for snow loads and wind loads as specified in Sections 1608A and 1609A.

1607A.11.5 Uncovered open-frame roof structures. Uncovered open-frame roof structures shall be designed for a vertical live load of not less than 10 pounds per square foot (0.48 kN/m²) of the total area encompassed by the framework.

1607A.12 Crane loads. The crane live load shall be the rated capacity of the crane. Design loads for the runway beams, including connections and support brackets, of moving bridge cranes and monorail cranes shall include the maximum wheel loads of the crane and the vertical impact, lateral and longitudinal forces induced by the moving crane.

1607A.12.1 Maximum wheel load. The maximum wheel loads shall be the wheel loads produced by the weight of the bridge, as applicable, plus the sum of the rated capacity and the weight of the trolley with the trolley positioned on its runway at the location where the resulting load effect is maximum.

1607A.12.2 Vertical impact force. The maximum wheel loads of the crane shall be increased by the percentages shown below to determine the induced vertical impact or vibration force:

- Monorail cranes (powered) 25 percent
- Cab-operated or remotely operated bridge cranes (powered) 25 percent
- Pendant-operated bridge cranes (powered) 10 percent
- Bridge cranes or monorail cranes with hand-geared bridge, trolley and hoist 0 percent

1607A.12.3 Lateral force. The lateral force on crane runway beams with electrically powered trolleys shall be calculated as 20 percent of the sum of the rated capacity of the crane and the weight of the hoist and trolley. The lateral force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction perpendicular to the beam, and shall be distributed according to the lateral stiffness of the runway beam and supporting structure.

1607A.12.4 Longitudinal force. The longitudinal force on crane runway beams, except for bridge cranes with hand-geared bridges, shall be calculated as 10 percent of the maximum wheel loads of the crane. The longitudinal force shall be assumed to act horizontally at the traction surface of a runway beam, in either direction parallel to the beam.

1607A.13 Interior walls and partitions. Interior walls and partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength to resist the loads to which they are subjected but not less than a horizontal load of 5 psf (0.240 kN/m²). The 5 psf (0.24 kN/m²) load need not be applied simultaneously with wind or seismic loads. The deflection of such walls under a load of 5 psf (0.24 kN/m²) shall not exceed the limits in Table 1604A.3.

Exception: Fabric partitions complying with Section 1607A.13.1 shall not be required to resist the minimum horizontal load of 5 psf (0.24 kN/m²).

1607A.13.1 Fabric partitions. Fabric partitions that exceed 6 feet (1829 mm) in height, including their finish materials, shall have adequate strength to resist the following load conditions:

1. A horizontal distributed load of 5 psf (0.24 kN/m²) applied to the partition framing. The total area used to determine the distributed load shall be the area of the fabric face between the framing members to which the fabric is attached. The total distributed load shall be uniformly applied to such framing members in proportion to the length of each member.

2. A concentrated load of 40 pounds (0.176 kN) applied to an 8-inch diameter (203 mm) area [50.3 square inches (32452 mm²)] of the fabric face at a height of 54 inches (1372 mm) above the floor.

SECTION 1608A
SNOW LOADS

1608A.1 General. Design snow loads shall be determined in accordance with Chapter 7 of ASCE 7, but the design roof load shall not be less than that determined by Section 1607A.

1608A.2 Ground snow loads. The ground snow loads to be used in determining the design snow loads for roofs shall be determined in accordance with ASCE 7 or Figure 1608A.2 for the contiguous United States. Site-specific case studies shall be made in areas designated "CS" in Figure 1608A.2. Ground snow loads for sites at elevations above the limits indicated in Figure 1608A.2 and for all sites within the CS areas shall be approved. Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2-percent annual probability of being exceeded (50-year mean recurrence interval).

1608A.3 Determination of snow loads. [DSA-SS] The ground snow load or the design snow load for roofs shall conform with the adopted ordinance of the city, county, or city and county in which the project site is located, and shall be approved by DSA.
In CS areas, site-specific Case Studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Numbers in parentheses represent the upper elevation limits in feet for the ground snow load values presented below. Site-specific case studies are required to establish ground snow loads at elevations not covered.

To convert lb/sq ft to kNm², multiply by 0.0479.

To convert feet to meters, multiply by 0.3048.

FIGURE 1608A.2
GROUND SNOW LOADS, \(p_g \), FOR THE UNITED STATES (psf)
FIGURE 1608A.2—continued
GROUND SNOW LOADS, p_g, FOR THE UNITED STATES (psf)
SECTION 1609A
WIND LOADS

1609A.1 Applications. Buildings, structures and parts thereof shall be designed to withstand the minimum wind loads prescribed herein. Decreases in wind loads shall not be made for the effect of shielding by other structures.

1609A.1.1 Determination of wind loads. Wind loads on every building or structure shall be determined in accordance with Chapter 6 of ASCE 7 or provisions of the alternate all-heights method in Section 1609A.6. The type of opening protection required, the basic wind speed and the exposure category for a site is permitted to be determined in accordance with Section 1609A or ASCE 7. Wind shall be assumed to come from any horizontal direction and wind pressures shall be assumed to act normal to the surface considered.

Exceptions:

1. Subject to the limitations of Section 1609A.1.1.1, the provisions of ICC 600 shall be permitted for applicable Group R-2 and R-3 buildings.
2. Subject to the limitations of Section 1609A.1.1.1, residential structures using the provisions of the AF&PA WFCM.
3. Subject to the limitations of Section 1609A.1.1.1, residential structures using the provisions of AISI S230.
6. Wind tunnel tests in accordance with Section 6.6 of ASCE 7, subject to the limitations in Section 1609A.1.1.2.

1609A.1.1.1 Applicability. The provisions of ICC 600 are applicable only to buildings located within Exposure B or C as defined in Section 1609A.4. The provisions of ICC 600, AF&PA WFCM and AISI S230 shall not apply to buildings sited on the upper half of an isolated hill, ridge or escarpment meeting the following conditions:

1. The hill, ridge or escarpment is 60 feet (18 288 mm) or higher if located in Exposure B or 30 feet (9144 mm) or higher if located in Exposure C;
2. The maximum average slope of the hill exceeds 10 percent; and
3. The hill, ridge or escarpment is unobstructed upwind by other such topographic features for a distance from the high point of 50 times the height of the hill or 1 mile (1.61 km), whichever is greater.

1609A.1.1.2 Wind tunnel test limitations. The lower limit on pressures for main wind-force-resisting systems and components and cladding shall be in accordance with Sections 1609A.1.1.2.1 and 1609A.1.1.2.2.

1609A.1.1.2.1 Lower limits on main wind-force-resisting system. Base overturning moments determined from wind tunnel testing shall be limited to not less than 80 percent of the design base overturning moments determined in accordance with Section 6.5 of ASCE 7, unless specific testing is performed that demonstrates it is the aerodynamic coefficient of the building, rather than shielding from other structures, that is responsible for the lower values. The 80-percent limit shall be permitted to be adjusted by the ratio of the frame load at critical wind directions as determined from wind tunnel testing without specific adjacent buildings, but including appropriate upwind roughness, to that determined in Section 6.5 of ASCE 7.

1609A.1.1.2.2 Lower limits on components and cladding. The design pressures for components and cladding on walls or roofs shall be selected as the greater of the wind tunnel test results or 80 percent of the pressure obtained for Zone 4 for walls and Zone 1 for roofs as determined in Section 6.5 of ASCE 7, unless specific testing is performed that demonstrates it is the aerodynamic coefficient of the building, rather than shielding from nearby structures, that is responsible for the lower values. Alternatively, limited tests at a few wind directions without specific adjacent buildings, but in the presence of an appropriate upwind roughness, shall be permitted to be used to demonstrate that the lower pressures are due to the shape of the building and not to shielding.

1609A.1.1.3 Special wind regions. [DSA-SS] The basic wind speed for projects located in special wind regions as defined in Figure 1609A shall conform with the adopted ordinance of the city, county or city and county in which the project site is located, and shall be approved by DSA-SS.

1609A.1.2 Protection of openings. In wind-borne debris regions, glazing in buildings shall be impact resistant or protected with an impact-resistant covering meeting the requirements of an approved impact-resistant standard or ASTM E 1996 and ASTM E 1886 referenced herein as follows:

1. Glazed openings located within 30 feet (9144 mm) of grade shall meet the requirements of the large missile test of ASTM E 1996.
2. Glazed openings located more than 30 feet (9144 mm) above grade shall meet the provisions of the small missile test of ASTM E 1996.

Exceptions:

1. Wood structural panels with a minimum thickness of $\frac{7}{32}$ inch (11.1 mm) and maximum panel span of 8 feet (2438 mm) shall be permitted for opening protection in one- and two-story buildings classified as Group R-3 or R-4 occupancy. Panels shall be precut so that they shall be attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the anchorage method and shall be secured with the attachment hardware provided. Attachments shall be designed to resist...
the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building. Attachment in accordance with Table 1609A.1.2 with corrosion-resistant attachment hardware provided and anchors permanently installed on the building is permitted for buildings with a mean roof height of 45 feet (13 716 mm) or less where wind speeds do not exceed 140 mph (63 m/s).

2. Glazing in Occupancy Category I buildings as defined in Section 1604A.5, including greenhouses that are occupied for growing plants on a production or research basis, without public access shall be permitted to be unprotected.

3. Glazing in Occupancy Category II, III or IV buildings located over 60 feet (18 288 mm) above the ground and over 30 feet (9144 mm) above aggregate surface roofs located within 1,500 feet (458 m) of the building shall be permitted to be unprotected.

1609A.1.2.1 Louvers. Louvers protecting intake and exhaust ventilation ducts not assumed to be open that are located within 30 feet (9144 mm) of grade shall meet requirements of an approved impact-resisting standard or the large missile test of ASTM E 1996.

1609A.1.2.2 Garage doors. Garage door glazed openings for wind-borne debris shall meet the requirements of an approved impact-resisting standard or ANSI/DASMA 115.

1609A.1.3 Story drift for wind loads. The calculated story drift due to wind pressures shall not exceed 0.005 times the story height for buildings less than 65 feet (19 812 mm) in height or 0.004 times the story height for buildings 65 feet (19 812 mm) or greater in height.

1609A.2 Definitions. The following words and terms shall, for the purposes of Section 1609A, have the meanings shown herein.

<table>
<thead>
<tr>
<th>V_{3s}</th>
<th>85</th>
<th>90</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>140</th>
<th>145</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{fm}</td>
<td>71</td>
<td>76</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>104</td>
<td>109</td>
<td>114</td>
<td>123</td>
<td>128</td>
<td>133</td>
<td>142</td>
<td>152</td>
</tr>
</tbody>
</table>

For SI: 1 mile per hour = 0.44 m/s.

a. Linear interpolation is permitted.

b. V_{3s} is the 3-second gust wind speed (mph).

c. V_{fm} is the fastest mile wind speed (mph).

TABLE 1609A.2
WIND-BORNE DEBRIS PROTECTION FASTENING SCHEDULE FOR WOOD STRUCTURAL PANELS a, b, c, d

<table>
<thead>
<tr>
<th>FASTENER TYPE</th>
<th>FASTENER SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel Span ≤ 4 feet</td>
</tr>
<tr>
<td>No. 8 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>No. 10 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>1/4-inch diameter lag-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N, 1 mile per hour = 0.447 m/s.

a. This table is based on 140 mph wind speeds and a 45-foot mean roof height.

b. Fasteners shall be installed at opposing ends of the wood structural panel.

c. Anchors shall penetrate through the exterior wall covering with an embedment length of 2 inches minimum into the building frame. Fasteners shall be located a minimum of 21/2 inches from the edge of concrete block or concrete.

d. Where panels are attached to masonry or masonry/stucco, they shall be attached using vibration-resistant anchors having a minimum ultimate withdrawal capacity of 1,500 pounds.

HURRICANE-PRONE REGIONS. Areas vulnerable to hurricanes defined as:

1. The U. S. Atlantic Ocean and Gulf of Mexico coasts where the basic wind speed is greater than 90 mph (40 m/s) and

2. Hawaii, Puerto Rico, Guam, Virgin Islands and American Samoa.

WIND-BORNE DEBRIS REGION. Portions of hurricane-prone regions that are within 1 mile (1.61 km) of the coastal mean high water line where the basic wind speed is 110 mph (48 m/s) or greater; or portions of hurricane-prone regions where the basic wind speed is 120 mph (53 m/s) or greater; or Hawaii.
Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10 m) above ground for Exposure C category.
2. Linear interpolation between wind contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

FIGURE 1609A
BASIC WIND SPEED (3-SECOND GUST)
1609A.3 Basic wind speed. The basic wind speed, in mph, for the determination of the wind loads shall be determined by Figure 1609A. Basic wind speed for the special wind regions indicated, near mountainous terrain and near gorges shall be in accordance with local jurisdiction requirements. Basic wind speeds determined by the local jurisdiction shall be in accordance with Section 6.5.4 of ASCE 7.

In nonhurricane-prone regions, when the basic wind speed is estimated from regional climatic data, the basic wind speed shall be not less than the wind speed associated with an annual probability of 0.02 (50-year mean recurrence interval), and the estimate shall be adjusted for equivalence to a 3-second gust wind speed at 33 feet (10 m) above ground in Exposure Category C. The data analysis shall be performed in accordance with Section 6.5.4.2 of ASCE 7.

1609A.3.1 Wind speed conversion. When required, the 3-second gust basic wind speeds of Figure 1609A shall be converted to fastest-mile wind speeds, \(V_{3S} \), using Table 1609A.3.1 or Equation 16A-32.

\[
V_{3S} = \frac{(V_{3S} - 10.5)}{1.05} \quad \text{(Equation 16A-32)}
\]

where:

\(V_{3S} \) = 3-second gust basic wind speed from Figure 1609A.

1609A.4 Exposure category. For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features.

1609A.4.1 Wind directions and sectors. For each selected wind direction at which the wind loads are to be evaluated, the exposure of the building or structure shall be determined for the two upwind sectors extending 45 degrees (0.79 rad) either side of the selected wind direction. The exposures in these two sectors shall be determined in accordance with Sections 1609A.4.2 and 1609A.4.3 and the exposure resulting in the highest wind loads shall be used to represent winds from that direction.

1609A.4.2 Surface roughness categories. A ground surface roughness within each 45-degree (0.79 rad) sector shall be determined for a distance upwind of the site as defined in Section 1609A.4.3 from the categories defined below, for the purpose of assigning an exposure category as defined in Section 1609A.4.3.

Surface Roughness B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Surface Roughness C. Open terrain with scattered obstructions having heights generally less than 30 feet (9144 mm). This category includes flat open country, grasslands, and all water surfaces in hurricane-prone regions.

Surface Roughness D. Flat, unobstructed areas and water surfaces outside hurricane-prone regions. This category includes smooth mud flats, salt flats and unbroken ice.

1609A.4.3 Exposure categories. An exposure category shall be determined in accordance with the following:

Exposure B. Exposure B shall apply where the ground surface roughness condition, as defined by Surface Roughness B, prevails in the upwind direction for a distance of at least 2,600 feet (792 m) or 20 times the height of the building, whichever is greater.

Exception: For buildings whose mean roof height is less than or equal to 30 feet (9144 mm), the upwind distance is permitted to be reduced to 1,500 feet (457 m).

Exposure C. Exposure C shall apply for all cases where Exposures B or D do not apply.

Exposure D. Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance of at least 5,000 feet (1524 m) or 20 times the height of the building, whichever is greater. Exposure D shall extend inland from the shoreline for a distance of 600 feet (183 m) or 20 times the height of the building, whichever is greater.

1609A.5 Roof systems.

1609A.5.1 Roof deck. The roof deck shall be designed to withstand the wind pressures determined in accordance with ASCE 7.

1609A.5.2 Roof coverings. Roof coverings shall comply with Section 1609A.5.1.

Exception: Rigid tile roof coverings that are air permeable and installed over a roof deck complying with Section 1609A.5.1 are permitted to be designed in accordance with Section 1609A.5.3.

Asphalt shingles installed over a roof deck complying with Section 1609A.5.1 shall comply with the wind-resistance requirements of Section 1507.2.7.1.

1609A.5.3 Rigid tile. Wind loads on rigid tile roof coverings shall be determined in accordance with the following equation:

\[
M_o = q_s C_l b L L_a \left[1.0 - G C_p \right] \quad \text{(Equation 16A-33)}
\]

For SI: \(M_o = \frac{q_s C_l b L L_a \left[1.0 - G C_p \right]}{1000} \)

where:

\(b \) = Exposed width, feet (mm) of the roof tile.

\(C_l \) = Lift coefficient. The lift coefficient for concrete and clay tile shall be 0.2 or shall be determined by test in accordance with Section 1716.2.

\(G C_p \) = Roof pressure coefficient for each applicable roof zone determined from Chapter 6 of ASCE 7. Roof coefficients shall not be adjusted for internal pressure.
1609A.6.1 Scope. As an alternative to ASCE 7 Section 6.5, the following provisions are permitted to be used to determine the wind effects on regularly shaped buildings, or other structures that are regularly shaped, which meet all of the following conditions:

1. The building or other structure is less than or equal to 75 feet (22 860 mm) in height with a height-to-least-width ratio of 4 or less, or the building or other structure has a fundamental frequency greater than or equal to 1 hertz.

2. The building or other structure is not sensitive to dynamic effects.

3. The building or other structure is not located on a site for which channeling effects or buffeting in the wake of upwind obstructions warrant special consideration.

4. The building shall meet the requirements of a simple diaphragm building as defined in ASCE 7 Section 6.2, where wind loads are only transmitted to the main wind-force-resisting system (MWFRS) at the diaphragms.

5. For open buildings, multispans gable roofs, stepped roofs, sawtooth roofs, domed roofs, roofs with slopes greater than 45 degrees (0.79 rad), solid free-standing walls and solid signs, and rooftop equipment, apply ASCE 7 provisions.

1609A.6.1.1 Modifications. The following modifications shall be made to certain subsections in ASCE 7: in Section 1609A.6.2, symbols and notations that are specific to this section are used in conjunction with the symbols and notations in ASCE 7 Section 6.3.

1609A.6.2 Symbols and notations. Coefficients and variables used in the alternative all-heights method equations are as follows:

- $C_{net} = \text{Net-pressure coefficient based on } K_d [(G) (C_p) - (GC_{p,s})], \text{ in accordance with Table 1609A.6.2(2).}$
- $G = \text{Gust effect factor for rigid structures in accordance with ASCE 7 Section 6.5.8.1.}$
- $I = \text{Importance Factor in accordance with ASCE 7 Section 6.5.5}$
- $K_d = \text{Wind directionality factor in accordance with ASCE 7 Table 6-4.}$
- $P_{net} = \text{Design wind pressure to be used in determination of wind loads on buildings or other structures or their components and cladding, in psf (kN/m^2).}$
- $q_s = \text{Wind stagnation pressure in psf (kN/m^2) in accordance with Table 1609A.6.2(1).}$

1609A.6 Alternate all-heights method. The alternate wind design provisions in this section are simplifications of the ASCE 7 Method 2—Analytical Procedure.

TABLE 1609A.6.2(1)

<table>
<thead>
<tr>
<th>BASIC WIND SPEED (mph)</th>
<th>85</th>
<th>90</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE, q_s (psf)</td>
<td>18.5</td>
<td>20.7</td>
<td>25.6</td>
<td>28.2</td>
<td>31.0</td>
<td>36.9</td>
<td>40.0</td>
<td>43.3</td>
<td>50.2</td>
<td>57.6</td>
<td>65.5</td>
<td>74.0</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 mph = 0.44 m/s, 1 psf = 47.88 Pa.

a. For basic wind speeds not shown, use $q_s = 0.00256 V^2$.

98 2010 CALIFORNIA BUILDING CODE
<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>Enclosed</th>
<th>Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls:</td>
<td></td>
<td>+ Internal pressure</td>
<td>- Internal pressure</td>
</tr>
<tr>
<td>Windward wall</td>
<td>0.43</td>
<td>0.73</td>
<td>0.11</td>
</tr>
<tr>
<td>Leeward wall</td>
<td>-0.51</td>
<td>-0.21</td>
<td>-0.83</td>
</tr>
<tr>
<td>Sidewall</td>
<td>-0.66</td>
<td>-0.35</td>
<td>-0.97</td>
</tr>
<tr>
<td>Parapet wall</td>
<td></td>
<td>Windward</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leeward</td>
<td>-0.85</td>
</tr>
<tr>
<td>Roofs:</td>
<td></td>
<td>+ Internal pressure</td>
<td>- Internal pressure</td>
</tr>
<tr>
<td>Wind perpendicular to ridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leeward roof or flat roof</td>
<td>-0.66</td>
<td>-0.35</td>
<td>-0.97</td>
</tr>
<tr>
<td>Windward roof slopes:</td>
<td></td>
<td>Condition 1</td>
<td>-1.09</td>
</tr>
<tr>
<td>Slope < 2:12 (10°)</td>
<td></td>
<td>Condition 2</td>
<td>-0.28</td>
</tr>
<tr>
<td>Slope = 4:12 (18°)</td>
<td></td>
<td>Condition 1</td>
<td>-0.73</td>
</tr>
<tr>
<td>Slope = 5:12 (23°)</td>
<td></td>
<td>Condition 2</td>
<td>-0.05</td>
</tr>
<tr>
<td>Slope = 6:12 (27°)</td>
<td></td>
<td>Condition 1</td>
<td>-0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition 2</td>
<td>0.03</td>
</tr>
<tr>
<td>Slope = 7:12 (30°)</td>
<td></td>
<td>Condition 1</td>
<td>-0.47</td>
</tr>
<tr>
<td>Slope = 9:12 (37°)</td>
<td></td>
<td>Condition 2</td>
<td>0.06</td>
</tr>
<tr>
<td>Slope = 12:12 (45°)</td>
<td></td>
<td>Condition 1</td>
<td>-0.37</td>
</tr>
<tr>
<td>Slope = 12:12 (45°)</td>
<td></td>
<td>Condition 2</td>
<td>0.07</td>
</tr>
<tr>
<td>Wind parallel to ridge and flat roofs</td>
<td>-1.09</td>
<td>-0.79</td>
<td>-1.41</td>
</tr>
</tbody>
</table>

Nonbuilding Structures: Chimneys, Tanks and Similar Structures:

<table>
<thead>
<tr>
<th>h/D</th>
<th>1</th>
<th>7</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square (Wind normal to face)</td>
<td>0.99</td>
<td>1.07</td>
<td>1.53</td>
</tr>
<tr>
<td>Square (Wind on diagonal)</td>
<td>0.77</td>
<td>0.84</td>
<td>1.15</td>
</tr>
<tr>
<td>Hexagonal or Octagonal</td>
<td>0.81</td>
<td>0.97</td>
<td>1.13</td>
</tr>
<tr>
<td>Round</td>
<td>0.65</td>
<td>0.81</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Open signs and lattice frameworks

<table>
<thead>
<tr>
<th>Ratio of solid to gross area</th>
<th><0.1</th>
<th>0.1 to 0.29</th>
<th>0.3 to 0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>1.45</td>
<td>1.30</td>
<td>1.16</td>
</tr>
<tr>
<td>Round</td>
<td>0.87</td>
<td>0.94</td>
<td>1.08</td>
</tr>
</tbody>
</table>

(continued)
TABLE 1609A.6.2(2)—continued
NET PRESSURE COEFFICIENTS, \(C_{net} \)

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>(C_{net})</th>
<th>FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof elements and slopes</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Gable of hipped configurations (Zone 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.58</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.00</td>
<td>-1.32</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-0.92</td>
<td>-1.23</td>
</tr>
<tr>
<td>Overhang: Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11B Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-0.94</td>
<td></td>
</tr>
<tr>
<td>6:12 (27°) < Slope < 12:12 (45°) See ASCE 7 Figure 6-11D Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.92</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.83</td>
<td>1.15</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.00</td>
<td>-1.32</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-0.83</td>
<td>-1.15</td>
</tr>
<tr>
<td>Monosloped configurations (Zone 1)</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 7:12 (30°) See ASCE 7 Figure 6-14B Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.49</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.26</td>
<td>-1.57</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.09</td>
<td>-1.40</td>
</tr>
<tr>
<td>Tall flat-topped roofs (h > 60')</td>
<td>Enclosed</td>
<td>Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 2:12 (10°) (Zone 1) See ASCE 7 Figure 6-17 Zone 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.34</td>
<td>-1.66</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-0.92</td>
<td>-1.23</td>
</tr>
</tbody>
</table>

(continued)
STRUCTURE OR PART THEREOF

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>(C_{net}) FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed</td>
<td>Partially enclosed</td>
</tr>
</tbody>
</table>

Gable or hipped configurations at ridges, eaves and rakes (Zone 2)

Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 2

<table>
<thead>
<tr>
<th>Positive</th>
<th>10 square feet or less</th>
<th>0.58</th>
<th>0.89</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
<td>10.72</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.68</td>
<td>-2.00</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.17</td>
<td>-1.49</td>
</tr>
</tbody>
</table>

Overhang for Slope Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 2

| Negative | 10 square feet or less | -1.87|
| | 100 square feet or more | -1.87|

6:12 (27°) < Slope < 12:12 (45°) Figure 6-11D

<table>
<thead>
<tr>
<th>Positive</th>
<th>10 square feet or less</th>
<th>0.92</th>
<th>1.23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.83</td>
<td>1.15</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.17</td>
<td>-1.49</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.00</td>
<td>-1.32</td>
</tr>
</tbody>
</table>

Overhang for 6:12 (27°) < Slope < 12:12 (45°) See ASCE 7 Figure 6-11D Zone 2

| Negative | 10 square feet or less | -1.70|
| | 500 square feet or more | -1.53|

Monosloped configurations at ridges, eaves and rakes (Zone 2)

Flat < Slope < 7:12 (30°) See ASCE 7 Figure 6-14B Zone 2

<table>
<thead>
<tr>
<th>Positive</th>
<th>10 square feet or less</th>
<th>0.49</th>
<th>0.81</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.51</td>
<td>-1.83</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.43</td>
<td>-1.74</td>
</tr>
</tbody>
</table>

Tall flat topped roofs \(h > 60' \)

<table>
<thead>
<tr>
<th>Enclosed</th>
<th>Partially enclosed</th>
</tr>
</thead>
</table>

Flat < Slope < 2:12 (10°) (Zone 2) See ASCE 7 Figure 6-17 Zone 2

| Negative | 10 square feet or less | -2.11| -2.42|
| | 500 square feet or more | -1.51| -1.83|

Gable or hipped configurations at corners (Zone 3) See ASCE 7 Figure 6-11C Zone 3

Flat < Slope < 6:12 (27°)

<table>
<thead>
<tr>
<th>Positive</th>
<th>10 square feet or less</th>
<th>0.58</th>
<th>0.89</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-2.53</td>
<td>-2.85</td>
</tr>
<tr>
<td></td>
<td>100 square feet or more</td>
<td>-1.85</td>
<td>-2.17</td>
</tr>
</tbody>
</table>
(continued)
TABLE 1609A.6.2(2)—continued
NET PRESSURE COEFFICIENTS, $C_{nfa} \text{ h, b}$

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>C_{nfa} FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhang for Slope Flat < Slope < 6:12 (27°) See ASCE 7 Figure 6-11C Zone 3</td>
<td>Negative</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
</tr>
<tr>
<td>6:12 (27°) < 12:12 (45°) See ASCE 7 Figure 6-11D Zone 3</td>
<td>Positive</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
</tr>
<tr>
<td>Overhang for 6:12 (27°) < Slope < 12:12 (45°)</td>
<td>Enclosed Partially enclosed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
</tr>
<tr>
<td>Monosloped Configurations at corners (Zone 3) See ASCE 7 Figure 6-14B Zone 3</td>
<td>Flat < Slope < 7:12 (30°)</td>
<td>Enclosed Partially enclosed</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
</tr>
<tr>
<td>Tall flat topped roofs $h > 60'$</td>
<td>Enclosed Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 2:12 (10°) (Zone 3) See ASCE 7 Figure 6-17 Zone 3</td>
<td>Negative</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td>Wall Elements: $h = 60'$ (Zone 4) Figure 6-11A</td>
<td>Enclosed Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>0.75</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.09</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-0.83</td>
</tr>
<tr>
<td>Wall Elements: $h > 60'$ (Zone 4) See ASCE 7 Figure 6-17 Zone 4</td>
<td>Positive</td>
<td>20 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td>Negative</td>
<td>20 square feet or less</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td>Parapet Walls</td>
<td>Positive</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>-1.68</td>
</tr>
</tbody>
</table>

(continued)
5. Components and cladding in areas of discontinuity—walls and parapets

TABLE 1609A.6.2(2)—continued

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>C_{net}, FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enclosed</td>
</tr>
<tr>
<td>Wall elements: $h \leq 60'$ (Zone 5) Figure 6-11A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>10 square feet or less</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>0.75</td>
</tr>
<tr>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.34</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-0.83</td>
</tr>
<tr>
<td>Wall elements: $h > 60'$ (Zone 5) See ASCE 7 Figure 6-17 Zone 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>20 square feet or less</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>0.66</td>
</tr>
<tr>
<td>Negative</td>
<td>20 square feet or less</td>
<td>-1.68</td>
</tr>
<tr>
<td></td>
<td>500 square feet or more</td>
<td>-1.00</td>
</tr>
<tr>
<td>Parapet walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td>3.64</td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td>-2.45</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m², 1 degree = 0.0175 rad.

a. Linear interpolation between values in the table is permitted.
b. Some C_{net} values have been grouped together. Less conservative results may be obtained by applying ASCE 7 provisions.

1609A.6.3 Design equations. When using the alternative all-heights method, the MWFRS, and components and cladding of every structure shall be designed to resist the effects of wind pressures on the building envelope in accordance with Equation 16A-34.

$$P_{net} = q_1 K_z C_{net} [IK_{st}]$$
(Equation 16A-34)

Design wind forces for the MWFRS shall not be less than 10 psf (0.48 kN/m²) multiplied by the area of the structure projected on a plane normal to the assumed wind direction (see ASCE 7 Section 6.1.4 for criteria). Design net wind pressure for components and cladding shall not be less than 10 psf (0.48 kN/m²) acting in either direction normal to the surface.

1609A.6.4 Design procedure. The MWFRS and the components and cladding of every building or other structure shall be designed for the pressures calculated using Equation 16A-34.

1609A.6.4.1 Main wind-force-resisting systems. The MWFRS shall be investigated for the torsional effects identified in ASCE 7 Figure 6-9.

1609A.6.4.2 Determination of K_z and K_{st}. Velocity pressure exposure coefficient, K_y, shall be determined in accordance with ASCE 7 Section 6.5.6.6 and the topographic factor, K_{st}, shall be determined in accordance with ASCE 7 Section 6.5.7.

1. For the windward side of a structure, K_y and K_{st} shall be based on height z.

2. For leeward and sidewalls, and for windward and leeward roofs, K_y and K_{st} shall be based on mean roof height h.

1609A.6.4.3 Determination of net pressure coefficients, C_{net}. For the design of the MWFRS and for components and cladding, the sum of the internal and external net pressure shall be based on the net pressure coefficient, C_{net}.

1. The pressure coefficient, C_{net} for walls and roofs shall be determined from Table 1609A.6.2(2).

2. Where C_{net} has more than one value, the more severe wind load condition shall be used for design.

1609A.6.4.4 Application of wind pressures. When using the alternative all-heights method, wind pressures shall be applied simultaneously on, and in a direction normal to, all building envelope wall and roof surfaces.

1609A.6.4.4.1 Components and cladding. Wind pressure for each component or cladding element is applied as follows using C_{net} values based on the effective wind area, A, contained within the zones in areas of discontinuity of width and/or length “a,” “2a” or “4a” at: corners of roofs and walls; edge strips for ridges, rakes and eaves; or field areas on walls or roofs as indicated in figures in tables in ASCE 7 as referenced in Table 1609A.6.2(2) in accordance with the following:

1. Calculated pressures at local discontinuities acting over specific edge strips or corner boundary areas.

2. Include “field” (Zone 1, 2 or 4, as applicable) pressures applied to areas beyond the boundaries of the areas of discontinuity.

3. Where applicable, the calculated pressures at discontinuities (Zones 2 or 3) shall be combined with design pressures that apply specifically on rakes or eave overhangs.
TABLE 1610A.1
LATERAL SOIL LOAD

<table>
<thead>
<tr>
<th>DESCRIPTION OF BACKFILL MATERIAL</th>
<th>UNIFIED SOIL CLASSIFICATION</th>
<th>DESIGN LATERAL SOIL LOAD* (pound per square foot per foot of depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-graded, clean gravels; gravel-sand mixes</td>
<td>GW</td>
<td>Active pressure: 30, At-rest pressure: 60</td>
</tr>
<tr>
<td>Poorly graded clean gravels; gravel-sand mixes</td>
<td>GP</td>
<td>Active pressure: 30, At-rest pressure: 60</td>
</tr>
<tr>
<td>Silty gravels, poorly graded gravel-sand mixes</td>
<td>GM</td>
<td>Active pressure: 40, At-rest pressure: 60</td>
</tr>
<tr>
<td>Clayey gravels, poorly graded gravel-and-clay mixes</td>
<td>GC</td>
<td>Active pressure: 45, At-rest pressure: 60</td>
</tr>
<tr>
<td>Well-graded, clean sands; gravelly sand mixes</td>
<td>SW</td>
<td>Active pressure: 30, At-rest pressure: 60</td>
</tr>
<tr>
<td>Poorly graded clean sands; sand-gravel mixes</td>
<td>SP</td>
<td>Active pressure: 30, At-rest pressure: 60</td>
</tr>
<tr>
<td>Silty sands, poorly graded sand-silt mixes</td>
<td>SM</td>
<td>Active pressure: 45, At-rest pressure: 60</td>
</tr>
<tr>
<td>Sand-silt clay mix with plastic fines</td>
<td>SM-SC</td>
<td>Active pressure: 45, At-rest pressure: 100</td>
</tr>
<tr>
<td>Clayey sands, poorly graded sand-clay mixes</td>
<td>SC</td>
<td>Active pressure: 60, At-rest pressure: 100</td>
</tr>
<tr>
<td>Inorganic silts and clayey silts</td>
<td>ML</td>
<td>Active pressure: 45, At-rest pressure: 100</td>
</tr>
<tr>
<td>Mixture of inorganic silt and clay</td>
<td>ML-CL</td>
<td>Active pressure: 60, At-rest pressure: 100</td>
</tr>
<tr>
<td>Inorganic clays of low to medium plasticity</td>
<td>CL</td>
<td>Active pressure: 60, At-rest pressure: 100</td>
</tr>
<tr>
<td>Organic silts and silt clays, low plasticity</td>
<td>OL</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clayey silts, elastic silts</td>
<td>MH</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clays of high plasticity</td>
<td>CH</td>
<td>Note b</td>
</tr>
<tr>
<td>Organic clays and silty clays</td>
<td>OH</td>
<td>Note b</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot per foot of depth = 0.157 kPa/m, 1 foot = 304.8 mm.

a. Design lateral soil loads are given for moist conditions for the specified soils at their optimum densities. Actual field conditions shall govern. Submerged or saturated soil pressures shall include the weight of the buoyant soil plus the hydrostatic loads.
b. Unsuitable as backfill material.
c. The definition and classification of soil materials shall be in accordance with ASTM D 2487.

SECTION 1610A
SOIL LATERAL LOADS

1610A.1 General. Foundation walls and retaining walls shall be designed to resist lateral soil loads. Soil loads specified in Table 1610A.1 shall be used as the minimum design lateral soil loads unless determined otherwise by a geotechnical investigation in accordance with Section 1803A. Foundation walls and other walls in which horizontal movement is restricted at the top shall be designed for at-rest pressure. Retaining walls free to move and rotate at the top shall be permitted to be designed for active pressure. Design lateral pressure from surcharge loads shall be added to the lateral earth pressure load. Design lateral pressure shall be increased if soils at the site are expansive. Foundation walls shall be designed to support the weight of the full hydrostatic pressure of undrained backfill unless a drainage system is installed in accordance with Sections 1805A.4.2 and 1805A.4.3.

Exception: Foundation walls extending not more than 8 feet (2438 mm) below grade and laterally supported at the top by flexible diaphragms shall be permitted to be designed for active pressure.

SECTION 1611A
RAIN LOADS

1611A.1 Design rain loads. Each portion of a roof shall be designed to sustain the load of rainwater that will accumulate on it if the primary drainage system for that portion is blocked plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow. The design rainfall shall be based on the 100-year hourly rainfall rate indicated in Figure 1611A.1 or on other rainfall rates determined from approved local weather data.

\[R = 5.2(d_s + d_h) \]

(Equation 16A-35)

For SI: \[R = 0.0098(d_s + d_h) \]

where:

\(d_h \) = Additional depth of water on the undeflected roof above the inlet of secondary drainage system at its design flow (i.e., the hydraulic head), in inches (mm).

\(d_s \) = Depth of water on the undeflected roof up to the inlet of secondary drainage system when the primary drainage system is blocked (i.e., the static head), in inches (mm).

\(R \) = Rain load on the undeflected roof, in psf (kN/m²). When the phrase "undeflected roof" is used, deflections from loads (including dead loads) shall not be considered when determining the amount of rain on the roof.
For SI: 1 inch = 25.4 mm.

100-YEAR, 1-HOUR RAINFALL (INCHES) CENTRAL UNITED STATES

For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.
100-YEAR, 1-HOUR RAINFALL (INCHES) ALASKA

For SI: 1 inch = 25.4 mm.
For SI: 1 inch = 25.4 mm.

1611A.2 Ponding instability. For roofs with a slope less than \(\frac{1}{4} \) inch per foot [1.19 degrees (0.0208 rad)], the design calculations shall include verification of adequate stiffness to preclude progressive deflection in accordance with Section 8.4 of ASCE 7.

1611A.3 Controlled drainage. Roofs equipped with hardware to control the rate of drainage shall be equipped with a secondary drainage system at a higher elevation that limits accumulation of water on the roof above that elevation. Such roofs shall be designed to sustain the load of rainwater that will accumulate on them to the elevation of the secondary drainage system plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow determined from Section 1611A.1. Such roofs shall also be checked for ponding instability in accordance with Section 1611A.2.

SECTION 1612A
FLOOD LOADS

1612A.1 General. Within flood hazard areas as established in Section 1612A.3, all new construction of buildings, structures and portions of buildings and structures, including substantial improvement and restoration of substantial damage to buildings and structures, shall be designed and constructed to resist the effects of flood hazards and flood loads. For buildings that are located in more than one flood hazard area, the provisions associated with the most restrictive flood hazard area shall apply.

1612A.2 Definitions. The following words and terms shall, for the purposes of this section, have the meanings shown herein.

BASE FLOOD. The flood having a 1-percent chance of being equaled or exceeded in any given year.

BASE FLOOD ELEVATION. The elevation of the base flood, including wave height, relative to the National Geodetic Vertical Datum (NGVD), North American Vertical Datum (NAVD) or other datum specified on the Flood Insurance Rate Map (FIRM).

BASEMENT. The portion of a building having its floor subgrade (below ground level) on all sides.

This definition of “Basement” is limited in application to the provisions of Section 1612A (see “Basement” in Section 502.1).

DESIGN FLOOD. The flood associated with the greater of the following two areas:

1. Area with a flood plain subject to a 1-percent or greater chance of flooding in any year; or
2. Area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

DESIGN FLOOD ELEVATION. The elevation of the “design flood,” including wave height, relative to the datum specified on the community’s legally designated flood hazard map. In areas designated as Zone AO, the design flood elevation shall be the elevation of the highest existing grade of the building’s perimeter plus the depth number (in feet) specified on the flood hazard map. In areas designated as Zone AO where a depth number is not specified on the map, the depth number shall be taken as being equal to 2 feet (610 mm).

DRY FLOODPROOFING. A combination of design modifications that results in a building or structure, including the attendant utility and sanitary facilities, being water tight with walls substantially impermeable to the passage of water and with structural components having the capacity to resist loads as identified in ASCE 7.

EXISTING CONSTRUCTION. Any buildings and structures for which the “start of construction” commenced before the effective date of the community’s first flood plain management code, ordinance or standard. “Existing construction” is also referred to as “existing structures.”

EXISTING STRUCTURE. See “Existing construction.”

FLOOD or FLOODING. A general and temporary condition of partial or complete inundation of normally dry land from:

1. The overflow of inland or tidal waters.
2. The unusual and rapid accumulation or runoff of surface waters from any source.

FLOOD DAMAGE-RESISTANT MATERIALS. Any construction material capable of withstanding direct and prolonged contact with floodwaters without sustaining any damage that requires more than cosmetic repair.

FLOOD HAZARD AREA. The greater of the following two areas:

1. The area within a flood plain subject to a 1-percent or greater chance of flooding in any year.
2. The area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

FLOOD HAZARD AREA SUBJECT TO HIGH-VELOCITY WAVE ACTION. Area within the flood hazard area that is subject to high-velocity wave action, and shown on a Flood Insurance Rate Map (FIRM) or other flood hazard map as Zone V, VO, VE or V1-30.

FLOOD INSURANCE RATE MAP (FIRM). An official map of a community on which the Federal Emergency Management Agency (FEMA) has delineated both the special flood hazard areas and the risk premium zones applicable to the community.

FLOOD INSURANCE STUDY. The official report provided by the Federal Emergency Management Agency containing the Flood Insurance Rate Map (FIRM), the Flood Boundary and Floodway Map (FBFM), the water surface elevation of the base flood and supporting technical data.

FLOODWAY. The channel of the river, creek or other watercourse and the adjacent land areas that must be reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than a designated height.

LOWEST FLOOR. The floor of the lowest enclosed area, including basement, but excluding any unfinished or flood-resistant enclosure, usable solely for vehicle parking, building access or limited storage provided that such enclosure is not built so as to render the structure in violation of this section.
SPECIAL FLOOD HAZARD AREA. The land area subject to flood hazards and shown on a Flood Insurance Rate Map or other flood hazard map as Zone A, AE, A1-30, A99, AR, AO, AH, V, VO, VE or V1-30.

START OF CONSTRUCTION. The date of issuance for new construction and substantial improvements to existing structures, provided the actual start of construction, repair, reconstruction, rehabilitation, addition, placement or other improvement is within 180 days after the date of issuance. The actual start of construction means the first placement of permanent construction of a building (including a manufactured home) on a site, such as the pouring of a slab or footings, installation of pilings or construction of columns.

Permanent construction does not include land preparation (such as clearing, excavation, grading or filling), the installation of streets or walkways, excavation for a basement, footings, piers or foundations, the erection of temporary forms or the installation of accessory buildings such as garages or sheds not occupied as dwelling units or not part of the main building. For a substantial improvement, the actual “start of construction” means the first alteration of any wall, ceiling, floor or other structural part of a building, whether or not that alteration affects the external dimensions of the building.

SUBSTANTIAL DAMAGE. Damage of any origin sustained by a structure whereby the cost of restoring the structure to its before-damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred.

SUBSTANTIAL IMPROVEMENT. Any repair, reconstruction, rehabilitation, addition or improvement of a building or structure, the cost of which equals or exceeds 50 percent of the market value of the structure before the improvement or repair is started. If the structure has sustained substantial damage, any repairs are considered substantial improvement regardless of the actual repair work performed. The term does not, however, include either:

1. Any project for improvement of a building required to correct existing health, sanitary or safety code violations identified by the building official and that are the minimum necessary to assure safe living conditions.

2. Any alteration of a historic structure provided that the alteration will not preclude the structure’s continued designation as a historic structure.

16124.3 Establishment of flood hazard areas. To establish flood hazard areas, the applicable governing authority shall adopt a flood hazard map and supporting data. The flood hazard map shall include, at a minimum, areas of special flood hazard as identified by the Federal Emergency Management Agency’s Flood Insurance Study (FIS) adopted by the local authority having jurisdiction where the project is located, as amended or revised with the accompanying Flood Insurance Rate Map (FIRM) and Flood Boundary and Floodway Map (FBFM) and related supporting data along with any revisions thereto. The adopted flood hazard map and supporting data are hereby adopted by reference and declared to be part of this section.

16124.3.1 Design flood elevations. Where design flood elevations are not included in the flood hazard areas established in Section 16124.3, or where floodways are not designated, the building official is authorized to require the applicant to:

1. Obtain and reasonably utilize any design flood elevation and floodway data available from a federal, state or other source; or

2. Determine the design flood elevation and/or floodway in accordance with accepted hydrologic and hydraulic engineering practices used to define special flood hazard areas. Determinations shall be undertaken by a registered design professional who shall document that the technical methods used reflect currently accepted engineering practice.

16124.3.2 Determination of impacts. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the applicant shall provide a floodway analysis that demonstrates that the proposed work will not increase the design flood elevation more than 1 foot (305 mm) at any point within the jurisdiction of the applicable governing authority.

16124.4 Design and construction. The design and construction of buildings and structures located in flood hazard areas, including flood hazard areas subject to high-velocity wave action, shall be in accordance with Chapter 5 of ASCE 7 and with ASCE 24.

16124.5 Flood hazard documentation. The following documentation shall be prepared and sealed by a registered design professional and submitted to the building official:

1. For construction in flood hazard areas not subject to high-velocity wave action:

 1.1. The elevation of the lowest floor, including the basement, as required by the lowest floor elevation inspection in Section 110.3.3.

 1.2. For fully enclosed areas below the design flood elevation where provisions to allow for the automatic entry and exit of floodwaters do not meet the minimum requirements in Section 2.6.2.1 of ASCE 24, construction documents shall include a statement that the design will provide for equalization of hydrostatic flood forces in accordance with Section 2.6.2.2 of ASCE 24.

 1.3. For dry floodproofed nonresidential buildings, construction documents shall include a statement that the dry floodproofing is designed in accordance with ASCE 24.

2. For construction in flood hazard areas subject to high-velocity wave action:

 2.1. The elevation of the bottom of the lowest horizontal structural member as required by the lowest floor elevation inspection in Section 110.3.3.

 2.2. Construction documents shall include a statement that the building is designed in accordance with ASCE 24, including that the pile or column foundation and building or structure to be
STRUCTURAL DESIGN

attached thereto is designed to be anchored to resist flotation, collapse and lateral movement due to the effects of wind and flood loads acting simultaneously on all building components, and other load requirements of Chapter 16A.

2.3. For breakaway walls designed to resist a nominal load of less than 10 psf (0.48 kN/m²) or more than 20 psf (0.96 kN/m²), construction documents shall include a statement that the breakaway wall is designed in accordance with ASCE 24.

SECTION 1613A
EARTHQUAKE LOADS

1613A.1 Scope. Every structure, and portion thereof, including nonstructural components that are permanently attached to structures and their supports and attachments, shall be designed and constructed to resist the effects of earthquake motions in accordance with ASCE 7 with all the modifications incorporated herein, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure shall be determined in accordance with Section 1613A.

Exception: Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

1613A.2 Definitions. The following words and terms shall, for the purposes of this section, have the meanings shown herein. Definition provided in Section 3402A.1 and ASCE 7 Section 11.2 shall apply when appropriate in addition to terms defined in this section.

ACTIVE EARTHQUAKE FAULT. A fault that has been the source of earthquakes or is recognized as a potential source of earthquakes, including those that have exhibited surface displacement within Holocene time (about 11,000 years) as determined by California Geological Survey (CGS) under the Alquist-Priolo Earthquake Fault Zoning Act, those included as ACTIVE EARTHQUAKE FAULT. Alquist-Priolo Earthquake Fault Zoning Act, those included as BASE. National Seismic Hazard Maps, and faults considered to have been active in Holocene time by an authoritative source, fed by California Geological Survey (CGS) under the source of earthquakes or is recognized as a potential source ofearthquakes, including those that have exhibited surface displacements in accordance with ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

BASE. The level at which the horizontal seismic ground motions are considered to be imparted to the structure or the level at which the structure as a dynamic vibrator is supported. This level does not necessarily coincide with the ground level.

DESIGN EARTHQUAKE GROUND MOTION. The earthquake ground motion that buildings and structures are specifically proportioned to resist in Section 1613A.

DISTANCE FROM AN ACTIVE EARTHQUAKE FAULT. Distance measured from the nearest point of the building to the closest edge of an Alquist-Priolo Earthquake Fault Zone for an active fault, if such a map exists, or to the closest mapped splay of the fault.

HOSPITAL BUILDINGS. Hospital buildings and all other medical facilities as defined in Section 1250, Health and Safety Code.

IRREGULAR STRUCTURE. A structure designed as having one or more plan or vertical irregularities per ASCE 7 Section 12.3.

MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION. The most severe earthquake effects considered by this code.

MECHANICAL SYSTEMS. For the purposes of determining seismic loads in ASCE 7, mechanical systems shall include plumbing systems as specified therein.

NEXT GENERATION ATTENUATION (NGA). Attenuation relations used for the 2008 United States Geological Survey (USGS) seismic hazards maps (for the Western United States) or their equivalent as determined by the enforcement agency.

ORTHOGONAL. To be in two horizontal directions, at 90 degrees (1.57 rad) to each other.

SEISMIC DESIGN CATEGORY. A classification assigned to a structure based on its occupancy category and the severity of the design earthquake ground motion at the site.

SEISMIC-FORCE-RESISTING SYSTEM. That part of the structural system that has been considered in the design to provide the required resistance to the prescribed seismic forces.

SITE CLASS. A classification assigned to a site based on the types of soils present and their engineering properties as defined in Section 1613A.5.2.

SITE COEFFICIENTS. The values of F_v and F_u indicated in Tables 1613A.5.3(1) and 1613A.5.3(2), respectively.

STRUCTURAL ELEMENTS. Floor or roof diaphragms, decking, joists, slabs, beams or girders, columns, bearing walls, retaining walls, masonry or concrete nonbearing walls exceeding one story in height, foundations, shear walls or other lateral-force-resisting members and any other elements necessary to the vertical and lateral strength or stability of either the building as a whole or any of its parts, including connection between such elements.

1613A.3 Existing buildings. [OSHPD 1 & 4] Additions, alterations, repairs or change of occupancy of existing buildings shall be in accordance with Chapter 34A.

1613A.4 Special inspections. Where required by Sections 1705A.3 through 1705A.3.5, the statement of special inspections shall include the special inspections required by Section 1705A.3.6.
1613A.5 Seismic ground motion values. Seismic ground motion values shall be determined in accordance with this section.

1613A.5.1 Mapped acceleration parameters. The parameters S_s and S_1 shall be determined from the 0.2 and 1-second spectral response accelerations shown on Figures 1613.5(1) through 1613.5(14).

1613A.5.2 Site class definitions. Based on the site soil properties, the site shall be classified as either Site Class A, B, C, D, E or F in accordance with Table 1613A.5.2. When the soil properties are not known in sufficient detail to determine the site class, Site Class D shall be used unless the building official or geotechnical data determines that Site Class E or F soil is likely to be present at the site.

1613A.5.3 Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters. The maximum considered earthquake spectral response acceleration for short periods, S_{MS}, and at 1-second period, S_{M1}, adjusted for site class effects shall be determined by Equations 16A-36 and 16A-37, respectively:

$$S_{MS} = F_a S_s$$ \hspace{1cm} (Equation 16A-36)

$$S_{M1} = F_v S_1$$ \hspace{1cm} (Equation 16A-37)

where:

F_a = Site coefficient defined in Table 1613A.5.3(1).

S_s = The mapped spectral accelerations for short periods as determined in Section 1613A.5.1.

S_1 = The mapped spectral accelerations for a 1-second period as determined in Section 1613A.5.1.

F_v = Site coefficient defined in Table 1613A.5.3(2).

S_{MS} = The maximum considered earthquake spectral response accelerations for short periods as determined in Section 1613A.5.3.

S_{M1} = The maximum considered earthquake spectral response accelerations for 1-second period as determined in Section 1613A.5.3.

1613A.5.4 Design spectral response acceleration parameters. Five-percent damped design spectral response acceleration at short periods, S_{DS}, and at 1-second period, S_{DI}, shall be determined from Equations 16A-38 and 16A-39, respectively:

$$S_{DS} = \frac{2}{3} S_{MS}$$ \hspace{1cm} (Equation 16A-38)

$$S_{DI} = \frac{2}{3} S_{M1}$$ \hspace{1cm} (Equation 16A-39)

where:

S_{DS} = The maximum considered earthquake spectral response accelerations for short period as determined in Section 1613A.5.3.

S_{DI} = The maximum considered earthquake spectral response accelerations for 1-second period as determined in Section 1613A.5.3.

TABLE 1613A.5.2
SITE CLASS DEFINITIONS

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>SOIL PROFILE NAME</th>
<th>AVERAGE PROPERTIES IN TOP 100 feet, SEE SECTION 1613A.5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Hard rock</td>
<td>Soil shear wave velocity, \bar{v}_s, (ft/s)</td>
</tr>
<tr>
<td>B</td>
<td>Rock</td>
<td>$2,500 < \bar{v}_s \leq 5,000$</td>
</tr>
<tr>
<td>C</td>
<td>Very dense soil and soft rock</td>
<td>$1,200 < \bar{v}_s \leq 2,500$</td>
</tr>
<tr>
<td>D</td>
<td>Stiff soil profile</td>
<td>$600 \leq \bar{v}_s \leq 1,200$</td>
</tr>
<tr>
<td>E</td>
<td>Soft soil profile</td>
<td>$\bar{v}_s < 600$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>SOIL PROFILE NAME</th>
<th>AVERAGE PROPERTIES IN TOP 100 feet, SEE SECTION 1613A.5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Any profile</td>
<td>Any profile having more than 10 feet of soil having the following characteristics:</td>
</tr>
</tbody>
</table>

1. Plasticity index $PI > 20$,
2. Moisture content $w \geq 40\%$, and
3. Undrained shear strength $\bar{s}_u < 500$ psf

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>SOIL PROFILE NAME</th>
<th>AVERAGE PROPERTIES IN TOP 100 feet, SEE SECTION 1613A.5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>—</td>
<td>Any profile containing soils having one or more of the following characteristics:</td>
</tr>
</tbody>
</table>

1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils.
2. Peats and/or highly organic clays ($H > 10$ feet of peat and/or highly organic clay where H = thickness of soil)
3. Very high plasticity clays ($H > 25$ feet with plasticity index $PI > 75$)
4. Very thick soft/medium stiff clays ($H > 120$ feet)

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m², 1 pound per square foot = 0.0479 kPa. N/A = Not applicable
TABLE 1613A.5.3(1)
VALUES OF SITE COEFFICIENT \(F_a \)

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>(S_a \leq 0.25)</th>
<th>(S_a = 0.50)</th>
<th>(S_a = 0.75)</th>
<th>(S_a = 1.00)</th>
<th>(S_a \geq 1.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
</tr>
</tbody>
</table>

a. Use straight-line interpolation for intermediate values of mapped spectral response acceleration at short period, \(S_a \).
b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.

TABLE 1613A.5.3(2)
VALUES OF SITE COEFFICIENT \(F_v \)

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>(S_v \leq 0.1)</th>
<th>(S_v = 0.2)</th>
<th>(S_v = 0.3)</th>
<th>(S_v = 0.4)</th>
<th>(S_v \geq 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
<td>Note b</td>
</tr>
</tbody>
</table>

a. Use straight-line interpolation for intermediate values of mapped spectral response acceleration at 1-second period, \(S_v \).
b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.

1613A.5.5 Site classification for seismic design

Site classification for Site Class C, D or E shall be determined from Table 1613A.5.5.

The notations presented below apply to the upper 100 feet (30 480 mm) of the site profile. Profiles containing distinctly different soil and/or rock layers shall be subdivided into those layers designated by a number that ranges from 1 to \(n \) at the bottom where there is a total of \(n \) distinct layers in the upper 100 feet (30 480 mm). The symbol \(i \) then refers to any one of the layers between 1 and \(n \).

where:

- \(v_s \) = The shear wave velocity in feet per second (m/s).
- \(d_i \) = The thickness of any layer between 0 and 100 feet (30 480 mm).

where:

\[
\bar{v}_s = \frac{n}{\sum_{i=1}^{n} d_i / v_s}
\]
(Equation 16A-40)

\[
\sum_{i=1}^{n} d_i = 100 \text{ feet (30 480 mm)}
\]

\(N_i \) is the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/foot (328 blows/m) as directly measured in the field without corrections. When refusal is met for a rock layer, \(N_i \) shall be taken as 100 blows/foot (328 blows/m).

\[
\bar{N} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} N_i}
\]
(Equation 16A-41)

where \(N_i \) and \(d_i \) in Equation 16A-41 are for cohesionless soil, cohesive soil and rock layers.

\[
\bar{N}_{ch} = \frac{d_i}{\sum_{i=1}^{m} d_i / N_i}
\]
(Equation 16A-42)

where:

\[
\sum_{i=1}^{m} d_i = d_s
\]

Use \(d_i \) and \(N_i \) for cohesionless soil layers only in Equation 16A-42.

\(d_s \) = The total thickness of cohesionless soil layers in the top 100 feet (30 480 mm).
m = The number of cohesionless soil layers in the top 100 feet (30 480 mm).

\[s_{ui} = \text{The undrained shear strength in psf (kPa), not to exceed 5,000 psf (240 kPa), ASTM D 2166 or D 2850.} \]

\[\bar{s}_u = \frac{d_c}{\sum_{i=1}^{k} d_i} \sum_{i=1}^{k} s_{ui} \]
(Equation 16A-43)

where:

- \(d_c \) = The total thickness of cohesive soil layers in the top 100 feet (30 480 mm).
- \(k \) = The number of cohesive soil layers in the top 100 feet (30 480 mm).
- \(PI \) = The plasticity index, ASTM D 4318.
- \(w \) = The moisture content in percent, ASTM D 2216.

Where a site does not qualify under the criteria for Site Class F and there is a total thickness of soft clay greater than 10 feet (3048 mm) where a soft clay layer is defined by: \(s_u < 500 \) psf (24 kPa), \(w \geq 40 \) percent, and \(PI > 20 \), it shall be classified as Site Class E.

The shear wave velocity for rock, Site Class B, shall be either measured on site or estimated by a geotechnical engineer or engineering geologist/seismologist for competent rock with moderate fracturing and weathering. Softer and more highly fractured and weathered rock shall either be measured on site for shear wave velocity or classified as Site Class C.

The hard rock category, Site Class A, shall be supported by shear wave velocity measurements either on site or on profiles of the same rock type in the same formation with an equal or greater degree of weathering and fracturing. Where hard rock conditions are known to be continuous to a depth of 100 feet (30 480 mm), surficial shear wave velocity measurements are permitted to be extrapolated to assess \(\bar{v}_s \).

The rock categories, Site Classes A and B, shall not be used if there is more than 10 feet (30 480 mm) of soil between the rock surface and the bottom of the spread footing or mat foundation.

1613A.5.5.1 Steps for classifying a site.

1. Check for the four categories of Site Class F requiring site-specific evaluation. If the site corresponds to any of these categories, classify the site as Site Class F and conduct a site-specific evaluation.

2. Check for the existence of a total thickness of soft clay \(> 10 \) feet (3048 mm) where a soft clay layer is defined by: \(s_u < 500 \) psf (24 kPa), \(w \geq 40 \) percent and \(PI > 20 \). If these criteria are satisfied, classify the site as Site Class E.

3. Categorize the site using one of the following three methods with \(\bar{v}_s \), \(N \), and \(\bar{s}_u \) and computed in all cases as specified.

 - 3.1. \(\bar{v}_s \) for the top 100 feet (30 480 mm) (\(\bar{v}_s \) method).
 - 3.2. \(N \) for the top 100 feet (30 480 mm) (\(N \) method).
 - 3.3. \(N_{ch} \) for cohesionless soil layers (\(PI < 20 \)) in the top 100 feet (30 480 mm) and average, \(\bar{s}_u \) for cohesive soil layers (\(PI > 20 \)) in the top 100 feet (30 480 mm) (\(\bar{s}_u \) method).

1613A.5.6 Determination of seismic design category

Structures classified as Occupancy Category I, II or III that are located where the mapped spectral response acceleration parameter at 1-second period, \(S_f \), is greater than or equal to 0.75 shall be assigned to Seismic Design Category E. Structures classified as Occupancy Category IV that are located where the mapped spectral response acceleration parameter at 1-second period, \(S_f \), is greater than or equal to 0.75 shall be assigned to Seismic Design Category F. All other structures shall be assigned to a seismic design Category D.

1613A.5.6.1 Alternative seismic design category determination. Not permitted by DSA-SS & OSHPD.

1613A.5.6.2 Simplified design procedure. Not permitted by DSA-SS & OSHPD.

1613A.6 Alternatives to ASCE 7

The provisions of Section 1613A.6 shall be permitted as alternatives to the relevant provisions of ASCE 7.

TABLE 1613A.5.5

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>(\bar{v}_s)</th>
<th>(N) or (N_{ch})</th>
<th>(\bar{s}_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>< 600 ft/s</td>
<td>< 15</td>
<td>< 1,000 psf</td>
</tr>
<tr>
<td>D</td>
<td>600 to 1,200 ft/s</td>
<td>15 to 50</td>
<td>1,000 to 2,000 psf</td>
</tr>
<tr>
<td>C</td>
<td>1,200 to 2,500 ft/s</td>
<td>> 50</td>
<td>> 2,000</td>
</tr>
</tbody>
</table>

For SI: 1 foot per second = 304.8 mm per second, 1 pound per square foot = 0.0479 kN/m².

a. If the \(\bar{s}_u \) method is used and the \(N_{ch} \) and \(\bar{s}_u \) criteria differ, select the category with the softer soils (for example, use Site Class E instead of D).
1613A.6.1 Assumption of flexible diaphragm. Add the following text at the end of Section 12.3.1.1 of ASCE 7.

Diaphragms constructed of wood structural panels or untopped steel decking shall also be permitted to be idealized as flexible, provided all of the following conditions are met:

1. Toppings of concrete or similar materials are not placed over wood structural panel diaphragms except for nonstructural toppings no greater than 1 1/2 inches (38 mm) thick.
2. Each line of vertical elements of the seismic-force-resisting system complies with the allowable story drift of Table 12.12-1.
3. Vertical elements of the seismic-force-resisting system are light-frame walls sheathed with wood structural panels rated for shear resistance or steel sheets.
4. Portions of wood structural panel diaphragms that cantilever beyond the vertical elements of the lateral-force-resisting system are designed in accordance with Section 4.2.5.2 of AF&PA SDPWS.

1613A.6.2 Additional seismic-force-resisting systems for seismically isolated structures. Add the following exception to the end of Section 17.5.4.2 of ASCE 7:

Exception: For isolated structures designed in accordance with this standard, the Structural System Limitations and the Building Height Limitations in Table 12.2-1 for ordinary steel concentrically braced frames (OCBFs) as defined in Chapter 11 and intermediate moment frames (IMFs) as defined in Chapter 11 are permitted to be taken as 160 feet (48 768 mm) for structures assigned to Seismic Design Category D, E or F, provided the following conditions are satisfied:

1. The value of \(R_1 \) as defined in Chapter 17 is taken as 1.
2. For OCBFs, design is in accordance with AISC 341.
3. For IMFs, design is in accordance with AISC 341. In addition, requirements of Section 9.3 of AISC 341 shall be satisfied.

1613A.6.3 Automatic sprinkler systems. Automatic sprinkler systems designed and installed in accordance with NFPA 13 shall be deemed to meet the requirements of Section 13.6.8 of ASCE 7.

Exception: The allowable values for design of anchors, hangers and bracings shall be determined in accordance with material chapters of this code in lieu of those in NFPA 13.

1613A.6.4 Autoclaved aerated concrete (AAC) masonry. Not permitted by DSA-SS & OSHPD.

1613A.6.5 Seismic controls for elevators. Seismic switches in accordance with Section 8.4.10 of ASME A17.1 shall be deemed to comply with Section 13.6.10.3 of ASCE 7.

1613A.6.6 Steel plate shear wall height limits. Modify Section 12.2.5.4 of ASCE 7 to read as follows:

12.2.5.4 Increased building height limit for steel-braced frames, special steel plate shear walls and special reinforced concrete shear walls. The height limits in Table 12.2-1 are permitted to be increased from 160 feet (48 768 mm) to 240 feet (75 152 mm) for structures assigned to Seismic Design Category D or E and from 100 feet (30 480 mm) to 160 feet (48 768 mm) for structures assigned to Seismic Design Category F that have steel-braced frames, special steel plate shear walls or special reinforced concrete cast-in-place shear walls and that meet both of the following requirements:

1. The structure shall not have an extreme torsional irregularity as defined in Table 12.2-1 (horizontal structural irregularity Type 1b).
2. The braced frames or shear walls in any one plane shall resist no more than 60 percent of the total seismic forces in each direction, neglecting accidental torsional effects.

1613A.6.7 Minimum distance for building separation. All buildings and structures shall be separated from adjoining structures. Separations shall allow for the maximum inelastic response displacement (\(\delta_{\text{max}} \)). \(\delta_{\text{max}} \) shall be determined at critical locations with consideration for both translational and torsional displacements of the structure using Equation 16A-44 for DSA-SS and 16A-44B for OSHPD.

\[
\delta_{\text{M}} = \frac{C_{d} \delta_{\text{max}}}{I} \quad \text{(Equation 16A-44A)}
\]

\[
\delta_{\text{M}} = C_{d} \delta_{\text{max}} \quad \text{(Equation 16A-44B)}
\]

where:

\(C_{d} \) = Deflection amplification factor in Table 12.2-1 of ASCE 7.
\(\delta_{\text{max}} \) = Maximum displacement defined in Section 12.8.4.3 of ASCE 7.
\(I \) = Importance factor in accordance with Section 11.5.1 of ASCE 7.

Adjacent buildings on the same property shall be separated by a distance not less than \(\delta_{\text{M}} \), determined by Equation 16A-45.

\[
\delta_{\text{MT}} = \sqrt{\left(\delta_{\text{M1}} \right)^{2} + \left(\delta_{\text{M2}} \right)^{2}} \quad \text{(Equation 16A-45)}
\]

where:

\(\delta_{\text{M1}}, \delta_{\text{M2}} \) = The maximum inelastic response displacements of the adjacent buildings in accordance with Equations 16A-44A or 16A-44B for OSHPD.

Where a structure adjoins a property line not common to a public way, the structure shall also be set back from the property line by not less than the maximum inelastic response displacement, \(\delta_{\text{M}} \), of that structure.

Exception: Smaller separations or property line setbacks shall be permitted when justified by rational analyses.
SECTION 1614A
STRUCTURAL INTEGRITY

1614A.1 General. Buildings classified as high-rise buildings in accordance with Section 403 and assigned to Occupancy Category III or IV shall comply with the requirements of this section. Frame structures shall comply with the requirements of Section 1614A.3. Bearing wall structures shall comply with the requirements of Section 1614A.4.

1614A.2 Definitions. The following words and terms shall, for the purposes of Section 1614A, have the meanings shown herein.

BEARING WALL STRUCTURE. A building or other structure in which vertical loads from floors and roofs are primarily supported by walls.

FRAME STRUCTURE. A building or other structure in which vertical loads from floors and roofs are primarily supported by columns.

1614A.3 Frame structures. Frame structures shall comply with the requirements of this section.

1614A.3.1 Concrete frame structures. Frame structures constructed primarily of reinforced or prestressed concrete, either cast-in-place or precast, or a combination of these, shall conform to the requirements of ACI 318 Sections 7.13, 13.3.8.5, 13.3.8.6, 16.5, 18.12.6, 18.12.7 and 18.12.8 as applicable. Where ACI 318 requires that nonprestressed reinforcing or prestressing steel pass through the region bounded by the longitudinal column reinforcement, that reinforcing or prestressing steel shall have a minimum nominal tensile strength equal to two-thirds of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

Exception: Where concrete slabs with continuous reinforcing having an area not less than 0.0015 times the concrete area in each of two orthogonal directions are present and are either monolithic with or equivalently bonded to beams, girders or columns, the longitudinal reinforcing or prestressing steel passing through the column reinforcement shall have a nominal tensile strength of one-third of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

1614A.3.2 Structural steel, open web steel joist or joist girder, or composite steel and concrete frame structures. Frame structures constructed with a structural steel frame or a frame composed of open web steel joists, joist girders with or without other structural steel elements or a frame composed of composite steel or composite steel joists and reinforced concrete elements shall conform to the requirements of this section.

1614A.3.2.1 Columns. Each column splice shall have the minimum design strength in tension to transfer the design dead and live load tributary to the column between the splice and the splice or base immediately below.

1614A.3.2.2 Beams. End connections of all beams and girders shall have a minimum nominal axial tensile strength equal to the required vertical shear strength for allowable stress design (ASD) or two-thirds of the required shear strength for load and resistance factor design (LRFD) but not less than 10 kips (45 kN). For the purpose of this section, the shear force and the axial tensile force need not be considered to act simultaneously.

Exception: Where beams, girders, open web joist and joist girders support a concrete slab or concrete slab on metal deck that is attached to the beam or girder with not less than 3/4-inch-diameter (9.5 mm) headed shear studs, at a spacing of not more than 12 inches (305 mm) on center, averaged over the length of the member, or other attachment having equivalent shear strength, and the slab contains continuous distributed reinforcement in each of two orthogonal directions with an area not less than 0.0015 times the concrete area, the nominal axial tension strength of the end connection shall be permitted to be taken as half the required vertical shear strength for ASD or one-third of the required shear strength for LRFD, but not less than 10 kips (45 kN).

1614A.4 Bearing wall structures. Bearing wall structures shall have vertical ties in all load-bearing walls and longitudinal ties, transverse ties and perimeter ties at each floor level in accordance with this section and as shown in Figure 1614A.4.

1614A.4.1 Concrete wall structures. Precast bearing wall structures constructed solely of reinforced or prestressed concrete, or combinations of these shall conform to the requirements of Sections 7.13, 13.3.8.5 and 16.5 of ACI 318.

1614A.4.2 Other bearing wall structures. Ties in bearing wall structures other than those covered in Section 1614A.4.1 shall conform to this section.

1614A.4.2.1 Longitudinal ties. Longitudinal ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Longitudinal ties shall extend across interior load-bearing walls and shall connect to exterior load-bearing walls and shall be spaced at not greater than 10 feet (3038 mm) on center. Ties shall have a minimum nominal tensile strength, T_s, given by Equation 16A-46. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

$$T_s = wLS \leq \alpha_s \sigma$$

(Equation 16A-46)

where:

L = The span of the horizontal element in the direction of the tie, between bearing walls, feet (m).

w = The weight per unit area of the floor or roof in the span being tied to or across the wall, psf (N/m²).

S = The spacing between ties, feet (m).
\(\alpha_T = \) A coefficient with a value of 1,500 pounds per foot (2.25 kN/m) for masonry bearing wall structures and a value of 375 pounds per foot (0.6 kN/m) for structures with bearing walls of cold-formed steel light-frame construction.

1614A.4.2.2 Transverse ties. Transverse ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Transverse ties shall be placed no farther apart than the spacing of load-bearing walls. Transverse ties shall have minimum nominal tensile strength \(T_p \), given by Equation 16A-46. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[T_p = 200w \leq \beta_T \]
(Equation 16A-47)

For SI:
\[T_p = 90.7w \leq \beta_T \]

where:
\(w \) = As defined in Section 1614A.4.2.1.
\(\beta_T \) = A coefficient with a value of 16,000 pounds (7200 kN) for structures with masonry bearing walls and a value of 4,000 pounds (1300 kN) for structures with bearing walls of cold-formed steel light-frame construction.

1614A.4.2.3 Perimeter ties. Perimeter ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Ties around the perimeter of each floor and roof shall be located within 4 feet (1219 mm) of the edge and shall provide a nominal strength in tension not less than \(T_p \), given by Equation 16A-47. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

\[T_p = 200w \leq \beta_T \]
(Equation 16A-47)

For SI:
\[T_p = 90.7w \leq \beta_T \]

where:
\(w \) = As defined in Section 1614A.4.2.1.
\(\beta_T \) = A coefficient with a value of 16,000 pounds (7200 kN) for structures with masonry bearing walls and a value of 4,000 pounds (1300 kN) for structures with bearing walls of cold-formed steel light-frame construction.

1614A.4.2.4 Vertical ties. Vertical ties shall consist of continuous or spliced reinforcing, continuous or spliced members, wall sheathing or other engineered systems. Vertical tension ties shall be provided in bearing walls and shall be continuous over the height of the building. The minimum nominal tensile strength for vertical ties within a bearing wall shall be equal to the weight of the wall within that story plus the weight of the diaphragm tributary to the wall in the story below. No fewer than two ties shall be provided for each wall. The strength of each tie need not exceed 3,000 pounds per foot (450 kN/m) of wall tributary to the tie for walls of masonry construction or 750 pounds per foot (140 kN/m) of wall tributary to the tie for walls of cold-formed steel light-frame construction.
SECTION 1615A MODIFICATIONS TO ASCE 7

1615A.1 General. The text of ASCE 7 shall be modified as indicated in Sections 1615A.1.1 through 1615A.1.38.

1615A.1.1 ASCE 7, Section 11.1. Modify ASCE 7 Section 11.1 by the adding Section 11.1.5 as follows:

11.1.5 Structural design criteria. Where design reviews are required in ASCE 7, Chapters 16, 17 or 18, the ground motion, analysis, and design methods, material assumptions and acceptance criteria proposed by the engineer shall be submitted to the enforcement agency in the form of structural design criteria for approval.

[OSHPD 1 & 4] Peer review requirements in Section 3414A shall apply to design reviews required by ASCE 7 Chapters 17 and 18.

1615A.1.2A [DSA-SS] ASCE 7, Section 11.4.7. Modify ASCE 7 Section 11.4.7 as follows:

11.4.7 Site-specific ground motion procedures. The site-specific ground motion procedure set forth in ASCE 7 Section 21 as modified in Section 1803A.6 of this code is permitted to be used to determine ground motion for any structure.

Unless otherwise approved, the site-specific procedure per ASCE 7 Section 21 as modified by Section 1803A.6 of this code shall be used where any of the following conditions apply:

1) A site response analysis shall be performed per Section 21.1, and a ground motion hazard analysis shall be performed in accordance with Section 21.2 for the following structures:
 a) Structure located in Type E soils and mapped MCE spectral acceleration at short periods (S_s) exceeds 2.0g.
 b) Structures located in Type F soils.

 Exceptions:
 1) Where S_s is less than 0.20g, use of Type E soil profile shall be permitted.
 2) Where exception to Section 20.3.1 is applicable except for base isolated buildings.

2) A ground motion hazard analysis shall be performed in accordance with Section 21.2 when:
 a) A time history response analysis of the building is performed as part of the design.
 b) The building site is located in an area identified in Section 4-317(e) of the California Administrative Code (Part 1, Title 24, C.C.R.),
 c) For seismically isolated structures and for structures with damping systems.

1615A.1.2B. [OSHPD 1 & 4] Modify ASCE 7 Section 11.4.7 by adding the following:

For buildings assigned to Seismic Design Category F, or when required by the building official, a ground motion hazard analysis shall be performed in accordance with ASCE 7 Chapter 21 as modified by Section 1803A.6.

1615A.1.3 ASCE 7, Table 12.2-1. Modify ASCE 7 Table 12.2-1 as follows:

A. BEARING WALL SYSTEMS

5. Intermediate Precast Shear Walls—Not permitted by OSHPD.

14. Light-framed walls with shear panels of all other materials—Not permitted by OSHPD and DSA-SS.

B. BUILDING FRAME SYSTEMS

2. Steel eccentrically braced frames, non-moment-resisting connections at columns away from links—Not permitted by OSHPD.

4. Ordinary steel concentrically braced frames—Not permitted by OSHPD.

9. Intermediate Precast Shear Walls—Not permitted by OSHPD.

24. Light-framed walls with shear panels of all other materials—Not permitted by OSHPD and DSA-SS.

25. Buckling-restrained braced frames, non-moment-resisting beam-column connections—Not permitted by OSHPD.

27. Special steel plate shear wall—Not permitted by OSHPD.

C. MOMENT-RESISTING FRAME SYSTEMS

2. Special steel truss moment frames—Not permitted by OSHPD.

3. Intermediate steel moment frames—Not permitted by OSHPD.

4. Ordinary steel moment frames—Not permitted by OSHPD.

Exceptions:

1. Systems listed in this section can be used as an alternative system when preapproved by the enforcement agency.

2. Rooftop or other supported structures not exceeding two stories in height and 10 percent of the total structure weight can use the systems in this section when designed as components per ASCE 7 Chapter 13.
3. Systems listed in this section can be used for seismically isolated buildings when permitted by Section 1613A.6.2.

1615A.1.4 ASCE 7, Section 12.2.3.1. Modify ASCE 7 Section 12.2.3.1 by adding the following additional requirements for a two stage equivalent lateral force procedure or modal response spectrum procedure:

e. Where design of elements of the upper portion is governed by special seismic load combinations, the special loads shall be considered in the design of the lower portion.

1615A.1.5 ASCE 7, Section 12.3.3. Modify first sentence of ASCE 7 Section 12.3.3.1 as follows:

12.3.3.1 Prohibited horizontal and vertical irregularities for seismic Design Categories D through F. Structures assigned to Seismic Design Category D, E or F having horizontal structural irregularity Type 1b of Table 12.3-1 or vertical structural irregularities Type 1b, 5a or 5b of Table 12.3-2 shall not be permitted.

1615A.1.6 ASCE 7, Section 12.7.2. Modify ASCE 7 Section 12.7.2 by adding Item 5 to read as follows:

5. Where buildings provide lateral support for walls retaining earth, and the exterior grades on opposite sides of the building differ by more than 6 feet (1829 mm), the load combination of the seismic increment of earth pressure due to earthquake acting on the higher side, as determined by a geotechnical engineer qualified in soils engineering plus the difference in earth pressures shall be added to the lateral forces provided in this section.

1615A.1.7 ASCE 7, Section 12.8.7. Modify ASCE 7 Section 12.8.7 by replacing Equation 12.8-16 as follows:

\[\theta = \frac{P_hA_I}{V_s h_s C_d} \] \(12.8-16 \)

1615A.1.8 ASCE 7, Section 12.9.4. Replace ASCE 7 Section 12.9.4 as follows:

12.9.4 Scaling design values of combined response. Modal base shear shall not be less than the base shear calculated using the equivalent lateral force procedure of Section 12.8.

1615A.1.9 ASCE 7, Section 12.10.2.1. Modify ASCE 7 Section 12.10.2.1 by adding the following:

The value of \(\Omega A Q_k \) used in load combinations with overstrength factors in ASCE 7-05 Section 12.4.3.2 for design of collector elements, splices and their connections to resisting elements may be taken as the largest of the following:

1) \(\Omega F_s \) (where \(F_s \) is given by ASCE 7-05 Eq. 12.8-11)

2) \(\Omega F_{ps} \) (where \(F_{ps} \) is given by ASCE 7-05 Eq. 12.10-1 ignoring the 0.2S_{frw} minimum)

3) 0.2S_{frw} (Minimum value from Section 12.10.1.1)

1615A.1.10 ASCE 7, Section 12.13.1. Modify ASCE 7 Section 12.13.1 by adding Section 12.13.1.1 as follows:

12.13.1.1 Foundations and superstructure-to-foundation connections. The foundation shall be capable of transmitting the design base shear and the overturning forces from the structure into the supporting soil. Stability against overturning and sliding shall be in accordance with Section 1605A.1.1.

In addition, the foundation and the connection of the superstructure elements to the foundation shall have the strength to resist, in addition to gravity loads, the lesser of the following seismic loads:

1. The strength of the superstructure elements.

2. The maximum forces that would occur in the fully yielded structural system.

3. Forces from the Load Combinations with overstrength factor in accordance with ASCE 7 Section 12.4.3.2.

Exceptions:

1. Where referenced standards specify the use of higher design loads.

2. When it can be demonstrated that inelastic deformation of the foundation and superstructure-to-foundation connection will not result in a weak story or cause collapse of the structure.

3. Where basic structural system consists of light framed walls with shear panels.

Where the computation of the seismic overturning moment is by the equivalent lateral-force method or the modal analysis method, reduction in overturning moment permitted by section 12.13.4 of ASCE 7 may be used.

Where moment resistance is assumed at the base of the superstructure elements, the rotation and flexural deformation of the foundation as well as deformation of the superstructure-to-foundation connection shall be considered in the drift and deformation compatibility analyses.

1615A.1.11 ASCE 7, Section 13.1.3. [OSHPD 1 & 4] Modify ASCE 7 Section 13.1.3 by the following:

For position retention, the design of supports and attachments for all nonstructural components shall have a component importance factor, \(I_p \), equal to 1.5.

1615A.1.12 ASCE 7, Section 13.1.4. Replace ASCE 7 Section 13.1.4 with the following:

13.1.4 Exceptions. The following nonstructural components are exempt from the requirements of this section:

1. Furniture (except storage cabinets as noted in Table 13.5-1).

2. Temporary or moveable equipment.

Exceptions:

a) Equipment shall be anchored if it is permanently attached to the building utility services such as electricity, gas or water.
For the purposes of this requirement, "permanently attached" shall include all electrical connections except three-prong plugs for duplex receptacles.

b) The enforcement agency shall be permitted to require temporary attachments for movable equipment which is usually stationed in one place and heavier than 400 pounds, when they are not in use for a period longer than 8 hours at a time.

3. Architectural, mechanical and electrical components in Seismic Design Categories D, E or F where all of the following apply:

a. The component is positively attached to the structure;

b. Flexible connections are provided between the component and associated ductwork, piping and conduit; and either:

i. The component weighs 400 pounds (1780 N) or less and has a center of mass located 4 feet (1.22 m) or less above the adjacent floor or roof level that directly support the component;

 Exception: Special Certification Requirements for Designated Seismic Systems in accordance with Section 13.2.2 shall apply.

or

ii. The component weighs 20 pounds (89 N) or less, or, in the case of a distributed system, 5 lbf/ft (73 N/m) or less.

 Exception: The enforcement agency shall be permitted to require attachments for equipment with hazardous contents to be shown on construction documents irrespective of weight.

1615A.1.13 ASCE 7, Section 13.3.2. Modify ASCE 7 Section 13.3.2 by adding the following:

The seismic relative displacements to be used in design of displacement sensitive nonstructural components is D_p instead of D_p, where D_p is given by Equations 13.3.5 to 13.3.8 and I is the building importance factor given in Section 11.5.

1615A.1.14 ASCE 7, Section 13.4 Replace ASCE 7 Sections 13.4.1 and 13.4.2 with the following:

13.4.1 Design force in the attachment. The force in the attachment shall be determined based on the prescribed forces and displacements for the component as determined in Sections 13.3.1 and 13.3.2 except that R_s shall not be taken as larger than 6.

13.4.2 Anchors in concrete or masonry.

13.4.2.1 Anchors in concrete. Anchors in concrete used for component anchorage shall be designed in accordance with Appendix D of ACI 318.

13.4.2.2 Anchors in masonry. Anchors in masonry used for component anchorage shall be designed in accordance with ACI 530. Anchors shall be designed to be governed by the tensile or shear strength of a ductile steel element.

 Exception: Anchors shall be permitted to be designed so that the attachment that the anchor is connecting to the structure undergoes ductile yielding at a load level corresponding to anchor forces not greater than their design strength, or the minimum design strength of the anchors shall be at least 2.5 times the factored forces transmitted by the attachment.

13.4.2.3 Postinstalled anchors in concrete and masonry. Postinstalled anchors shall fulfill the requirements of Section 13.4.2.1 or 13.4.2.2. Postinstalled anchors in concrete used for component anchorage shall be pre-qualified for seismic applications in accordance with ACI 355.2, ICC-ES AC193 or ICC-ES AC308. Postinstalled anchors in masonry used for component anchorage shall be prequalified for seismic applications in accordance with ICC-ES AC01, AC58 or AC106.

 Exceptions:

1) Adhesive anchors shall not be permitted in overhead applications or application with sustained (continuous) tension load that can lead to creep.

2) Anchors pre-qualified for seismic applications need not be governed by the steel strength of a ductile steel element.

1615A.1.15 ASCE 7, Section 13.4.5. Replace ASCE 7 Section 13.4.5 with the following:

13.4.5 Power actuated fasteners. Power actuated fasteners in concrete or steel shall not be used for sustained tension loads or for brace applications in Seismic Design Categories D, E, or F unless approved for seismic loading. Power actuated fasteners in masonry shall not be permitted unless approved for seismic loading.

 Exception: Power actuated fasteners used for support of acoustical tile or lay-in panel suspended ceiling applications and distributed systems where the service load on any individual fastener does not exceed 90 lb (400 N). Power actuated fasteners in steel where the service load on any individual fastener does not exceed 250 lb (1,112 N).

1615A.1.16 ASCE 7, Section 13.5.6. Replace ASCE 7 Section 13.5.6 with the following:

13.5.6 Suspended ceilings. Suspended ceilings shall be in accordance with this section.

13.5.6.1 Seismic forces. The weight of the ceiling, W_p, shall include the ceiling grid; ceiling tiles or panels; light fixtures if attached to, clipped to, or laterally supported by the ceiling grid; and other components that are laterally supported by the ceiling. W_p shall be taken as not less than 4 psf (19 N/m²).
The seismic force, F_p, shall be transmitted through the ceiling attachments to the building structural elements or the ceiling-structure boundary.

13.5.6.2 Seismic design requirements. Suspended acoustical tile or lay-in panel ceilings shall be designed in accordance with ASTM E 580 Section 5.2.8.8 and the requirements of Sections 13.5.6.2.1 and 13.5.6.2.2, or be designed in accordance with Section 13.2.1.1, or be seismically qualified in accordance with Sections 13.2.5 or 13.2.6.

13.5.6.2.1 Industry standard construction for acoustical tile or lay-in panel ceilings. Acoustical tile or lay-in panel ceilings in Seismic Design Categories D, E, and F shall be designed and installed in accordance with ASTM C 635, ASTM C 636, and ASTM E 580, Section 5 - Seismic Design Categories D, E, and F as modified by Section 13.5.6.2.2.

13.5.6.2.2 Modification to ASTM E 580. Modify ASTM E 580 by the following:

1. Exitways. Lay-in ceiling assemblies in exitways of hospitals and essential services buildings shall be installed with a main runner or cross runner surrounding all sides of each piece of tile, board or panel and each light fixture or grille. A cross runner that supports another cross runner shall be considered as a main runner for the purpose of structural classification. Splices or intersections of such runners shall be attached with through connectors such as pop rivets, screws, pins, plates with end tabs or other approved connectors.

2. Corridors and Lobbies. Expansion joints shall be provided in the ceiling at intersections of corridors and at junctions of corridors and lobbies or other similar areas.

3. Lay-in panels. Metal panels and panels weighing more than $\frac{1}{4}$ pound per square foot (24 N/m²) other than acoustical tiles shall be positively attached to the ceiling suspension runners.

4. Lateral force bracing. Lateral force bracing is required for all ceiling areas except that they shall be permitted to be omitted in rooms with floor areas up to 144 square feet when perimeter support in accordance with ASTM E 580 Sections 5.2.2 and 5.2.3 are provided and perimeter walls are designed to carry the lateral force bracing.

5. Ceiling fixtures. Fixtures installed in acoustical tile or lay-in panel ceilings shall be mounted in a manner that will not compromise ceiling performance.

All recessed or drop-in light fixtures and grilles shall be supported directly from the fixture housing to the structure above with a minimum of two 12 gage wires located at diagonally opposite corners. Leveling and positioning of fixtures may be provided by the ceiling grid. Fixture support wires may be slightly loose to allow the fixture to seat in the grid system. Fixtures shall not be supported from main runners or cross runners if the weight of the fixtures causes the total dead load to exceed the deflection capability of the ceiling suspension system.

Fixtures shall not be installed so that the main runners or cross runners will be eccentrically loaded.

Surface-mounted fixtures shall be attached to the main runner with at least two positive clamping devices made of material with a minimum of 14 gage. Rotational spring catches do not comply. A 12 gage suspension wire shall be attached to each clamping device and to the structure above.

6. Partitions. Where the suspended ceiling system is required to provide lateral support for the permanent or relocatable partitions, the connection of the partition to the ceiling system, the ceiling system members and their connections, and the lateral force bracing shall be designed to support the reaction force of the partition from prescribed loads applied perpendicular to the face of the partition. Partition connectors, the suspended ceiling system and the lateral-force bracing shall all be engineered to suit the individual partition application and shall be shown or defined in the drawings or specifications.

1615A.1.7 ASCE 7, Section 13.5.7. [OSHPD 1 & 4] Modify ASCE 7 Section 13.5.7 by the following:

All access floors shall be special access floors in accordance with Section 13.5.7.2.

1615A.1.8 Reserved.

1615A.1.9 Reserved.

1615A.1.20 ASCE 7, Section 13.6.5. Modify ASCE 7, Section 13.6.5 by deleting Item 6 in Section 13.6.5.3 and adding Section 13.6.5.6 as follows:

13.6.5.6 Conduit, Cable Tray, and Other Electrical Distribution Systems (Raceways). Raceways shall be designed for seismic forces and seismic relative displacements as required in Section 13.3. Conduit greater than 2.5 inches (64 mm) trade size and attached to panels, cabinets or other equipment subject to seismic relative displacement of Section 13.3.2 shall be provided with flexible connections or designed for seismic forces
and seismic relative displacements as required in Section 13.3.

Exceptions:

1. Design for the seismic forces and relative displacements of Section 13.3 shall not be required for raceways where either:
 a. Trapeze assemblies are used to support raceways and the total weight of the raceway supported by trapeze assemblies is less than 10 lb/ft (146 N/m), or
 b. The raceway is supported by hangers and each hanger in the raceway run is 12 in. (305 mm) or less in length from the raceway support point to the supporting structure. Where rod hangers are used with a diameter greater than \(\frac{3}{16} \) inch, they shall be equipped with swivels to prevent inelastic bending in the rod.

2. Design for the seismic forces and relative displacements of Section 13.3 shall not be required for conduit, regardless of the value of \(I_e \) where the conduit is less than 2.5 in. (64 mm) trade size.

1615A.1.21 ASCE 7, Section 13.6.7. Replace ASCE 7, Section 13.6.7 with the following:

13.6.7 Ductwork. HVAC and other ductwork shall be designed for seismic forces and seismic relative displacements as required in Section 13.3. Ductwork designed to carry toxic, highly toxic, or explosive gases, or used for smoke control shall be designed and braced without considering the Exceptions noted below.

Exceptions:

The following exceptions pertain to ductwork not designed to carry toxic, highly toxic, or flammable gases or used for smoke control:

1. Design for the seismic forces and relative displacements of Section 13.3 shall not be required for ductwork where either:
 a. Trapeze assemblies are used to support ductwork and the total weight of the ductwork supported by trapeze assemblies is less than 10 lb/ft (146 N/m); or
 b. The ductwork is supported by hangers and each hanger in the duct run is 12 in. (305 mm) or less in length from the duct support point to the supporting structure. Where rod hangers are used with a diameter greater than \(\frac{3}{16} \) inch, they shall be equipped with swivels to prevent inelastic bending in the rod.

2. Design for the seismic forces and relative displacements of Section 13.3 shall not be required where provisions are made to avoid impact with larger ducts or mechanical components or to protect the ducts in the event of such impact; and HVAC ducts have a cross-sectional area of 6 ft\(^2\) (0.557 m\(^2\)) or less, or weigh 10 lb/ft (146 N/m) or less.

HVAC duct systems fabricated and installed in accordance with standards approved by the authority having jurisdiction shall be deemed to meet the lateral bracing requirements of this section.

Components that are installed in-line with the duct system and have an operating weight greater than 75 lb (334 N), such as fans, heat exchangers and humidifiers, shall be supported and laterally braced independent of the duct system and such braces shall meet the force requirements of Section 13.3.1. Appurtenances such as dampers, louvers and diffusers shall be positively attached with mechanical fasteners. Unbraced piping attached to in-line equipment shall be provided with adequate flexibility to accommodate the seismic relative displacements of Section 13.3.2.

1615A.1.22 ASCE 7, Section 13.6.8. Replace ASCE 7, Section 13.6.8 with the following:

13.6.8 Piping Systems. Unless otherwise noted in this section, piping systems shall be designed for the seismic forces and seismic relative displacements of Section 13.3. ASME pressure piping systems shall satisfy the requirements of Section 13.6.8.1. Fire protection sprinkler piping shall satisfy the requirements of Section 13.6.8.2. Elevator system piping shall satisfy the requirements of Section 13.6.10.

Where other applicable material standards or recognized design bases are not used, piping design including consideration of service loads shall be based on the following allowable stresses:

a. For piping constructed with ductile materials (e.g., steel, aluminum, or copper), 90 percent of the minimum specified yield strength.

b. For threaded connections in piping constructed with ductile materials, 70 percent of the minimum specified yield strength.

c. For piping constructed with nonductile materials (e.g., cast iron, or ceramics), 10 percent of the material minimum specified tensile strength.

d. For threaded connections in piping constructed with nonductile materials, 8 percent of the material minimum specified tensile strength.

Piping not detailed to accommodate the seismic relative displacements at connections to other components shall be provided with connections having sufficient flexibility to avoid failure of the connection between the components.

13.6.8.1 ASME Pressure Piping Systems. Pressure piping systems, including their supports, designed and constructed in accordance with ASME B 31 shall be deemed to meet the force, displacement, and other requirements of this section. In lieu of specific force and displacement requirements provided in ASME B
31, the force and displacement requirements of Sections 13.3 shall be used.

13.6.8.2 Fire protection sprinkler piping systems. Fire protection sprinkler piping designed and constructed in accordance with NFPA 13 shall be deemed to meet the force and displacement requirements of this section. The exceptions of Section 13.6.8.3 shall not apply.

Exception: Pipe hangers, bracing, and anchor capacities shall be determined in accordance with material chapters of the California Building Code, in lieu of using those in NFPA 13. The force and displacement requirements of Section 13.3 or those in the NFPA 13 may be used for design.

13.6.8.3 Exceptions. Design of piping systems and attachments for the seismic forces and relative displacements of Section 13.3 shall not be required where one of the following conditions apply:

1. Trapeze assemblies are used to support piping whereby no single pipe exceeds the limits set forth in 3a. or b. below and the total weight of the piping supported by the trapeze assemblies is less than 10 lb/ft (146 N/m).
2. The piping is supported by hangers and each hanger in the piping run is 12 in. (305 mm) or less in length from the top of the pipe to the supporting structure. Where pipes are supported on a trapeze, the trapeze shall be supported by hangers having a length of 12 in. (305 mm) or less. Where rod hangers are used with a diameter greater than 1/4 inch, they shall be equipped with swivels, eye nuts or other devices to prevent bending in the rod.
3. Piping having an Rp in Table 13.6-1 of 4.5 or greater is used and provisions are made to avoid impact with other structural or nonstructural components or to protect the piping in the event of such impact and where the following size requirements are satisfied:
 a. For Seismic Design Categories D, E or F and values of Ip greater than one, the nominal pipe size shall be 1 inch (25 mm) or less.
 b. For Seismic Design Categories D, E or F, where Ip = 1.0 the nominal pipe size shall be 3 inches (80 mm) or less.

The exceptions above shall not apply to elevator piping.

13.6.8.4 Other Piping Systems. Piping not designed and constructed in accordance with ASME B 31 or NFPA 13 shall comply with the requirements of Section 13.6.11.

1615A.1.23 ASCE 7, Section 13.6.10.1. Replace ASCE 7 Section 13.6.10.4 as follows:

13.6.10.1 Modify ASCE 7 Section 13.6.10.1. The seismic force shall be computed per the requirements of ASCE 7 Section 13.6.10.1. The minimum horizontal acceleration shall be 0.5g for all buildings.

13.6.10.4 Retainer plates. Retainer plates are required at the top and bottom of the car and counterweight, except where safety devices acceptable to the enforcement agency are provided which meet all requirements of the retainer plates, including full engagement of the machined portion of the rail. The design of the car, cab stabilizers, counterweight guide rails and counterweight frames for seismic forces shall be based on the following requirements:

1. The seismic force shall be computed per the requirements of ASCE 7 Section 13.6.10.1. The minimum horizontal acceleration shall be 0.5g for all buildings.
2. Wp shall equal the weight of the counterweight or the maximum weight of the car plus not less than 40 percent of its rated load.
3. With the car or counterweight located in the most adverse position, the stress in the rail shall not exceed the limitations specified in these regulations, nor shall the deflection of the rail relative to its supports exceed the deflection listed below:

<table>
<thead>
<tr>
<th>RAIL SIZE (weight per foot of length, pounds)</th>
<th>WIDTH OF MACHINED SURFACE (inches)</th>
<th>ALLOWABLE RAIL DEFLECTION (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 1/4</td>
<td>0.20</td>
</tr>
<tr>
<td>11</td>
<td>1 1/2</td>
<td>0.30</td>
</tr>
<tr>
<td>12</td>
<td>1 3/4</td>
<td>0.40</td>
</tr>
<tr>
<td>15</td>
<td>1 31/32</td>
<td>0.50</td>
</tr>
<tr>
<td>18 1/2</td>
<td>1 31/32</td>
<td>0.50</td>
</tr>
<tr>
<td>22 1/2</td>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>30</td>
<td>2 1/4</td>
<td>0.50</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25 mm, 1 foot = 305 mm, 1 pound = 0.454 kg.

Note: Deflection limitations are given to maintain a consistent factor of safety against disengagement of retainer plates from the guide rails during an earthquake.

4. Where guide rails are continuous over supports and rail joints are within 2 feet (610 mm) of their supporting brackets, a simple span may be assumed.
5. The use of spreader brackets is allowed.
6. Cab stabilizers and counterweight frames shall be designed to withstand computed lateral load with a minimum horizontal acceleration of 0.5g.
1615A.1.25 ASCE 7, Section 16.1.3.2. Modify ASCE 7 Section 16.1.3.2 by the following:

Where next generation attenuation relations are used in accordance with Section 1803A.6.2, each pair of motions shall be scaled such that in the period range from 0.2T to 1.5T, the average of the SRSS spectra from all horizontal component pairs does not fall below the corresponding ordinate of the design response spectrum determined using NGA relations.

At sites within 3.1 miles (5 km) of an active fault that controls the hazard, each pair of components shall be rotated to the fault-normal and fault-parallel direction of the causative fault, and shall be scaled so that average of the fault-normal components is not less than the Maximum Considered Earthquake (MCE) response spectrum determined using NGA relations for each period range from 0.2T to 1.5T.

1615A.1.26 ASCE 7, Section 16.1.4. Modify ASCE 7 Section 16.1.4 by the following:

For each ground motion analyzed, the individual response parameters shall be multiplied by the following scalar quantities:

a. Force response parameters shall be multiplied by I/R, where I is the importance factor determined in accordance with Section 11.5.1, and R is the response modification coefficient selected in accordance with Section 12.2.1.

b. Drift quantities shall be multiplied by C/R, where C is the deflection amplification factor specified in Table 12.2-1.

The distribution of horizontal shear shall be in accordance with Section 12.8.4.

1615A.1.27 ASCE 7, Section 16.2.4. Modify ASCE 7 Section 16.2.4 by the following:

a) Where site is located within 3.1 miles (5 km) of an active fault at least seven ground motions shall be analyzed and response parameters shall be based on larger of the average of the maximum response with ground motions applied as follows:

1. Each of the ground motions shall have their maximum component at the fundamental period aligned in one direction.

2. Each of the ground motion’s maximum component shall be rotated orthogonal to the previous analysis direction.

b) Where site is located more than 3.1 miles (5 km) from an active fault at least 10 ground motions shall be analyzed. The ground motions shall be applied such that one-half shall have their maximum component aligned in one direction and the other half aligned in the orthogonal direction. The average of the maximum response of all the analyses shall be used for design.

1615A.1.28 ASCE 7, Section 16.2.4.2 [OSHPD 1 & 4] Modify ASCE 7 Section 16.2.4.2 by the following:

Acceptance criteria for elements subjected to deformation beyond their linear range of response shall be based on ASCE 41 for Immediate Occupancy (IO) at Design Earthquake (DE) and Life Safety (LS) at Maximum Considered Earthquake (MCE). For LS acceptance criteria at MCE, primary components shall be within the acceptance criteria for primary components and secondary components shall be within the acceptance criteria for secondary components.

1615A.1.29 ASCE 7, Section 17.2.1. Modify ASCE 7 Section 17.2.1 by adding the following:

The importance factor, I, for parts and portions of a seismically isolated building shall be the same as that required for a fixed-base building of the same occupancy category.

1615A.1.30 ASCE 7, Section 17.2.4.7. Modify ASCE 7 Section 17.2.4.7 by adding the following:

The effects of uplift and/or rocking shall be explicitly accounted for in the analysis and in the testing of the isolator units.

1615A.1.31 ASCE 7, Section 17.2.5.2. Modify ASCE 7 Section 17.2.5.2 by adding the following:

The separation requirements for the building above the isolation system and adjacent buildings shall be the sum of the factored displacements for each building. The factors to be used in determining separations shall be:

1. For seismically isolated buildings, the deformation resulting from the analyses using the maximum considered earthquake unmodified by Rf.

2. For fixed base buildings, Cr times the elastic deformations resulting from an equivalent static analysis using the seismic base shear computed via ASCE 7 Section 12.8.

1615A.1.32 ASCE 7, Section 17.3.2. Replace ASCE 7, Section 17.3.2 with the following:

17.3.2 Ground Motion Histories. Where response history procedures are used, ground motions shall consist of pairs of appropriate horizontal ground motion acceleration components developed in accordance with Section 16.1.3.2 except that 0.2T and 1.5T shall be replaced by 0.5 Td and 1.25Tm respectively, where Td and Tm are defined in Section 17.5.3.

1615A.1.33 ASCE 7, Section 17.4. Modify ASCE 7, Section 17.4 by adding the following:

17.4.2.3 Linear procedures. Linear procedures shall be limited to structures located at sites with S less than 0.6g.

1615A.1.34 ASCE 7, Section 17.6 Modify ASCE 7, Section 17.6 by the following:

17.6.1.1 Minimum seismic force. For the response spectrum and linear response history procedures, Vs and Vp shall not be taken less than those calculated in accordance with Equations 17.5-7 and 17.5-8.

1615A.1.35 ASCE 7, Section 18.3.1. Modify ASCE 7, Section 18.3.1 by replacing the third paragraph with the following:

If the calculated force in an element of the seismic force resisting system does not exceed 1.5 times its nominal
strength for the Maximum Considered Earthquake (MCE) nor its nominal strength for the design earthquake (DE), the element is permitted to be modeled as linear.

1615A.1.36 ASCE 7, Section 21.4. Replace ASCE 7, Section 21.4 with the following:

21.4 Design Acceleration Parameters. Where the site-specific procedure is used to determine the design ground motion in accordance with Section 21.3, the parameter S_{DS} shall be taken as the spectral acceleration, S_A, obtained from the site-specific spectra at a period of 0.2 sec, except that it shall not be taken less than 90 percent of the peak spectral acceleration, S_A, at any period larger than 0.2 second. The parameter S_{DI} shall be taken as the greater of the spectral acceleration, S_A, at a period of 1 sec or two times the spectral acceleration, S_A, at a period of 2 sec.

For use with the equivalent lateral force procedure, the site specific spectral acceleration, S_A, at T shall be permitted to replace S_{DI}/T in Equation 12.8-3 and $S_{DI}T/T'$ in Equation 12.8-4. The parameter S_{DS} calculated per this section shall be permitted to be used in Equations 12.8-2 and 12.8-5. The mapped value of S_A shall be used in Equation 12.8-6. The parameters S_{MS} and S_{MI} shall be taken as 1.5 times S_{DS} and S_{DI}, respectively. The values so obtained shall not be less than 80 percent of the values determined in accordance with Section 11.4.3 for S_{MS} and S_{MI} and Section 11.4.4 for S_{DS} and S_{DI}.

1615A.1.37. Earthquake Motion Measuring Instrumentation and Monitoring. [OSHPD 1 & 4] Modify ASCE 7 by the following:

Scope: For buildings with a seismic isolation system, a damping system or a lateral force resisting system (LFRS) not listed in ASCE 7 Table 12.2-1, earthquake motion measuring instrumentation and monitoring shall be required.

Instrumentation: There shall be a sufficient number of instruments to characterize the response of the building during an earthquake and shall include at least one tri-axial free field instrument or equivalent. A proposal for instrumentation and equipment specifications shall be forwarded to the enforcement agency for review and approval. The owner of the building shall be responsible for the implementation of the instrumentation program. Maintenance of the instrumentation and removal/processing of the records shall be the responsibility of the enforcement agency.

Monitoring: After every significant seismic events, where the ground shaking acceleration at the site exceeds 0.3g, or the acceleration at any monitored building level exceeds 0.8g, as measured by the seismic monitoring system in the building, the owner shall retain a structural engineer to make an inspection of the structural system. The inspection shall include viewing the performance of the building, reviewing the strong motion records, and a visual examination of the isolators, dampers and connections for deterioration, offset or physical damage. A report for each inspection, including conclusions on the continuing adequacy of the structural system, shall be submitted to the enforcement agency.

1615A.1.38 Operational Nonstructural Performance Level Requirements. [OSHPD 1 & 4] New buildings designed and constructed to this code shall be deemed to satisfy operational nonstructural performance level when:

1. The facility has on-site supplies of water and holding tanks for wastewater, sufficient for 72 hours of emergency operations, which are integrated into the building plumbing systems. As an alternative, hook-ups to allow for the use of transportable sources of water and sanitary waste water disposal shall be permitted.

2. An on-site emergency system as defined within Part 3, Title 24 is incorporated into the building electrical system for critical care areas. Additionally, the system shall provide for radiological service and an on-site fuel supply for 72 hours of acute care operation.
<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>1</th>
<th>2</th>
<th>1-AC</th>
<th>AC</th>
<th>SS</th>
<th>SS/CC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>1702 - Approved Agency</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1704.1</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1704.1.1</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1704.6.2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1711.1</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 17
STRUCTURAL TESTS AND SPECIAL INSPECTIONS

SECTION 1701
GENERAL

1701.1 Scope. The provisions of this chapter shall govern the quality, workmanship and requirements for materials covered. Materials of construction and tests shall conform to the applicable standards listed in this code.

1701.2 New materials. New building materials, equipment, appliances, systems or methods of construction not provided for in this code, and any material of questioned suitability proposed for use in the construction of a building or structure, shall be subjected to the tests prescribed in this chapter and in the approved rules to determine character, quality and limitations of use.

1701.3 Used materials. The use of second-hand materials that meet the minimum requirements of this code for new materials shall be permitted.

SECTION 1702
DEFINITIONS

1702.1 General. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

APPROVED AGENCY. An established and recognized agency regularly engaged in conducting tests or furnishing inspection services, when such agency has been approved. [HCD 1 & HCD 2] "Approved agency" shall mean "Listing agency" and "Testing agency" (See Chapter 2 definitions).

APPROVED FABRICATOR. An established and qualified person, firm or corporation approved by the building official pursuant to Chapter 17 of this code.

CERTIFICATE OF COMPLIANCE. A certificate stating that materials and products meet specified standards or that work was done in compliance with approved construction documents.

DESIGNATED SEISMIC SYSTEM. Those architectural, electrical and mechanical systems and their components that require design in accordance with Chapter 13 of ASCE 7 and for which the component importance factor, \(I_p \), is greater than 1 in accordance with Section 13.1.3 of ASCE 7.

FABRICATED ITEM. Structural, load-bearing or lateral load-resisting assemblies consisting of materials assembled prior to installation in a building or structure, or subjected to operations such as heat treatment, thermal cutting, cold working or reforming after manufacture and prior to installation in a building or structure. Materials produced in accordance with standard specifications referenced by this code, such as rolled structural steel shapes, steel reinforcing bars, masonry units, and wood structural panels or in accordance with a standard, listed in Chapter 35, which provides requirements for quality control done under the supervision of a third-party quality control agency shall not be considered "fabricated items."

INSPECTION CERTIFICATE. An identification applied on a product by an approved agency containing the name of the manufacturer, the function and performance characteristics, and the name and identification of an approved agency that indicates that the product or material has been inspected and evaluated by an approved agency (see Section 1703.5 and "Label," "Manufacturer's designation" and "Mark").

INTUMESCENT FIRE-RESISTANT COATINGS. Thin film liquid mixture applied to substrates by brush, roller, spray or trowel which expands into a protective foamed layer to provide fire-resistant protection of the substrates when exposed to flame or intense heat.

MAIN WINDFORCE-RESISTING SYSTEM. An assemblage of structural elements assigned to provide support and stability for the overall structure. The system generally receives wind loading from more than one surface.

MASTIC FIRE-RESISTANT COATINGS. Liquid mixture applied to a substrate by brush, roller, spray or trowel that provides fire-resistant protection of a substrate when exposed to flame or intense heat.

SPECIAL INSPECTION. Inspection as herein required of the materials, installation, fabrication, erection or placement of components and connections requiring special expertise to ensure compliance with approved construction documents and referenced standards (see Section 1704).

SPECIAL INSPECTION, CONTINUOUS. The full-time observation of work requiring special inspection by an approved special inspector who is present in the area where the work is being performed.

SPECIAL INSPECTION, PERIODIC. The part-time or intermittent observation of work requiring special inspection by an approved special inspector who is present in the area where the work has been or is being performed and at the completion of the work.

SPRAYED FIRE-RESISTANT MATERIALS. Cementitious or fibrous materials that are sprayed to provide fire-resistant protection of the substrates.

STRUCTURAL OBSERVATION. The visual observation of the structural system by a registered design professional for general conformance to the approved construction documents. Structural observation does not include or waive the responsibility for the inspection required by Section 110, 1704 or other sections of this code.

SECTION 1703
APPROVALS

1703.1 Approved agency. An approved agency shall provide all information as necessary for the building official to determine that the agency meets the applicable requirements.

1703.1.1 Independence. An approved agency shall be objective, competent and independent from the contractor.
responsible for the work being inspected. The agency shall also disclose possible conflicts of interest so that objectivity can be confirmed.

1703.1.2 Equipment. An approved agency shall have adequate equipment to perform required tests. The equipment shall be periodically calibrated.

1703.1.3 Personnel. An approved agency shall employ experienced personnel educated in conducting, supervising and evaluating tests and/or inspections.

1703.2 Written approval. Any material, appliance, equipment, system or method of construction meeting the requirements of this code shall be approved in writing after satisfactory completion of the required tests and submission of required test reports.

1703.3 Approved record. For any material, appliance, equipment, system or method of construction that has been approved, a record of such approval, including the conditions and limitations of the approval, shall be kept on file in the building official’s office and shall be open to public inspection at appropriate times.

1703.4 Performance. Specific information consisting of test reports conducted by an approved testing agency in accordance with standards referenced in Chapter 35, or other such information as necessary, shall be provided for the building official to determine that the material meets the applicable code requirements.

1703.4.1 Research and investigation. Sufficient technical data shall be submitted to the building official to substantiate the proposed use of any material or assembly. If it is determined that the evidence submitted is satisfactory proof of performance for the use intended, the building official shall approve the use of the material or assembly subject to the requirements of this code. The costs, reports and investigations required under these provisions shall be paid by the applicant.

1703.4.2 Research reports. Supporting data, where necessary to assist in the approval of materials or assemblies not specifically provided for in this code, shall consist of valid research reports from approved sources.

1703.5 Labeling. Where materials or assemblies are required by this code to be labeled, such materials and assemblies shall be labeled by an approved agency in accordance with Section 1703. Products and materials required to be labeled shall be labeled in accordance with the procedures set forth in Sections 1703.5.1 through 1703.5.5.

1703.5.1 Testing. An approved agency shall test a representative sample of the product or material being labeled to the relevant standard or standards. The approved agency shall maintain a record of the tests performed. The record shall provide sufficient detail to verify compliance with the test standard.

1703.5.2 Inspection and identification. The approved agency shall periodically perform an inspection, which shall be in-plant if necessary, of the product or material that is to be labeled. The inspection shall verify that the labeled product or material is representative of the product or material tested.

1703.5.3 Label information. The label shall contain the manufacturer’s or distributor’s identification, model number, serial number or definitive information describing the product or material’s performance characteristics and approved agency’s identification.

1703.6 Evaluation and follow-up inspection services. Where structural components or other items regulated by this code are not visible for inspection after completion of a prefabricated assembly, the applicant shall submit a report of each prefabricated assembly. The report shall indicate the complete details of the assembly, including a description of the assembly and its components, the basis upon which the assembly is being evaluated, test results and similar information and other data as necessary for the building official to determine conformance to this code. Such a report shall be approved by the building official.

1703.6.1 Follow-up inspection. The applicant shall provide for special inspections of fabricated items in accordance with Section 1704.2.

1703.6.2 Test and inspection records. Copies of necessary test and inspection records shall be filed with the building official.

SECTION 1704
SPECIAL INSPECTIONS

1704.1 General. Where application is made for construction as described in this section, the owner or the registered design professional in responsible charge acting as the owner’s agent shall employ one or more approved agencies to perform inspections during construction on the types of work listed under Section 1704. These inspections are in addition to the inspections identified in Section 110.

The special inspector shall be a qualified person who shall demonstrate competence, to the satisfaction of the building official, for the inspection of the particular type of construction or operation requiring special inspection. The registered design professional in responsible charge and engineers of record involved in the design of the project are permitted to act as the approved agency and their personnel are permitted to act as the special inspector for the work designed by them, provided those personnel meet the qualification requirements of this section to the satisfaction of the building official. The special inspector shall provide written documentation to the building official demonstrating his or her competence and relevant experience or training. Experience or training shall be considered relevant when the documented experience or training is related in complexity to the same type of special inspection activities for projects of similar complexity and material qualities. These qualifications are in addition to qualifications specified in other sections of this code.

Exceptions:

1. Special inspections are not required for work of a minor nature or as warranted by conditions in the jurisdiction as approved by the building official.
2. Special inspections are not required for building components unless the design involves the practice of professional engineering or architecture as defined by applicable state statutes and regulations governing the professional registration and certification of engineers or architects.

3. Unless otherwise required by the building official, special inspections are not required for Group U occupancies that are accessory to a residential occupancy including, but not limited to, those listed in Section 312.1.

4. [HCD 1] The provisions of Health and Safety Code Division 13, Part 6 and the California Code of Regulations, Title 25, Division 1, Chapter 3, commencing with Section 3000, shall apply to the construction and inspection of factory-built housing as defined in Health and Safety Code Section 19971.

1704.1.1 Statement of special inspections. The applicant shall submit a statement of special inspections prepared by the registered design professional in responsible charge in accordance with Section 107.1 Chapter I, Division II, as a condition for issuance. This statement shall be in accordance with Section 1705.

Exceptions:

1. A statement of special inspections is not required for structures designed and constructed in accordance with the conventional construction provisions of Section 2308. [OSHPD 2] Not permitted by OSHPD.

2. The statement of special inspections is permitted to be prepared by a qualified person approved by the building official for construction not designed by a registered design professional.

1704.1.2 Report requirement. Special inspectors shall keep records of inspections. The special inspector shall furnish inspection reports to the building official, and to the registered design professional in responsible charge. Reports shall indicate that work inspected was or was not completed in conformance to approved construction documents. Discrepancies shall be brought to the immediate attention of the contractor for correction. If they are not corrected, the discrepancies shall be brought to the attention of the building official and to the registered design professional in responsible charge prior to the completion of that phase of the work. A final report documenting required special inspections and correction of any discrepancies noted in the inspections shall be submitted at a point in time agreed upon prior to the start of work by the applicant and the building official.

1704.2 Inspection of fabricators. Where fabrication of structural load-bearing members and assemblies is being performed on the premises of a fabricator's shop, special inspection of the fabricated items shall be required by this section and as required elsewhere in this code.

1704.2.1 Fabrication and implementation procedures. The special inspector shall verify that the fabricator maintains detailed fabrication and quality control procedures that provide a basis for inspection control of the workmanship and the fabricator's ability to conform to approved construction documents and referenced standards. The special inspector shall review the procedures for completeness and adequacy relative to the code requirements for the fabricator's scope of work.

Exception: Special inspections as required by Section 1704.2 shall not be required where the fabricator is approved in accordance with Section 1704.2.2.

1704.2.2 Fabricator approval. Special inspections required by Section 1704 are not required where the work is done on the premises of a fabricator registered and approved to perform such work without special inspection. Approval shall be based upon review of the fabricator's written procedural and quality control manuals and periodic auditing of fabrication practices by an approved special inspection agency. At completion of fabrication, the approved fabricator shall submit a certificate of compliance to the building official stating that the work was performed in accordance with the approved construction documents.

1704.3 Steel construction. The special inspections for steel elements of buildings and structures shall be as required by Section 1704.3 and Table 1704.3.

Exceptions:

1. Special inspection of the steel fabrication process shall not be required where the fabricator does not perform any welding, thermal cutting or heating operation of any kind as part of the fabrication process. In such cases, the fabricator shall be required to submit a detailed procedure for material control that demonstrates the fabricator's ability to maintain suitable records and procedures such that, at any time during the fabrication process, the material specification, grade and mill test reports for the main stress-carrying elements are capable of being determined.

2. The special inspector need not be continuously present during welding of the following items, provided the materials, welding procedures and qualifications of welders are verified prior to the start of the work; periodic inspections are made of the work in progress and a visual inspection of all welds is made prior to completion or prior to shipment of shop welding.

 2.1. Single-pass fillet welds not exceeding \(\frac{5}{16} \) inch (7.9 mm) in size.

 2.2. Floor and roof deck welding.

 2.3. Welded studs when used for structural diaphragm.

 2.4. Welded sheet steel for cold-formed steel members.

 2.5. Welding of stairs and railing systems.

1704.3.1 Welding. Welding inspection and welding inspector qualification shall be in accordance with this section.

1704.3.1.1 Structural steel. Welding inspection and welding inspector qualification for structural steel shall be in accordance with AWS D1.1.
TABLE 1704.3
REQUISITED VERIFICATION AND INSPECTION OF STEEL CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCED STANDARD</th>
<th>IBC REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Material verification of high-strength bolts, nuts and washers:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings to conform to ASTM standards specified in the approved construction documents.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section A3.3 and applicable ASTM material standards</td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer’s certificate of compliance required.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Inspection of high-strength bolting:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Snug-tight joints.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Pretensioned and slip-critical joints using turn-of-nut with matchmarking, twist-off bolt or direct tension indicator methods of installation.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section M2.5</td>
<td>1704.3.3</td>
</tr>
<tr>
<td>c. Pretensioned and slip-critical joints using turn-of-nut without matchmarking or calibrated wrench methods of installation.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Material verification of structural steel and cold-formed steel deck:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. For structural steel, identification markings to conform to AISC 360.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section M5.5</td>
<td></td>
</tr>
<tr>
<td>b. For other steel, identification markings to conform to ASTM standards specified in the approved construction documents.</td>
<td>—</td>
<td>X</td>
<td>Applicable ASTM material standards</td>
<td></td>
</tr>
<tr>
<td>c. Manufacturer’s certified test reports.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Material verification of weld filler materials:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings to conform to AWS specification in the approved construction documents.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section A3.5 and applicable AWS A5 documents</td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer’s certificate of compliance required.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Inspection of welding:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Structural steel and cold-formed steel deck:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Complete and partial joint penetration groove welds.</td>
<td>X</td>
<td>—</td>
<td>AWS D1.1</td>
<td>1704.3.1</td>
</tr>
<tr>
<td>2) Multipass fillet welds.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Single-pass fillet welds > 5/16”</td>
<td>X</td>
<td>—</td>
<td>AWS D1.1</td>
<td>1704.3.1</td>
</tr>
<tr>
<td>4) Plug and slot welds.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Single-pass fillet welds ≤ 5/16”</td>
<td>—</td>
<td>X</td>
<td>AWS D1.3</td>
<td></td>
</tr>
<tr>
<td>6) Floor and roof deck welds.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
TABLE 1704.3—continued

REQUIRED VERIFICATION AND INSPECTION OF STEEL CONSTRUCTION

<table>
<thead>
<tr>
<th>Verification and Inspection</th>
<th>Continuous</th>
<th>Periodic</th>
<th>Referenced Standard & IBC Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Reinforcing steel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Verification of weldability of reinforcing steel other than ASTM A 706.</td>
<td>X</td>
<td></td>
<td>AWS D1.4 ACI 318: Section 3.5.2</td>
</tr>
<tr>
<td>2) Reinforcing steel resisting flexural and axial forces in intermediate and special moment frames, and boundary elements of special structural walls of concrete and shear reinforcement.</td>
<td>X</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3) Shear reinforcement.</td>
<td>X</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4) Other reinforcing steel.</td>
<td>—</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

6. Inspection of steel frame joint details for compliance:

<table>
<thead>
<tr>
<th>Details</th>
<th>Continuous</th>
<th>Periodic</th>
<th>IBC Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Details such as bracing and stiffening.</td>
<td>—</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b. Member locations.</td>
<td>—</td>
<td>X</td>
<td>1704.3.2</td>
</tr>
<tr>
<td>c. Application of joint details at each connection.</td>
<td>—</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

*For SI: 1 inch = 25.4 mm.

a. Where applicable, see also Section 1707.1, Special inspection for seismic resistance.

1704.3.1.2 Cold-formed steel. Welding inspection and welding inspector qualification for cold-formed steel floor and roof decks shall be in accordance with AWS D1.3.

1704.3.1.3 Reinforcing steel. Welding inspection and welding inspector qualification for reinforcing steel shall be in accordance with AWS D1.4 and ACI 318.

1704.3.2 Details. The special inspector shall perform an inspection of the steel frame to verify compliance with the details shown on the approved construction documents, such as bracing, stiffening, member locations and proper application of joint details at each connection.

1704.3.3 High-strength bolts. Installation of high-strength bolts shall be inspected in accordance with AISC 360.

1704.3.3.1 General. While the work is in progress, the special inspector shall determine that the requirements for bolts, nuts, washers and paint; bolted parts and installation and tightening in such standards are met. For bolts requiring pretensioning, the special inspector shall observe the preinstallation testing and calibration procedures when such procedures are required by the installation method or by project plans or specifications; determine that all plies of connected materials have been drawn together and properly snugged and monitor the installation of bolts to verify that the selected procedure for installation is properly used to tighten bolts. For joints required to be tightened only to the snug-tight condition, the special inspector need only verify that the connected materials have been drawn together and properly snugged.

1704.3.3.2 Periodic monitoring. Monitoring of bolt installation for pretensioning is permitted to be performed on a periodic basis when using the turn-of-nut method with matching techniques, the direct tension indicator method or the alternate design fastener (twist-off bolt) method. Joints designated as snug tight need be inspected only on a periodic basis.

1704.3.3.3 Continuous monitoring. Monitoring of bolt installation for pretensioning using the calibrated wrench method or the turn-of-nut method without matching shall be performed on a continuous basis.

1704.3.4 Cold-formed steel trusses spanning 60 feet or greater. Where a cold-formed steel truss clear span is 60 feet (18 288 mm) or greater, the special inspector shall verify that the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing are installed in accordance with the approved truss submittal package.

1704.4 Concrete construction. The special inspections and verifications for concrete construction shall be as required by this section and Table 1704.4.

Exception: Special inspections shall not be required for:

1. Isolated spread concrete footings of buildings three stories or less above grade plane that are fully supported on earth or rock.
2. Continuous concrete footings supporting walls of buildings three stories or less above grade plane that are fully supported on earth or rock where:

2.1. The footings support walls of light-frame construction;
2.2. The footings are designed in accordance with Table 1809.7; or
2.3. The structural design of the footing is based on a specified compressive strength, f'_c, no greater than 2,500 pounds per square inch (psi) (17.2 MPa), regardless of the compressive strength specified in the construction documents or used in the footing construction.

3. Nonstructural concrete slabs supported directly on the ground, including prestressed slabs on grade, where the effective prestress in the concrete is less than 150 psi (1.03 MPa).

4. Concrete foundation walls constructed in accordance with Table 1807.1.6.2.

5. Concrete patios, driveways and sidewalks, on grade.

TABLE 1704.4
REQUERED VERIFICATION AND INSPECTION OF CONCRETE CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCED STANDARD</th>
<th>IBC REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspection of reinforcing steel, including prestressing tendons, and placement.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 3.5, 7.1-7.7</td>
<td>1913.4</td>
</tr>
<tr>
<td>2. Inspection of reinforcing steel welding in accordance with Table 1704.3, Item 5b.</td>
<td>—</td>
<td>—</td>
<td>AWS D1.4 ACI 318: 3.5.2</td>
<td>—</td>
</tr>
<tr>
<td>3. Inspection of bolts to be installed in concrete prior to and during placement of concrete where allowable loads have been increased or where strength design is used.</td>
<td>X</td>
<td>—</td>
<td>ACI 318: 8.1.3, 21.2.8</td>
<td>1911.5, 1912.1</td>
</tr>
<tr>
<td>4. Inspection of anchors installed in hardened concrete.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 3.8.6, 8.1.3, 21.2.8</td>
<td>1912.1</td>
</tr>
<tr>
<td>5. Verifying use of required design mix.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: Ch. 4, 5.2-5.4</td>
<td>1904.2.2, 1913.2, 1913.3</td>
</tr>
<tr>
<td>6. At the time fresh concrete is sampled to fabricate specimens for strength tests, perform slump and air content tests, and determine the temperature of the concrete.</td>
<td>X</td>
<td>—</td>
<td>ASTM C 172 ASTM C 31 ACI 318: 5.6, 5.8</td>
<td>1913.10</td>
</tr>
<tr>
<td>7. Inspection of concrete and shotcrete placement for proper application techniques.</td>
<td>X</td>
<td>—</td>
<td>ACI 318: 5.9, 5.10</td>
<td>1913.6, 1913.7, 1913.8</td>
</tr>
<tr>
<td>8. Inspection for maintenance of specified curing temperature and techniques.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 5.11-5.13</td>
<td>1913.9</td>
</tr>
<tr>
<td>10. Erection of precast concrete members.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: Ch. 16</td>
<td>—</td>
</tr>
<tr>
<td>11. Verification of in-situ concrete strength, prior to stressing of tendons in posttensioned concrete and prior to removal of shores and forms from beams and structural slabs.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 6.2</td>
<td>—</td>
</tr>
<tr>
<td>12. Inspect formwork for shape, location and dimensions of the concrete member being formed.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 6.1.1</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Where applicable, see also Section 1707.1, Special inspection for seismic resistance.
1704.4.1 Materials. In the absence of sufficient data or documentation providing evidence of conformance to quality standards for materials in Chapter 3 of ACI 318, the building official shall require testing of materials in accordance with the appropriate standards and criteria for the material in Chapter 3 of ACI 318. Weldability of reinforcement, except that which conforms to ASTM A 706, shall be determined in accordance with the requirements of Section 3.5.2 of ACI 318.

1704.5 Masonry construction. Masonry construction shall be inspected and verified in accordance with the requirements of Sections 1704.5.1 through 1704.5.3, depending on the occupancy category of the building or structure.

Exception: Special inspections shall not be required for:

1. Empirically designed masonry, glass unit masonry or masonry veneer designed by Section 2109, 2110 or Chapter 14, respectively, or by Chapter 5, 6 or 7 of TMS 402/ACI 530/ASCE 5, respectively, when they are part of structures classified as Occupancy Category I, II or III in accordance with Section 1604.5.

2. Masonry foundation walls constructed in accordance with Table 1807.1.6.3(1), 1807.1.6.3(2), 1807.1.6.3(3) or 1807.1.6.3(4).

3. Masonry fireplaces, masonry heaters or masonry chimneys installed or constructed in accordance with Section 2111, 2112 or 2113, respectively.

1704.5.1 Empirically designed masonry, glass unit masonry and masonry veneer in Occupancy Category IV. The minimum special inspection program for empirically designed masonry, glass unit masonry or masonry veneer designed by Section 2109, 2110 or Chapter 14, respectively, or by Chapter 5, 6 or 7 of TMS 402/ACI 530/ASCE 5, respectively, in structures classified as Occupancy Category IV, in accordance with Section 1604.5, shall comply with Table 1704.5.1.

1704.5.2 Engineered masonry in Occupancy Category I, II or III. The minimum special inspection program for masonry designed by Section 2107 or 2108 or by chapters other than Chapter 5, 6 or 7 of TMS 402/ACI 530/ASCE 5 in structures classified as Occupancy Category I, II or III, in accordance with Section 1604.5, shall comply with Table 1704.5.1.

1704.5.3 Engineered masonry in Occupancy Category IV. The minimum special inspection program for masonry designed by Section 2107 or 2108 or by chapters other than Chapter 5, 6 or 7 of TMS 402/ACI 530/ASCE 5 in structures classified as Occupancy Category IV, in accordance with Section 1604.5, shall comply with Table 1704.5.3.

1704.6 Wood construction. Special inspections of the fabrication process of prefabricated wood structural elements and assemblies shall be in accordance with Section 1704.2. Special inspections of site-built assemblies shall be in accordance with this section.

1704.6.1 High-load diaphragms. High-load diaphragms designed in accordance with Table 2306.2.1(2) shall be installed with special inspections as indicated in Section 1704.1. The special inspector shall inspect the wood structural panel sheathing to ascertain whether it is of the grade and thickness shown on the approved building plans. Additionally, the special inspector must verify the nominal size of framing members at adjoining panel edges, the nail or staple diameter and length, the number of fastener lines and that the spacing between fasteners in each line and at edge margins agrees with the approved building plans.

1704.6.2 Metal-plate-connected wood trusses spanning 60 feet or greater. Where a truss clear span is 60 feet (18 288 mm) or greater, the special inspector shall verify that the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing are installed in accordance with the approved truss submittal package.

1704.6.2 Manufactured trusses and assemblies. [OSHPD 2] The fabrication of trusses and other assemblages constructed using wood and metal members, or using light metal plate connectors, shall be continuously inspected by a qualified inspector approved by the enforcement agency. The inspector shall furnish the architect, structural engineer and the enforcement agency with a report that the lumber species, grades and moisture content; type of glue, temperature and gluing procedure; type of metal members and metal plate connectors; and the workmanship conform in every material respect with the duly approved plans and specifications. Each inspected truss shall be stamped by the inspector with an identifying mark.

1704.7 Soils. Special inspections for existing site soil conditions, fill placement and load-bearing requirements shall be as required by this section and Table 1704.7. The approved geotechnical report, and the construction documents prepared by the registered design professionals shall be used to determine compliance. During fill placement, the special inspector shall determine that proper materials and procedures are used in accordance with the provisions of the approved geotechnical report.

Exception: Where Section 1803 does not require reporting of materials and procedures for fill placement, the special inspector shall verify that the in-place dry density of the compacted fill is not less than 90 percent of the maximum dry density at optimum moisture content determined in accordance with ASTM D 1557.

1704.8 Driven deep foundations. Special inspections shall be performed during installation and testing of driven deep foundation elements as required by Table 1704.8. The approved geotechnical report, and the construction documents prepared by the registered design professionals, shall be used to determine compliance.

1704.9 Cast-in-place deep foundations. Special inspections shall be performed during installation and testing of cast-in-place deep foundation elements as required by Table 1704.9. The approved geotechnical report, and the construction documents prepared by the registered design professionals, shall be used to determine compliance.
TABLE 1704.5.1
LEVEL 1 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>FREQUENCY OF INSPECTION</th>
<th>REFERENCE FOR CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTINUOUS</td>
<td>PERIODIC</td>
</tr>
<tr>
<td>1. Compliance with required inspection provisions of the construction documents and the approved submittals shall be verified.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>2. Verification of f_{cu} and f'_{as} prior to construction except where specifically exempted by this code.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>3. Verification of slump flow and VSI as delivered to the site for self-consolidating grout.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>4. As masonry construction begins, the following shall be verified to ensure compliance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Proportions of site-prepared mortar.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Construction of mortar joints.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Location of reinforcement, connectors, prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>d. Prestressing technique.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>e. Grade and size of prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>5. During construction the inspection program shall verify:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Size and location of structural elements.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Type, size and location of anchors, including other details of anchorage of masonry to structural members, frames or other construction.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Specified size, grade and type of reinforcement, anchor bolts, prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>d. Welding of reinforcing bars.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>e. Preparation, construction and protection of masonry during cold weather (temperature below 40°F) or hot weather (temperature above 90°F).</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>f. Application and measurement of prestressing force.</td>
<td>X</td>
<td>—</td>
</tr>
</tbody>
</table>

(continued)
TABLE 1704.5.1—continued
LEVEL 1 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>FREQUENCY OF INSPECTION</th>
<th>REFERENCE FOR CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTINUOUS</td>
<td>PERIODIC</td>
</tr>
<tr>
<td>6. Prior to grouting, the following shall be verified to ensure compliance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Grout space is clean.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Placement of reinforcement and connectors, and prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Proportions of site-prepared grout and prestressing grout for bonded tendons.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>d. Construction of mortar joints.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>7. Grout placement shall be verified to ensure compliance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Grouting of prestressing bonded tendons.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>8. Preparation of any required grout specimens, mortar specimens and/or prisms shall be observed.</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

For SI: °C = ([°F] - 32) / 1.8.

a. The specific standards referenced are those listed in Chapter 35.
TABLE 1704.5.3
LEVEL 2 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCE FOR CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compliance with required inspection provisions of the construction documents and the approved submittals.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 602/ACI 530.1/ASCE 6°</td>
</tr>
<tr>
<td>2. Verification of (f_{u}) and (f_{s,u}) prior to construction and for every 5,000 square feet during construction.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 602/ACI 530.1/ASCE 6°</td>
</tr>
<tr>
<td>3. Verification of proportions of materials in premixed or preblended mortar and grout as delivered to the site.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 602/ACI 530.1/ASCE 6°</td>
</tr>
<tr>
<td>4. Verification of slump flow and VSI as delivered to the site for self-consolidating grout.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 602/ACI 530.1/ASCE 6°</td>
</tr>
<tr>
<td>5. The following shall be verified to ensure compliance:</td>
<td>—</td>
<td></td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>a. Proportions of site-prepared mortar, grout and prestressing grout for bonded tendons.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td>b. Placement of masonry units and construction of mortar joints.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td>c. Placement of reinforcement, connectors and prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMS 402/ACI 530/ASCE 5°</td>
</tr>
<tr>
<td>d. Grout space prior to grout.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>e. Placement of grout.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>f. Placement of prestressing grout.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>g. Size and location of structural elements.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>h. Type, size and location of anchors, including other details of anchorage of masonry to structural members, frames or other construction.</td>
<td>—</td>
<td></td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>i. Specified size, grade and type of reinforcement, anchor bolts, prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>j. Welding of reinforcing bars.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>k. Preparation, construction and protection of masonry during cold weather (temperature below 40°F) or hot weather (temperature above 90°F).</td>
<td>—</td>
<td>X</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>l. Application and measurement of prestressing force.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
<tr>
<td>6. Preparation of any required grout specimens and/or prisms shall be observed.</td>
<td>X</td>
<td>—</td>
<td>IBC SECTION</td>
</tr>
</tbody>
</table>

For SI: °C = [(°F) - 32] / 1.8, 1 square foot = 0.0929 m².

a. The specific standards referenced are those listed in Chapter 35.
TABLE 1704.7
REQUIRED VERIFICATION AND INSPECTION OF SOILS

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS DURING TASK LISTED</th>
<th>PERIODICALLY DURING TASK LISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verify materials below shallow foundations are adequate to achieve the design bearing capacity.</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>2. Verify excavations are extended to proper depth and have reached proper material.</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>3. Perform classification and testing of compacted fill materials.</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>4. Verify use of proper materials, densities and lift thicknesses during placement and compaction of compacted fill.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5. Prior to placement of compacted fill, observe subgrade and verify that site has been prepared properly.</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

TABLE 1704.8
REQUIRED VERIFICATION AND INSPECTION OF DRIVEN DEEP FOUNDATION ELEMENTS

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS DURING TASK LISTED</th>
<th>PERIODICALLY DURING TASK LISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verify element materials, sizes and lengths comply with the requirements.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>2. Determine capacities of test elements and conduct additional load tests, as required.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>3. Observe driving operations and maintain complete and accurate records for each element.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4. Verify placement locations and plumbness, confirm type and size of hammer, record number of blows per foot of penetration, determine required penetrations to achieve design capacity, record tip and butt elevations and document any damage to foundation element.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5. For steel elements, perform additional inspections in accordance with Section 1704.3.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. For concrete elements and concrete-filled elements, perform additional inspections in accordance with Section 1704.4.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7. For specialty elements, perform additional inspections as determined by the registered design professional in responsible charge.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 1704.9
REQUIRED VERIFICATION AND INSPECTION OF CAST-IN-PLACE DEEP FOUNDATION ELEMENTS

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS DURING TASK LISTED</th>
<th>PERIODICALLY DURING TASK LISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Observe drilling operations and maintain complete and accurate records for each element.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>2. Verify placement locations and plumbness, confirm element diameters, bell diameters (if applicable), lengths, embedment into bedrock (if applicable) and adequate end-bearing strata capacity. Record concrete or grout volumes.</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>3. For concrete elements, perform additional inspections in accordance with Section 1704.4.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
1704.10 Helical pile foundations. Special inspections shall be performed continuously during installation of helical pile foundations. The information recorded shall include installation equipment used, pile dimensions, tip elevations, final depth, final installation torque and other pertinent installation data as required by the registered design professional in responsible charge. The approved geotechnical report and the construction documents prepared by the registered design professional shall be used to determine compliance.

1704.11 Vertical masonry foundation elements. Special inspection shall be performed in accordance with Section 1704.5 for vertical masonry foundation elements.

1704.12 Sprayed fire-resistant materials. Special inspections for sprayed fire-resistant materials applied to floor, roof and wall assemblies and structural members shall be in accordance with Sections 1704.12.1 through 1704.12.6. Special inspections shall be based on the fire-resistance design as designated in the approved construction documents. The tests set forth in this section shall be based on samplings from specific floor, roof and wall assemblies and structural members. Special inspections shall be performed after the rough installation of electrical, automatic sprinkler, mechanical and plumbing systems and suspension systems for ceilings, where applicable.

1704.12.1 Physical and visual tests. The special inspections shall include the following tests and observations to demonstrate compliance with the listing and the fire-resistance rating:
1. Condition of substrates.
2. Thickness of application.
3. Density in pounds per cubic foot (kg/m³).
5. Condition of finished application.

1704.12.2 Structural member surface conditions. The surfaces shall be prepared in accordance with the approved fire-resistance design and the written instructions of approved manufacturers. The prepared surface of structural members to be sprayed shall be inspected before the application of the sprayed fire-resistant material.

1704.12.3 Application. The substrate shall have a minimum ambient temperature before and after application as specified in the written instructions of approved manufacturers. The area for application shall be ventilated during and after application as required by the written instructions of approved manufacturers.

1704.12.4 Thickness. No more than 10 percent of the thickness measurements of the sprayed fire-resistant materials applied to floor, roof and wall assemblies and structural members shall be less than the thickness required by the approved fire-resistance design, but in no case less than the minimum allowable thickness required by Section 1704.12.4.1.

1704.12.4.1 Minimum allowable thickness. For design thicknesses 1 inch (25 mm) or greater, the minimum allowable individual thickness shall be the design thickness minus 25 percent. Thickness shall be determined in accordance with ASTM E 605. Samples of the sprayed fire-resistant materials shall be selected in accordance with Sections 1704.12.4.2 and 1704.12.4.3.

1704.12.4.2 Floor, roof and wall assemblies. The thickness of the sprayed fire-resistant material applied to floor, roof and wall assemblies shall be determined in accordance with ASTM E 605, making not less than four measurements for each 1,000 square feet (93 m²) of the sprayed area in each story or portion thereof.

1704.12.4.2.1 Cellular decks. Thickness measurements shall be selected from a square area, 12 inches by 12 inches (305 mm by 305 mm) in size. A minimum of four measurements shall be made, located symmetrically within the square area.

1704.12.4.2.2 Fluted decks. Thickness measurements shall be selected from a square area, 12 inches by 12 inches (305 mm by 305 mm) in size. A minimum of four measurements shall be made, located symmetrically within the square area, including one each of the following: valley, crest and sides. The average of the measurements shall be reported.

1704.12.4.3 Structural members. The thickness of the sprayed fire-resistant material applied to structural members shall be determined in accordance with ASTM E 605. Thickness testing shall be performed on not less than 25 percent of the structural members on each floor.

1704.12.4.3.1 Beams and girders. At beams and girders thickness measurements shall be made at nine locations around the beam or girder at each end of a 12-inch (305 mm) length.

1704.12.4.3.2 Joists and trusses. At joists and trusses, thickness measurements shall be made at seven locations around the joist or truss at each end of a 12-inch (305 mm) length.

1704.12.4.3.3 Wide-flanged columns. At wide-flanged columns, thickness measurements shall be made at 12 locations around the column at each end of a 12-inch (305 mm) length.

1704.12.4.3.4 Hollow structural section and pipe columns. At hollow structural section and pipe columns, thickness measurements shall be made at a minimum of four locations around the column at each end of a 12-inch (305 mm) length.

1704.12.5 Density. The density of the sprayed fire-resistant material shall not be less than the density specified in the approved fire-resistance design. Density of the sprayed fire-resistant material shall be determined in accordance with ASTM E 605. The test samples for determining the density of the sprayed fire-resistant materials shall be selected as follows:
1. From each floor, roof and wall assembly at the rate of not less than one sample for every 2,500 square feet (232 m²) or portion thereof of the sprayed area in each story.
2. From beams, girders, trusses and columns at the rate of not less than one sample for each type of structural member for each 2,500 square feet (232 m²) of floor area or portion thereof in each story.

1704.12.6 Bond strength. The cohesive/adhesive bond strength of the cured sprayed fire-resistant material applied to floor, roof and wall assemblies and structural members shall not be less than 150 pounds per square foot (psf) (7.18 kN/m²). The cohesive/adhesive bond strength shall be determined in accordance with the field test specified in ASTM E 736 by testing in-place samples of the sprayed fire-resistant material selected in accordance with Sections 1704.12.6.1 through 1704.12.6.3.

1704.12.6.1 Floor, roof and wall assemblies. The test samples for determining the cohesive/adhesive bond strength of the sprayed fire-resistant materials shall be selected from each floor, roof and wall assembly at the rate of not less than one sample for every 2,500 square feet (232 m²) of the sprayed area in each story or portion thereof.

1704.12.6.2 Structural members. The test samples for determining the cohesive/adhesive bond strength of the sprayed fire-resistant materials shall be selected from beams, girders, trusses, columns and other structural members at the rate of not less than one sample for each type of structural member for each 2,500 square feet (232 m²) of floor area or portion thereof in each story.

1704.12.6.3 Primer, paint and encapsulant bond tests. Bond tests to qualify a primer, paint or encapsulant shall be conducted when the sprayed fire-resistant material is applied to a primed, painted or encapsulated surface for which acceptable bond-strength performance between these coatings and the fire-resistant material has not been determined. A bonding agent approved by the SFRM manufacturer shall be applied to a primed, painted or encapsulated surface where the bond strengths are found to be less than required values.

1704.13 Mastic and intumescent fire-resistant coatings. Special inspections for mastic and intumescent fire-resistant coatings applied to structural elements and decks shall be in accordance with AWCI 12-B. Special inspections shall be based on the fire-resistance design as designated in the approved construction documents.

1704.14 Exterior insulation and finish systems (EIFS). Special inspections shall be required for all EIFS applications.

Exceptions:

1. Special inspections shall not be required for EIFS applications installed over a water-resistive barrier with a means of draining moisture to the exterior.

2. Special inspections shall not be required for EIFS applications installed over masonry or concrete walls.

1704.15 Special cases. Special inspections shall be required for proposed work that is, in the opinion of the building official, unusual in its nature, such as, but not limited to, the following examples:

1. Construction materials and systems that are alternatives to materials and systems prescribed by this code.

2. Unusual design applications of materials described in this code.

3. Materials and systems required to be installed in accordance with additional manufacturer’s instructions that prescribe requirements not contained in this code or in standards referenced by this code.

[F] 1704.16 Special inspection for smoke control. Smoke control systems shall be tested by a special inspector.

[F] 1704.16.1 Testing scope. The test scope shall be as follows:

1. During erection of ductwork and prior to concealment for the purposes of leakage testing and recording of device location.

2. Prior to occupancy and after sufficient completion for the purposes of pressure difference testing, flow measurements and detection and control verification.

[F] 1704.16.2 Qualifications. Special inspection agencies for smoke control shall have expertise in fire protection engineering, mechanical engineering and certification as air balancers.

SECTION 1705
STATEMENT OF SPECIAL INSPECTIONS

1705.1 General. Where special inspection or testing is required by Section 1704, 1707 or 1708, the registered design professional in responsible charge shall prepare a statement of special inspections in accordance with Section 1705 for submittal by the applicant (see Section 1704.1.1).

1705.2 Content of statement of special inspections. The statement of special inspections shall identify the following:

1. The materials, systems, components and work required to have special inspection or testing by the building official or by the registered design professional responsible for each portion of the work.

2. The type and extent of each special inspection.

3. The type and extent of each test.

4. Additional requirements for special inspection or testing for seismic or wind resistance as specified in Section 1705.3, 1705.4, 1707 or 1708.

5. For each type of special inspection, identification as to whether it will be continuous special inspection or periodic special inspection.

1705.3 Seismic resistance. The statement of special inspections shall include seismic requirements for cases covered in Sections 1705.3.1 through 1705.3.5.

Exception: Seismic requirements are permitted to be excluded from the statement of special inspections for struc-
tures designed and constructed in accordance with the following:

1. The structure consists of light-frame construction; the design spectral response acceleration at short periods, S_{D50}, as determined in Section 1613.5.4, does not exceed 0.5g; and the height of the structure does not exceed 35 feet (10 668 mm) above grade plane; or

2. The structure is constructed using a reinforced masonry structural system or reinforced concrete structural system; the design spectral response acceleration at short periods, S_{D50}, as determined in Section 1613.5.4, does not exceed 0.5g, and the height of the structure does not exceed 25 feet (7620 mm) above grade plane; or

3. Detached one- or two-family dwellings not exceeding two stories above grade plane, provided the structure does not have any of the following plan or vertical irregularities in accordance with Section 12.3.2 of ASCE 7:
 3.1. Torsional irregularity.
 3.2. Nonparallel systems.
 3.3. Stiffness irregularity—extreme soft story and soft story.
 3.4. Discontinuity in capacity—weak story.

1705.3.1 Seismic-force-resisting systems. The seismic-force-resisting systems in structures assigned to Seismic Design Category D, E or F, in accordance with Section 1613.

Exception: Requirements for the seismic-force-resisting system are permitted to be excluded from the statement of special inspections for steel systems in structures assigned to Seismic Design Category C that are not specifically detailed for seismic resistance, with a response modification coefficient, R, of 3 or less, excluding cantilever column systems.

1705.3.2 Designated seismic systems. Designated seismic systems in structures assigned to Seismic Design Category D, E or F.

1705.3.3 Seismic Design Category C. The following additional systems and components in structures assigned to Seismic Design Category C:

1. Heating, ventilating and air-conditioning (HVAC) ductwork containing hazardous materials and anchorage of such ductwork.
2. Piping systems and mechanical units containing flammable, combustible or highly toxic materials.
3. Anchorage of electrical equipment used for emergency or standby power systems.

1705.3.4 Seismic Design Category D. The following additional systems and components in structures assigned to Seismic Design Category D:

1. Systems required for Seismic Design Category C.
2. Exterior wall panels and their anchorage.
3. Suspended ceiling systems and their anchorage.
5. Steel storage racks and their anchorage, where the importance factor is equal to 1.5 in accordance with Section 15.5.3 of ASCE 7.

1705.3.5 Seismic Design Category E or F. The following additional systems and components in structures assigned to Seismic Design Category E or F:

1. Systems required for Seismic Design Categories C and D.
2. Electrical equipment.

1705.3.6 Seismic requirements in the statement of special inspections. When Sections 1705.3 through 1705.3.5 specify that seismic requirements be included, the statement of special inspections shall identify the following:

1. The designated seismic systems and seismic-force-resisting systems that are subject to special inspections in accordance with Sections 1705.3 through 1705.3.5.
2. The additional special inspections and testing to be provided as required by Sections 1707 and 1708 and other applicable sections of this code, including the applicable standards referenced by this code.

1705.4 Wind resistance. The statement of special inspections shall include wind requirements for structures constructed in the following areas:

1. In wind Exposure Category B, where the 3-second-gust basic wind speed is 120 miles per hour (mph) (52.8 m/s) or greater.
2. In wind Exposure Category C or D, where the 3-second-gust basic wind speed is 110 mph (49 m/s) or greater.

1705.4.1 Wind requirements in the statement of special inspections. When Section 1705.4 specifies that wind requirements be included, the statement of special inspections shall identify the main wind-force-resisting systems and wind-resisting components subject to special inspections as specified in Section 1705.4.2.

1705.4.2 Detailed requirements. The statement of special inspections shall include at least the following systems and components:

1. Roof cladding and roof framing connections.
2. Wall connections to roof and floor diaphragms and framing.
3. Roof and floor diaphragm systems, including collectors, drag struts and boundary elements.
4. Vertical wind-force-resisting systems, including braced frames, moment frames and shear walls.
5. Wind-force-resisting system connections to the foundation.
6. Fabrication and installation of systems or components required to meet the impact-resistance requirements of Section 1609.1.2. Exception: Fabrication of manufactured systems or components that have a label indicating compliance with the wind-load and impact-resistance requirements of this code.

SECTION 1706
SPECIAL INSPECTIONS FOR WIND REQUIREMENTS

1706.1 Special inspections for wind requirements. Special inspections itemized in Sections 1706.2 through 1706.4, unless exempted by the exceptions to Section 1704.1, are required for buildings and structures constructed in the following areas:

1. In wind Exposure Category B, where the 3-second-gust basic wind speed is 120 miles per hour (52.8 m/sec) or greater.

2. In wind Exposure Categories C or D, where the 3-second-gust basic wind speed is 110 mph (49 m/sec) or greater.

1706.2 Structural wood. Continuous special inspection is required during field gluing operations of elements of the main windforce-resisting system. Periodic special inspection is required for nailing, bolting, anchoring and other fastening of components within the main windforce-resisting system, including wood shear walls, wood diaphragms, drag struts, braces and hold-downs.

Exception: Special inspection is not required for wood shear walls, shear panels and diaphragms, including nailing, bolting, anchoring and other fastening to other components of the main windforce-resisting system, where the fastener spacing of the sheathing is more than 4 inches (102 mm) on center.

1706.3 Cold-formed steel light-frame construction. Periodic special inspection is required during welding operations of elements of the main windforce-resisting system. Periodic special inspection is required for screw attachment, bolting, anchoring and other fastening of components within the main windforce-resisting system, including shear walls, braces, diaphragms, collectors (drag struts) and hold-downs.

Exception: Special inspection is not required for cold-formed steel light-frame shear walls, braces, diaphragms, collectors (drag struts) and hold-downs where either of the following apply:

1. The sheathing is gypsum board or fiberboard.

2. The sheathing is wood structural panel or steel sheets on only one side of the shear wall, shear panel or diaphragm assembly and the fastener spacing of the sheathing is more than 4 inches (102 mm) on center (o.c.).

1706.4 Wind-resisting components. Periodic special inspection is required for the following systems and components:

1. Roof cladding.

2. Wall cladding.

SECTION 1707
SPECIAL INSPECTIONS FOR SEISMIC RESISTANCE

1707.1 Special inspections for seismic resistance. Special inspections itemized in Sections 1707.2 through 1707.9, unless exempted by the exceptions of Section 1704.1, 1705.3, or 1705.3.1, are required for the following:

1. The seismic-force-resisting systems in structures assigned to Seismic Design Category C, D, E or F, as determined in Section 1613.

2. Designated seismic systems in structures assigned to Seismic Design Category D, E or F.

3. Architectural, mechanical and electrical components in structures assigned to Seismic Design Category C, D, E or F that are required in Sections 1707.6 and 1707.7.

1707.2 Structural steel. Special inspection for structural steel shall be in accordance with the quality assurance plan requirements of AISC 341.

Exceptions:

1. Special inspections of structural steel in structures assigned to Seismic Design Category C that are not specifically detailed for seismic resistance, with a response modification coefficient, R, of 3 or less, excluding cantilever column systems.

2. For ordinary moment frames, ultrasonic and magnetic particle testing of complete joint penetration groove welds are only required for demand critical welds.

1707.3 Structural wood. Continuous special inspection is required during field gluing operations of elements of the seismic-force-resisting system. Periodic special inspection is required for nailing, bolting, anchoring and other fastening of components within the seismic-force-resisting system, including wood shear walls, wood diaphragms, drag struts, braces, shear panels and hold-downs.

Exception: Special inspection is not required for wood shear walls, shear panels and diaphragms, including nailing, bolting, anchoring and other fastening to other components of the seismic-force-resisting system, where the fastener spacing of the sheathing is more than 4 inches (102 mm) on center (o.c.).

1707.4 Cold-formed steel light-frame construction. Periodic special inspection is required during welding operations of elements of the seismic-force-resisting system. Periodic special inspection is required for screw attachment, bolting, anchoring and other fastening of components within the seis-
mic-force-resisting system, including shear walls, braces, diaphragms, collectors (drag struts) and hold-downs.

Exception: Special inspection is not required for cold-formed steel light-frame shear walls, braces, diaphragms, collectors (drag struts) and hold-downs where either of the following apply:

1. The sheathing is gypsum board or fiberboard.
2. The sheathing is wood structural panel or steel sheets on only one side of the shear wall, shear panel or diaphragm assembly and the fastener spacing of the sheathing is more than 4 inches (102 mm) o.c.

1707.5 Storage racks and access floors. Periodic special inspection is required during the anchorage of access floors and storage racks 8 feet (2438 mm) or greater in height in structures assigned to Seismic Design Category D, E or F.

1707.6 Architectural components. Periodic special inspection during the erection and fastening of exterior cladding, interior and exterior nonbearing walls and interior and exterior veneer in structures assigned to Seismic Design Category D, E or F.

Exceptions:

1. Special inspection is not required for exterior cladding, interior and exterior nonbearing walls and interior and exterior veneer weighing 5 psf (24.5 N/m²) or less.
2. Special inspection is not required for exterior cladding and interior and exterior veneer weighing 5 psf (24.5 N/m²) or less.
3. Special inspection is not required for interior nonbearing walls weighing 15 psf (73.5 N/m²) or less.

1707.7 Mechanical and electrical components. Special inspection for mechanical and electrical equipment shall be as follows:

1. Periodic special inspection is required during the anchorage of electrical equipment for emergency or standby power systems in structures assigned to Seismic Design Category C, D, E or F;
2. Periodic special inspection is required during the installation of anchorage of other electrical equipment in structures assigned to Seismic Design Category E or F;
3. Periodic special inspection is required during installation of piping systems intended to carry flammable, combustible or highly toxic contents and their associated mechanical units in structures assigned to Seismic Design Category C, D, E or F;
4. Periodic special inspection is required during the installation of HVAC ductwork that will contain hazardous materials in structures assigned to Seismic Design Category C, D, E or F; and
5. Periodic special inspection is required during the installation of vibration isolation systems in structures assigned to Seismic Design Category C, D, E or F where the construction documents require a nominal clearance of 1/4 inch (6.4 mm) or less between the equipment support frame and restraint.

1707.8 Designated seismic system verifications. The special inspector shall examine designated seismic systems requiring seismic qualification in accordance with Section 1708.4 and verify that the label, anchorage or mounting conforms to the certificate of compliance.

1707.9 Seismic isolation system. Periodic special inspection is required during the fabrication and installation of isolator units and energy dissipation devices that are part of the seismic isolation system.

SECTION 1708

STRUCTURAL TESTING FOR SEISMIC RESISTANCE

1708.1 Testing and qualification for seismic resistance. The testing and qualification specified in Sections 1708.2 through 1708.5, unless exempted from special inspections by the exceptions of Section 1704.1, 1705.3 or 1705.3.1 are required as follows:

1. The seismic-force-resisting systems in structures assigned to Seismic Design Category C, D, E or F, as determined in Section 1613 shall meet the requirements of Sections 1708.2 and 1708.3, as applicable.
2. Designated seismic systems in structures assigned to Seismic Design Category C, D, E or F subject to the special certification requirements of ASCE 7 Section 13.2.2 are required to be tested in accordance with Section 1708.4.
3. Architectural, mechanical and electrical components in structures assigned to Seismic Design Category C, D, E or F with an Iₚ = 1.0 are required to be tested in accordance with Section 1708.4 where the general design requirements of ASCE 7 Section 13.2.1, Item 2 for manufacturer’s certification are satisfied by testing.
4. The seismic isolation system in seismically isolated structures shall meet the testing requirements of Section 1708.5.

1708.2 Concrete reinforcement. Where reinforcement complying with ASTM A 615 is used to resist earthquake-induced flexural and axial forces in special moment frames, special structural walls and coupling beams connecting special structural walls, in structures assigned to Seismic Design Category B, C, D, E or F as determined in Section 1613, the reinforcement shall comply with Section 21.1.5.2 of ACI 318. Certified mill test reports shall be provided for each shipment of such reinforcement. Where reinforcement complying with ASTM A 615 is to be welded, chemical tests shall be performed to determine weldability in accordance with Section 3.5.2 of ACI 318.

1708.3 Structural steel. Testing for structural steel shall be in accordance with the quality assurance plan requirements of AISC 341.

Exceptions:

1. Testing for structural steel in structures assigned to Seismic Design Category C that are not specifically detailed for seismic resistance, with a response modi-
1708.4 Seismic certification of nonstructural components. The registered design professional shall state the applicable seismic certification requirements for nonstructural components and designated seismic systems on the construction documents.

1. The manufacturer of each designated seismic system component subject to the provisions of ASCE 7 Section 13.2.2 shall test or analyze the component and its mounting system or anchorage and submit a certificate of compliance for review and acceptance by the registered design professional responsible for the design of the designated seismic system and for approval by the building official. Certification shall be based on an actual test on a shake table, by three-dimensional shock tests, by an analytical method using dynamic characteristics and forces, by the use of experience data (i.e., historical data demonstrating acceptable seismic performance) or by more rigorous analysis providing for equivalent safety.

2. Manufacturer’s certification of compliance for the general design requirements of ASCE 7 Section 13.2.1 shall be based on analysis, testing or experience data.

1708.5 Seismically isolated structures. For required system tests, see Section 17.8 of ASCE 7.

SECTION 1709
CONTRACTOR RESPONSIBILITY

1709.1 Contractor responsibility. Each contractor responsible for the construction of a main wind- or seismic-force-resisting system, designated seismic system or a wind- or seismic-resisting component listed in the statement of special inspections shall submit a written statement of responsibility to the building official and the owner prior to the commencement of work on the system or component. The contractor’s statement of responsibility shall contain acknowledgement of awareness of the special requirements contained in the statement of special inspection.

SECTION 1710
STRUCTURAL OBSERVATIONS

1710.1 General. Where required by the provisions of Section 1710.2 or 1710.3, the owner shall employ a registered design professional to perform structural observations as defined in Section 1702.

Prior to the commencement of observations, the structural observer shall submit to the building official a written statement identifying the frequency and extent of structural observations.

At the conclusion of the work included in the permit, the structural observer shall submit to the building official a written statement that the site visits have been made and identify any reported deficiencies which, to the best of the structural observer’s knowledge, have not been resolved.

1710.2 Structural observations for seismic resistance. Structural observations shall be provided for those structures assigned to Seismic Design Category D, E or F, as determined in Section 1613, where one or more of the following conditions exist:

1. The structure is classified as Occupancy Category III or IV in accordance with Table 1604.5.
2. The height of the structure is greater than 75 feet (22 860 mm) above the base.
3. The structure is assigned to Seismic Design Category E, is classified as Occupancy Category I or II in accordance with Table 1604.5, and is greater than two stories above grade plane.
4. When so designated by the registered design professional responsible for the structural design.
5. When such observation is specifically required by the building official.

1710.3 Structural observations for wind requirements. Structural observations shall be provided for those structures located where the basic wind speed exceeds 110 mph (49 m/sec) determined from Figure 1609, where one or more of the following conditions exist:

1. The structure is classified as Occupancy Category III or IV in accordance with Table 1604.5.
2. The building height of the structure is greater than 75 feet (22 860 mm).
3. When so designated by the registered design professional responsible for the structural design.
4. When such observation is specifically required by the building official.

SECTION 1711
DESIGN STRENGTHS OF MATERIALS

1711.1 Conformance to standards. The design strengths and permissible stresses of any structural material that are identified by a manufacturer’s designation as to manufacture and grade by mill tests, or the strength and stress grade is otherwise confirmed to the satisfaction of the building official, shall conform to the specifications and methods of design of accepted engineering practice or the approved rules in the absence of applicable standards.

1711.2 New materials. For materials that are not specifically provided for in this code, the design strengths and permissible stresses shall be established by tests as provided for in Section 1712.

SECTION 1712
ALTERNATIVE TEST PROCEDURE

1712.1 General. In the absence of approved rules or other approved standards, the building official shall make, or cause to
be made, the necessary tests and investigations; or the building official shall accept duly authenticated reports from approved agencies in respect to the quality and manner of use of new materials or assemblies as provided for in Section 104.11, Chapter 1, Division II. The cost of all tests and other investigations required under the provisions of this code shall be borne by the applicant.

[BSC] In the absence of approved rules or other approved standards, the building official shall make, or cause to be made, the necessary tests and investigations; or the building official shall accept duly authenticated reports from approved agencies in respect to the quality and manner of use of new materials or assemblies as provided for in Section 1.2.2, Chapter 1, Division I. The cost of all tests and other investigations required under the provisions of this code shall be borne by the applicant.

SECTION 1713
TEST SAFE LOAD

1713.1 Where required. Where proposed construction is not capable of being designed by approved engineering analysis, or where proposed construction design method does not comply with the applicable material design standard, the system of construction or the structural unit and the connections shall be subjected to the tests prescribed in Section 1715. The building official shall accept certified reports of such tests conducted by an approved testing agency, provided that such tests meet the requirements of this code and approved procedures.

SECTION 1714
IN-SITU LOAD TESTS

1714.1 General. Whenever there is a reasonable doubt as to the stability or load-bearing capacity of a completed building, structure or portion thereof for the expected loads, an engineering assessment shall be required. The engineering assessment shall involve either a structural analysis or an in-situ load test, or both. The structural analysis shall be based on actual material properties and other as-built conditions that affect stability or load-bearing capacity, and shall be conducted in accordance with the applicable design standard. If the structural assessment determines that the load-bearing capacity is less than that required by the code, load tests shall be conducted in accordance with Section 1714.2. If the building, structure or portion thereof is found to have inadequate stability or load-bearing capacity for the expected loads, modifications to ensure structural adequacy or the removal of the inadequate construction shall be required.

1714.2 Test standards. Structural components and assemblies shall be tested in accordance with the appropriate material standards listed in Chapter 35. In the absence of a standard that contains an applicable load test procedure, the test procedure shall be developed by a registered design professional and approved. The test procedure shall simulate loads and conditions of application that the completed structure or portion thereof will be subjected to in normal use.

1714.3 In-situ load tests. In-situ load tests shall be conducted in accordance with Section 1714.3.1 or 1714.3.2 and shall be supervised by a registered design professional. The test shall simulate the applicable loading conditions specified in Chapter 16 as necessary to address the concerns regarding structural stability of the building, structure or portion thereof.

1714.3.1 Load test procedure specified. Where a standard listed in Chapter 35 contains an applicable load test procedure and acceptance criteria, the test procedure and acceptance criteria in the standard shall apply. In the absence of specific load factors or acceptance criteria, the load factors and acceptance criteria in Section 1714.3.2 shall apply.

1714.3.2 Load test procedure not specified. In the absence of applicable load test procedures contained within a standard referenced by this code or acceptance criteria for a specific material or method of construction, such existing structure shall be subjected to a test procedure developed by a registered design professional that simulates applicable loading and deformation conditions. For components that are not a part of the seismic-load-resisting system, the test load shall be equal to two times the unfactored design loads. The test load shall be left in place for a period of 24 hours. The structure shall be considered to have successfully met the test requirements where the following criteria are satisfied:

1. Under the design load, the deflection shall not exceed the limitations specified in Section 1604.3.
2. Within 24 hours after removal of the test load, the structure shall have recovered not less than 75 percent of the maximum deflection.
3. During and immediately after the test, the structure shall not show evidence of failure.

SECTION 1715
PRECONSTRUCTION LOAD TESTS

1715.1 General. In evaluating the physical properties of materials and methods of construction that are not capable of being designed by approved engineering analysis or do not comply with applicable material design standards listed in Chapter 35, the structural adequacy shall be predetermined based on the load test criteria established in this section.

1715.2 Load test procedures specified. Where specific load test procedures, load factors and acceptance criteria are included in the applicable design standards listed in Chapter 35, such test procedures, load factors and acceptance criteria shall apply. In the absence of specific test procedures, load factors or acceptance criteria, the corresponding provisions in Section 1715.3 shall apply.

1715.3 Load test procedures not specified. Where load test procedures are not specified in the applicable design standards listed in Chapter 35, the load-bearing and deformation capacity of structural components and assemblies shall be determined on the basis of a test procedure developed by a registered design professional that simulates applicable loading and deformation conditions. For components and assemblies that are not a part of the seismic-force-resisting system, the test shall be as specified in Section 1715.3.1. Load tests shall simulate the applicable loading conditions specified in Chapter 16.
1715.3.1 Test procedure. The test assembly shall be subjected to an increasing superimposed load equal to not less than two times the superimposed design load. The test load shall be left in place for a period of 24 hours. The tested assembly shall be considered to have successfully met the test requirements if the assembly recovers not less than 75 percent of the maximum deflection within 24 hours after the removal of the test load. The test assembly shall then be reloaded and subjected to an increasing superimposed load until either structural failure occurs or the superimposed load is equal to two and one-half times the load at which the deflection limitations specified in Section 1715.3.2 were reached, or the load is equal to two and one-half times the superimposed design load. In the case of structural components and assemblies for which deflection limitations are not specified in Section 1715.3.2, the test specimen shall be subjected to an increasing superimposed load until structural failure occurs or the load is equal to two and one-half times the desired superimposed design load. The allowable superimposed design load shall be taken as the lesser of:

1. The load at the deflection limitation given in Section 1715.3.2.
2. The failure load divided by 2.5.
3. The maximum load applied divided by 2.5.

1715.3.2 Deflection. The deflection of structural members under the design load shall not exceed the limitations in Section 1604.3.

1715.4 Wall and partition assemblies. Load-bearing wall and partition assemblies shall sustain the test load both with and without window framing. The test load shall include all design load components. Wall and partition assemblies shall be tested both with and without door and window framing.

1715.5 Exterior window and door assemblies. The design pressure rating of exterior windows and doors in buildings and without window framing. The test load shall include all and partition assemblies shall sustain the test load both with

1. The load at the deflection limitation given in Section 1715.3.2.
2. The failure load divided by 2.5.
3. The maximum load applied divided by 2.5.

AAMA/WDMA/CSA 101/L.S.2/A440 shall not be subject to the requirements of Sections 2403.2 and 2403.3.

1715.5.2 Exterior windows and door assemblies not provided for in Section 1715.5.1. Exterior window and door assemblies shall be tested in accordance with ASTM E 330. Structural performance of garage doors shall be determined in accordance with either ASTM E 330 or ANSI/DASMA 108, and shall meet the acceptance criteria of ANSI/DASMA 108. Exterior window and door assemblies containing glass shall comply with Section 2403. The design pressure for testing shall be calculated in accordance with Chapter 16. Each assembly shall be tested for 10 seconds at a load equal to 1.5 times the design pressure.

1715.6 Test specimens. Test specimens and construction shall be representative of the materials, workmanship and details normally used in practice. The properties of the materials used to construct the test assembly shall be determined on the basis of tests on samples taken from the load assembly or on representative samples of the materials used to construct the load test assembly. Required tests shall be conducted or witnessed by an approved agency.

SECTION 1716
MATERIAL AND TEST STANDARDS

1716.1 Test standards for joist hangers and connectors.

1716.1.1 Test standards for joist hangers. The vertical load-bearing capacity, torsional moment capacity and deflection characteristics of joist hangers shall be determined in accordance with ASTM D 1761 providing a specific gravity of 0.49 or greater, but not greater than 0.55, as determined in accordance with AFPA NDS for the joist and headers.

Exception: The joist length shall not be required to exceed 24 inches (610 mm).

1716.1.2 Vertical load capacity for joist hangers. The vertical load capacity for the joist hanger shall be determined by testing a minimum of three joist hanger assemblies as specified in ASTM D 1761. If the ultimate vertical load for any one of the tests varies more than 20 percent from the average ultimate vertical load, at least three additional tests shall be conducted. The allowable vertical load of the joist hanger shall be the lowest value determined from the following:

1. The lowest ultimate vertical load for a single hanger from any test divided by three (where three tests are conducted and each ultimate vertical load does not vary more than 20 percent from the average ultimate vertical load).
2. The average ultimate vertical load for a single hanger from all tests divided by three (where six or more tests are conducted).
3. The average from all tests of the vertical loads that produce a vertical movement of the joist with respect to the header of 1/8 inch (3.2 mm).

1715.5.5.1 Exterior windows and doors. Exterior windows and sliding doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/L.S.2/A440. The label shall state the name of the manufacturer, the approved labeling agency and the product designation as specified in AAMA/WDMA/CSA101/L.S.2/A440. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/L.S.2/A440 or comply with Section 1715.5.2. Products tested and labeled as conforming to
4. The sum of the allowable design loads for nails or other fasteners utilized to secure the joist hanger to the wood members and allowable bearing loads that contribute to the capacity of the hanger.

5. The allowable design load for the wood members forming the connection.

1716.1.3 Torsional moment capacity for joist hangers. The torsional moment capacity for the joist hanger shall be determined by testing at least three joist hanger assemblies as specified in ASTM D 1761. The allowable torsional moment of the joist hanger shall be the average torsional moment at which the lateral movement of the top or bottom of the joist with respect to the original position of the joist is 1/8 inch (3.2 mm).

1716.1.4 Design value modifications for joist hangers. Allowable design values for joist hangers that are determined by Item 4 or 5 in Section 1716.1.2 shall be permitted to be modified by the appropriate duration of loading factors as specified in AF&PA NDS but shall not exceed the direct loads as determined by Item 1, 2 or 3 in Section 1716.1.2. Allowable design values determined by Item 1, 2 or 3 in Section 1716.1.2 shall not be modified by duration of loading factors.

1716.2 Concrete and clay roof tiles.

1716.2.1 Overturning resistance. Concrete and clay roof tiles shall be tested to determine their resistance to overturning due to wind in accordance with SBCCI SSTD 11 and Chapter 15.

1716.2.2 Wind tunnel testing. When roof tiles do not satisfy the limitations in Chapter 16 for rigid tile, a wind tunnel test shall be used to determine the wind characteristics of the concrete or clay tile roof covering in accordance with SBCCI SSTD 11 and Chapter 15.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 17A – STRUCTURAL TESTS AND SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>1</th>
<th>2</th>
<th>1-AC</th>
<th>AC</th>
<th>SS</th>
<th>SS/CC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **Adopt entire chapter**
 - X
 - X
 - X
 - X

- **Adopt entire chapter as amended (amended sections listed below)**

- **Adopt only those sections that are listed below**

- **Chapter/Section**
CHAPTER 17A

STRUCTURAL TESTS AND SPECIAL INSPECTIONS

SECTION 1701A

GENERAL

1701A.1 Scope. The provisions of this chapter shall govern the quality, workmanship and requirements for materials covered. Materials of construction and tests shall conform to the applicable standards listed in this code.

1701A.1.1 Application. The scope of application of Chapter 17A is as follows:

1. Structures regulated by the Division of the State Architect—Structural Safety, which include those applications listed in Sections 1.9.2.1 (DSA-SS), and 1.9.2.2 (DSA-SS/CC). These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Structures regulated by the Office of Statewide Health Planning and Development (OSHPD), which include those applications listed in Sections 1.10.1 and 1.10.4. These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 17 and any applicable amendments therein.

1701A.1.2 Amendments in this chapter. DSA-SS and OSHPD adopt this chapter and all amendments.

Exception: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

1. Division of the State Architect—Structural Safety:
 [DSA-SS] For applications listed in Section 1.9.2.1.
 [DSA-SS/CC] For applications listed in Section 1.9.2.2.

2. Office of Statewide Health Planning and Development:
 [OSHPD 1] For applications listed in Section 1.10.1.
 [OSHPD 4] For applications listed in Section 1.10.4.

1701A.1.3 Reference to other chapters.

1701A.1.3.1 [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 16A, 19A, 21A, 22A and 34A, the provisions in Chapters 16, 19, 21, 22 and 34 respectively shall apply instead.

1701A.2 New materials. New building materials, equipment, appliances, systems or methods of construction not provided for in this code, and any material of questioned suitability proposed for use in the construction of a building or structure, shall be subjected to the tests prescribed in this chapter and in the approved rules to determine character, quality and limitations of use.

1701A.3 Used materials. The use of second-hand materials that meet the minimum requirements of this code for new materials shall be permitted.

1701A.4 Special inspectors. [OSHPD 1 and 4] In addition to the inspector(s) of record required by Title 24, Part 1, Section 7-144, the owner shall employ one or more special inspectors who shall provide inspections during construction on the types of work listed under Chapters 17A, 18A, 19A, 20, 21A, 22A, 23, 25, 34A, and noted in the test, inspection and observation (TIO) program required by Sections 7-141, 7-145 and 7-149 of Title 24, Part 1, of the California Administrative Code. Test, inspection and observation (TIO) program shall satisfy requirements of Section 1704A.1.1.

1701A.5 Special inspectors. [DSA-SS & DSA-SS/CC] In addition to the project inspector required by Title 24, Part 1, Section 4-333, the owner shall employ one or more special inspectors who shall provide inspections during construction on the types of work listed under Chapters 17A, 18A, 19A, 20, 21A, 22A, 23, 25, 34 and noted in the special test, inspection and observation plan required by Section 4-335 of Title 24, Part 1, of the California Administrative Code.

SECTION 1702A

DEFINITIONS

1702A.1 General. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

APPROVED AGENCY. An established and recognized agency regularly engaged in conducting tests or furnishing inspection services, when such agency has been approved.

APPROVED FABRICATOR. An established and qualified person, firm or corporation approved by the building official pursuant to Chapter 17 of this code.

CERTIFICATE OF COMPLIANCE. A certificate stating that materials and products meet specified standards or that work was done in compliance with approved construction documents.

DESIGNATED SEISMIC SYSTEM. Those architectural, electrical and mechanical systems and their components that require design in accordance with Chapter 13 of ASCE 7 and for which the component importance factor, I., is greater than 1 in accordance with Section 13.1.3 of ASCE 7.
FABRICATED ITEM. Structural, load-bearing or lateral load-resisting assemblies consisting of materials assembled prior to installation in a building or structure, or subjected to operations such as heat treatment, thermal cutting, cold working or reforming after manufacture and prior to installation in a building or structure. Materials produced in accordance with standard specifications referenced by this code, such as rolled structural steel shapes, steel-reinforcing bars, masonry units, and wood structural panels or in accordance with a standard, listed in Chapter 35, which provides requirements for quality control done under the supervision of a third-party quality control agency shall not be considered “fabricated items.”

INSPECTION CERTIFICATE. An identification applied on a product by an approved agency containing the name of the manufacturer, the function and performance characteristics, and the name and identification of an approved agency that indicates that the product or material has been inspected and evaluated by an approved agency (see Section 1703A.5 and “Label,” “Manufacturer’s designation” and “Mark”).

INTUMESCENT FIRE-RESISTANT COATINGS. Thin film liquid mixture applied to substrates by brush, roller, spray or trowel which expands into a protective foamed layer to provide fire-resistant protection of the substrates when exposed to flame or intense heat.

MAIN WINDFORCE-RESISTING SYSTEM. An assemblage of structural elements assigned to provide support and stability for the overall structure. The system generally receives wind loading from more than one surface.

MASTIC FIRE-RESISTANT COATINGS. Liquid mixture applied to a substrate by brush, roller, spray or trowel that provides fire-resistant protection of a substrate when exposed to flame or intense heat.

PROJECT INSPECTOR [DSA-SS & DSA-SS/CC] The person approved to provide inspection in accordance with Title 24, Part I, California Administrative Code, Section 4-333(b). The term “project inspector” is synonymous with “inspector of record.”

SPECIAL INSPECTION. Inspection as herein required of the materials, installation, fabrication, erection or placement of components and connections requiring special expertise to ensure compliance with approved construction documents and referenced standards (see Section 1704A).

SPECIAL INSPECTION, CONTINUOUS. The full-time observation of work requiring special inspection by an approved special inspector who is present in the area where the work is being performed.

SPECIAL INSPECTION, PERIODIC. The part-time or intermittent observation of work requiring special inspection by an approved special inspector who is present in the area where the work has been or is being performed and at the completion of the work.

SPRAYED FIRE-RESISTANT MATERIALS. Cementitious or fibrous materials that are sprayed to provide fire-resistant protection of the substrates.

STRUCTURAL OBSERVATION. The visual observation of the structural system by a registered design professional for general conformance to the approved construction documents. Structural observation does not include or waive the responsibility for the inspection required by Section 110, 1704A or other sections of this code.

SECTION 1703A APPROVALS

1703A.1 Approved agency. An approved agency shall provide all information as necessary for the building official to determine that the agency meets the applicable requirements.

1703A.1.1 Independence. An approved agency shall be objective, competent and independent from the contractor responsible for the work being inspected. The agency shall also disclose possible conflicts of interest so that objectivity can be confirmed.

1703A.1.2 Equipment. An approved agency shall have adequate equipment to perform required tests. The equipment shall be periodically calibrated.

1703A.1.3 Personnel. An approved agency shall employ experienced personnel educated in conducting, supervising and evaluating tests and/or inspections.

1703A.2 Written approval. Any material, appliance, equipment, system or method of construction meeting the requirements of this code shall be approved in writing after satisfactory completion of the required tests and submission of required test reports.

1703A.3 Approved record. For any material, appliance, equipment, system or method of construction that has been approved, a record of such approval, including the conditions and limitations of the approval, shall be kept on file in the building official’s office and shall be open to public inspection at appropriate times.

1703A.4 Performance. Specific information consisting of test reports conducted by an approved testing agency in accordance with standards referenced in Chapter 35, or other such information as necessary, shall be provided for the building official to determine that the material meets the applicable code requirements.

1703A.4.1 Research and investigation. Sufficient technical data shall be submitted to the building official to substantiate the proposed use of any material or assembly. If it is determined that the evidence submitted is satisfactory proof of performance for the use intended, the building official shall approve the use of the material or assembly subject to the requirements of this code. The costs, reports and investigations required under these provisions shall be paid by the applicant.

1703A.4.2 Research reports. Supporting data, where necessary to assist in the approval of materials or assemblies not specifically provided for in this code, shall consist of valid research reports from approved sources.

1703A.5 Labeling. Where materials or assemblies are required by this code to be labeled, such materials and assemblies shall be labeled by an approved agency in accordance with Section 1703A. Products and materials required to be labeled shall be
labeled in accordance with the procedures set forth in Sections 1703A.5.1 through 1703A.5.3.

1703A.5.1 Testing. An approved agency shall test a representative sample of the product or material being labeled to the relevant standard or standards. The approved agency shall maintain a record of the tests performed. The record shall provide sufficient detail to verify compliance with the test standard.

1703A.5.2 Inspection and identification. The approved agency shall periodically perform an inspection, which shall be in-plant if necessary, of the product or material that is to be labeled. The inspection shall verify that the labeled product or material is representative of the product or material tested.

1703A.5.3 Label information. The label shall contain the manufacturer's or distributor's identification, model number, serial number or definitive information describing the product or material's performance characteristics and approved agency's identification.

1703A.6 Evaluation and follow-up inspection services. Where structural components or other items regulated by this code are not visible for inspection after completion of a prefabricated assembly, the applicant shall submit a report of each prefabricated assembly. The report shall indicate the complete details of the assembly, including a description of the assembly and its components, the basis upon which the assembly is being evaluated, test results and similar information and other data as necessary for the building official to determine conformance to this code. Such a report shall be approved by the building official.

1703A.6.1 Follow-up inspection. The applicant shall provide for special inspections of fabricated items in accordance with Section 1704A.2.

1703A.6.2 Test and inspection records. Copies of necessary test and inspection records shall be filed with the building official.

SECTION 1704A
SPECIAL INSPECTIONS

1704A.1 General. Where application is made for construction as described in this section, the owner shall employ one or more approved agencies to perform inspections during construction on the types of work listed under Section 1704A. These inspections are in addition to the inspections identified in Section 110.

The special inspector shall be a qualified person who shall demonstrate competence, to the satisfaction of the building official, for the inspection of the particular type of construction or operation requiring special inspection. The registered design professional in responsible charge and engineers of record involved in the design of the project are permitted to act as the approved agency and their personnel are permitted to act as the special inspector for the work designed by them, provided those personnel meet the qualification requirements of this section to the satisfaction of the building official. The special inspector shall provide written documentation to the building official demonstrating his or her competence and relevant experience or training. Experience or training shall be considered relevant when the documented experience or training is related in complexity to the same type of special inspection activities for projects of similar complexity and material qualities. These qualifications are in addition to qualifications specified in other sections of this code.

Exceptions:

1. Special inspections are not required for work of a minor nature or as warranted by conditions in the jurisdiction as approved by the building official.

2. Special inspections are not required for building components unless the design involves the practice of professional engineering or architecture as defined by applicable state statutes and regulations governing the professional registration and certification of engineers or architects.

3. Unless otherwise required by the building official, special inspections are not required for Group U occupancies that are accessory to a residential occupancy including, but not limited to, those listed in Section 312.1.

1704A.1.1 Statement of special inspections. The applicant shall submit a statement of special inspections prepared by the registered design professional in responsible charge in accordance with Section 107.1 as a condition for issuance. This statement shall be in accordance with Section 1705A.

Exception: The statement of special inspections is permitted to be prepared by a qualified person approved by the building official for construction not designed by a registered design professional.

1704A.1.2 Report requirement. The inspector of record and special inspectors shall keep records of inspections. The inspector of record and special inspector shall furnish inspection reports to the building official, and to the registered design professional in responsible charge as required by Title 24, Part 1. Reports shall indicate that work inspected was or was not completed in conformance to approved construction documents as required by Title 24, Parts 1 and 2. Discrepancies shall be brought to the immediate attention of the contractor for correction. If they are not corrected, the discrepancies shall be brought to the attention of the building official and to the registered design professional in responsible charge prior to the completion of that phase of the work. A final report documenting required special inspections and correction of any discrepancies noted in the inspections shall be submitted at a point in time agreed upon prior to the start of work by the applicant and the building official.

1704A.2 Inspection of fabricators. Where fabrication of structural load-bearing members and assemblies is being performed on the premises of a fabricator's shop, special inspection of the fabricated items shall be required by this section and as required elsewhere in this code.
1704A.2.1 Fabrication and implementation procedures. The special inspector shall verify that the fabricator maintains detailed fabrication and quality control procedures that provide a basis for inspection control of the workmanship and the fabricator’s ability to conform to approved construction documents and referenced standards. The special inspector shall review the procedures for completeness and adequacy relative to the code requirements for the fabricator’s scope of work.

1704A.3 Steel construction. The special inspections for steel elements of buildings and structures shall be as required by Section 1704A.3 and Table 1704A.3.

Exceptions:

1. Special inspection of the steel fabrication process shall not be required where the fabricator does not perform any welding, thermal cutting or heating operation of any kind as part of the fabrication process. In such cases, the fabricator shall be required to submit a detailed procedure for material control that demonstrates the fabricator’s ability to maintain suitable records and procedures such that, at any time during the fabrication process, the material specification, grade and mill test reports for the main stress-carrying elements are capable of being determined.

2. The special inspector need not be continuously present during welding of the following items, provided the materials, welding procedures and qualifications of welders are verified prior to the start of the work; periodic inspections are made of the work in progress and a visual inspection of all welds is made prior to completion or prior to shipment of shop welding.
 1. Single-pass fillet welds not exceeding 5/16 inch (7.9 mm) in size.
 2. Floor and roof deck welding.
 3. Welded studs when used for structural diaphragm.
 4. Welded sheet steel for cold-formed steel members.
 2.5. Welding of stairs and railing systems.

1704A.3.1 Welding. Welding inspection and welding inspector qualification shall be in accordance with this section.

1704A.3.1.1 Structural steel. Welding inspection and welding inspector qualification for structural steel shall be in accordance with AWS D1.1.

1704A.3.1.2 Cold-formed steel. Welding inspection and welding inspector qualification for cold-formed steel floor and roof decks shall be in accordance with AWS D1.3.

1704A.3.1.3 Reinforcing steel. Welding inspection and welding inspector qualification for reinforcing steel shall be in accordance with AWS D1.4 and ACI 318.

1704A.3.1.4 Inspection of Structural Welding. Inspection of all shop and field welding operations shall be made by a qualified welding inspector approved by the enforcement agency. The minimum requirements for a qualified welding inspector shall be as those for an AWS certified welding inspector (CWI), as defined in the provisions of the AWS QC1. All welding inspectors shall be as approved by the enforcement agency.

 The welding inspector shall make a systematic daily record of all welds. This record shall include in addition to other required records:
 1. Identification marks of welders.
 2. List of defective welds.
 3. Manner of correction of defects.

 The welding inspector shall check the material, details of construction and procedure, as well as workmanship of the welds. The inspector shall verify that the installation of end-welded stud shear connectors is in accordance with the requirements of AWS D1.1 and the approved plans and specifications. The inspector shall furnish the architect, structural engineer and the enforcement agency with a verified report that the welding is proper and has been done in conformity with AWS D1.1, D1.8 and the approved construction documents.

1704A.3.2 Details. The special inspector shall perform an inspection of the steel frame to verify compliance with the details shown on the approved construction documents, such as bracing, stiffening, member locations and proper application of joint details at each connection.

1704A.3.2.1 Steel joist and joist girder inspection. Special inspection is required during the manufacture and welding of steel joists or joist girders. The special inspector shall verify that proper quality control procedures and tests have been employed for all materials and the manufacturing process, and shall perform visual inspection of the finished product. The special inspector shall place a distinguishing mark, and/or tag with this distinguishing mark, on each inspected joist or joist girder. This mark or tag shall remain on the joist or joist girder throughout the job-site receiving and erection process.

1704A.3.2.2 Light-framed steel truss inspection. The manufacture of cold-formed light-framed steel trusses shall be continuously inspected by a qualified special inspector approved by the enforcement agency. The special inspector shall verify conformance of materials and manufacture with approved plans and specifications. The special inspector shall place a distinguishing mark, and/or tag with this distinguishing mark, on each inspected truss. This mark or tag shall remain on the truss throughout the job-site receiving and erection process.
TABLE 1704A.3
REQUIRED VERIFICATION AND INSPECTION OF STEEL CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCED STANDARD*</th>
<th>CBC REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Material verification of high-strength bolts, nuts and washers:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings to conform to ASTM standards specified in the approved construction documents.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section A3.3 and applicable ASTM material standards</td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer’s certificate of compliance required.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Inspection of high-strength bolting:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Snug-tight joints.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Pretensioned and slip-critical joints using turn-of-nut with matchmarking, twist-off bolt or direct tension indicator methods of installation.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section M2.5</td>
<td>1704A.3.3</td>
</tr>
<tr>
<td>c. Pretensioned and slip-critical joints using turn-of-nut without matchmarking or calibrated wrench methods of installation.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Material verification of structural steel and cold-formed steel deck:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. For structural steel, identification markings to conform to AISC 360.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section M5.5</td>
<td></td>
</tr>
<tr>
<td>b. For other steel, identification markings to conform to ASTM standards specified in the approved construction documents.</td>
<td>—</td>
<td>X</td>
<td>Applicable ASTM material standards</td>
<td></td>
</tr>
<tr>
<td>c. Manufacturer’s certified test reports.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Material verification of weld filler materials:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings to conform to AWS specification in the approved construction documents.</td>
<td>—</td>
<td>X</td>
<td>AISC 360, Section A3.5 and applicable AWS A5 documents</td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer’s certificate of compliance required.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Inspection of welding:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Structural steel and cold-formed steel deck:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Complete and partial joint penetration groove welds.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Multipass fillet welds.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Single-pass fillet welds > 3/16"</td>
<td>X</td>
<td>—</td>
<td>AWS D1.1</td>
<td>1704A.3.1</td>
</tr>
<tr>
<td>4) Plug and slot welds.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Single-pass fillet welds ≤ 3/16"</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Floor and roof deck welds.</td>
<td>—</td>
<td>X</td>
<td>AWS D1.3</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
TABLE 1704A.3—continued
REQUIRED VERIFICATION AND INSPECTION OF STEEL CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCED STANDARD</th>
<th>CBC REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Reinforcing steel:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Verification of weldability of reinforcing steel other than ASTM A 706.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Reinforcing steel resisting flexural and axial forces in intermediate and special moment frames, and boundary elements of special structural walls of concrete and shear reinforcement.</td>
<td>X</td>
<td>—</td>
<td>AWS D1.4 ACI 318: Section 3.5.2</td>
<td></td>
</tr>
<tr>
<td>3) Shear reinforcement.</td>
<td>X</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Other reinforcing steel.</td>
<td>—</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Inspection of steel frame joint details for compliance:

<table>
<thead>
<tr>
<th></th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Details such as bracing and stiffening.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Member locations.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Application of joint details at each connection.</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Where applicable, see also Section 1707A.1, Special inspection for seismic resistance.

1704A.3.3 High-strength bolts. Installation of high-strength bolts shall be inspected in accordance with AISC 360.

1704A.3.3.1 General. While the work is in progress, the special inspector shall determine that the requirements for bolts, nuts, washers and paint; bolted parts and installation and tightening in such standards are met. For bolts requiring pretensioning, the special inspector shall observe the preinstallation testing and calibration procedures when such procedures are required by the installation method or by project plans or specifications; determine that all plies of connected materials have been drawn together and properly snugged and monitor the installation of bolts to verify that the selected procedure for installation is properly used to tighten bolts. For joints required to be tightened only to the snug-tight condition, the special inspector need only verify that the connected materials have been drawn together and properly snugged.

1704A.3.3.2 Periodic monitoring. Monitoring of bolt installation for pretensioning is permitted to be performed on a periodic basis when using the turn-of-nut method with matchmarking techniques, the direct tension indicator method or the alternate design fastener (twist-off bolt) method. Joints designated as snug tight need be inspected only on a periodic basis.

1704A.3.3.3 Continuous monitoring. Monitoring of bolt installation for pretensioning using the calibrated wrench method or the turn-of-nut method without matchmarking shall be performed on a continuous basis.

1704A.3.4 Cold-formed steel trusses spanning 60 feet or greater. Where a cold-formed steel truss clear span is 60 feet (18 288 mm) or greater, the special inspector shall verify that the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing are installed in accordance with the approved truss submittal package.

1704A.4 Concrete construction. The special inspections and verifications for concrete construction shall be as required by this section and Table 1704A.4.

Exceptions: [DSA-SS & DSA-SS/CC] Special inspections shall not be required for:

1. Nonstructural concrete slabs supported directly on the ground, including prestressed slabs on grade, where the effective prestress in the concrete is less than 150 psi (1.03 MPa).
2. Concrete patios, driveways and sidewalks, on grade.

1704A.4.1 Materials. In the absence of sufficient data or documentation providing evidence of conformance to quality standards for materials in Chapter 3 of ACI 318, the building official shall require testing of materials in accordance with the appropriate standards and criteria for the material in Chapter 3 of ACI 318. Weldability of reinforcement, except that which conforms to ASTM A 706, shall be determined in accordance with the requirements of Section 3.5.2 of ACI 318.

1704A.4.2 Batch plant inspection. Except as provided under Section 1704A.4.3, the quality and quantity of materials used in transit-mixed concrete and in batched aggregates shall be continuously inspected at the location...
where materials are measured by an approved special inspector.

1704A.4.3 Waiver of continuous batch plant inspection.

Continuous batch plant inspection may be waived by the registered design professional in responsible charge, subject to approval by the enforcement agency, under either of the following conditions:

1. The concrete plant complies fully with the requirements of ASTM C 94, Sections 8 and 9, and has a current certificate from the National Ready Mixed Concrete Association or another agency acceptable to the enforcement agency. The certification shall indicate that the plant has automatic batching and recording capabilities.

2. For single-story light framed buildings and isolated foundations supporting equipment only, where the specified compressive strength f'_{c} of the concrete delivered to the jobsite is 3,500 psi (24.13 MPa) and where the f'_{c} used in design is not greater than 3,000 psi (20.68 MPa).

When continuous batch plant inspection is waived, the following requirements shall apply and shall be described in the construction documents:

1. Qualified technician of the testing laboratory shall check the first batch at the start of the day.

TABLE 1704A.4

REQUIRED VERIFICATION AND INSPECTION OF CONCRETE CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCED STANDARD*</th>
<th>CBC REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspection of reinforcing steel, including prestressing tendons, and placement.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 3.5, 7.1-7.7</td>
<td>1913A.4</td>
</tr>
<tr>
<td>2. Inspection of reinforcing steel welding in accordance with Table 1704A.3, Item 5b.</td>
<td>—</td>
<td>—</td>
<td>AWS D1.4 ACI 318: 3.5.2</td>
<td>—</td>
</tr>
<tr>
<td>3. Inspection of bolts to be installed in concrete prior to and during placement of concrete where allowable loads have been increased or where strength design is used.</td>
<td>X</td>
<td>—</td>
<td>ACI 318: 8.1.3, 21.2.8</td>
<td>1911A.5, 1912A.1</td>
</tr>
<tr>
<td>4. Inspection of anchors installed in hardened concrete.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 3.8.6, 8.1.3, 21.2.8</td>
<td>1912A.1</td>
</tr>
<tr>
<td>5. Verifying use of required design mix.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: Ch. 4, 5.2-5.4</td>
<td>1904A.2.2, 1913A.2, 1913A.3</td>
</tr>
<tr>
<td>6. At the time fresh concrete is sampled to fabricate specimens for strength tests, perform slump and air content tests, and determine the temperature of the concrete.</td>
<td>X</td>
<td>—</td>
<td>ASTM C 172 ASTM C 31 ACI 318: 5.6, 5.8</td>
<td>1913A.10</td>
</tr>
<tr>
<td>7. Inspection of concrete and shotcrete placement for proper application techniques.</td>
<td>X</td>
<td>—</td>
<td>ACI 318: 5.9, 5.10</td>
<td>1913A.6, 1913A.7, 1913A.8</td>
</tr>
<tr>
<td>8. Inspection for maintenance of specified curing temperature and techniques.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 5.11-5.13</td>
<td>1913A.9</td>
</tr>
<tr>
<td>10. Erection of precast concrete members.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: Ch. 16</td>
<td>—</td>
</tr>
<tr>
<td>11. Verification of in-situ concrete strength, prior to stressing of tendons in posttensioned concrete and prior to removal of shores and forms from beams and structural slabs.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 6.2</td>
<td>—</td>
</tr>
<tr>
<td>12. Inspect formwork for shape, location and dimensions of the concrete member being formed.</td>
<td>—</td>
<td>X</td>
<td>ACI 318: 6.1.1</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
a. Where applicable, see also Section 1707A.1, Special inspection for seismic resistance.
2. Licensed weighmaster to positively identify materials as to quantity and certify to each load by a batch ticket.

3. Batch tickets, including actual material quantities and weights shall accompany the load and shall be transmitted to the inspector of record by a truck driver with load identified thereon. The load shall not be placed without a batch ticket identifying the mix. The inspector will keep a daily record of placements, identifying each truck, its load, time of receipt and approximate location of deposit in the structure and will transmit a copy of the daily record to the enforcement agency.

1704A.4.4 Inspection of prestressed concrete.

1. In addition to the general inspection required for concrete work, all plant fabrication of prestressed concrete members or tensioning of posttensioned members constructed at the site shall be continuously inspected by an inspector specially approved for this purpose by the enforcement agency.

2. The prestressed concrete plant fabrication inspector shall check the materials, equipment, tensioning procedure and construction of the prestressed members and prepare daily written reports. The inspector shall make a verified report identifying the members by mark and shall include such pertinent data as lot numbers of tendons used, tendon jacking forces, age and strength of concrete at time of tendon release and such other information that may be required.

3. The inspector of prestressed members posttensioned at the site shall check the condition of the prestressing tendons, anchorage assemblies and concrete in the area of the anchorage, the tensioning equipment and the tensioning procedure, and prepare daily written reports. The inspector shall make a verified report of the prestressing operation identifying the members or tendons by mark and including such pertinent data as the initial cable slack, net elongation of tendons, jacking force developed, and such other information as may be required.

4. The verified reports of construction shall show that of the inspector’s own personal knowledge, the work covered by the report has been performed and materials used and installed in every material respect in compliance with the duly approved plans and specifications for plant fabrication inspection. The verified report shall be accompanied by test reports required for materials used. For site posttensioning inspections the verified report shall be accompanied by copies of calibration charts, certified by an approved testing laboratory, showing the relationship between gage readings and force applied by the jacks used in the prestressing procedure.

1704A.4.5 Concrete preplacement inspection. Concrete shall not be placed until the forms and reinforcement have been inspected, all preparations for the placement have been completed, and the preparations have been checked by the inspector of record.

1704A.4.6 Placing record. A record shall be kept on the site of the time and date of placing the concrete in each portion of the structure. Such record shall be kept until the completion of the structure and shall be open to the inspection of the enforcement agency.

1704A.5 Masonry construction. Masonry construction shall be inspected and verified in accordance with the requirements of Sections 1704A.5.1 through 1704A.5.3, depending on the occupancy category of the building or structure.

1704A.5.1 Glass unit masonry and masonry veneer in Occupancy Category IV. The minimum special inspection program for glass unit masonry or masonry veneer designed by Chapter 21A or 14, or by Chapter 6 of TMS 402/ACI 530/ASCE 5, in structures classified as Occupancy Category IV, in accordance with Section 1604A.5, shall comply with Table 1704A.5.1.

1704A.5.2 Engineered masonry in Occupancy Category I. The minimum special inspection program for masonry designed by Section 2107A or 2108A or by chapters other than Chapter 5, 6 or 7 of TMS 402/ACI 530/ASCE 5 in structures classified as Occupancy Category II, in accordance with Section 1604A.5, shall comply with Table 1704A.5.1.

1704A.5.3 Engineered masonry in Occupancy Category II, III or IV. The minimum special inspection program for masonry designed by Section 2107A or 2108A or by chapters other than Chapter 6 of TMS 402/ACI 530/ASCE 5 in structures classified as Occupancy Category II, III, or IV, in accordance with Section 1604A.5, shall comply with Table 1704A.5.3.

1704A.6 Wood construction. Special inspections of the fabrication process of prefabricated wood structural elements and assemblies shall be in accordance with Section 1704A.2. Special inspections of site-built assemblies shall be in accordance with this section.

1704A.6.1 High-load diaphragms. High-load diaphragms designed in accordance with Table 2306.2.1(2) shall be installed with special inspections as indicated in Section 1704A.1. The special inspector shall inspect the wood structural panel sheathing to ascertain whether it is of the grade and thickness shown on the approved building plans. Additionally, the special inspector must verify the nominal size of framing members at adjoining panel edges, the nail or staple diameter and length, the number of fastener lines and that the spacing between fasteners in each line and at edge margins agrees with the approved building plans.

1704A.6.2 Metal-plate-connected wood trusses spanning 60 feet or greater. Where a truss clear span is 60 feet (18 288 mm) or greater, the special inspector shall verify that the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing are installed in accordance with the approved truss submittal package.
1704A.6.3 Wood structural elements and assemblies. Special inspection of wood structural elements and assemblies is required, as specified in this section, to ensure conformance with approved drawings and specifications and applicable standards.

The special inspector shall furnish a verified report to the design professional in general responsible charge of construction observation, the structural engineer and the enforcement agency, in accordance with Title 24, Part 1 and this chapter. The verified report shall list all inspected members or trusses, and shall indicate whether or not the inspected members or trusses conform with applicable standards and the approved drawings and specifications. Any nonconforming items shall be indicated on the verified report.

1704A.6.3.1 Structural glued-laminated timber. Manufacture of all structural glued-laminated timber shall be continuously inspected by a qualified special inspector approved by the enforcement agency.

The special inspector shall verify that proper quality control procedures and tests have been employed for all materials and the manufacturing process, and shall perform visual inspection of the finished product. Each inspected member shall be stamped by the special inspector with an identification mark.

Exception: Special inspection is not required for noncustom members of 5 1/6 inch (130 mm) maximum width and 18 inch (457 mm) maximum depth, and with a maximum clear span of 32 feet (9754 mm), manufactured and marked in accordance with ANSI/AITC A 190.1 Section 6.1.1 for noncustom members.

1704A.6.3.2 Manufactured open web trusses. The manufacture of open web trusses shall be continuously inspected by a qualified special inspector approved by the enforcement agency.

The special inspector shall verify that proper quality control procedures and tests have been employed for all materials and the manufacturing process, and shall perform visual inspection of the finished product. Each inspected truss shall be stamped with an identification mark by the special inspector.

1704A.6.4 Timber connectors. The installation of all split ring and shear plate timber connectors, and timber rivets shall be continuously inspected by a qualified inspector approved by the enforcement agency. The inspector shall furnish the architect, structural engineer and the enforcement agency with a report duly verified by him that the materials, timber connectors and workmanship conform to the approved plans and specifications.

1704A.7 Soils. Special inspections for existing site soil conditions, fill placement and load-bearing requirements shall be as required by this section and Table 1704A.7. The approved geotechnical report, and the construction documents prepared by the registered design professionals shall be used to determine compliance. During fill placement, the special inspector shall determine that proper materials and procedures are used in accordance with the provisions of the approved geotechnical report.

Exception: Where Section 1803 does not require reporting of materials and procedures for fill placement, the special inspector shall verify that the in-place dry density of the compacted fill is not less than 90 percent of the maximum dry density at optimum moisture content determined in accordance with ASTM D 1557.

1704A.7.1 Soil fill. All fills used to support the foundations of any building or structure shall be continuously inspected by the geotechnical engineer or his or her qualified representative. It shall be the responsibility of the geotechnical engineer to verify that fills meet the requirements of the specifications and to coordinate all fill inspection and testing during the construction involving such fills.

The duties of the geotechnical engineer or his or her qualified representative shall include, but need not be limited to, the observation of cleared areas and benches prepared to receive fill; observation of the removal of all unsuitable soils and other materials; the approval of soils to be used as fill material; the inspection of placement and compaction of fill materials; the testing of the fills; and the inspection or review of geotechnical drainage devices where required by the soils investigation, buttress fills or other similar protective measures.

A verified report shall be submitted to the enforcement agency by the geotechnical engineer. The report shall indicate that all the tests required by the construction documents were completed and that the tested materials were in compliance with the construction documents.

1704A.8 Driven deep foundations. Special inspections shall be performed during installation and testing of driven deep foundation elements as required by Table 1704A.8. The approved geotechnical report, and the construction documents prepared by the registered design professionals, shall be used to determine compliance.

1704A.8.1 Driven deep foundations observation. The installation of driven deep foundations shall be continuously observed by a qualified representative of the geotechnical engineer responsible for that portion of the project.

The representative of the geotechnical engineer shall make a report of the deep foundation-driving operation giving such pertinent data as the physical characteristics of the deep foundation-driving equipment, identifying marks for each deep foundation, the total depth of embedment for each deep foundation; and when the allowable deep foundation loads are determined by a dynamic load formula, the design formula used, and the permanent penetration under the last 10 blows. One copy of the report shall be sent to the enforcement agency.

1704A.9 Cast-in-place deep foundations. Special inspections shall be performed during installation and testing of cast-in-place deep foundation elements as required by Table 1704A.9. The approved geotechnical report, and the construction documents prepared by the registered design professionals, shall be used to determine compliance.
TABLE 1704A.5.1
LEVEL 1 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>FREQUENCY OF INSPECTION</th>
<th>REFERENCE FOR CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTINUOUS</td>
<td>PERIODIC</td>
</tr>
<tr>
<td>1. Compliance with required inspection provisions of the construction documents and the approved submittals shall be verified.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>2. Verification of $f'{m}$ and $f'{asc}$ prior to construction except where specifically exempted by this code.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>3. Verification of slump flow and VSI as delivered to the site for self-consolidating grout.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>4. As masonry construction begins, the following shall be verified to ensure compliance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Proportions of site-prepared mortar.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Construction of mortar joints.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Location of reinforcement, connectors, prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>d. Prestressing technique.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>e. Grade and size of prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>5. During construction the inspection program shall verify:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Size and location of structural elements.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Type, size and location of anchors, including other details of anchorage of masonry to structural members, frames or other construction.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Specified size, grade and type of reinforcement, anchor bolts, prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>d. Welding of reinforcing bars.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>e. Preparation, construction and protection of masonry during cold weather (temperature below 40°F) or hot weather (temperature above 90°F).</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>f. Application and measurement of prestressing force.</td>
<td>X</td>
<td>—</td>
</tr>
</tbody>
</table>

(continued)
TABLE 1704A.5.1—continued
LEVEL 1 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>FREQUENCY OF INSPECTION</th>
<th>REFERENCE FOR CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTINUOUS</td>
<td>PERIODIC</td>
</tr>
<tr>
<td>6. Prior to grouting, the following shall be verified to ensure compliance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Grout space is clean.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>b. Placement of reinforcement and connectors, and prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>c. Proportions of site-prepared grout and prestressing grout for bonded tendons.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>d. Construction of mortar joints.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>7. Grout placement shall be verified to ensure compliance:</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>a. Grouting of prestressing bonded tendons.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>8. Preparation of any required grout specimens, mortar specimens and/or prisms shall be observed.</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

For SI: °C = ([°F] - 32)/1.8.

a. The specific standards referenced are those listed in Chapter 35.
TABLE 1704A.5.3
LEVEL 2 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REFERENCE FOR CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compliance with required inspection provisions of the construction documents and the approved submittals.</td>
<td>—</td>
<td>X</td>
<td>CBC Section 530/ASCE 5°, TMS 602/ACI 530.1/ASCE 5°</td>
</tr>
<tr>
<td>2. Verification of (f'c) and (f'{mac}) prior to construction and for every 5,000 square feet during construction.</td>
<td>—</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>3. Verification of proportions of materials in premixed or preblended mortar and grout as delivered to the site.</td>
<td>—</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>4. Verification of slump flow and VSI as delivered to the site for self-consolidating grout.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. The following shall be verified to ensure compliance:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Proportions of site-prepared mortar, grout and prestressing grout for bonded tendons.</td>
<td>—</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>b. Placement of masonry units and construction of mortar joints.</td>
<td>—</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>c. Placement of reinforcement, connectors and prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
<td>Sec. 1.15</td>
</tr>
<tr>
<td>d. Grout space prior to grout.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>e. Placement of grout.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>f. Placement of prestressing grout.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>g. Size and location of structural elements.</td>
<td>—</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>h. Type, size and location of anchors, including other details of anchorage of masonry to structural members, frames or other construction.</td>
<td>X</td>
<td>—</td>
<td>Sec. 1.2.2(e), 1.16.1</td>
</tr>
<tr>
<td>i. Specified size, grade and type of reinforcement, anchor bolts, prestressing tendons and anchorages.</td>
<td>—</td>
<td>X</td>
<td>Sec. 1.15</td>
</tr>
<tr>
<td>j. Welding of reinforcing bars.</td>
<td>X</td>
<td>—</td>
<td>Sec. 2.1.9, 7.2, 3.3.3.4 (b)</td>
</tr>
<tr>
<td>k. Preparation, construction and protection of masonry during cold weather (temperature below 40°F) or hot weather (temperature above 90°F).</td>
<td>—</td>
<td>X</td>
<td>Sec. 2104A.3, 2104A.4</td>
</tr>
<tr>
<td>l. Application and measurement of prestressing force.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. Preparation of any required grout specimens and/or prisms shall be observed.</td>
<td>X</td>
<td>—</td>
<td>Sec. 2105A.2.2, 2105A.3</td>
</tr>
</tbody>
</table>

For SI: °C = (°F - 32)/1.8, 1 square foot = 0.0929 m².

a. The specific standards referenced are those listed in Chapter 35.
TABLE 1704A.7
REQUIRED VERIFICATION AND INSPECTION OF SOILS

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS DURING TASK LISTED</th>
<th>PERIODICALLY DURING TASK LISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verify materials below shallow foundations are adequate to achieve the design bearing capacity.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>2. Verify excavations are extended to proper depth and have reached proper material.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>3. Perform classification and testing of compacted fill materials.</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>4. Verify use of proper materials, densities and lift thicknesses during placement and compaction of compacted fill.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>5. Prior to placement of compacted fill, observe subgrade and verify that site has been prepared properly.</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

TABLE 1704A.8
REQUIRED VERIFICATION AND INSPECTION OF DRIVEN DEEP FOUNDATION ELEMENTS

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS DURING TASK LISTED</th>
<th>PERIODICALLY DURING TASK LISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verify element materials, sizes and lengths comply with the requirements.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>2. Determine capacities of test elements and conduct additional load tests, as required.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>3. Observe driving operations and maintain complete and accurate records for each element.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>4. Verify placement locations and plumbness, confirm type and size of hammer, record number of blows per foot of penetration, determine required penetrations to achieve design capacity, record tip and butt elevations and document any damage to foundation element.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>5. For steel elements, perform additional inspections in accordance with Section 1704A.3.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. For concrete elements and concrete-filled elements, perform additional inspections in accordance with Section 1704A.4.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7. For specialty elements, perform additional inspections as determined by the registered design professional in responsible charge.</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

TABLE 1704A.9
REQUIRED VERIFICATION AND INSPECTION OF CAST-IN-PLACE DEEP FOUNDATION ELEMENTS

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS DURING TASK LISTED</th>
<th>PERIODICALLY DURING TASK LISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Observe drilling operations and maintain complete and accurate records for each element.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>2. Verify placement locations and plumbness, confirm element diameters, bell diameters (if applicable), lengths, embedment into bedrock (if applicable) and adequate end-bearing strata capacity. Record concrete or grout volumes.</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>3. For concrete elements, perform additional inspections in accordance with Section 1704A.4.</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
1704A.10 Helical pile foundations. Special inspections shall be performed continuously during installation of helical pile foundations. The information recorded shall include installation equipment used, pile dimensions, tip elevations, final depth, final installation torque and other pertinent installation data as required by the registered design professional in responsible charge. The approved geotechnical report and the construction documents prepared by the registered design professional shall be used to determine compliance.

1704A.11 Vertical masonry foundation elements. Special inspection shall be performed in accordance with Section 1704A.5 for vertical masonry foundation elements.

1704A.12 Sprayed fire-resistant materials. Special inspections for sprayed fire-resistant materials applied to floor, roof and wall assemblies and structural members shall be in accordance with Sections 1704A.12.1 through 1704A.12.6. Special inspections shall be based on the fire-resistance design as designated in the approved construction documents. The tests set forth in this section shall be based on samplings from specific floor, roof and wall assemblies and structural members. Special inspections shall be performed after the rough installation of electrical, automatic sprinkler, mechanical and plumbing systems and suspension systems for ceilings, where applicable.

1704A.12.1 Physical and visual tests. The special inspections shall include the following tests and observations to demonstrate compliance with the listing and the fire-resistance rating:

1. Condition of substrates.
2. Thickness of application.
3. Density in pounds per cubic foot (kg/m³).
5. Condition of finished application.

1704A.12.2 Structural member surface conditions. The surfaces shall be prepared in accordance with the approved fire-resistance design and the written instructions of approved manufacturers. The prepared surface of structural members to be sprayed shall be inspected before the application of the sprayed fire-resistant material.

1704A.12.3 Application. The substrate shall have a minimum ambient temperature before and after application as specified in the written instructions of approved manufacturers. The area for application shall be ventilated during and after application as required by the written instructions of approved manufacturers.

1704A.12.4 Thickness. No more than 10 percent of the thickness measurements of the sprayed fire-resistant materials applied to floor, roof and wall assemblies and structural members shall be less than the thickness required by the approved fire-resistance design, but in no case less than the minimum allowable thickness required by Section 1704A.12.4.1.

1704A.12.4.1 Minimum allowable thickness. For design thicknesses 1 inch (25 mm) or greater, the minimum allowable individual thickness shall be the design thickness minus 1/4 inch (6.4 mm). For design thicknesses less than 1 inch (25 mm), the minimum allowable individual thickness shall be the design thickness minus 25 percent. Thickness shall be determined in accordance with ASTM E 605. Samples of the sprayed fire-resistant materials shall be selected in accordance with Sections 1704A.12.4.2 and 1704A.12.4.3.

1704A.12.4.2 Floor, roof and wall assemblies. The thickness of the sprayed fire-resistant material applied to floor, roof and wall assemblies shall be determined in accordance with ASTM E 605, making not less than four measurements for each 1,000 square feet (93 m²) of the sprayed area in each story or portion thereof.

1704A.12.4.2.1 Cellular decks. Thickness measurements shall be selected from a square area, 12 inches by 12 inches (305 mm by 305 mm) in size. A minimum of four measurements shall be made, located symmetrically within the square area.

1704A.12.4.2.2 Fluted decks. Thickness measurements shall be selected from a square area, 12 inches by 12 inches (305 mm by 305 mm) in size. A minimum of four measurements shall be made, located symmetrically within the square area, including one each of the following: valley, crest and sides. The average of the measurements shall be reported.

1704A.12.4.3 Structural members. The thickness of the sprayed fire-resistant material applied to structural members shall be determined in accordance with ASTM E 605. Thickness testing shall be performed on not less than 25 percent of the structural members on each floor.

1704A.12.4.3.1 Beams and girders. At beams and girders, thickness measurements shall be made at nine locations around the beam or girder at each end of a 12-inch (305 mm) length.

1704A.12.4.3.2 Joists and trusses. At joists and trusses, thickness measurements shall be made at seven locations around the joist or truss at each end of a 12-inch (305 mm) length.

1704A.12.4.3.3 Wide-flanged columns. At wide-flanged columns, thickness measurements shall be made at 12 locations around the column at each end of a 12-inch (305 mm) length.

1704A.12.4.3.4 Hollow structural section and pipe columns. At hollow structural section and pipe columns, thickness measurements shall be made at a minimum of four locations around the column at each end of a 12-inch (305 mm) length.

1704A.12.5 Density. The density of the sprayed fire-resistant material shall not be less than the density specified in the approved fire-resistance design. Density of the sprayed fire-resistant material shall be determined in accordance with ASTM E 605. The test samples for determining the density of the sprayed fire-resistant materials shall be selected as follows:

1. From each floor, roof and wall assembly at the rate of not less than one sample for every 2,500 square feet (232 m²) or portion thereof of the sprayed area in each story.
2. From beams, girders, trusses and columns at the rate of not less than one sample for each type of structural member for each 2,500 square feet (232 m²) of floor area or portion thereof in each story.

1704A.12.6 Bond strength. The cohesive/adhesive bond strength of the cured sprayed fire-resistant material applied to floor, roof and wall assemblies and structural members shall not be less than 150 pounds per square foot (psf) (7.18 kN/m²). The cohesive/adhesive bond strength shall be determined in accordance with the field test specified in ASTM E 736 by testing in-place samples of the sprayed fire-resistant material selected in accordance with Sections 1704A.12.6.1 through 1704A.12.6.3.

1704A.12.6.1 Floor, roof and wall assemblies. The test samples for determining the cohesive/adhesive bond strength of the sprayed fire-resistant materials shall be selected from each floor, roof and wall assembly at the rate of not less than one sample for every 2,500 square feet (232 m²) of the sprayed area in each story or portion thereof.

1704A.12.6.2 Structural members. The test samples for determining the cohesive/adhesive bond strength of the sprayed fire-resistant materials shall be selected from beams, girders, trusses, columns and other structural members at the rate of not less than one sample for each type of structural member for each 2,500 square feet (232 m²) of floor area or portion thereof in each story.

1704A.12.6.3 Primer, paint and encapsulant bond tests. Bond tests to qualify a primer, paint or encapsulant shall be conducted when the sprayed fire-resistant material is applied to a primed, painted or encapsulated surface for which acceptable bond-strength performance between these coatings and the fire-resistant material has not been determined. A bonding agent approved by the SFRM manufacturer shall be applied to a primed, painted or encapsulated surface where the bond strengths are found to be less than required values.

1704A.13 Mastic and intumescent fire-resistant coatings. Special inspections for mastic and intumescent fire-resistant coatings applied to structural elements and decks shall be in accordance with AWCI 12-B. Special inspections shall be based on the fire-resistance design as designated in the approved construction documents.

1704A.14 Exterior insulation and finish systems (EIFS). Special inspections shall be required for all EIFS applications.

Exceptions:

1. Special inspections shall not be required for EIFS applications installed over a water-resistant barrier with a means of draining moisture to the exterior.

2. Special inspections shall not be required for EIFS applications installed over masonry or concrete walls.

1704A.14.1 Water-resistant barrier coating. A water-resistant barrier coating complying with ASTM E 2570 requires special inspection of the water-resistant barrier coating when installed over a sheathing substrate.

1704A.15 Special cases. Special inspections shall be required for proposed work that is, in the opinion of the building official, unusual in its nature, such as, but not limited to, the following examples:

1. Construction materials and systems that are alternatives to materials and systems prescribed by this code.

2. Unusual design applications of materials described in this code.

3. Materials and systems required to be installed in accordance with additional manufacturer's instructions that prescribe requirements not contained in this code or in standards referenced by this code.

[F] 1704A.16 Special inspection for smoke control. Smoke control systems shall be tested by a special inspector.

[F] 1704A.16.1 Testing scope. The test scope shall be as follows:

1. During erection of ductwork and prior to concealment for the purposes of leakage testing and recording of device location.

2. Prior to occupancy and after sufficient completion for the purposes of pressure difference testing, flow measurements and detection and control verification.

[F] 1704A.16.2 Qualifications. Special inspection agencies for smoke control shall have expertise in fire protection engineering, mechanical engineering and certification as air balancers.

1704A.17 Shotcrete. All shotcrete work shall be continuously inspected by an inspector specially approved for that purpose by the enforcement agency. The special shotcrete inspector shall check the materials, placing equipment, details of construction and construction procedure. The inspector shall furnish a verified report that of his or her own personal knowledge the work covered by the report has been performed and materials used and installed in every material respect in compliance with the duly approved plans and specifications.

1704A.17.1 Visual examination for structural soundness of in-place shotcrete. Completed shotcrete work shall be checked visually for reinforcing bar embedment, voids, rock pockets, sand streaks and similar deficiencies by examining a minimum of three 3-inch (76 mm) cores taken from three areas chosen by the design engineer which represent the worst congestion of reinforcing bars occurring in the project. Extra reinforcing bars may be added to noncongested areas and cores may be taken from these areas. The cores shall be examined by the special inspector and a report submitted to the enforcement agency prior to final approval of the shotcrete.

Exception: Shotcrete work fully supported on earth, minor repairs and when, in the opinion of the enforcement agency, no special hazard exists.

SECTION 1705A
STATEMENT OF SPECIAL INSPECTIONS

1705A.1 General. Where special inspection or testing is required by Section 1704A, 1707A or 1708A, the registered
design professional in responsible charge shall prepare a statement of special inspections in accordance with Section 1705A for submittal by the applicant (see Section 1704A.1.1).

1705A.2 Content of statement of special inspections. The statement of special inspections shall identify the following:

1. The materials, systems, components and work required to have special inspection or testing by the building official or by the registered design professional responsible for each portion of the work.
2. The type and extent of each special inspection.
3. The type and extent of each test.
4. Additional requirements for special inspection or testing for seismic or wind resistance as specified in Section 1705A.3, 1705A.4, 1707A or 1708A.
5. For each type of special inspection, identification as to whether it will be continuous special inspection or periodic special inspection.

1705A.3 Seismic resistance. The statement of special inspections shall include seismic requirements for cases covered in Sections 1705A.3.1 through 1705A.3.5.

1705A.3.1 Seismic-force-resisting systems. The seismic-force-resisting systems in structures assigned to Seismic Design Category C, D, E or F, in accordance with Section 1613.

Exception: Requirements for the seismic-force-resisting system are permitted to be excluded from the statement of special inspections for steel systems in structures assigned to Seismic Design Category C that are not specifically detailed for seismic resistance, with a response modification coefficient, R, of 3 or less, excluding cantilever column systems.

1705A.3.2 Designated seismic systems. Designated seismic systems in structures assigned to Seismic Design Category D, E or F.

1705A.3.3 Seismic Design Category C. The following additional systems and components in structures assigned to Seismic Design Category C:

1. Heating, ventilating and air-conditioning (HVAC) ductwork containing hazardous materials and anchorage of such ductwork.
2. Piping systems and mechanical units containing flammable, combustible or highly toxic materials.
3. Anchorage of electrical equipment used for emergency or standby power systems.

1705A.3.4 Seismic Design Category D. The following additional systems and components in structures assigned to Seismic Design Category D:

1. Systems required for Seismic Design Category C.
2. Exterior wall panels and their anchorage.
3. Suspended ceiling systems and their anchorage.
5. Steel storage racks and their anchorage, where the importance factor is equal to 1.5 in accordance with Section 15.5.3 of ASCE 7.

1705A.3.5 Seismic Design Category E or F. The following additional systems and components in structures assigned to Seismic Design Category E or F:

1. Systems required for Seismic Design Categories C and D.
2. Electrical equipment.

1705A.3.6 Seismic requirements in the statement of special inspections. When Sections 1705A.3 through 1705A.3.5 specify that seismic requirements be included, the statement of special inspections shall identify the following:

1. The designated seismic systems and seismic-force-resisting systems that are subject to special inspections in accordance with Sections 1705A.3 through 1705A.3.5.
2. The additional special inspections and testing to be provided as required by Sections 1707A and 1708A and other applicable sections of this code, including the applicable standards referenced by this code.

1705A.4 Wind resistance. The statement of special inspections shall include wind requirements for structures constructed in the following areas:

1. In wind Exposure Category B, where the 3-second-gust basic wind speed is 120 miles per hour (mph) (52.8 m/s) or greater.
2. In wind Exposure Category C or D, where the 3-second-gust basic wind speed is 110 mph (49 m/s) or greater.

1705A.4.1 Wind requirements in the statement of special inspections. When Section 1705A.4 specifies that wind requirements be included, the statement of special inspections shall identify the main wind-force-resisting systems and wind-resisting components subject to special inspections as specified in Section 1705A.4.2.

1705A.4.2 Detailed requirements. The statement of special inspections shall include at least the following systems and components:

1. Roof cladding and roof framing connections.
2. Wall connections to roof and floor diaphragms and framing.
3. Roof and floor diaphragm systems, including collectors, drag struts and boundary elements.
4. Vertical wind-force-resisting systems, including braced frames, moment frames and shear walls.
5. Wind-force-resisting system connections to the foundation.
6. Fabrication and installation of systems or components required to meet the impact-resistance requirements of Section 1609.1.2.

Exception: Fabrication of manufactured systems or components that have a label indicating compliance with the wind-load and impact-resistance requirements of this code.
SECTION 1706A
SPECIAL INSPECTIONS FOR
WIND REQUIREMENTS

1706A.1 Special inspections for wind requirements. Special inspections itemized in Sections 1706A.2 through 1706A.4, unless exempted by the exceptions to Section 1704A.1, are required for buildings and structures constructed in the following areas:

1. In wind Exposure Category B, where the 3-second-gust basic wind speed is 120 miles per hour (52.8 m/sec) or greater.
2. In wind Exposure Categories C or D, where the 3-second-gust basic wind speed is 110 mph (49 m/sec) or greater.

1706A.2 Structural wood. Continuous special inspection is required during field gluing operations of elements of the main windforce-resisting system. Periodic special inspection is required for nailing, bolting, anchoring and other fastening of components within the main windforce-resisting system, including wood shear walls, wood diaphragms, drag struts, braces and hold-downs.

Exception: Special inspection is not required for wood shear walls, shear panels and diaphragms, including nailing, bolting, anchoring and other fastening to other components of the main windforce-resisting system, where the fastener spacing of the sheathing is more than 4 inches (102 mm) on center.

1706A.3 Cold-formed steel light-frame construction. Periodic special inspection is required during welding operations of elements of the main windforce-resisting system. Periodic special inspection is required for screw attachment, bolting, anchoring and other fastening of components within the main windforce-resisting system, including shear walls, braces, diaphragms, collectors (drag struts) and hold-downs.

Exception: Special inspection is not required for cold-formed steel light-frame shear walls, braces, diaphragms, collectors (drag struts) and hold-downs where either of the following apply:

1. The sheathing is gypsum board or fiberboard.
2. The sheathing is wood structural panel or steel sheets on only one side of the shear wall, shear panel or diaphragm assembly and the fastener spacing of the sheathing is more than 4 inches (102 mm) on center (o.c.).

1706A.4 Wind-resisting components. Periodic special inspection is required for the following systems and components:

1. Roof cladding.
2. Wall cladding.

SECTION 1707A
SPECIAL INSPECTIONS FOR
SEISMIC RESISTANCE

1707A.1 Special inspections for seismic resistance. Special inspections itemized in Sections 1707A.2 through 1707A.9, unless exempted by the exceptions of Section 1704A.1, 1705A.3, or 1705A.3.1, are required for the following:

1. The seismic-force-resisting systems in structures assigned to Seismic Design Category C, D, E or F, as determined in Section 1613.
2. Designated seismic systems in structures assigned to Seismic Design Category D, E or F.
3. Architectural, mechanical and electrical components in structures assigned to Seismic Design Category C, D, E or F that are required in Sections 1707A.6 and 1707A.7.

1707A.2 Structural steel. Special inspection for structural steel shall be in accordance with the quality assurance plan requirements of AISC 341.

Exceptions:

1. Special inspections of structural steel in structures assigned to Seismic Design Category C that are not specifically detailed for seismic resistance, with a response modification coefficient, R, of 3 or less, excluding cantilever column systems.
2. For ordinary moment frames, ultrasonic and magnetic particle testing of complete joint penetration groove welds are only required for demand critical welds.

1707A.3 Structural wood. Continuous special inspection is required during field gluing operations of elements of the seismic-force-resisting system. Periodic special inspection is required for nailing, bolting, anchoring and other fastening of components within the seismic-force-resisting system, including wood shear walls, wood diaphragms, drag struts, braces, shear panels and hold-downs.

Exception: Special inspection is not required for wood shearwalls, shear panels and diaphragms, including nailing, bolting, anchoring and other fastening to other components of the seismic-force-resisting system, where the fastener spacing of the sheathing is more than 4 inches (102 mm) on center (o.c.)

1707A.4 Cold-formed steel light-frame construction. Periodic special inspection is required during welding operations of elements of the seismic-force-resisting system. Periodic special inspection is required for screw attachment, bolting, anchoring and other fastening of components within the seismic-force-resisting system, including shear walls, braces, diaphragms, collectors (drag struts) and hold-downs.

1707A.5 Storage racks and access floors. Periodic special inspection is required during the anchorage of access floors and storage racks 8 feet (2438 mm) or greater in height in structures assigned to Seismic Design Category D, E or F.

1707A.6 Architectural components. Periodic special inspection during the erection and fastening of exterior cladding, interior and exterior nonbearing walls and interior and exterior...
VENeer in structures assigned to Seismic Design Category D, E or F.

Exception: [DSA-SS & DSA-SS/CC] Special inspection is not required for interior nonbearing walls weighing 15 psf (73.5 N/m²) or less.

1707A.7 Mechanical and electrical components. Special inspection for mechanical and electrical equipment shall be as follows:

1. Periodic special inspection is required during the anchorage of electrical equipment for emergency or standby power systems in structures assigned to Seismic Design Category C, D, E or F;
2. Periodic special inspection is required during the installation of anchorage of other electrical equipment in structures assigned to Seismic Design Category E or F;
3. Periodic special inspection is required during installation of piping systems intended to carry flammable, combustible or highly toxic contents and their associated mechanical units in structures assigned to Seismic Design Category C, D, E or F;
4. Periodic special inspection is required during the installation of HVAC ductwork that will contain hazardous materials in structures assigned to Seismic Design Category C, D, E or F; and
5. Periodic special inspection is required during the installation of vibration isolation systems in structures assigned to Seismic Design Category C, D, E or F where the construction documents require a nominal clearance of 1/4 inch (6.4 mm) or less between the equipment support frame and restraint.

1707A.8 Designated seismic system verifications. The special inspector shall examine designated seismic systems requiring seismic qualification in accordance with Section 1708A.4 and verify that the label, anchorage or mounting conforms to the certificate of compliance.

1707A.9 Seismic isolation and damping systems. Periodic special inspection is required during the fabrication and installation of isolator units and damping devices. Continuous special inspection is required for prototype and production testing of isolator units and damping devices.

SECTION 1708A

STRUCTURAL TESTING FOR SEISMIC RESISTANCE

1708A.1 Testing and qualification for seismic resistance. The testing and qualification specified in Sections 1708A.2 through 1708A.5, unless exempted from special inspections by the exceptions of Section 1704A.1, 1705A.3 or 1705A.3.1 are required as follows:

1. The seismic-force-resisting systems in structures assigned to Seismic Design Category D, E or F, as determined in Section 1613A shall meet the requirements of Sections 1708A.2 and 1708A.3, as applicable.
2. Designated seismic systems in structures assigned to Seismic Design Category D, E or F subject to the special certification requirements of ASCE 7 Section 13.2.2 are required to be tested in accordance with Section 1708A.4.
3. Architectural, mechanical and electrical components in structures assigned to Seismic Design Category D, E or F are required to be tested in accordance with Section 1708A.4 where the general design requirements of ASCE 7 Section 13.2.1, Item 2 for manufacturer's certification are satisfied by testing.
4. The seismic isolation system in seismically isolated structures and damping devices shall meet the testing requirements of Section 1708A.5.

1708A.2 Concrete reinforcement. Where reinforcement complying with ASTM A 615 is used to resist earthquake-induced flexural and axial forces in special moment frames, special structural walls and coupling beams connecting special structural walls, in structures assigned to Seismic Design Category B, C, D, E or F as determined in Section 1613, the reinforcement shall comply with Section 21.1.5.2 of ACI 318. Certified mill test reports shall be provided for each shipment of such reinforcement. Where reinforcement complying with ASTM A 615 is to be welded, chemical tests shall be performed to determine weldability in accordance with Section 3.5.2 of ACI 318.

1708A.3 Structural steel. Testing for structural steel shall be in accordance with the quality assurance plan requirements of AISC 341.

Exception: For ordinary moment frames, ultrasonic and magnetic particle testing of complete joint penetration groove welds are only required for demand critical welds.

1708A.4 Seismic certification of nonstructural components. The registered design professional shall state the applicable seismic certification requirements for nonstructural components and designated seismic systems on the construction documents.

1. The manufacturer of each designated seismic system component subject to the provisions of ASCE 7 Section 13.2.2 shall test or analyze the component and its mounting system or anchorage and submit a certificate of compliance for review and acceptance by the registered design professional responsible for the design of the designated seismic system and for approval by the building official. Certification shall be based on an actual test on a shake table, by three-dimensional shock tests, by an analytical method using dynamic characteristics and forces, by the use of experience data (i.e., historical data demonstrating acceptable seismic performance) or by more rigorous analysis providing for equivalent safety.

[OSHPD 1 & 4] Active or energized components shall be certified exclusively on the basis of approved shake table testing in accordance with ASCE 7 Section 13.2.5 or experience data in accordance with ASCE 7 Section 13.2.6 unless it can be shown that the component is inherently rugged by comparison with similar seismically certified components.

Unless specified otherwise in the test standard, a minimum of two tests are required. Where a range of products
are tested, the two tests can be on different size products as required by design changes in the internal structures.

Exception: When a single product (and not a product line with more than one product with variations) is certified and manufacturing process is ISO 9001 certified, one dynamic test shall be permitted.

For a multicomponent system, where active or energized components are certified by tests or experience data, connecting elements, attachments and supports can be justified by supporting analysis.

Special seismic certification in accordance with ASCE 7 Section 13.2.2 shall be required for the following systems, equipment, and components, unless specified otherwise by the enforcement agency:

1. Emergency and standby power systems including generators, turbines, fuel tanks and automatic transfer switches
2. Elevator equipment (excluding elevator cabs)
3. Components with hazardous contents (excluding pipes, ducts, and underground tanks)
4. Smoke control fans
5. Exhaust fans
6. Switchgear
7. Motor control centers
8. X-Ray machines in fluoroscopy rooms
9. CT (computerized tomography) Scanners
10. Air conditioning units
11. Air handling units
12. Chillers
13. Cooling towers (excluding cooling towers designed as nonbuilding structures)
14. Transformers
15. Electrical substations
16. UPS (Inverters) and associated batteries
17. Distribution panels including electrical panel boards
18. Control panels including fire alarm, fire suppression, preaction, and auxiliary or remote power supplies

Exceptions:

1. Equipment and components installed in nonconforming buildings, unless the equipment or component provides a service/system or utility to conforming buildings, or building is designated as SPC 3 or higher.
2. Equipment and components weighing not more than 20 lbs supported directly on structures (and not mounted on other equipment or components) with supports and attachments in accordance with ASCE 7 Chapter 13 as modified by Section 1615A.

2. Manufacturer’s certification of compliance for the general design requirements of ASCE 7 Section 13.2.1 shall be based on analysis, testing or experience data.

1708A.5 Seismically isolated structures and structures with damping devices. For required system tests, see Sections 17.8 and 18.9 of ASCE 7.

Prototype and production testing and associated acceptance criteria for isolator units and damping devices shall be subject to preapproval by the building official. Testing exemption for similar units shall require approval by the building official.

SECTION 1709A

CONTRACTOR RESPONSIBILITY

1709A.1 Contractor responsibility. Each contractor responsible for the construction of a main wind- or seismic-force-resisting system, designated seismic system or a wind- or seismic-resisting component listed in the statement of special inspections shall submit a written statement of responsibility to the building official and the owner prior to the commencement of work on the system or component. The contractor’s statement of responsibility shall contain acknowledgement of awareness of the special requirements contained in the statement of special inspection.

SECTION 1710A

STRUCTURAL OBSERVATIONS

1710A.1 General. Where required by the provisions of Section 1710A.2 or 1710A.3, the owner shall employ a registered design professional to perform structural observations as defined in Section 1702A.

Prior to the commencement of observations, the structural observer shall submit to the building official a written statement identifying the frequency and extent of structural observations.

At the conclusion of the work included in the permit, the structural observer shall submit to the building official a written statement that the site visits have been made and identify any reported deficiencies which, to the best of the structural observer's knowledge, have not been resolved.

1710A.2 Structural observations for seismic resistance. Observation of the construction shall be provided by the architect or engineer in responsible charge as set forth in Title 24, Part 1.

1710A.3 Structural observations for wind requirements. Observation of the construction shall be provided by the architect or engineer in responsible charge as set forth in Title 24, Part 1.

SECTION 1711A

DESIGN STRENGTHS OF MATERIALS

1711A.1 Conformance to standards. The design strengths and permissible stresses of any structural material that are identified by a manufacturer's designation as to manufacture and grade by mill tests, or the strength and stress grade is otherwise confirmed to the satisfaction of the building official, shall conform to the specifications and methods of design of accepted
engineering practice or the approved rules in the absence of applicable standards.

1711A.2 New materials. For materials that are not specifically provided for in this code, the design strengths and permissible stresses shall be established by tests as provided for in Section 1712A.

SECTION 1712A
ALTERNATIVE TEST PROCEDURE

1712A.1 General. In the absence of approved rules or other approved standards, the building official shall make, or cause to be made, the necessary tests and investigations; or the building official shall accept duly authenticated reports from approved agencies in respect to the quality and manner of use of new materials or assemblies as provided for in Section 104.11. The cost of all tests and other investigations required under the provisions of this code shall be borne by the applicant.

SECTION 1713A
TEST SAFE LOAD

1713A.1 Where required. Where proposed construction is not capable of being designed by approved engineering analysis, or where proposed construction design method does not comply with the applicable material design standard, the system of construction or the structural unit and the connections shall be subjected to the tests prescribed in Section 1715A. The building official shall accept duly authenticated reports from approved agencies in respect to the quality and manner of use of new materials or assemblies as provided for in Section 104.11. The cost of all tests and other investigations required under the provisions of this code shall be borne by the applicant.

SECTION 1714A
IN-SITU LOAD TESTS

1714A.1 General. Whenever there is a reasonable doubt as to the stability or load-bearing capacity of a completed building, structure or portion thereof for the expected loads, an engineering assessment shall be required. The engineering assessment shall involve either a structural analysis or an in-situ load test, or both. The structural analysis shall be based on actual material properties and other as-built conditions that affect stability or load-bearing capacity, and shall be conducted in accordance with the applicable design standard. If the structural assessment determines that the load-bearing capacity is less than that required by the code, load tests shall be conducted in accordance with Section 1714A.2. If the building, structure or portion thereof is found to have inadequate stability or load-bearing capacity for the expected loads, modifications to ensure structural adequacy or the removal of the inadequate construction shall be required.

1714A.2 Test standards. Structural components and assemblies shall be tested in accordance with the appropriate material standards listed in Chapter 35. In the absence of a standard that contains an applicable load test procedure, the test procedure shall be developed by a registered design professional and approved. The test procedure shall simulate loads and conditions of application that the completed structure or portion thereof will be subjected to in normal use.

1714A.3 In-situ load tests. In-situ load tests shall be conducted in accordance with Section 1714A.3.1 or 1714A.3.2 and shall be supervised by a registered design professional. The test shall simulate the applicable loading conditions specified in Chapter 16 as necessary to address the concerns regarding structural stability of the building, structure or portion thereof.

1714A.3.1 Load test procedure specified. Where a standard listed in Chapter 35 contains an applicable load test procedure and acceptance criteria, the test procedure and acceptance criteria in the standard shall apply. In the absence of specific load factors or acceptance criteria, the load factors and acceptance criteria in Section 1714A.3.2 shall apply.

1714A.3.2 Load test procedure not specified. In the absence of applicable load test procedures contained within a standard referenced by this code or acceptance criteria for a specific material or method of construction, such existing structure shall be subjected to a test procedure developed by a registered design professional that simulates applicable loading and deformation conditions. For components that are not a part of the seismic-load-resisting system, the test load shall be equal to two times the unfactored design loads. The test load shall be left in place for a period of 24 hours. The structure shall be considered to have successfully met the test requirements where the following criteria are satisfied:

1. Under the design load, the deflection shall not exceed the limitations specified in Section 1604.3.
2. Within 24 hours after removal of the test load, the structure shall have recovered not less than 75 percent of the maximum deflection.
3. During and immediately after the test, the structure shall not show evidence of failure.

SECTION 1715A
PRECONSTRUCTION LOAD TESTS

1715A.1 General. In evaluating the physical properties of materials and methods of construction that are not capable of being designed by approved engineering analysis or do not comply with applicable material design standards listed in Chapter 35, the structural adequacy shall be predetermined based on the load test criteria established in this section.

1715A.2 Load test procedures specified. Where specific load test procedures, load factors and acceptance criteria are included in the applicable design standards listed in Chapter 35, such test procedures, load factors and acceptance criteria shall apply. In the absence of specific test procedures, load factors or acceptance criteria, the corresponding provisions in Section 1715A.3 shall apply.

1715A.3 Load test procedures not specified. Where load test procedures are not specified in the applicable design standards listed in Chapter 35, the load-bearing and deformation capacity of structural components and assemblies shall be determined on the basis of a test procedure developed by a registered design professional that simulates applicable loading and deformation conditions. For components and assemblies that
2010 CALIFORNIA BUILDING CODE

are not a part of the seismic-force-resisting system, the test shall be as specified in Section 1715A.3.1. Load tests shall simulate the applicable loading conditions specified in Chapter 16.

1715A.3.1 Test procedure. The test assembly shall be subjected to an increasing superimposed load equal to not less than two times the superimposed design load. The test load shall be left in place for a period of 24 hours. The tested assembly shall be considered to have successfully met the test requirements if the assembly recovers not less than 75 percent of the maximum deflection within 24 hours after the removal of the test load. The test assembly shall then be reloaded and subjected to an increasing superimposed load until either structural failure occurs or the superimposed load is equal to two and one-half times the load at which the deflection limitations specified in Section 1715A.3.2 were reached, or the load is equal to two and one-half times the superimposed design load. In the case of structural components and assemblies for which deflection limitations are not specified in Section 1715A.3.2, the test specimen shall be subjected to an increasing superimposed load until structural failure occurs or the load is equal to two and one-half times the desired superimposed design load. The allowable superimposed design load shall be taken as the lesser of:

1. The load at the deflection limitation given in Section 1715A.3.2.
2. The failure load divided by 2.5.
3. The maximum load applied divided by 2.5.

1715A.3.2 Deflection. The deflection of structural members under the design load shall not exceed the limitations in Section 1604.3.

1715A.4 Wall and partition assemblies. Load-bearing wall and partition assemblies shall sustain the test load both with and without window framing. The test load shall include all design load components. Wall and partition assemblies shall be tested both with and without door and window framing.

1715A.5 Exterior window and door assemblies. The design pressure rating of exterior windows and doors in buildings shall be determined in accordance with Section 1715A.5.1 or 1715A.5.2.

Exception: Structural wind load design pressures for window units smaller than the size tested in accordance with Section 1715A.5.1 or 1715A.5.2 shall be permitted to be higher than the design value of the tested unit provided such higher pressures are determined by accepted engineering analysis. All components of the small unit shall be the same as the tested unit. Where such calculated design pressures are used, they shall be validated by an additional test of the window unit having the highest allowable design pressure.

1715A.5.1 Exterior windows and doors. Exterior windows and sliding doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/I.S.2/A440. The label shall state the name of the manufacturer, the approved labeling agency and the product designation as specified in AAMA/WDMA/CSA101/I.S.2/A440. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/I.S.2/A440 or comply with Section 1715A.5.2. Products tested and labeled as conforming to AAMA/WDMA/CSA 101/I.S.2/A440 shall not be subject to the requirements of Sections 2403.2 and 2403.3.

1715A.5.2 Exterior windows and door assemblies not provided for in Section 1715A.5.1. Exterior window and door assemblies shall be tested in accordance with ASTM E330. Structural performance of garage doors shall be determined in accordance with either ASTM E330 or ANSI/DASMA 108, and shall meet the acceptance criteria of ANSI/DASMA 108. Exterior window and door assemblies containing glass shall comply with Section 2403. The design pressure for testing shall be calculated in accordance with Chapter 16. Each assembly shall be tested for 10 seconds at a load equal to 1.5 times the design pressure.

1715A.6 Test specimens. Test specimens and construction shall be representative of the materials, workmanship and details normally used in practice. The properties of materials used to construct the test assembly shall be determined on the basis of tests on samples taken from the load assembly or on representative samples of the materials used to construct the load test assembly. Required tests shall be conducted or witnessed by an approved agency.

SECTION 1716A
MATERIAL AND TEST STANDARDS

1716A.1 Test standards for joist hangers and connectors.

1716A.1.1 Test standards for joist hangers. The vertical load-bearing capacity, torsional moment capacity and deflection characteristics of joist hangers shall be determined in accordance with ASTM D 1761 using lumber having a specific gravity of 0.49 or greater, but not greater than 0.55, as determined in accordance with AF&PA NDS for the joist and headers.

Exception: The joist length shall not be required to exceed 24 inches (610 mm).

1716A.1.2 Vertical load capacity for joist hangers. The vertical load capacity for the joist hanger shall be determined by testing a minimum of three joist hanger assemblies as specified in ASTM D 1761. If the ultimate vertical load for any one of the tests varies more than 20 percent from the average ultimate vertical load, at least three additional tests shall be conducted. The allowable vertical load of the joist hanger shall be the lowest value determined from the following:

1. The lowest ultimate vertical load for a single hanger from any test divided by three (where three tests are conducted and each ultimate vertical load does not vary more than 20 percent from the average ultimate vertical load).
2. The average ultimate vertical load for a single hanger from all tests divided by three (where six or more tests are conducted).
3. The average from all tests of the vertical loads that produce a vertical movement of the joist with respect to the header of 1/8 inch (3.2 mm).
4. The sum of the allowable design loads for nails or other fasteners utilized to secure the joist hanger to the wood members and allowable bearing loads that contribute to the capacity of the hanger.

5. The allowable design load for the wood members forming the connection.

1716A.1.3 Torsional moment capacity for joist hangers. The torsional moment capacity for the joist hanger shall be determined by testing at least three joist hanger assemblies as specified in ASTM D 1761. The allowable torsional moment of the joist hanger shall be the average torsional moment at which the lateral movement of the top or bottom of the joist with respect to the original position of the joist is \(\frac{1}{8} \) inch (3.2 mm).

1716A.1.4 Design value modifications for joist hangers. Allowable design values for joist hangers that are determined by Item 4 or 5 in Section 1716A.1.2 shall be permitted to be modified by the appropriate duration of loading factors as specified in AF&PA NDS but shall not exceed the direct loads as determined by Item 1, 2 or 3 in Section 1716A.1.2. Allowable design values determined by Item 1, 2 or 3 in Section 1716A.1.2 shall not be modified by duration of loading factors.

1716A.2 Concrete and clay roof tiles.

1716A.2.1 Overturning resistance. Concrete and clay roof tiles shall be tested to determine their resistance to overturning due to wind in accordance with SBCCI SSTD 11 and Chapter 15.

1716A.2.2 Wind tunnel testing. When roof tiles do not satisfy the limitations in Chapter 16 for rigid tile, a wind tunnel test shall be used to determine the wind characteristics of the concrete or clay tile roof covering in accordance with SBCCI SSTD 11 and Chapter 15.
<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>SS</td>
<td>SS/CC</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BSC</td>
<td>CSA</td>
<td>DPH</td>
<td>AGR</td>
</tr>
<tr>
<td>SFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1801.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1803.1.1 – 1803.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1803.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1803.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1803.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810.3.1.5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810.3.10.4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 18
SOILS AND FOUNDATIONS

This chapter has been revised in its entirety; there will be no marginal markings.

SECTION 1801
GENERAL

1801.1 Scope. The provisions of this chapter shall apply to building and foundation systems.

1801.2 Design basis. Allowable bearing pressures, allowable stresses and design formulas provided in this chapter shall be used with the allowable stress design load combinations specified in Section 1605.3. The quality and design of materials used structurally in excavations and foundations shall comply with the requirements specified in Chapters 16, 19, 21, 22 and 23 of this code. Excavations and fills shall also comply with Chapter 33.

[1] For limited-density owner-built rural dwellings, pier foundations, stone masonry footings and foundations, pressure-treated lumber, poles or equivalent foundation materials or designs may be used, provided that the bearing is sufficient for the purpose intended.

SECTION 1802
DEFINITIONS

1802.1 Definitions. The following words and terms shall, for the purposes of this chapter, have the meanings shown herein.

DEEP FOUNDATION. A deep foundation is a foundation element that does not satisfy the definition of a shallow foundation.

DRILLED SHAFT. A drilled shaft is a cast-in-place deep foundation element constructed by drilling a hole (with or without permanent casing) into soil or rock and filling it with fluid concrete.

Socketed drilled shaft. A socketed drilled shaft is a drilled shaft with a permanent pipe or tube casing that extends down to bedrock and an uncased socket drilled into the bedrock.

HELICAL PILE. Manufactured steel deep foundation element consisting of a central shaft and one or more helical bearing plates. A helical pile is installed by rotating it into the ground. Each helical bearing plate is formed into a screw thread with a uniform defined pitch.

MICROPILE. A micropile is a bored, grouted-in-place deep foundation element that develops its load-carrying capacity by means of a bond zone in soil, bedrock or a combination of soil and bedrock.

SHALLOW FOUNDATION. A shallow foundation is an individual or strip footing, a mat foundation, a slab-on-grade foundation or a similar foundation element.

SECTION 1803
GEOTECHNICAL INVESTIGATIONS

1803.1 General. Geotechnical investigations shall be conducted in accordance with Section 1803.2 and reported in accordance with Section 1803.6. Where required by the building official or where geotechnical investigations involve in-situ testing, laboratory testing or engineering calculations, such investigations shall be conducted by a registered design professional.

1803.1.1 General and where required for applications listed in Section 1.8.2.1.1 regulated by the Department of Housing and Community Development, [HCD 1] Foundation and soils investigations shall be conducted in conference with Health and Safety Code Sections 17953 through 17955 as summarized below.

1803.1.1.1 Preliminary soil report. Each city, county, or city and county shall enact an ordinance which requires a preliminary soil report, prepared by a civil engineer who is registered by the state. The report shall be based upon adequate test borings or excavations, of every subdivision, where a tentative and final map is required pursuant to Section 66426 of the Government Code.

The preliminary soil report may be waived if the building department of the city, county or city and county, or other enforcement agency charged with the administration and enforcement of the provisions of this part, shall determine that, due to the knowledge such department has as to the soil qualities of the soil of the subdivision or lot, no preliminary analysis is necessary.

1803.1.1.2 Soil investigation by lot, necessity, preparation, and recommendations. If the preliminary soil report indicates the presence of critically expansive soils or other soil problems which, if not corrected, would lead to structural defects, such ordinance shall require a soil investigation of each lot in the subdivision.

The soil investigation shall be prepared by a civil engineer who is registered in this state. It shall recommend corrective action which is likely to prevent structural damage to each dwelling proposed to be constructed on the expansive soil.

1803.1.1.3 Approval, building permit conditions, appeal. The building department of each city, county or city and county, or other enforcement agency charged with the administration and enforcement of the provisions of this part, shall approve the soil investigation if it determines that the recommended action is likely to prevent structural damage to each dwelling to be constructed. As a condition to the building permit, the ordinance shall require that the approved recommended
SOILS AND FOUNDATIONS

action be incorporated in the construction of each dwelling. Appeal from such determination shall be to the local appeals board.

1803.2 Investigations required. Geotechnical investigations shall be conducted in accordance with Sections 1803.3 through 1803.5.

Exception: The building official shall be permitted to waive the requirement for a geotechnical investigation where satisfactory data from adjacent areas is available that demonstrates an investigation is not necessary for any of the conditions in Sections 1803.5.1 through 1803.5.6 and Sections 1803.5.10 and 1803.5.11.

[OSHPD 2] Geotechnical reports are not required for one-story, wood-frame and light-steel-frame buildings of Type V construction and 4,000 square feet (371 m²) or less in floor area, not located within Earthquake Fault Zones or Seismic Hazard Zones as shown in the most recently published maps from the California Geological Survey (CGS). Allowable foundation and lateral soil pressure values may be determined from Table 1804.2.

1803.3 Basis of investigation. Soil classification shall be based on observation and any necessary tests of the materials disclosed by borings, test pits or other subsurface exploration made in appropriate locations. Additional studies shall be made as necessary to evaluate slope stability, soil strength, position and adequacy of load-bearing soils, the effect of moisture variation on soil-bearing capacity, compressibility, liquefaction and expansiveness.

1803.3.1 Scope of investigation. The scope of the geotechnical investigation including the number and types of borings or soundings, the equipment used to drill or sample, the in-situ testing equipment and the laboratory testing program shall be determined by a registered design professional.

1803.4 Qualified representative. The investigation procedure and apparatus shall be in accordance with generally accepted engineering practice. The registered design professional shall have a fully qualified representative on site during all boring or sampling operations.

1803.5 Investigated conditions. Geotechnical investigations shall be conducted as indicated in Sections 1803.5.1 through 1803.5.12.

1803.5.1 Classification. Soil materials shall be classified in accordance with ASTM D 2487.

1803.5.2 Questionable soil. Where the classification, strength or compressibility of the soil is in doubt or where a load-bearing value superior to that specified in this code is claimed, the building official shall be permitted to require that a geotechnical investigation be conducted.

1803.5.3 Expansive soil. In areas likely to have expansive soil, the building official shall require soil tests to determine where such soils do exist.

Soils meeting all four of the following provisions shall be considered expansive, except that tests to show compliance with Items 1, 2 and 3 shall not be required if the test prescribed in Item 4 is conducted:

1. Plasticity index (PI) of 15 or greater, determined in accordance with ASTM D 4318.
2. More than 10 percent of the soil particles pass a No. 200 sieve (75 μm), determined in accordance with ASTM D 422.
3. More than 10 percent of the soil particles are less than 5 micrometers in size, determined in accordance with ASTM D 422.
4. Expansion index greater than 20, determined in accordance with ASTM D 4829.

1803.5.4 Ground-water table. A subsurface soil investigation shall be performed to determine whether the existing ground-water table is above or within 5 feet (1524 mm) below the elevation of the lowest floor level where such floor is located below the finished ground level adjacent to the foundation.

Exception: A subsurface soil investigation to determine the location of the ground-water table shall not be required where waterproofing is provided in accordance with Section 1805.

1803.5.5 Deep foundations. Where deep foundations will be used, a geotechnical investigation shall be conducted and shall include all of the following, unless sufficient data upon which to base the design and installation is otherwise available:

1. Recommended deep foundation types and installed capacities.
2. Recommended center-to-center spacing of deep foundation elements.
3. Driving criteria.
4. Installation procedures.
5. Field inspection and reporting procedures (to include procedures for verification of the installed bearing capacity where required).
6. Load test requirements.
7. Suitability of deep foundation materials for the intended environment.
8. Designation of bearing stratum or strata.
9. Reductions for group action, where necessary.

1803.5.6 Rock strata. Where subsurface explorations at the project site indicate variations or doubtful characteristics in the structure of the rock upon which foundations are to be constructed, a sufficient number of borings shall be made to a depth of not less than 10 feet (3048 mm) below the level of the foundations to provide assurance of the soundness of the foundation bed and its load-bearing capacity.

1803.5.7 Excavation near foundations. Where excavation will remove lateral support from any foundation, an investi-
gation shall be conducted to assess the potential consequences and address mitigation measures.

1803.5.8 Compacted fill material. Where shallow foundations will bear on compacted fill material more than 12 inches (305 mm) in depth, a geotechnical investigation shall be conducted and shall include all of the following:

1. Specifications for the preparation of the site prior to placement of compacted fill material.
2. Specifications for material to be used as compacted fill.
3. Test methods to be used to determine the maximum dry density and optimum moisture content of the material to be used as compacted fill.
4. Maximum allowable thickness of each lift of compacted fill material.
5. Field test method for determining the in-place dry density of the compacted fill.
6. Minimum acceptable in-place dry density expressed as a percentage of the maximum dry density determined in accordance with Item 3.
7. Number and frequency of field tests required to determine compliance with Item 6.

1803.5.9 Controlled low-strength material (CLSM). Where shallow foundations will bear on controlled low-strength material (CLSM), a geotechnical investigation shall be conducted and shall include all of the following:

1. Specifications for the preparation of the site prior to placement of the CLSM.
2. Specifications for the CLSM.
3. Laboratory or field test method(s) to be used to determine the compressive strength or bearing capacity of the CLSM.
4. Test methods for determining the acceptance of the CLSM in the field.
5. Number and frequency of field tests required to determine compliance with Item 4.

1803.5.10 Alternate setback and clearance. Where setbacks or clearances other than those required in Section 1808.7 are desired, the building official shall be permitted to require a geotechnical investigation by a registered design professional to demonstrate that the intent of Section 1808.7 would be satisfied. Such an investigation shall include consideration of material, height of slope, slope gradient, load intensity and erosion characteristics of slope material.

1803.5.11 Seismic Design Categories C through F. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613, a geotechnical investigation shall be conducted, and shall include an evaluation of all of the following potential geologic and seismic hazards:

1. Slope instability.
2. Liquefaction.
3. Differential settlement.
4. Surface displacement due to faulting or lateral spreading.

1803.5.12 Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613, the geotechnical investigation required by Section 1803.5.11, shall also include:

1. The determination of lateral pressures on foundation walls and retaining walls due to earthquake motions.
2. The potential for liquefaction and soil strength loss evaluated for site peak ground accelerations, magnitudes and source characteristics consistent with the design earthquake ground motions. Peak ground acceleration shall be permitted to be determined based on a site-specific study taking into account soil amplification effects, as specified in Chapter 21 of ASCE 7, or, in the absence of such a study, peak ground accelerations shall be assumed equal to 0.25, where S_{0g} is determined in accordance with Section 1613.5.4.
3. An assessment of potential consequences of liquefaction and soil strength loss, including estimation of differential settlement, lateral movement, lateral loads on foundations, reduction in foundation soil-bearing capacity, increases in lateral pressures on retaining walls and flotation of buried structures.
4. Discussion of mitigation measures such as, but not limited to, ground stabilization, selection of appropriate foundation type and depths, selection of appropriate structural systems to accommodate anticipated displacements and forces, or any combination of these measures and how they shall be considered in the design of the structure.

1803.6 Reporting. Where geotechnical investigations are required, a written report of the investigations shall be submitted to the building official by the owner or authorized agent at the time of permit application. This geotechnical report shall include, but need not be limited to, the following information:

1. A plot showing the location of the soil investigations.
2. A complete record of the soil boring and penetration test logs and soil samples.
3. A record of the soil profile.
4. Elevation of the water table, if encountered.
5. Recommendations for foundation type and design criteria, including but not limited to: bearing capacity of natural or compacted soil; provisions to mitigate the effects of expansive soils; mitigation of the effects of liquefaction, differential settlement and varying soil strength; and the effects of adjacent loads.
7. Deep foundation information in accordance with Section 1803.5.5.
8. Special design and construction provisions for foundations of structures founded on expansive soils, as necessary.
9. Compacted fill material properties and testing in accordance with Section 1803.5.8.

10. Controlled low-strength material properties and testing in accordance with Section 1803.5.9.

11. [OSHPD 2] The report shall consider the effects of seismic hazard in accordance with Section 1803.7.

1803.7 Engineering geologic reports. [OSHPD 2]

1803.7.1 Geologic and earthquake engineering reports shall be required for all proposed construction.

Exceptions:

1. Reports are not required for one-story, wood-frame and light-steel-frame buildings of Type V construction and 4,000 square feet (371 m²) or less in floor area, not located within Earthquake Fault Zones or Seismic Hazard Zones as shown in the most recently published maps from the California Geological Survey (CGS); nonstructural, associated structural or voluntary structural alterations and incidental structural additions or alterations, and structural repairs for other than earthquake damage (See Section 3402A.1 for definitions of terms in this section).

2. A previous report for a specific site may be resubmitted, provided that a reevaluation is made and the report is found to be currently appropriate.

1803.7.2 The purpose of the engineering geologic report shall be to identify geologic and seismic conditions that may require project mitigations. The reports shall contain data which provide an assessment of the nature of the site and potential for earthquake damage based on appropriate investigations of the regional and site geology, project foundation conditions and the potential seismic shaking at the site. The report shall be prepared by a California-certified engineering geologist in consultation with a California-registered geotechnical engineer.

The preparation of the engineering geologic report shall consider the most recent CGS Note 48; Checklist for the Review of Engineering Geology and Seismology Reports for California Public School, Hospitals, and Essential Services Buildings. In addition, the most recent version of CGS Special Publication 42, Fault Rupture Hazard Zones in California, shall be considered for project sites proposed within an Alquist-Priolo Earthquake Fault Zone. The most recent version of CGS Special Publication 117, Guidelines for Evaluating and Mitigating Seismic Hazards in California, shall be considered for project sites proposed within a Seismic Hazard Zone. All conclusions shall be fully supported by satisfactory data and analysis.

In addition to requirements in Sections 1803.5.11 and 1803.5.12, the report shall include, but shall not be limited to, the following:

1. Geologic investigation.
2. Evaluation of the known active and potentially active faults, both regional and local.

3. Ground-motion parameters, as required by Section 1613 and ASCE 7.

SECTION 1804
EXCAVATION, GRADING AND FILL

1804.1 Excavation near foundations. Excavation for any purpose shall not remove lateral support from any foundation without first underpinning or protecting the foundation against settlement or lateral translation.

1804.2 Placement of backfill. The excavation outside the foundation shall be backfilled with soil that is free of organic material, construction debris, cobbles and boulders or with a controlled low-strength material (CLSM). The backfill shall be placed in lifts and compacted in a manner that does not damage the foundation or the waterproofing or dampproofing material.

Exception: CLSM need not be compacted.

1804.3 Site grading. The ground immediately adjacent to the foundation shall be sloped away from the building at a slope of not less than one unit vertical in 20 units horizontal (5-percent slope) for a minimum distance of 10 feet (3048 mm) measured perpendicular to the face of the wall. If physical obstructions or lot lines prohibit 10 feet (3048 mm) of horizontal distance, a 5-percent slope shall be provided to an approved alternative method of diverting water away from the foundation. Swales used for this purpose shall be sloped a minimum of 2 percent where located within 10 feet (3048 mm) of the building foundation. Impervious surfaces within 10 feet (3048 mm) of the building foundation shall be sloped a minimum of 2 percent away from the building.

Exception: Where climatic or soil conditions warrant, the slope of the ground away from the building foundation shall be permitted to be reduced to not less than one unit vertical in 48 units horizontal (2-percent slope).

The procedure used to establish the final ground level adjacent to the foundation shall account for additional settlement of the backfill.

1804.4 Grading and fill in flood hazard areas. In flood hazard areas established in Section 1612.3, grading and/or fill shall not be approved:

1. Unless such fill is placed, compacted and sloped to minimize shifting, slumping and erosion during the rise and fall of flood water and, as applicable, wave action.
2. In floodways, unless it has been demonstrated through hydrologic and hydraulic analyses performed by a registered design professional in accordance with standard engineering practice that the proposed grading or fill, or both, will not result in any increase in flood levels during the occurrence of the design flood.
3. In flood hazard areas subject to high-velocity wave action, unless such fill is conducted and/or placed to avoid diversion of water and waves toward any building or structure.
4. Where design flood elevations are specified but floodways have not been designated, unless it has been demonstrated that the cumulative effect of the proposed
flood hazard area encroachment, when combined with all other existing and anticipated flood hazard area encroachment, will not increase the design flood elevation more than 1 foot (305 mm) at any point.

1804.5 Compacted fill material. Where shallow foundations will bear on compacted fill material, the compacted fill shall comply with the provisions of an approved geotechnical report, as set forth in Section 1803.

Exception: Compacted fill material 12 inches (305 mm) in depth or less need not comply with an approved report, provided the in-place dry density is not less than 90 percent of the maximum dry density at optimum moisture content determined in accordance with ASTM D 1557. The compaction shall be verified by special inspection in accordance with Section 1704.7.

1804.6 Controlled low-strength material (CLSM). Where shallow foundations will bear on controlled low-strength material (CLSM), the CLSM shall comply with the provisions of an approved geotechnical report, as set forth in Section 1803.

SECTION 1805 DAMPPROOFING AND WATERPROOFING

1805.1 General. Walls or portions thereof that retain earth and enclose interior spaces and floors below grade shall be water proofed and dampproofed in accordance with this section, with the exception of those spaces containing groups other than residential and institutional where such omission is not detrimental to the building or occupancy.

Ventilation for crawl spaces shall comply with Section 1203.4.

1805.1.1 Story above grade plane. Where a basement is considered a story above grade plane and the finished ground level adjacent to the basement wall is below the basement floor elevation for 25 percent or more of the perimeter, the floor and walls shall be dampproofed in accordance with Section 1805.2 and a foundation drain shall be installed in accordance with Section 1805.4.2. The foundation drain shall be installed around the portion of the perimeter where the basement floor is below ground level. The provisions of Sections 1803.5.4, 1805.3 and 1805.4.1 shall not apply in this case.

1805.1.2 Under-floor space. The finished ground level of an under-floor space such as a crawl space shall not be located below the bottom of the footings. Where there is evidence that the ground-water table rises to within 6 inches (152 mm) of the ground level at the outside building perimeter, or that the surface water does not readily drain from the building site, the ground level of the under-floor space shall be as high as the outside finished ground level, unless an approved drainage system is provided. The provisions of Sections 1803.5.4, 1805.2, 1805.3 and 1805.4 shall not apply in this case.

1805.1.2.1 Flood hazard areas. For buildings and structures in flood hazard areas as established in Section 1612.3, the finished ground level of an under-floor space such as a crawl space shall be equal to or higher than the outside finished ground level on at least one side.

Exception: Under-floor spaces of Group R-3 buildings that meet the requirements of FEMA/FIA-TB-11.

1805.1.3 Ground-water control. Where the ground-water table is lowered and maintained at an elevation not less than 6 inches (152 mm) below the bottom of the lowest floor, the floor and walls shall be dampproofed in accordance with Section 1805.2. The design of the system to lower the ground-water table shall be based on accepted principles of engineering that shall consider, but not necessarily be limited to, permeability of the soil, rate at which water enters the drainage system, rated capacity of pumps, head against which pumps are to operate and the rated capacity of the disposal area of the system.

1805.2 Dampproofing. Where hydrostatic pressure will not occur as determined by Section 1803.5.4, floors and walls for other than wood foundation systems shall be dampproofed in accordance with this section. Wood foundation systems shall be constructed in accordance with AF&PA PWF.

1805.2.1 Floors. Dampproofing materials for floors shall be installed between the floor and the base course required by Section 1805.4.1, except where a separate floor is provided above a concrete slab.

Where installed beneath the slab, dampproofing shall consist of not less than 6-mil (0.006 inch; 0.152 mm) polyethylene with joints lapped not less than 6 inches (152 mm), or other approved methods or materials. Where permitted to be installed on top of the slab, dampproofing shall consist of mopped-on bitumen, not less than 4-mil (0.004 inch; 0.102 mm) polyethylene, or other approved methods or materials. Joints in the membrane shall be lapped and sealed in accordance with the manufacturer’s installation instructions.

1805.2.2 Walls. Dampproofing materials for walls shall be installed on the exterior surface of the wall, and shall extend from the top of the footing to above ground level.

Dampproofing shall consist of a bituminous material, 3 pounds per square yard (16 N/m²) of acrylic modified cement, 1/8 inch (3.2 mm) coat of surface-bonding mortar complying with ASTM C 887, any of the materials permitted for waterproofing by Section 1805.3.2 or other approved methods or materials.

1805.2.2.1 Surface preparation of walls. Prior to application of dampproofing materials on concrete walls, holes and recesses resulting from the removal of form ties shall be sealed with a bituminous material or other approved methods or materials. Unit masonry walls shall be parged on the exterior surface below ground level with not less than 1/8 inch (9.5 mm) of portland cement mortar. The parging shall be covered at the footing.

Exception: Parging of unit masonry walls is not required where a material is approved for direct application to the masonry.

1805.3 Waterproofing. Where the ground-water investigation required by Section 1803.5.4 indicates that a hydrostatic pressure condition exists, and the design does not include a
SOILS AND FOUNDATIONS

ground-water control system as described in Section 1805.1.3, walls and floors shall be waterproofed in accordance with this section.

1805.3.1 Floors. Floors required to be waterproofed shall be of concrete and designed and constructed to withstand the hydrostatic pressures to which the floors will be subjected.

Waterproofing shall be accomplished by placing a membrane of rubberized asphalt, butyl rubber, fully adhered/fully bonded HDPE or polyolefin composite membrane or not less than 6-mil [0.006 inch (0.152 mm)] polyvinyl chloride with joints lapped not less than 6 inches (152 mm) or other approved materials under the slab. Joints in the membrane shall be lapped and sealed in accordance with the manufacturer’s installation instructions.

1805.3.2 Walls. Walls required to be waterproofed shall be of concrete or masonry and shall be designed and constructed to withstand the hydrostatic pressures and other lateral loads to which the walls will be subjected.

Waterproofing shall be applied from the bottom of the wall to not less than 12 inches (305 mm) above the maximum elevation of the ground-water table. The remainder of the wall shall be dampproofed in accordance with Section 1805.2.2. Waterproofing shall consist of two-ply hot-mopped felts, not less than 6-mil (0.006 inch; 0.152 mm) polyvinyl chloride, 40-mil (0.040 inch; 1.02 mm) polymer-modified asphalt, 6-mil (0.006 inch; 0.152 mm) polyethylene or other approved methods or materials capable of bridging nonstructural cracks. Joints in the membrane shall be lapped and sealed in accordance with the manufacturer’s installation instructions.

1805.3.2.1 Surface preparation of walls. Prior to the application of waterproofing materials on concrete or masonry walls, the walls shall be prepared in accordance with Section 1805.2.2.1.

1805.3.3 Joints and penetrations. Joints in walls and floors, joints between the wall and floor and penetrations of the wall and floor shall be made watertight utilizing approved methods and materials.

1805.4 Subsoil drainage system. Where a hydrostatic pressure condition does not exist, dampproofing shall be provided and a base shall be installed under the floor and a drain installed around the foundation perimeter. A subsoil drainage system designed and constructed in accordance with Section 1805.1.3 shall be deemed adequate for lowering the ground-water table.

1805.4.1 Floor base course. Floors of basements, except as provided for in Section 1805.1.1, shall be placed over a floor base course not less than 4 inches (102 mm) in thickness that consists of gravel or crushed stone containing not more than 10 percent material that passes through a No. 4 (4.75 mm) sieve.

Exception: Where a site is located in well-drained gravel or sand/gravel mixture soils, a floor base course is not required.

1805.4.2 Foundation drain. A drain shall be placed around the perimeter of a foundation that consists of gravel or crushed stone containing not more than 10-percent material that passes through a No. 4 (4.75 mm) sieve. The drain shall extend a minimum of 12 inches (305 mm) beyond the outside edge of the footing. The thickness shall be such that the bottom of the drain is not higher than the bottom of the base under the floor, and that the top of the drain is not less than 6 inches (152 mm) above the top of the footing. The top of the drain shall be covered with an approved filter membrane material. Where a drain tile or perforated pipe is used, the invert of the pipe or tile shall not be higher than the floor elevation. The top of joints or the top of perforations shall be protected with an approved filter membrane material. The pipe or tile shall be placed on not less than 2 inches (51 mm) of gravel or crushed stone complying with Section 1805.4.1, and shall be covered with not less than 6 inches (152 mm) of the same material.

1805.4.3 Drainage discharge. The floor base and foundation perimeter drain shall discharge by gravity or mechanical means into an approved drainage system that complies with the California Plumbing Code.

Exception: Where a site is located in well-drained gravel or sand/gravel mixture soils, a dedicated drainage system is not required.

SECTION 1806
PRESUMPTIVE LOAD-BEARING VALUES OF SOILS

1806.1 Load combinations. The presumptive load-bearing values provided in Table 1806.2 shall be used with the allowable stress design load combinations specified in Section 1605.3. The values of vertical foundation pressure and lateral bearing pressure given in Table 1806.2 shall be permitted to be increased by one-third where used with the alternative basic load combinations of Section 1605.3.2 that include wind or earthquake loads.

1806.2 Presumptive load-bearing values. The load-bearing values used in design for supporting soils near the surface shall not exceed the values specified in Table 1806.2 unless data to substantiate the use of higher values are submitted and approved. Where the building official has reason to doubt the classification, strength or compressibility of the soil, the requirements of Section 1803.5.2 shall be satisfied.

Presumptive load-bearing values shall apply to materials with similar physical characteristics and dispositions. Mud, organic silt, organic clays, peat or unprepared fill shall not be assumed to have a presumptive load-bearing capacity unless data to substantiate the use of such a value are submitted.

Exception: A presumptive load-bearing capacity shall be permitted to be used where the building official deems the load-bearing capacity of mud, organic silt or unprepared fill is adequate for the support of lightweight or temporary structures.

1806.3 Lateral load resistance. Where the presumptive values of Table 1806.2 are used to determine resistance to lateral loads, the calculations shall be in accordance with Sections 1806.3.1 through 1806.3.4.
1806.3.1 Combined resistance. The total resistance to lateral loads shall be permitted to be determined by combining the values derived from the lateral bearing pressure and the lateral sliding resistance specified in Table 1806.2.

1806.3.2 Lateral sliding resistance limit. For clay, sandy clay, silty clay, clayey silt, silt and sandy silt, in no case shall the lateral sliding resistance exceed one-half the dead load.

1806.3.3 Increase for depth. The lateral bearing pressures specified in Table 1806.2 shall be permitted to be increased by the tabular value for each additional foot (305 mm) of depth to a maximum of 15 times the tabular value.

1806.3.4 Increase for poles. Isolated poles for uses such as flagpoles or signs and poles used to support buildings that are not adversely affected by a 1/2 inch (12.7 mm) motion at the ground surface due to short-term lateral loads shall be permitted to be designed using lateral bearing pressures equal to two times the tabular values.

SECTION 1807
FOUNDATION WALLS, RETAINING WALLS AND EMBEDDED POSTS AND POLES

1807.1 Foundation walls. Foundation walls shall be designed and constructed in accordance with Sections 1807.1.1 through 1807.1.6. Foundation walls shall be supported by foundations designed in accordance with Section 1808.

1807.1.1 Design lateral soil loads. Foundation walls shall be designed for the lateral soil loads set forth in Section 1610.

1807.1.2 Unbalanced backfill height. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab on grade is provided and is in contact with the interior surface of the foundation wall, the unbalanced backfill height shall be permitted to be measured from the exterior finish ground level to the top of the interior concrete slab.

1807.1.3 Rubble stone foundation walls. Foundation walls of rough or random rubble stone shall not be less than 16 inches (406 mm) thick. Rubble stone shall not be used for foundation walls of structures assigned to Seismic Design Category C, D, E or F.

1807.1.4 Permanent wood foundation systems. Permanent wood foundation systems shall be designed and installed in accordance with AF&PA PWF. Lumber and plywood shall be treated in accordance with AWPA U1 (Commodity Specification A, Use Category 4B and Section 5.2) and shall be identified in accordance with Section 2303.1.8.1.

1807.1.5 Concrete and masonry foundation walls. Concrete and masonry foundation walls shall be designed in accordance with Chapter 19 or 21, as applicable.

Exception: Concrete and masonry foundation walls shall be permitted to be designed and constructed in accordance with Section 1807.1.6.

1807.1.6 Prescriptive design of concrete and masonry foundation walls. Concrete and masonry foundation walls that are laterally supported at the top and bottom shall be permitted to be designed and constructed in accordance with this section.

1807.1.6.1 Foundation wall thickness. The thickness of prescriptively designed foundation walls shall not be less than the thickness of the wall supported, except that foundation walls of at least 8-inch (203 mm) nominal width shall be permitted to support brick-veneered frame walls and 10-inch-wide (254 mm) cavity walls provided the requirements of Section 1807.1.6.2 or 1807.1.6.3 are met.

TABLE 1806.2
PRESUMPTIVE LOAD-BEARING VALUES

<table>
<thead>
<tr>
<th>CLASS OF MATERIALS</th>
<th>VERTICAL FOUNDATION PRESSURE (psf)</th>
<th>LATERAL BEARING PRESSURE (psf/ft below natural grade)</th>
<th>LATERAL SLIDING RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coefficient of frictiona</td>
</tr>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
<td>1,200</td>
<td>0.70</td>
</tr>
<tr>
<td>2. Sedimentary and foliated rock</td>
<td>4,000</td>
<td>400</td>
<td>0.35</td>
</tr>
<tr>
<td>3. Sandy gravel and/or gravel (GW and GP)</td>
<td>3,000</td>
<td>200</td>
<td>0.35</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC)</td>
<td>2,000</td>
<td>150</td>
<td>0.25</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)</td>
<td>1,500</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 0.0479 kPa, 1 pound per square foot per foot = 0.157 kPa/m.

a. Coefficient to be multiplied by the dead load.

b. Cohesion value to be multiplied by the contact area, as limited by Section 1806.3.2.
SOILS AND FOUNDATIONS

1807.1.6.2 Concrete foundation walls. Concrete foundation walls shall comply with the following:

1. The thickness shall comply with the requirements of Table 1807.1.6.2.

2. The size and spacing of vertical reinforcement shown in Table 1807.1.6.2 is based on the use of reinforcement with a minimum yield strength of 60,000 psi (414 MPa). Vertical reinforcement with a minimum yield strength of 40,000 psi (276 MPa) or 50,000 psi (345 MPa) shall be permitted, provided the same size bar is used and the spacing shown in the table is reduced by multiplying the spacing by 0.67 or 0.83, respectively.

3. Vertical reinforcement, when required, shall be placed nearest the inside face of the wall a distance, \(d \), from the outside face (soil face) of the wall. The distance, \(d \), is equal to the wall thickness, \(t \), minus 1.25 inches (32 mm) plus one-half the bar diameter, \(d_b \) [\(d = t - (1.25 + d_b / 2) \)]. The reinforcement shall be placed within a tolerance of ± 3/8 inch (9.5 mm) where \(d \) is less than or equal to 8 inches (203 mm) or ± 1/2 inch (12.7 mm) where \(d \) is greater than 8 inches (203 mm).

4. In lieu of the reinforcement shown in Table 1807.1.6.2, smaller reinforcing bar sizes with closer spacings that provide an equivalent cross-sectional area of reinforcement per unit length shall be permitted.

TABLE 1807.1.6.2
CONCRETE FOUNDATION WALLS

<table>
<thead>
<tr>
<th>MAXIMUM WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT* (feet)</th>
<th>30</th>
<th>45</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7.5</td>
<td>9.5</td>
<td>11.5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>#5 at 47</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>#5 at 47</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>#5 at 41</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>#5 at 41</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>#5 at 41</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>#5 at 41</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PC</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>#5 at 38</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>#5 at 41</td>
<td>PC</td>
<td>PC</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157 kPa/m.
a. For design lateral soil loads, see Section 1610.
b. Provisions for this table are based on design and construction requirements specified in Section 1807.1.6.2.
c. “PC” means plain concrete.
d. Where unbalanced backfill height exceeds 8 feet and design lateral soil loads from Table 1610.1 are used, the requirements for 30 and 45 psf per foot of depth are not applicable (see Section 1610).
e. For height of unbalanced backfill, see Section 1807.1.2.
5. Concrete cover for reinforcement measured from the inside face of the wall shall not be less than \(\frac{3}{4} \) inch (19.1 mm). Concrete cover for reinforcement measured from the outside face of the wall shall not be less than 1\(\frac{1}{2} \) inches (38 mm) for No. 5 bars and smaller, and not less than 2 inches (51 mm) for larger bars.

6. Concrete shall have a specified compressive strength, \(f'c \), of not less than 2,500 psi (17.2 MPa).

7. The unfactored axial load per linear foot of wall shall not exceed 1.2 \(t f'_c \) where \(t \) is the specified wall thickness in inches.

1807.1.6.2.1 Seismic requirements. Based on the seismic design category assigned to the structure in accordance with Section 1613, concrete foundation walls designed using Table 1807.1.6.2 shall be subject to the following limitations:

1. Seismic Design Categories A and B. No additional seismic requirements, except provide reinforcement around openings in accordance with Section 1909.6.3.

2. Seismic Design Categories C, D, E and F. Tables shall not be used except as allowed for plain concrete members in Section 1908.1.8.

1807.1.6.3 Masonry foundation walls. Masonry foundation walls shall comply with the following:

TABLE 1807.1.6.3(1) PLAIN MASONRY FOUNDATION WALLS\(^{a,b,c}\)

<table>
<thead>
<tr>
<th>MAXIMUM WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT(^d) (feet)</th>
<th>MINIMUM NOMINAL WALL THICKNESS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design lateral soil load(^e) (psf per foot of depth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30'</td>
</tr>
<tr>
<td>7</td>
<td>4 (or less)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>4 (or less)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10 (solid(^f))</td>
</tr>
<tr>
<td>9</td>
<td>4 (or less)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12 (solid(^f))</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>12 (solid(^f))</td>
</tr>
<tr>
<td></td>
<td>9(^f)</td>
<td>Note d</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157kPa/m.

a. For design lateral soil loads, see Section 1610.

b. Provisions for this table are based on design and construction requirements specified in Section 1807.1.6.3.

c. Solid grouted hollow units or solid masonry units.

d. A design in compliance with Chapter 21 or reinforcement in accordance with Table 1807.1.6.3(2) is required.

e. For height of unbalanced backfill, see Section 1807.1.2.

f. Where unbalanced backfill height exceeds 8 feet and design lateral soil loads from Table 1610.1 are used, the requirements for 30 and 45 psf per foot of depth are not applicable (see Section 1610).
7. Masonry units shall be laid in running bond and installed with Type M or S mortar in accordance with Section 2103.8.

8. The unfactored axial load per linear foot of wall shall not exceed \(1.2 f'_{m}\) where \(r\) is the specified wall thickness in inches and \(f'_{m}\) is the specified compressive strength of masonry in pounds per square inch.

9. At least 4 inches (102 mm) of solid masonry shall be provided at girder supports at the top of hollow masonry unit foundation walls.

10. Corbeling of masonry shall be in accordance with Section 2104.2. Where an 8-inch (203 mm) wall is corbeled, the top corbel shall not extend higher than the bottom of the floor framing and shall be a full course of headers at least 6 inches (152 mm) in length or the top course bed joint shall be tied to the vertical wall projection. The tie shall be W2.8 (4.8 mm) and spaced at a maximum horizontal distance of 36 inches (914 mm). The hollow space behind the corbelled masonry shall be filled with mortar or grout.

1807.1.6.3.1 Alternative foundation wall reinforcement. In lieu of the reinforcement provisions for masonry foundation walls in Table 1807.1.6.3(2), 1807.1.6.3(3) or 1807.1.6.3(4), alternative reinforcing bar sizes and spacings having an equivalent cross-sectional area of reinforcement per linear foot (mm) of wall shall be permitted to be used, provided the spacing of reinforcement does not exceed 72 inches (1829 mm) and reinforcing bar sizes do not exceed No. 11.

<table>
<thead>
<tr>
<th>MAXIMUM WALL HEIGHT (feet-inches)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHTs (feet-inches)</th>
<th>MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30(^{o})</td>
</tr>
<tr>
<td>7-4</td>
<td>4-0 (or less)</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>7-4</td>
<td>#5 at 48</td>
</tr>
<tr>
<td>8-0</td>
<td>4-0 (or less)</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 48</td>
</tr>
<tr>
<td></td>
<td>8-8</td>
<td>#5 at 48</td>
</tr>
<tr>
<td>8-8</td>
<td>4-0 (or less)</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 48</td>
</tr>
<tr>
<td></td>
<td>8-8</td>
<td>#5 at 48</td>
</tr>
<tr>
<td>9-4</td>
<td>4-0 (or less)</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 48</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 48</td>
</tr>
<tr>
<td></td>
<td>8-8</td>
<td>#5 at 48</td>
</tr>
<tr>
<td></td>
<td>9-4</td>
<td>#7 at 48</td>
</tr>
<tr>
<td></td>
<td>10-0</td>
<td>#7 at 48</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157kPa/m.

a. For design lateral soil loads, see Section 1610.

b. Provisions for this table are based on design and construction requirements specified in Section 1807.1.6.3.

c. For alternative reinforcement, see Section 1807.1.6.3.1.

d. For height of unbalanced backfill, see Section 1807.1.2.

e. Where unbalanced backfill height exceeds 8 feet and design lateral soil loads from Table 1610.1 are used, the requirements for 30 and 45 psf per foot of depth are not applicable. See Section 1610.
1807.1.6.3.2 Seismic requirements. Based on the seismic design category assigned to the structure in accordance with Section 1613, masonry foundation walls designed using Tables 1807.1.6.3(1) through 1807.1.6.3(4) shall be subject to the following limitations:

1. Seismic Design Categories A and B. No additional seismic requirements.

2. Seismic Design Category C. A design using Tables 1807.1.6.3(1) through 1807.1.6.3(4) is subject to the seismic requirements of Section 1.17.4.3 of TMS 402/ACI 530/ASCE 5.

3. Seismic Design Category D. A design using Tables 1807.1.6.3(2) through 1807.1.6.3(4) is subject to the seismic requirements of Section 1.17.4.4 of TMS 402/ACI 530/ASCE 5.

4. Seismic Design Categories E and F. A design using Tables 1807.1.6.3(2) through 1807.1.6.3(4) is subject to the seismic requirements of Section 1.17.4.5 of TMS 402/ACI 530/ASCE 5.

1807.2 Retaining walls. Retaining walls shall be designed in accordance with Sections 1807.2.1 through 1807.2.3.

1807.2.1 General. Retaining walls shall be designed to ensure stability against overturning, sliding, excessive foundation pressure and water uplift. Where a keyway is extended below the wall base with the intent to engage passive pressure and enhance sliding stability, lateral soil pressures on both

<table>
<thead>
<tr>
<th>MAXIMUM WALL HEIGHT (feet-inches)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHTd (feet-inches)</th>
<th>MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches)</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-4</td>
<td>4-0 (or less)</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td></td>
<td>7-4</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td>8-0</td>
<td>4-0 (or less)</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
<td>#5 at 6</td>
</tr>
<tr>
<td></td>
<td>8-0</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
<td>#6 at 56</td>
</tr>
<tr>
<td>8-8</td>
<td>4-0 (or less)</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#6 at 56</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#5 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#5 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#5 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>8-8</td>
<td>#5 at 56</td>
<td>#7 at 6</td>
<td>#7 at 56</td>
<td>#7 at 56</td>
</tr>
<tr>
<td>9-4</td>
<td>4-0 (or less)</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#6 at 6</td>
<td>#7 at 6</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#7 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#7 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#4 at 56</td>
<td>#6 at 6</td>
<td>#7 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>8-0</td>
<td>#5 at 56</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td></td>
<td>9-4</td>
<td>#6 at 56</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
<td>#7 at 56</td>
</tr>
<tr>
<td>10-0</td>
<td>4-0 (or less)</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#6 at 6</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#6 at 6</td>
<td>#7 at 6</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#4 at 56</td>
<td>#5 at 6</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#4 at 56</td>
<td>#6 at 6</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
</tr>
<tr>
<td></td>
<td>8-0</td>
<td>#5 at 56</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
</tr>
<tr>
<td></td>
<td>9-0</td>
<td>#6 at 56</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
</tr>
<tr>
<td></td>
<td>10-0</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
<td>#7 at 6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8, 1 pound per square foot per foot = 1.157 kPa/m.

a. For design lateral soil loads, see Section 1610.
b. Provisions for this table are based on design and construction requirements specified in Section 1807.1.6.3.
c. For alternative reinforcement, see Section 1807.1.6.3.1.
d. For height of unbalanced backfill, see Section 1807.1.2.
e. Where unbalanced backfill height exceeds 8 feet and design lateral soil loads from Table 1610.1 are used, the requirements for 30 and 45 psf per foot of depth are not applicable. See Section 1610.
sides of the keyway shall be considered in the sliding analy­sis.

1807.2.2 Design lateral soil loads. Retaining walls shall be designed for the lateral soil loads set forth in Section 1610.

1807.2.3 Safety factor. Retaining walls shall be designed to resist the lateral action of soil to produce sliding and overturning with a minimum safety factor of 1.5 in each case. The load combinations of Section 1605 shall not apply to this requirement. Instead, design shall be based on 0.7 times nominal earthquake loads, 1.0 times other nominal loads, and investigation with one or more of the variable loads set to zero. The safety factor against lateral sliding shall be taken as the available soil resistance at the base of the retaining wall foundation divided by the net lateral force applied to the retaining wall.

TABLE 1807.1.6.3(4)
12-INCH MASONRY FOUNDATION WALLS WITH REINFORCEMENT WHERE d ≥ 8.75 INCHES\(^a, b, c\)

<table>
<thead>
<tr>
<th>MAXIMUM WALL HEIGHT (feet-inches)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT(^d) (feet-inches)</th>
<th>MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30(^o)</td>
</tr>
<tr>
<td>7-4</td>
<td>4 (or less)</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7-4</td>
<td>#5 at 72</td>
</tr>
<tr>
<td>8-0</td>
<td>4 (or less)</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>8-8</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>8-8</td>
<td>4 (or less)</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>8-0</td>
<td>#6 at 72</td>
</tr>
<tr>
<td></td>
<td>9-4</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>9-4</td>
<td>4 (or less)</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>8-0</td>
<td>#6 at 72</td>
</tr>
<tr>
<td></td>
<td>9-4</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>10-0</td>
<td>4 (or less)</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5-0</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7-0</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>8-0</td>
<td>#6 at 72</td>
</tr>
<tr>
<td></td>
<td>9-0</td>
<td>#6 at 72</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157 kPa/m.

a. For design lateral soil loads, see Section 1610.
b. Provisions for this table are based on design and construction requirements specified in Section 1807.1.6.3.
c. For alternative reinforcement, see Section 1807.1.6.3.1.
d. For height of unbalanced backfill, see Section 1807.1.2.
e. Where unbalanced backfill height exceeds 8 feet and design lateral soil loads from Table 1610.1 are used, the requirements for 30 and 45 psf per foot of depth are not applicable. See Section 1610.

Exception: Where earthquake loads are included, the minimum safety factor for retaining wall sliding and overturning shall be 1.1.

1807.3 Embedded posts and poles. Designs to resist both axial and lateral loads employing posts or poles as columns embedded in earth or in concrete footings in earth shall be in accordance with Sections 1807.3.1 through 1807.3.3.

1807.3.1 Limitations. The design procedures outlined in this section are subject to the following limitations:

1. The frictional resistance for structural walls and slabs on silts and clays shall be limited to one-half of the normal force imposed on the soil by the weight of the footing or slab.

2. Posts embedded in earth shall not be used to provide lateral support for structural or nonstructural materi-
shall be determined using the design criteria established in Sections 1807.3.2.1 through 1807.3.2.3, or by other methods approved by the building official.

1807.3.2 Constrained. The following formula shall be used to determine the depth of embedment required to resist lateral loads where lateral constraint is provided at the ground surface, such as by a rigid floor or rigid ground surface pavement, and where no lateral constraint is provided above the ground surface, such as by a structural diaphragm.

\[
d = 0.5A \left[1 + \left(1 + 4.36h/A \right)^{1/2} \right] \quad \text{(Equation 18-1)}
\]

where:
\[
A = 2.34P/S_1 \ b.
\]

\[
b = \text{Diameter of round post or footing or diagonal dimension of square post or footing, feet (m).}
\]

\[
d = \text{Depth of embedment in earth in feet (m) but not over 12 feet (3658 mm) for purpose of computing lateral pressure.}
\]

\[
h = \text{Distance in feet (m) from ground surface to point of application of "P."}
\]

\[
P = \text{Applied lateral force in pounds (kN).}
\]

\[
S_1 = \text{Allowable lateral soil-bearing pressure as set forth in Section 1806.2 based on a depth of one-third the depth of embedment in pounds per square foot (psf) (kPa).}
\]

1807.3.3 Backfill. The backfill in the annular space around columns not embedded in poured footings shall be by one of the following methods:

1. Backfill shall be of concrete with a specified compressive strength of not less than 2,000 psi (13.8 MPa). The hole shall not be less than 4 inches (102 mm) larger than the diameter of the column at its bottom or 4 inches (102 mm) larger than the diagonal dimension of a square or rectangular column.

2. Backfill shall be of clean sand. The sand shall be thoroughly compacted by tamping in layers not more than 8 inches (203 mm) in depth.

3. Backfill shall be of controlled low-strength material (CLSM).

SECTION 1808 FOUNDATIONS

1808.1 General. Foundations shall be designed and constructed in accordance with Sections 1808.2 through 1808.9. Shallow foundations shall also satisfy the requirements of Section 1809. Deep foundations shall also satisfy the requirements of Section 1810.

1808.2 Design for capacity and settlement. Foundations shall be so designed that the allowable bearing capacity of the soil is not exceeded, and that differential settlement is minimized. Foundations in areas with expansive soils shall be designed in accordance with the provisions of Section 1808.6.

1808.3 Design loads. Foundations shall be designed for the most unfavorable effects due to the combinations of loads specified in Section 1605.2 or 1605.3. The dead load is permitted to include the weight of foundations and overlying fill. Reduced live loads, as specified in Sections 1607.9 and 1607.11, shall be permitted to be used in the design of foundations.

1808.3.1 Seismic overturning. Where foundations are proportioned using the load combinations of Section 1605.2 or 1605.3.1, and the computation of seismic overturning effects is by equivalent lateral force analysis or modal analysis, the proportioning shall be in accordance with Section 12.13.4 of ASCE 7.

1808.4 Vibratory loads. Where machinery operations or other vibrations are transmitted through the foundation, consideration shall be given in the foundation design to prevent detrimental disturbances of the soil.

1808.5 Shifting or moving soils. Where it is known that the shallow subsoils are of a shifting or moving character, foundations shall be carried to a sufficient depth to ensure stability.
SOILS AND FOUNDATIONS

1808.6 Design for expansive soils. Foundations for buildings and structures founded on expansive soils shall be designed in accordance with Section 1808.6.1 or 1808.6.2.

Exception: Foundation design need not comply with Section 1808.6.1 or 1808.6.2 where one of the following conditions is satisfied:
1. The soil is removed in accordance with Section 1808.6.3; or
2. The building official approves stabilization of the soil in accordance with Section 1808.6.4.

1808.6.1 Foundations. Foundations placed on or within the active zone of expansive soils shall be designed to resist differential volume changes and to prevent structural damage to the supported structure. Deflection and racking of the supported structure shall be limited to that which will not interfere with the usability and serviceability of the structure.

Foundations placed below where volume change occurs or below expansive soil shall comply with the following provisions:
1. Foundations extending into or penetrating expansive soils shall be designed to prevent uplift of the supported structure.
2. Foundations penetrating expansive soils shall be designed to resist forces exerted on the foundation due to soil volume changes or shall be isolated from the expansive soil.

1808.6.2 Slab-on-ground foundations. Moments, shears and deflections for use in designing slab-on-ground, mat or raft foundations on expansive soils shall be determined in accordance with WRI/CIRSI Design of Slab-on-Ground Foundations or PTI Standard Requirements for Analysis of Shallow Concrete Foundations on Expansive Soils. Using the moments, shears and deflections determined above, nonprestressed slabs-on-ground, mat or raft foundations on expansive soils shall be designed in accordance with WRI/CIRSI Design of Slab-on-Ground Foundations and post-tensioned slab-on-ground, mat or raft foundations on expansive soils shall be designed in accordance with PTI Standard Requirements for Design of Shallow Post-Tensioned Concrete Foundations on Expansive Soils. It shall be permitted to analyze and design such slabs by other methods that account for soil-structure interaction, the deformed shape of the soil support, the plate or stiffened plate action of the slab as well as both center lift and edge lift conditions. Such alternative methods shall be rational and the basis for all aspects and parameters of the method shall be available for peer review.

1808.6.3 Removal of expansive soil. Where expansive soil is removed in lieu of designing foundations in accordance with Section 1808.6.1 or 1808.6.2, the soil shall be removed to a depth sufficient to ensure a constant moisture content in the remaining soil. Fill material shall not contain expansive soils and shall comply with Section 1804.5 or 1804.6.

Exception: Expansive soil need not be removed to the depth of constant moisture, provided the confining pressure in the expansive soil created by the fill and supported structure exceeds the swell pressure.

1808.6.4 Stabilization. Where the active zone of expansive soils is stabilized in lieu of designing foundations in accordance with Section 1808.6.1 or 1808.6.2, the soil shall be stabilized by chemical, dewatering, presaturation or equivalent techniques.

1808.7 Foundations on or adjacent to slopes. The placement of buildings and structures on or adjacent to slopes steeper than one unit vertical in three units horizontal (33.3-percent slope) shall comply with Sections 1808.7.1 through 1808.7.5.

1808.7.1 Building clearance from ascending slopes. In general, buildings below slopes shall be set a sufficient distance from the slope to provide protection from slope drainage, erosion and shallow failures. Except as provided in Section 1808.7.5 and Figure 1808.7.1, the following criteria will be assumed to provide this protection. Where the existing slope is steeper than one unit vertical in one unit horizontal (100-percent slope), the toe of the slope shall be assumed to be at the intersection of a horizontal plane drawn from the top of the foundation and a plane drawn tangent to the slope at an angle of 45 degrees (0.79 rad) to the horizontal. Where a retaining wall is constructed at the toe of the slope, the height of the slope shall be measured from the top of the wall to the top of the slope.

For SI: 1 foot = 304.8 mm.

FIGURE 1808.7.1
FOUNDATION CLEARANCES FROM SLOPES
1808.7.2 Foundation setback from descending slope surface. Foundations on or adjacent to slope surfaces shall be founded in firm material with an embedment and set back from the slope surface sufficient to provide vertical and lateral support for the foundation without detrimental settlement. Except as provided for in Section 1808.7.5 and Figure 1808.7.1, the following setback is deemed adequate to meet the criteria. Where the slope is steeper than 1 unit vertical in 1 unit horizontal (100-percent slope), the required setback shall be measured from an imaginary plane 45 degrees (0.79 rad) to the horizontal, projected upward from the toe of the slope.

1808.7.3 Pools. The setback between pools regulated by this code and slopes shall be equal to one-half the building footing setback distance required by this section. That portion of the pool wall within a horizontal distance of 7 feet (2134 mm) from the top of the slope shall be capable of supporting the water in the pool without soil support.

1808.7.4 Foundation elevation. On graded sites, the top of any exterior foundation shall extend above the elevation of the street gutter at point of discharge or the inlet of an approved drainage device a minimum of 12 inches (305 mm) plus 2 percent. Alternate elevations are permitted subject to the approval of the building official, provided it can be demonstrated that required drainage to the point of discharge and away from the structure is provided at all locations on the site.

1808.7.5 Alternate setback and clearance. Alternate setbacks and clearances are permitted, subject to the approval of the building official. The building official shall be permitted to require a geotechnical investigation as set forth in Section 1803.5.10.

1808.8 Concrete foundations. The design, materials and construction of concrete foundations shall comply with Sections 1808.8.1 through 1808.8.6 and the provisions of Chapter 19.

Exception: Where concrete footings supporting walls of light-frame construction are designed in accordance with Table 1809.7, a specific design in accordance with Chapter 19 is not required.

1808.8.1 Concrete or grout strength and mix proportioning. Concrete or grout in foundations shall have a specified compressive strength (f'_c) not less than the largest applicable value indicated in Table 1808.8.1.

Where concrete is placed through a funnel hopper at the top of a deep foundation element, the concrete mix shall be designed and proportioned so as to produce a workable mix having a slump of not less than 4 inches (102 mm) and not more than 8 inches (204 mm). Where concrete or grout is to be pumped, the mix design including slump shall be adjusted to produce a pumpable mixture.

1808.8.2 Concrete cover. The concrete cover provided for prestressed and non prestressed reinforcement in foundations shall be no less than the largest applicable value specified in Table 1808.8.2. Longitudinal bars spaced less than 1 1/2 inches (38 mm) clear distance apart shall be considered bundled bars for which the concrete cover provided shall also be no less than that required by Section 7.7.4 of ACI 318. Concrete cover shall be measured from the concrete surface to the outermost surface of the steel to which the cover requirement applies. Where concrete is placed in a temporary or permanent casing or a mandrel, the inside face of the casing or mandrel shall be considered the concrete surface.

1808.8.3 Placement of concrete. Concrete shall be placed in such a manner as to ensure the exclusion of any foreign matter and to secure a full-size foundation. Concrete shall not be placed through water unless a tremie or other method approved by the building official is used. Where placed under or in the presence of water, the concrete shall be deposited by approved means to ensure minimum segregation of the mix and negligible turbulence of the water. Where depositing concrete from the top of a deep foundation element, the concrete shall be chuted directly into smooth-sided pipes or tubes or placed in a rapid and continuous operation through a funnel hopper centered at the top of the element.

1808.8.4 Protection of concrete. Concrete foundations shall be protected from freezing during depositing and for a period of not less than five days thereafter. Water shall not be allowed to flow through the deposited concrete.

1808.8.5 Forming of concrete. Concrete foundations are permitted to be cast against the earth where, in the opinion of the building official, soil conditions do not require formwork. Where formwork is required, it shall be in accordance with Chapter 6 of ACI 318.

1808.8.6 Seismic requirements. See Section 1908 for additional requirements for foundations of structures assigned to Seismic Design Category C, D, E or F.

For structures assigned to Seismic Design Category D, E or F, provisions of ACI 318, Sections 21.12.1 through 21.12.4, shall apply where not in conflict with the provisions of Sections 1808 through 1810.

Exceptions:

1. Detached one- and two-family dwellings of light-frame construction and two stories or less above grade plane are not required to comply with the provisions of ACI 318, Sections 21.12.1 through 21.12.4.

2. Section 21.12.4.4(a) of ACI 318 shall not apply.

1808.9 Vertical masonry foundation elements. Vertical masonry foundation elements that are not foundation piers as defined in Section 2102.1 shall be designed as piers, walls or columns, as applicable, in accordance with TMS 402/ACI 530/ASCE 5.

SECTION 1809

SHALLOW FOUNDATIONS

1809.1 General. Shallow foundations shall be designed and constructed in accordance with Sections 1809.2 through 1809.13.

1809.2 Supporting soils. Shallow foundations shall be built on undisturbed soil, compacted fill material or controlled low-strength material (CLSM). Compacted fill material shall be placed in accordance with Section 1804.5. CLSM shall be placed in accordance with Section 1804.6.
TABLE 1808.8.1
MINIMUM SPECIFIED COMPRESSIVE STRENGTH f'_c OF CONCRETE OR GROUT

<table>
<thead>
<tr>
<th>FOUNDATION ELEMENT OR CONDITION</th>
<th>SPECIFIED COMPRESSIVE STRENGTH, f'_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Foundations for structures assigned to Seismic Design Category A, B or C</td>
<td>2,500 psi</td>
</tr>
<tr>
<td>2a. Foundations for Group R or U occupancies of light-frame construction, two stories or less in height, assigned to Seismic Design Category D, E or F</td>
<td>2,500 psi</td>
</tr>
<tr>
<td>2b. Foundations for other structures assigned to Seismic Design Category D, E or F</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>3. Precast nonprestressed driven piles</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>4. Socketed drilled shafts</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>5. Micropiles</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>6. Precast prestressed driven piles</td>
<td>5,000 psi</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 0.00689 MPa.

TABLE 1808.8.2
MINIMUM CONCRETE COVER

<table>
<thead>
<tr>
<th>FOUNDATION ELEMENT OR CONDITION</th>
<th>MINIMUM COVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shallow foundations</td>
<td>In accordance with Section 7.7 of ACI 318</td>
</tr>
<tr>
<td>2. Precast nonprestressed deep foundation elements</td>
<td></td>
</tr>
<tr>
<td>Exposed to seawater</td>
<td>3 inches</td>
</tr>
<tr>
<td>Not manufactured under plant conditions</td>
<td>2 inches</td>
</tr>
<tr>
<td>Manufactured under plant control conditions</td>
<td>In accordance with Section 7.7.3 of ACI 318</td>
</tr>
<tr>
<td>3. Precast prestressed deep foundation elements</td>
<td></td>
</tr>
<tr>
<td>Exposed to seawater</td>
<td>2.5 inches</td>
</tr>
<tr>
<td>Other</td>
<td>In accordance with Section 7.7.3 of ACI 318</td>
</tr>
<tr>
<td>4. Cast-in-place deep foundation elements not enclosed by a steel pipe, tube or permanent casing</td>
<td>2.5 inches</td>
</tr>
<tr>
<td>5. Cast-in-place deep foundation elements enclosed by a steel pipe, tube or permanent casing</td>
<td>1 inch</td>
</tr>
<tr>
<td>6. Structural steel core within a steel pipe, tube or permanent casing</td>
<td>2 inches</td>
</tr>
<tr>
<td>7. Cast-in-place drilled shafts enclosed by a stable rock socket</td>
<td>1.5 inches</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
1809.3 Stepped footings. The top surface of footings shall be level. The bottom surface of footings shall be permitted to have a slope not exceeding one unit vertical in 10 units horizontal (10-percent slope). Footings shall be stepped where it is necessary to change the elevation of the top surface of the footing or where the surface of the ground slopes more than one unit vertical in 10 units horizontal (10-percent slope).

1809.4 Depth and width of footings. The minimum depth of footings below the undisturbed ground surface shall be 12 inches (305 mm). Where applicable, the requirements of Section 1809.5 shall also be satisfied. The minimum width of footings shall be 12 inches (305 mm).

1809.5 Frost protection. Except where otherwise protected from frost, foundations and other permanent supports of buildings and structures shall be protected from frost by one or more of the following methods:

1. Extending below the frost line of the locality;
2. Constructing in accordance with ASCE 32; or
3. Erecting on solid rock.

Exception: Free-standing buildings meeting all of the following conditions shall not be required to be protected:

1. Assigned to Occupancy Category I, in accordance with Section 1604.5;
2. Area of 600 square feet (56 m²) or less for light-frame construction or 400 square feet (37 m²) or less for other than light-frame construction; and
3. Eave height of 10 feet (3048 mm) or less.

Shallow foundations shall not bear on frozen soil unless such frozen condition is of a permanent character.

1809.6 Location of footings. Footings on granular soil shall be so located that the line drawn between the lower edges of adjoining footings shall not have a slope steeper than 30 degrees (0.52 rad) with the horizontal, unless the material supporting the higher footing is braced or retained or otherwise laterally supported in an approved manner or a greater slope has been properly established by engineering analysis.

1809.7 Prescriptive footings for light-frame construction. Where a specific design is not provided, concrete or masonry-unit footings supporting walls of light-frame construction shall be permitted to be designed in accordance with Table 1809.7.

1809.8 Plain concrete footings. The edge thickness of plain concrete footings supporting walls of other than light-frame construction shall not be less than 8 inches (203 mm) where placed on soil or rock.

Exception: For plain concrete footings supporting Group R-3 occupancies, the edge thickness is permitted to be 6 inches (152 mm), provided that the footing does not extend beyond a distance greater than the thickness of the footing on either side of the supported wall.

Table 1809.7

<table>
<thead>
<tr>
<th>NUMBER OF FLOORS SUPPORTED BY THE FOOTING</th>
<th>WIDTH OF FOOTING (inches)</th>
<th>THICKNESS OF FOOTING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

a. Depth of footings shall be in accordance with Section 1809.4.

b. The ground under the floor shall be permitted to be excavated to the elevation of the top of the footing.

c. Interior stud-bearing walls shall be permitted to be supported by isolated footings. The footing width and length shall be twice the width shown in this table, and footings shall be spaced not more than 6 feet on center.

d. See Section 1908 for additional requirements for concrete footings of structures assigned to Seismic Design Category C, D, E or F.

e. For thickness of foundation walls, see Section 1807.1.6.

f. Footings shall be permitted to support a roof in addition to the stipulated number of floors. Footings supporting roof only shall be as required for supporting one floor.

g. Plain concrete footings for Group R-3 occupancies shall be permitted to be 6 inches thick.

1809.9 Masonry-unit footings. The design, materials and construction of masonry-unit footings shall comply with Sections 1809.9.1 and 1809.9.2, and the provisions of Chapter 21.

Exception: Where a specific design is not provided, masonry-unit footings supporting walls of light-frame construction shall be permitted to be designed in accordance with Table 1809.7.

1809.9.1 Dimensions. Masonry-unit footings shall be laid in Type M or S mortar complying with Section 2103.8 and the depth shall not be less than twice the projection beyond the wall, pier or column. The width shall not be less than 8 inches (203 mm) wider than the wall supported thereon.

1809.9.2 Offsets. The maximum offset of each course in brick foundation walls stepped up from the footings shall be 1⅛ inches (38 mm) where laid in single courses, and 3 inches (76 mm) where laid in double courses.

1809.10 Pier and curtain wall foundations. Except in Seismic Design Categories D, E and F, pier and curtain wall foundations shall be permitted to be used to support light-frame construction not more than two stories above grade plane, provided the following requirements are met:

1. All load-bearing walls shall be placed on continuous concrete footings bonded integrally with the exterior wall footings.

2. The minimum actual thickness of a load-bearing masonry wall shall not be less than 4 inches (102 mm) nominal or 3⅛ inches (92 mm) actual thickness, and shall be bonded integrally with piers spaced 6 feet (1829 mm) on center (o.c.).
SOILS AND FOUNDATIONS

3. Piers shall be constructed in accordance with Chapter 21 and the following:

3.1. The unsupported height of the masonry piers shall not exceed 10 times their least dimension.

3.2. Where structural clay tile or hollow concrete masonry units are used for piers supporting beams and girders, the cellular spaces shall be filled solidly with concrete or Type M or S mortar.

Exception: Unfilled hollow piers shall be permitted where the unsupported height of the pier is not more than four times its least dimension.

3.3. Hollow piers shall be capped with 4 inches (102 mm) of solid masonry or concrete or the cavities of the top course shall be filled with concrete or grout.

4. The maximum height of a 4-inch (102 mm) load-bearing masonry foundation wall supporting wood frame walls and floors shall not be more than 4 feet (1219 mm) in height.

5. The unbalanced fill for 4-inch (102 mm) foundation walls shall not exceed 24 inches (610 mm) for solid masonry, nor 12 inches (305 mm) for hollow masonry.

1809.11 Steel grillage footings. Grillage footings of structural steel shapes shall be separated with approved steel spacers and be entirely encased in concrete with at least 6 inches (152 mm) on the bottom and at least 4 inches (102 mm) at all other points. The spaces between the shapes shall be completely filled with concrete or cement grout.

1809.12 Timber footings. Timber footings shall be permitted for buildings of Type V construction and as otherwise approved by the building official. Such footings shall be treated in accordance with AWPA U1 (Commodity Specification A, Use Category 4B). Treated timbers are not required where placed entirely below permanent water level, or where used as capping for wood piles that project above the water level over submerged or marsh lands. The compressive stresses perpendicular to grain in untreated timber footings supported upon treated piles shall not exceed 70 percent of the allowable stresses for the species and grade of timber as specified in the AF&PA NDS.

1809.13 Footing seismic ties. Where a structure is assigned to Seismic Design Category D, E or F in accordance with Section 1613, individual spread footings founded on soil defined in Section 1613.5.2 as Site Class E or F shall be interconnected by ties. Unless it is demonstrated that equivalent restraint is provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade, ties shall be capable of carrying, in tension or compression, a force equal to the lesser of the product of the larger footing design gravity load times the seismic coefficient, $S_{d_{ps}}$, divided by 10 and 25 percent of the smaller footing design gravity load.

SECTION 1810 DEEP FOUNDATIONS

1810.1 General. Deep foundations shall be analyzed, designed, detailed and installed in accordance with Sections 1810.1 through 1810.4.

1810.1.1 Geotechnical investigation. Deep foundations shall be designed and installed on the basis of a geotechnical investigation as set forth in Section 1803.

1810.1.2 Use of existing deep foundation elements. Deep foundation elements left in place where a structure has been demolished shall not be used for the support of new construction unless satisfactory evidence is submitted to the building official, which indicates that the elements are sound and meet the requirements of this code. Such elements shall be load tested or redriven to verify their capacities. The design load applied to such elements shall be the lowest allowable load as determined by tests or redriving data.

1810.1.3 Deep foundation elements classified as columns. Deep foundation elements standing unbraced in air, water or fluid soils shall be classified as columns and designed as such in accordance with the provisions of this code from their top down to the point where adequate lateral support is provided in accordance with Section 1810.2.1.

Exception: Where the unsupported height to least horizontal dimension of a cast-in-place deep foundation element does not exceed three, it shall be permitted to design and construct such an element as a pedestal in accordance with ACI 318.

1810.1.4 Special types of deep foundations. The use of types of deep foundation elements not specifically mentioned herein is permitted, subject to the approval of the building official, upon the submission of acceptable test data, calculations and other information relating to the structural properties and load capacity of such elements. The allowable stresses for materials shall not in any case exceed the limitations specified herein.

1810.2 Analysis. The analysis of deep foundations for design shall be in accordance with Sections 1810.2.1 through 1810.2.5.

1810.2.1 Lateral support. Any soil other than fluid soil shall be deemed to afford sufficient lateral support to prevent buckling of deep foundation elements and to permit the design of the elements in accordance with accepted engineering practice and the applicable provisions of this code.

Where deep foundation elements stand unbraced in air, water or fluid soils, it shall be permitted to consider them laterally supported at a point 5 feet (1524 mm) into stiff soil or 10 feet (3048 mm) into soft soil unless otherwise approved by the building official on the basis of a geotechnical investigation by a registered design professional.

1810.2.2 Stability. Deep foundation elements shall be braced to provide lateral stability in all directions. Three or more elements connected by a rigid cap shall be considered braced, provided that the elements are located in radial directions from the centroid of the group not less than 60...
degrees (1 rad) apart. A two-element group in a rigid cap shall be considered to be braced along the axis connecting the two elements. Methods used to brace deep foundation elements shall be subject to the approval of the building official.

Deep foundation elements supporting walls shall be placed alternately in lines spaced at least 1 foot (305 mm) apart and located symmetrically under the center of gravity of the wall load carried, unless effective measures are taken to provide for eccentricity and lateral forces, or the foundation elements are adequately braced to provide for lateral stability.

Exceptions:

1. Isolated cast-in-place deep foundation elements without lateral bracing shall be permitted where the least horizontal dimension is no less than 2 feet (610 mm), adequate lateral support in accordance with Section 1810.2.1 is provided for the entire height and the height does not exceed 12 times the least horizontal dimension.

2. A single row of deep foundation elements without lateral bracing is permitted for one- and two-family dwellings and lightweight construction not exceeding two stories above grade plane or 35 feet (10 668 mm) in building height, provided the centers of the elements are located within the width of the supported wall.

1810.2.3 Settlement. The settlement of a single deep foundation element or group thereof shall be estimated based on approved methods of analysis. The predicted settlement shall cause neither harmful distortion of, nor instability in, the structure, nor cause any element to be loaded beyond its capacity.

1810.2.4 Lateral loads. The moments, shears and lateral deflections used for design of deep foundation elements shall be established considering the nonlinear interaction of the shaft and soil, as determined by a registered design professional. Where the ratio of the depth of embedment of the element to its least horizontal dimension is less than or equal to six, it shall be permitted to assume the element is rigid.

1810.2.4.1 Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F, deep foundation elements on Site Class E or F sites, as determined in Section 1613.5.2, shall be designed and constructed to withstand maximum imposed curvatures from earthquake ground motions and structure response. Curvatures shall include free-field soil strains modified for soil-foundation-structure interaction coupled with foundation element deformations associated with earthquake loads imparted to the foundation by the structure.

Exception: Deep foundation elements that satisfy the following additional detailing requirements shall be deemed to comply with the curvature capacity requirements of this section.

1. Precast prestressed concrete piles detailed in accordance with Section 1810.3.8.3.3.

2. Cast-in-place deep foundation elements with a minimum longitudinal reinforcement ratio of 0.005 extending the full length of the element and detailed in accordance with Sections 21.6.4.2, 21.6.4.3 and 21.6.4.4 of ACI 318 as required by Section 1810.3.9.4.2.2.

1810.2.5 Group effects. The analysis shall include group effects on lateral behavior where the center-to-center spacing of deep foundation elements in the direction of lateral force is less than eight times the least horizontal dimension of an element. The analysis shall include group effects on axial behavior where the center-to-center spacing of deep foundation elements is less than three times the least horizontal dimension of an element.

1810.3 Design and detailing. Deep foundations shall be designed and detailed in accordance with Sections 1810.3.1 through 1810.3.12.

1810.3.1 Design conditions. Design of deep foundations shall include the design conditions specified in Sections 1810.3.1.1 through 1810.3.1.6, as applicable.

1810.3.1.1 Design methods for concrete elements. Where concrete deep foundations are laterally supported in accordance with Section 1810.2.1 for the entire height and applied forces cause bending moments no greater than those resulting from accidental eccentricities, structural design of the element using the load combinations of Section 1605.3 and the allowable stresses specified in this chapter shall be permitted. Otherwise, the structural design of concrete deep foundation elements shall use the load combinations of Section 1605.2 and approved strength design methods.

1810.3.1.2 Composite elements. Where a single deep foundation element comprises two or more sections of different materials or different types spliced together, each section of the composite assembly shall satisfy the applicable requirements of this code, and the maximum allowable load in each section shall be limited by the structural capacity of that section.

1810.3.1.3 Mislocation. The foundation or superstructure shall be designed to resist the effects of the mislocation of any deep foundation element by no less than 3 inches (76 mm). To resist the effects of mislocation, compressive overload of deep foundation elements to 110 percent of the allowable design load shall be permitted.

1810.3.1.4 Driven piles. Driven piles shall be designed and manufactured in accordance with accepted engineering practice to resist all stresses induced by handling, driving and service loads.

1810.3.1.5 Helical piles. Helical piles shall be designed and manufactured in accordance with accepted engineering practice to resist all stresses induced by installation into the ground and service loads.

1810.3.1.5.1 Helical Piles Seismic Requirements. [OSHPD 2] For structures assigned to Seismic Design Category D, E or F, capacities of helical piles shall be determined in accordance with Section...
1810.3.3 by at least two project specific preproduction tests for each soil profile, size and depth of helical pile. At least two percent of all production piles shall be proof tested to design ultimate strength determined by using load combinations in Section 1605.2.1.

Helical piles shall satisfy corrosion resistance requirements of ICC-ES AC 358. In addition, all helical pile materials that are subject to corrosion shall include at least 1/8-inch corrosion allowance.

Helical piles shall not be considered as carrying any horizontal loads.

1810.3.6 Casings. Temporary and permanent casings shall be of steel and shall be sufficiently strong to resist collapse and sufficiently water tight to exclude any foreign materials during the placing of concrete. Where a permanent casing is considered reinforcing steel, the steel shall be protected under the conditions specified in Section 1810.3.2.5. Horizontal joints in the casing shall be spliced in accordance with Section 1810.3.6.

1810.3.2 Materials. The materials used in deep foundation elements shall satisfy the requirements of Sections 1810.3.2.1 through 1810.3.2.8, as applicable.

1810.3.2.1 Concrete. Where concrete is cast in a steel pipe or where an enlarged base is formed by compacting concrete, the maximum size for coarse aggregate shall be 3/4 inch (19.1 mm). Concrete to be compacted shall have a zero slump.

1810.3.2.1.1 Seismic hooks. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613, the ends of hoops, spirals and ties used in concrete deep foundation elements shall be terminated with seismic hooks, as defined in ACI 318, and shall be turned into the confined concrete core.

1810.3.2.1.2 ACI 318 Equation (10-5). Where this chapter requires detailing of concrete deep foundation elements in accordance with Section 21.6.4.4 of ACI 318, compliance with Equation (10-5) of ACI 318 shall not be required.

1810.3.2.2 Prestressing steel. Prestressing steel shall conform to ASTM A 416.

1810.3.2.3 Structural steel. Structural steel piles, steel pipe and fully welded steel piles fabricated from plates shall conform to ASTM A 36, ASTM A 252, ASTM A 283, ASTM A 572, ASTM A 588, ASTM A 690, ASTM A 913 or ASTM A 992.

1810.3.2.4 Timber. Timber deep foundation elements shall be designed as piles or poles in accordance with AF&PA NDS. Round timber elements shall conform to ASTM D 25. Sawn timber elements shall conform to DOC PS-20.

1810.3.2.4.1 Preservative treatment. Timber deep foundation elements used to support permanent structures shall be treated in accordance with this section unless it is established that the tops of the untreated timber elements will be below the lowest ground-water level assumed to exist during the life of the structure. Preservative and minimum final retention shall be in accordance with AWPA U1 (Commodity Specification E, Use Category 4C) for round timber elements and AWPA U1 (Commodity Specification A, Use Category 4B) for sawn timber elements. Preservative-treated timber elements shall be subject to a quality control program administered by an approved agency. Element cutoffs shall be treated in accordance with AWPA M4.

1810.3.2.5 Protection of materials. Where boring records or site conditions indicate possible deleterious action on the materials used in deep foundation elements because of soil constituents, changing water levels or other factors, the elements shall be adequately protected by materials, methods or processes approved by the building official. Protective materials shall be applied to the elements so as not to be rendered ineffective by installation. The effectiveness of such protective measures for the particular purpose shall have been thoroughly established by satisfactory service records or other evidence.

1810.3.2.6 Allowable stresses. The allowable stresses for materials used in deep foundation elements shall not exceed those specified in Table 1810.3.2.6.

1810.3.2.7 Increased allowable compressive stress for cased cast-in-place elements. The allowable compressive stress in the concrete shall be permitted to be increased as specified in Table 1810.3.2.6 for those portions of permanently cased cast-in-place elements that satisfy all of the following conditions:

1. The design shall not use the casing to resist any portion of the axial load imposed.

2. The casing shall have a sealed tip and be mandrel driven.

3. The thickness of the casing shall not be less than manufacturer's standard gage No. 14 (0.068 inch) (1.75 mm).

4. The casing shall be seamless or provided with seams of strength equal to the basic material and be of a configuration that will provide confinement to the cast-in-place concrete.

5. The ratio of steel yield strength (Fy) to specified compressive strength (f'_c) shall not be less than six.

6. The nominal diameter of the element shall not be greater than 16 inches (406 mm).

1810.3.2.8 Justification of higher allowable stresses. Use of allowable stresses greater than those specified in Section 1810.3.2.6 shall be permitted where supporting data justifying such higher stresses is filed with the building official. Such substantiating data shall include:

1. A geotechnical investigation in accordance with Section 1803; and
2. Load tests in accordance with Section 1810.3.3.1.2, regardless of the load supported by the element.

The design and installation of the deep foundation elements shall be under the direct supervision of a registered design professional knowledgeable in the field of soil mechanics and deep foundations who shall submit a report to the building official stating that the elements as installed satisfy the design criteria.

1810.3.3 Determination of allowable loads. The allowable axial and lateral loads on deep foundation elements shall be determined by an approved formula, load tests or method of analysis.

1810.3.3.1 Allowable axial load. The allowable axial load on a deep foundation element shall be determined in accordance with Sections 1810.3.3.1.1 through 1810.3.3.1.9.

1810.3.3.1.1 Driving criteria. The allowable compressive load on any driven deep foundation element where determined by the application of an approved driving formula shall not exceed 40 tons (356 kN). For allowable loads above 40 tons (356 kN), the wave equation method of analysis shall be used to estimate driveability for both driving stresses and net displacement per blow at the ultimate load. Allowable loads shall be verified by load tests in accordance with Section 1810.3.3.1.2. The formula or wave equation load shall be determined for gravity-drop or power-actuated hammers and the hammer energy used shall be the maximum consistent with the size, strength and weight of the driven elements. The use of a follower is permitted only with the approval of the building official. The introduction of fresh hammer cushion or pile cushion material just prior to final penetration is not permitted.

1810.3.3.1.2 Load tests. Where design compressive loads are greater than those determined using the allowable stresses specified in Section 1810.3.2.6, where the design load for any deep foundation element is in doubt, or where cast-in-place deep foundation elements have an enlarged base formed either by compacting concrete or by driving a precast base, control test elements shall be tested in accordance with ASTM D 1143 or ASTM D 4945. At least one element shall be load tested in each area of uniform subsoil conditions. Where required by the building official, additional elements shall be load tested where

<table>
<thead>
<tr>
<th>TABLE 1810.3.2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWABLE STRESSES FOR MATERIALS USED IN DEEP FOUNDATION ELEMENTS</td>
</tr>
<tr>
<td>MATERIAL TYPE AND CONDITION</td>
</tr>
<tr>
<td>1. Concrete or grout in compression</td>
</tr>
<tr>
<td>Cast-in-place with a permanent casing in accordance with Section 1810.3.2.7</td>
</tr>
<tr>
<td>Cast-in-place in a pipe, tube, other permanent casing or rock</td>
</tr>
<tr>
<td>Cast-in-place without a permanent casing</td>
</tr>
<tr>
<td>Precast non prestressed</td>
</tr>
<tr>
<td>Precast prestressed</td>
</tr>
<tr>
<td>2. Non prestressed reinforcement in compression</td>
</tr>
<tr>
<td>3. Structural steel in compression</td>
</tr>
<tr>
<td>Cores within concrete-filled pipes or tubes</td>
</tr>
<tr>
<td>Pipes, tubes or H-piles, where justified in accordance with Section 1810.3.2.8</td>
</tr>
<tr>
<td>Pipes or tubes for micropiles</td>
</tr>
<tr>
<td>Other pipes, tubes or H-piles</td>
</tr>
<tr>
<td>Helical piles</td>
</tr>
<tr>
<td>4. Non prestressed reinforcement in tension</td>
</tr>
<tr>
<td>Within micropiles</td>
</tr>
<tr>
<td>Other conditions</td>
</tr>
<tr>
<td>5. Structural steel in tension</td>
</tr>
<tr>
<td>Pipes, tubes or H-piles, where justified in accordance with Section 1810.3.2.8</td>
</tr>
<tr>
<td>Other pipes, tubes or H-piles</td>
</tr>
<tr>
<td>Helical piles</td>
</tr>
<tr>
<td>6. Timber</td>
</tr>
</tbody>
</table>

a. f'c is the specified compressive strength of the concrete or grout; f'pc is the compressive stress on the gross concrete section due to effective prestress forces only; f' is the specified yield strength of reinforcement; Fy is the specified minimum yield stress of structural steel; Fu is the specified minimum tensile stress of structural steel.

b. The stresses specified apply to the gross cross-sectional area within the concrete surface. Where a temporary or permanent casing is used, the inside face of the casing shall be considered the concrete surface.
necessary to establish the safe design capacity. The resulting allowable loads shall not be more than one-half of the ultimate axial load capacity of the test element as assessed by one of the published methods listed in Section 1810.3.3.1.3 with consideration for the test type, duration and subsoil. The ultimate axial load capacity shall be determined by a registered design professional with consideration given to tolerable total and differential settlements at design load in accordance with Section 1810.2.3. In subsequent installation of the balance of deep foundation elements, all elements shall be deemed to have a supporting capacity equal to that of the control element where such elements are of the same type, size and relative length as the test element; are installed using the same or comparable methods and equipment as the test element; are installed in similar subsoil conditions as the test element; and, for driven elements, where the rate of penetration (e.g., net displacement per blow) of such elements is equal to or less than that of the test element driven with the same hammer through a comparable driving distance.

1810.3.3.1.3 Load test evaluation methods

It shall be permitted to evaluate load tests of deep foundation elements using any of the following methods:

1. Davisson Offset Limit.
2. Brinch-Hansen 90% Criterion.
4. Other methods approved by the building official.

1810.3.3.1.4 Allowable frictional resistance

The assumed frictional resistance developed by any uncased cast-in-place deep foundation element shall not exceed one-sixth of the bearing value of the soil material at minimum depth as set forth in Table 1806.2, up to a maximum of 500 psf (24 kPa), unless a greater value is allowed by the building official on the basis of a geotechnical investigation as specified in Section 1803 or a greater value is substantiated by a load test in accordance with Section 1810.3.3.1.2. Frictional resistance and bearing resistance shall not be assumed to act simultaneously unless determined by a geotechnical investigation in accordance with Section 1803.

1810.3.3.1.5 Uplift capacity of a single deep foundation element

Where required by the design, the uplift capacity of a single deep foundation element shall be determined by an approved method of analysis based on a minimum factor of safety of three or by load tests conducted in accordance with ASTM D 3689. The maximum allowable uplift load shall not exceed the ultimate load capacity as determined in Section 1810.3.3.1.2, using the results of load tests conducted in accordance with ASTM D 3689, divided by a factor of safety of two.

Exception: Where uplift is due to wind or seismic loading, the minimum factor of safety shall be two where capacity is determined by an analysis and one and one-half where capacity is determined by load tests.

1810.3.3.1.6 Uplift capacity of grouped deep foundation elements

For grouped deep foundation elements subjected to uplift, the allowable working uplift load for the group shall be calculated by an approved method of analysis where the deep foundation elements in the group are placed at a center-to-center spacing of at least 2.5 times the least horizontal dimension of the largest single element, the allowable working uplift load for the group is permitted to be calculated as the lesser of:

1. The proposed individual uplift working load times the number of elements in the group.
2. Two-thirds of the effective weight of the group and the soil contained within a block defined by the perimeter of the group and the length of the element.

1810.3.3.1.7 Load-bearing capacity

Deep foundation elements shall develop ultimate load capacities of at least twice the design working loads in the designated load-bearing layers. Analysis shall show that no soil layer underlying the designated load-bearing layers causes the load-bearing capacity safety factor to be less than two.

1810.3.3.1.8 Bent deep foundation elements

The load-bearing capacity of deep foundation elements discovered to have a sharp or sweeping bend shall be determined by an approved method of analysis or by load testing a representative element.

1810.3.3.1.9 Helical piles

The allowable axial design load, P_a, of helical piles shall be determined as follows:

$$P_a = 0.5 \cdot P_u$$

(Equation 18-4)

where P_u is the least value of:

1. Sum of the areas of the helical bearing plates times the ultimate bearing capacity of the soil or rock comprising the bearing stratum.
2. Ultimate capacity determined from well-documented correlations with installation torque.
3. Ultimate capacity determined from load tests.
4. Ultimate axial capacity of pile shaft.
5. Ultimate axial capacity of pile shaft couplings.
6. Sum of the ultimate axial capacity of helical bearing plates affixed to pile.

1810.3.3.2 Allowable lateral load

Where required by the design, the lateral load capacity of a single deep foundation element or a group thereof shall be determined by an approved method of analysis or by lateral load tests to at least twice the proposed design working load. The resulting allowable load shall not be more than one-half of the load that produces a gross lateral movement of 1 inch (25 mm) at the lower of the top of foundation ele-
ment and the ground surface, unless it can be shown that the predicted lateral movement shall cause neither harmful distortion of, nor instability in, the structure, nor cause any element to be loaded beyond its capacity.

1810.3.4 Subsiding soils. Where deep foundation elements are installed through subsiding fills or other subsiding strata and derive support from underlying firmer materials, consideration shall be given to the downward frictional forces that may be imposed on the elements by the subsiding upper strata.

Where the influence of subsiding fills is considered as imposing loads on the element, the allowable stresses specified in this chapter shall be permitted to be increased where satisfactory substantiating data are submitted.

1810.3.5 Dimensions of deep foundation elements. The dimensions of deep foundation elements shall be in accordance with Sections 1810.3.5.1 through 1810.3.5.3, as applicable.

1810.3.5.1 Precast. The minimum lateral dimension of precast concrete deep foundation elements shall be 8 inches (203 mm). Corners of square elements shall be chamfered.

1810.3.5.2 Cast-in-place or grouted-in-place. Cast-in-place and grouted-in-place deep foundation elements shall satisfy the requirements of this section.

1810.3.5.2.1 Cased. Cast-in-place deep foundation elements with a permanent casing shall have a nominal outside diameter of not less than 8 inches (203 mm).

1810.3.5.2.2 Uncased. Cast-in-place deep foundation elements without a permanent casing shall have a diameter of not less than 12 inches (305 mm). The element length shall not exceed 30 times the average diameter.

Exception: The length of the element is permitted to exceed 30 times the diameter, provided the design and installation of the deep foundations are under the direct supervision of a registered design professional knowledgeable in the field of soil mechanics and deep foundations. The registered design professional shall submit a report to the building official stating that the elements were installed in compliance with the approved construction documents.

1810.3.5.2.3 Micropiles. Micropiles shall have an outside diameter of 12 inches (305 mm) or less. The minimum diameter set forth elsewhere in Section 1810.3.5 shall not apply to micropiles.

1810.3.5.3 Steel. Steel deep foundation elements shall satisfy the requirements of this section.

1810.3.5.3.1 H-piles. Sections of H-piles shall comply with the following:

1. The flange projections shall not exceed 14 times the minimum thickness of metal in either the flange or the web and the flange widths shall not be less than 80 percent of the depth of the section.

2. The nominal depth in the direction of the web shall not be less than 8 inches (203 mm).

3. Flanges and web shall have a minimum nominal thickness of \(\frac{3}{16} \) inch (9.5 mm).

1810.3.5.3.2 Steel pipes and tubes. Steel pipes and tubes used as deep foundation elements shall have a nominal outside diameter of not less than 8 inches (203 mm). Where steel pipes or tubes are driven open ended, they shall have a minimum of 0.34 square inch (219 mm²) of steel in cross section to resist each 1,000 foot-pounds (1356 Nm) of pile hammer energy, or shall have the equivalent strength for steels having a yield strength greater than 35,000 psi (241 MPa) or the wave equation analysis shall be permitted to be used to assess compression stresses induced by driving to evaluate if the pile section is appropriate for the selected hammer. Where a pipe or tube with wall thickness less than 0.179 inch (4.6 mm) is driven open ended, a suitable cutting shoe shall be provided. Concrete-filled steel pipes or tubes in structures assigned to Seismic Design Category C, D, E or F shall have a wall thickness of not less than \(\frac{3}{16} \) inch (5 mm). The pipe or tube casing for socketed drilled shafts shall have a nominal outside diameter of not less than 18 inches (457 mm), a wall thickness of not less than \(\frac{1}{8} \) inch (9.5 mm) and a suitable steel driving shoe welded to the bottom; the diameter of the rock socket shall be approximately equal to the inside diameter of the casing.

Exceptions:

1. There is no minimum diameter for steel pipes or tubes used in micropiles.

2. For mandrel-driven pipes or tubes, the minimum wall thickness shall be \(\frac{1}{16} \) inch (2.5 mm).

1810.3.5.3.3 Helical piles. Dimensions of the central shaft and the number, size and thickness of helical bearing plates shall be sufficient to support the design loads.

1810.3.6 Splices. Splices shall be constructed so as to provide and maintain true alignment and position of the component parts of the deep foundation element during installation and subsequent thereto and shall be designed to resist the axial and shear forces and moments occurring at the location of the splice during driving and for design load combinations. Where deep foundation elements of the same type are being spliced, splices shall develop not less than 50 percent of the bending strength of the weaker section. Where deep foundation elements of different materials or different types are being spliced, splices shall develop the full compressive strength and not less than 50 percent of the tension and bending strength of the weaker section. Where structural steel cores are to be spliced, the ends shall be milled or ground to provide full contact and shall be full-depth welded.
Splices occurring in the upper 10 feet (3048 mm) of the embedded portion of an element shall be designed to resist at allowable stresses the moment and shear that would result from an assumed eccentricity of the axial load of 3 inches (76 mm), or the element shall be braced in accordance with Section 1810.2.2 to other deep foundation elements that do not have splices in the upper 10 feet (3048 mm) of embedment.

1810.3.6.1 Seismic Design Categories C through F. For structures assigned to Seismic Design Category C, D, E or F splices of deep foundation elements shall develop the lesser of the following:

1. The full strength of the deep foundation element; and
2. The axial and shear forces and moments from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

1810.3.7 Top of element detailing at cutoffs. Where a minimum length for reinforcement or the extent of closely spaced confinement reinforcement is specified at the top of a deep foundation element, provisions shall be made so that those specified lengths or extents are maintained after cutoff.

1810.3.8 Precast concrete piles. Precast concrete piles shall be designed and detailed in accordance with Sections 1810.3.8.1 through 1810.3.8.3.

1810.3.8.1 Reinforcement. Longitudinal steel shall be arranged in a symmetrical pattern and be laterally tied with steel ties or wire spiral spaced center to center as follows:

1. At not more than 1 inch (25 mm) for the first five ties or spirals at each end; then
2. At not more than 4 inches (102 mm), for the remainder of the first 2 feet (610 mm) from each end; and then
3. At not more than 6 inches (152 mm) elsewhere.

The size of ties and spirals shall be as follows:

1. For piles having a least horizontal dimension of 16 inches (406 mm) or less, wire shall not be smaller than 0.22 inch (5.6 mm) (No. 5 gage).
2. For piles having a least horizontal dimension of more than 16 inches (406 mm) and less than 20 inches (508 mm), wire shall not be smaller than 0.238 inch (6 mm) (No. 4 gage).
3. For piles having a least horizontal dimension of 20 inches (508 mm) and larger, wire shall not be smaller than 1/8 inch (6.4 mm) round or 0.259 inch (6.6 mm) (No. 3 gage).

1810.3.8.2 Precast nonprestressed piles. Precast nonprestressed concrete piles shall comply with the requirements of Sections 1810.3.8.2.1 through 1810.3.8.2.3.

1810.3.8.2.1 Minimum reinforcement. Longitudinal reinforcement shall consist of at least four bars with a minimum longitudinal reinforcement ratio of 0.008.

1810.3.8.2.2 Seismic reinforcement in Seismic Design Categories C through F. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613, precast nonprestressed piles shall be reinforced as specified in this section. The minimum longitudinal reinforcement ratio shall be 0.01 throughout the length. Transverse reinforcement shall consist of closed ties or spirals with a minimum 1/4 inch (9.5 mm) diameter. Spacing of transverse reinforcement shall not exceed the smaller of eight times the diameter of the smallest longitudinal bar or 6 inches (152 mm) within a distance of three times the least pile dimension from the bottom of the pile cap. Spacing of transverse reinforcement shall not exceed 6 inches (152 mm) throughout the remainder of the pile.

1810.3.8.2.3 Additional seismic reinforcement in Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613, transverse reinforcement shall be in accordance with Section 1810.3.9.4.2.

1810.3.8.3 Precast prestressed piles. Precast prestressed concrete piles shall comply with the requirements of Sections 1810.3.8.3.1 through 1810.3.8.3.3.

1810.3.8.3.1 Effective prestress. The effective prestress in the pile shall not be less than 400 psi (2.76 MPa) for piles up to 30 feet (9144 mm) in length, 550 psi (3.79 MPa) for piles up to 50 feet (15240 mm) in length and 700 psi (4.83 MPa) for piles greater than 50 feet (15240 mm) in length.

Effective prestress shall be based on an assumed loss of 30,000 psi (207 MPa) in the prestressing steel. The tensile stress in the prestressing steel shall not exceed the values specified in ACI 318.

1810.3.8.3.2 Seismic reinforcement in Seismic Design Category C. For structures assigned to Seismic Design Category C in accordance with Section 1613, prestressed piles shall have transverse reinforcement in accordance with this section. The volumetric ratio of spiral reinforcement shall not be less than the amount required by the following formula for the upper 20 feet (6096 mm) of the pile.

$$\rho_s = 0.12 f'_c / f_{sh} \quad \text{Equation 18-5}$$

where:

- $f'_c =$ Specified compressive strength of concrete, psi (MPa).
- $f_{sh} =$ Yield strength of spiral reinforcement $\leq 85,000$ psi (586 MPa).
- $\rho_s =$ Spiral reinforcement index (vol. spiral/vol. core).

At least one-half the volumetric ratio required by Equation 18-5 shall be provided below the upper 20 feet (6096 mm) of the pile.
1810.3.8.3.3 Seismic reinforcement in Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613, precast prestressed piles shall have transverse reinforcement in accordance with the following:

1. Requirements in ACI 318, Chapter 21, need not apply, unless specifically referenced.

2. Where the total pile length in the soil is 35 feet (10 668 mm) or less, the lateral transverse reinforcement in the ductile region shall occur through the length of the pile. Where the pile length exceeds 35 feet (10 668 mm), the ductile pile region shall be taken as the greater of 35 feet (10 668 mm) or the distance from the underside of the pile cap to the point of zero curvature plus three times the least pile dimension.

3. In the ductile region, the center-to-center spacing of the spirals or hoop reinforcement shall not exceed one-fifth of the least pile dimension, six times the diameter of the longitudinal strand or 8 inches (203 mm), whichever is smallest.

4. Circular spiral reinforcement shall be spliced by lapping one full turn and bending the end of each spiral to a 90-degree hook or by use of a mechanical or welded splice complying with Section 12.14.3 of ACI 318.

5. Where the transverse reinforcement consists of circular spirals, the volumetric ratio of spiral transverse reinforcement in the ductile region shall comply with the following:

\[
\rho_s = 0.25 \frac{f'_c}{f_{sh}} \left(\frac{A_s}{A_{eh}} - 1.0 \right) \left[0.5 + 1.4P/f'_cA_g \right]
\]

(Equation 18-6)

but not less than:

\[
\rho_s = 0.12 \frac{f'_c}{f_{sh}} \left(\frac{A_s}{A_{eh}} \right) \left[0.5 + 1.4P/f'_cA_g \right]
\]

(Equation 18-7)

and need not exceed:

\[
\rho_s = 0.021 \quad \text{(Equation 18-8)}
\]

where:

- \(A_s \) = Pile cross-sectional area, square inches (mm²).
- \(A_{eh} \) = Core area defined by spiral outside diameter, square inches (mm²).
- \(f'_c \) = Specified compressive strength of concrete, psi (MPa).
- \(f_{sh} \) = Yield strength of spiral reinforcement ≤ 85,000 psi (586 MPa).

\[P = \text{Axial load on pile, pounds (kN), as determined from Equations 16-5 and 16-7.} \]
\[\rho_s = \text{Volumetric ratio (vol. spiral/ vol. core).} \]

This required amount of spiral reinforcement is permitted to be obtained by providing an inner and outer spiral.

6. Where transverse reinforcement consists of rectangular hoops and cross ties, the total cross-sectional area of lateral transverse reinforcement in the ductile region with spacing, \(s \), and perpendicular dimension, \(h_e \), shall conform to:

\[
A_{sh} = 0.3s h_e \left(\frac{f'_c}{f_{sh}} \right) \left(\frac{A_s}{A_{eh}} - 1.0 \right) \left[0.5 + 1.4P/f'_cA_g \right]
\]

(Equation 18-9)

but not less than:

\[
A_{sh} = 0.12s h_e \left(\frac{f'_c}{f_{sh}} \right) \left[0.5 + 1.4P/f'_cA_g \right]
\]

(Equation 18-10)

where:

- \(f_{sh} = \leq 70,000 \text{ psi (483 MPa).} \)
- \(h_e = \text{Cross-sectional dimension of pile core measured center to center of hoop reinforcement, inch (mm).} \)
- \(s = \text{Spacing of transverse reinforcement measured along length of pile, inch (mm).} \)
- \(A_{sh} = \text{Cross-sectional area of transverse reinforcement, square inches (mm²).} \)
- \(f'_c = \text{Specified compressive strength of concrete, psi (MPa).} \)

The hoops and cross ties shall be equivalent to deformed bars not less than No. 3 in size. Rectangular hoop ends shall terminate at a corner with seismic hooks.

Outside of the length of the pile requiring transverse confinement reinforcing, the spiral or hoop reinforcing with a volumetric ratio not less than one-half of that required for transverse confinement reinforcing shall be provided.

1810.3.9 Cast-in-place deep foundations. Cast-in-place deep foundation elements shall be designed and detailed in accordance with Sections 1810.3.9.1 through 1810.3.9.6.

1810.3.9.1 Design cracking moment. The design cracking moment (\(\phi M_n \)) for a cast-in-place deep foundation element not enclosed by a structural steel pipe or tube shall be determined using the following equation:

\[
\phi M_n = 3 \sqrt{f'_cS_m}
\]

(Equation 18-11)

where:

- \(f'_c \)
- \(S_m \)
SOILS AND FOUNDATIONS

\(f'_{c} \) = Specified compressive strength of concrete or
gROUT, psi (MPa)

\(S_n \) = Elastic section modulus, neglecting reinforce­
ment and casing, cubic inches (\(\text{mm}^3 \))

1810.3.9.2 Required reinforcement. Where subject to
uplift or where the required moment strength determined
using the load combinations of Section 1605.2 exceeds
the design cracking moment determined in accordance
with Section 1810.3.9.1, cast-in-place deep foundations
not enclosed by a structural steel pipe or tube shall be
reinforced.

1810.3.9.3 Placement of reinforcement. Reinforce­
ment where required shall be assembled and tied
together and shall be placed in the deep foundation ele­
ment as a unit before the reinforced portion of the ele­
ment is filled with concrete.

Exceptions:

1. Steel dowels embedded 5 feet (1524 mm) or
less shall be permitted to be placed after con­
creting, while the concrete is still in a semifluid
state.

2. For deep foundation elements installed with a
hollow-stem auger, tied reinforcement shall be
placed after elements are concreted, while the
concrete is still in a semifluid state. Longitudi­
nal reinforcement without lateral ties shall be
placed either through the hollow stem of the
auger prior to concreting or after concreting,
while the concrete is still in a semifluid state.

3. For Group R-3 and U occupancies not exceeding
two stories of light-frame construction,
reinforcement is permitted to be placed after con­
creting, while the concrete is still in a semifluid state, and the concrete cover requirement
is permitted to be reduced to 2 inches (51 mm),
provided the construction method can be dem­
onstrated to the satisfaction of the
building official.

1810.3.9.4 Seismic reinforcement. Where a structure is
assigned to Seismic Design Category C, reinforcement
shall be provided in accordance with Section
1810.3.9.4.1. Where a structure is assigned to Seismic
Design Category D, E or F, reinforcement shall be pro­
vided in accordance with Section 1810.3.9.4.2.

Exceptions:

1. Isolated deep foundation elements supporting
posts of Group R-3 and U occupancies not
exceeding two stories of light-frame construc­tion
shall be permitted to be reinforced as
required by rational analysis but with not less
than one No. 4 bar, without ties or spirals,
where detailed so the element is not subject to
lateral loads and the soil provides adequate lat­
eral support in accordance with Section
1810.2.1.

2. Isolated deep foundation elements supporting
posts and bracing from decks and patios appur­
tenant to Group R-3 and U occupancies not
exceeding two stories of light-frame construc­tion
shall be permitted to be reinforced as
required by rational analysis but with not less
than one No. 4 bar, without ties or spirals,
where the lateral load, \(E \), to the top of the ele­
ment does not exceed 200 pounds (890 N) and
the soil provides adequate lateral support in
accordance with Section 1810.2.1.

3. Deep foundation elements supporting the con­
crete foundation wall of Group R-3 and U occu­
pancies not exceeding two stories of light-frame construction shall be permitted to
be reinforced as required by rational analysis
but with not less than two No. 4 bars, without
ties or spirals, where the design cracking
moment determined in accordance with Section
1810.3.9.1 exceeds the required moment
strength determined using the load combina­
tions with overstrength factor in Section
12.4.3.2 of ASCE 7 and the soil provides ade­
quate lateral support in accordance with Section
1810.2.1.

4. Closed ties or spirals where required by Section
1810.3.9.4.2 shall be permitted to be limited to
the top 3 feet (914 mm) of deep foundation ele­
ments 10 feet (3048 mm) or less in depth sup­
porting Group R-3 and U occupancies of
Seismic Design Category D, not exceeding two
stories of light-frame construction.

1810.3.9.4.1 Seismic reinforcement in Seismic
Design Category C. For structures assigned to Seis­
mic Design Category C in accordance with Section
1613, cast-in-place deep foundation elements shall be
reinforced as specified in this section. Reinforcement
shall be provided where required by analysis.

A minimum of four longitudinal bars, with a mini­
imum longitudinal reinforcement ratio of 0.0025, shall
be provided for throughout the minimum reinforced
length of the element as defined below starting at the
top of the element. The minimum reinforced length of
the element shall be taken as the greatest of the fol­
lowing:

1. One-third of the element length;
2. A distance of 10 feet (3048 mm);
3. Three times the least element dimension; and
4. The distance from the top of the element to the
top where the design cracking moment deter­
mined in accordance with Section 1810.3.9.1
exceeds the required moment strength deter­
mined using the load combinations of Section
1605.2.

Transverse reinforcement shall consist of closed
ties or spirals with a minimum \(\frac{3}{4} \) inch (9.5 mm) diame­
ter. Spacing of transverse reinforcement shall not
exceed the smaller of 6 inches (152 mm) or 8-longitudinal-bar diameters, within a distance of three times the least element dimension from the bottom of the pile cap. Spacing of transverse reinforcement shall not exceed 16 longitudinal bar diameters throughout the remainder of the reinforced length.

Exceptions:

1. The requirements of this section shall not apply to concrete cast in structural steel pipes or tubes.
2. A spiral-welded metal casing of a thickness not less than manufacturer’s standard gage No. 14 gage (0.068 inch) is permitted to provide concrete confinement in lieu of the closed ties or spirals. Where used as such, the metal casing shall be protected against possible deleterious action due to soil constituents, changing water levels or other factors indicated by boring records of site conditions.

1810.3.9.4.2 Seismic reinforcement in Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613, cast-in-place deep foundation elements shall be reinforced as specified in this section. Reinforcement shall be provided where required by analysis.

A minimum of four longitudinal bars, with a minimum longitudinal reinforcement ratio of 0.005, shall be provided throughout the minimum reinforced length of the element as defined below starting at the top of the element. The minimum reinforced length of the element shall be taken as the greatest of the following:

1. One-half of the element length;
2. A distance of 10 feet (3048 mm);
3. Three times the least element dimension; and
4. The distance from the top of the element to the point where the design cracking moment determined in accordance with Section 1810.3.9.1 exceeds the required moment strength determined using the load combinations of Section 1605.2.

Transverse reinforcement shall consist of closed ties or spirals no smaller than No. 3 bars for elements with a least dimension up to 20 inches (508 mm), and No. 4 bars for larger elements. Throughout the remainder of the reinforced length outside the regions with transverse confinement reinforcement, as specified in Section 1810.3.9.4.2.1 or 1810.3.9.4.2.2, the spacing of transverse reinforcement shall not exceed the least of the following:

1. 12 longitudinal bar diameters;
2. One-half the least dimension of the element; and
3. 12 inches (305 mm).

Exceptions:

1. The requirements of this section shall not apply to concrete cast in structural steel pipes or tubes.
2. A spiral-welded metal casing of a thickness not less than manufacturer’s standard gage No. 14 gage (0.068 inch) is permitted to provide concrete confinement in lieu of the closed ties or spirals. Where used as such, the metal casing shall be protected against possible deleterious action due to soil constituents, changing water levels or other factors indicated by boring records of site conditions.

1810.3.9.4.2.1 Site Classes A through D. For Site Class A, B, C or D sites, transverse confinement reinforcement shall be provided in the element in accordance with Sections 21.6.4.2, 21.6.4.3 and 21.6.4.4 of ACI 318 within three times the least element dimension of the bottom of the pile cap. A transverse spiral reinforcement ratio of not less than one-half of that required in Section 21.6.4.4(a) of ACI 318 shall be permitted.

1810.3.9.4.2.2 Site Classes E and F. For Site Class E or F sites, transverse confinement reinforcement shall be provided in the element in accordance with Sections 21.6.4.2, 21.6.4.3 and 21.6.4.4 of ACI 318 within seven times the least element dimension of the pile cap and within seven times the least element dimension of the interfaces of strata that are hard or stiff and strata that are liquefiable or are composed of soft- to medium-stiff clay.

1810.3.9.5 Belled drilled shafts. Where drilled shafts are belled at the bottom, the edge thickness of the bell shall not be less than that required for the edge of footings. Where the sides of the bell slope at an angle less than 60 degrees (1 rad) from the horizontal, the effects of vertical shear shall be considered.

1810.3.9.6 Socketed drilled shafts. Socketed drilled shafts shall have a permanent pipe or tube casing that extends down to bedrock and an uncased socket drilled into the bedrock, both filled with concrete. Socketed drilled shafts shall have reinforcement or a structural steel core for the length as indicated by an approved method of analysis.

The depth of the rock socket shall be sufficient to develop the full load-bearing capacity of the element with a minimum safety factor of two, but the depth shall not be less than the outside diameter of the pipe or tube casing. The design of the rock socket is permitted to be predicated on the sum of the allowable load-bearing pressure on the bottom of the socket plus bond along the sides of the socket.
Where a structural steel core is used, the gross cross-sectional area of the core shall not exceed 25 percent of the gross area of the drilled shaft.

1810.3.10 Micropiles. Micropiles shall be designed and detailed in accordance with Sections 1810.3.10.1 through 1810.3.10.4.

1810.3.10.1 Construction. Micropiles shall develop their load-carrying capacity by means of a bond zone in soil, bedrock or a combination of soil and bedrock. Micropiles shall be grouted and have either a steel pipe or tube or steel reinforcement at every section along the length. It shall be permitted to transition from deformed reinforcing bars to steel pipe or tube reinforcement by extending the bars into the pipe or tube section by at least their development length in tension in accordance with ACI 318.

1810.3.10.2 Materials. Reinforcement shall consist of deformed reinforcing bars in accordance with ASTM A 615 Grade 60 or 75 or ASTM A 722 Grade 150.

The steel pipe or tube shall have a minimum wall thickness of \(\frac{3}{16} \) inch (4.8 mm). Splices shall comply with Section 1810.3.6. The steel pipe or tube shall have a minimum yield strength of 45,000 psi (310 MPa) and a minimum elongation of 15 percent as shown by mill certifications or two coupon test samples per 40,000 pounds (18 160 kg) of pipe or tube.

1810.3.10.3 Reinforcement. For micropiles or portions thereof grouted inside a temporary or permanent casing or inside a hole drilled into bedrock or a hole drilled with grout, the steel pipe or tube or steel reinforcement shall be designed to carry at least 40 percent of the design compression load. Micropiles or portions thereof grouted in an open hole in soil without temporary or permanent casing and without suitable means of verifying the hole diameter during grouting shall be designed to carry the entire compression load in the reinforcing steel. Where a steel pipe or tube is used for reinforcement, the portion of the grout enclosed within the pipe is permitted to be included in the determination of the allowable stress in the grout.

1810.3.10.4 Seismic reinforcement. For structures assigned to Seismic Design Category C, a permanent steel casing shall be provided from the top of the micropile down to the point of zero curvature. For structures assigned to Seismic Design Category D, E or F, the micropile shall be considered as an alternative system in accordance with Section 1810.8.4.1, Chapter 1, Division II. The alternative system design, supporting documentation and test data shall be submitted to the building official for review and approval.

1810.3.10.4.1 Seismic requirements. [OSHPD 2]
For structures assigned to Seismic Design Category D, E or F, a permanent steel casing having a minimum thickness of \(\frac{3}{16} \) inch shall be provided from the top of the micropile down to a minimum of 120 percent of the point of zero curvature. Capacity of micropiles shall be determined in accordance with Section 1810.3.3 by at least two project specific pre-production tests for each soil profile, size and depth of micropile. At least two percent of all production piles shall be proof tested to design ultimate strength determined by using load combinations in Section 1605.2.1.

Steel casing length in soil shall be considered as unbonded and shall not be considered as contributing to friction. Casing shall provide confinement at least equivalent to hoop reinforcing required by ACI 318 Section 21.12.4.

Reinforcement shall have Class I corrosion protection in accordance with PTI Recommendations for Prestressed Rock and Soil Anchors. Steel casing design shall include at least \(\frac{1}{16} \) " corrosion allowance.

Micropiles shall not be considered as carrying any horizontal loads.

1810.3.11 Pile caps. Pile caps shall be of reinforced concrete, and shall include all elements to which vertical deep foundation elements are connected, including grade beams and mats. The soil immediately below the pile cap shall not be considered as carrying any vertical load. The tops of vertical deep foundation elements shall be embedded not less than 3 inches (76 mm) into pile caps and the caps shall extend at least 4 inches (102 mm) beyond the edges of the elements. The tops of elements shall be cut or chipped back to sound material before capping.

1810.3.11.1 Seismic Design Categories C through F.
For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613, concrete deep foundation elements shall be connected to the pile cap by embedding the element reinforcement or field-placed dowels anchored in the element into the pile cap for a distance equal to their development length in accordance with ACI 318. It shall be permitted to connect precast prestressed piles to the pile cap by developing the element prestressing strands into the pile cap provided the connection is ductile. For deformed bars, the development length is the full development length for compression, or tension in the case of uplift, without reduction for excess reinforcement in accordance with Section 12.2.5 of ACI 318. Alternative measures for laterally confining concrete and maintaining toughness and ductile-like behavior at the top of the element shall be permitted provided the design is such that any hinging occurs in the confined region.

The minimum transverse steel ratio for confinement shall not be less than one-half of that required for columns.

For resistance to uplift forces, anchorage of steel pipes, tubes or H-piles to the pile cap shall be made by means other than concrete bond to the bare steel section. Concrete-filled steel pipes or tubes shall have reinforcement of not less than 0.01 times the cross-sectional area of the concrete fill developed into the cap and extending into the fill a length equal to two times the required cap embedment, but not less than the development length in tension of the reinforcement.
1810.3.11.2 Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613, deep foundation element resistance to uplift forces or rotational restraint shall be provided by anchorage into the pile cap, designed considering the combined effect of axial forces due to uplift and bending moments due to fixity to the pile cap. Anchorage shall develop a minimum of 25 percent of the strength of the element in tension. Anchorage into the pile cap shall be capable of developing the following:

1. In the case of uplift, the least of the following: nominal tensile strength of the longitudinal reinforcement in a concrete element; the nominal tensile strength of a steel element; the frictional force developed between the element and the soil multiplied by 1.3; and the axial tension force resulting from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

2. In the case of rotational restraint, the lesser of the following: the axial force, shear forces and bending moments resulting from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7 or development of the full axial, bending and shear nominal strength of the element.

Where the vertical lateral-force-resisting elements are columns, the pile cap flexural strengths shall exceed the column flexural strength. The connection between batter piles and pile caps shall be designed to resist the nominal strength of the pile acting as a short column. Batter piles and their connection shall be capable of resisting forces and moments from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

1810.3.12 Grade beams. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613, grade beams shall comply with the provisions in Section 21.12.3 of ACI 318 for grade beams, except where they have the capacity to resist the forces from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

1810.3.13 Seismic ties. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613, individual deep foundations shall be interconnected by ties. Unless it can be demonstrated that equivalent restraint is provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils or very dense granular soils, ties shall be capable of carrying, in tension or compression, a force equal to the lesser of the product of the larger pile cap or column design gravity load times the seismic coefficient, S_{os}, divided by 10, and 25 percent of the smaller pile or column design gravity load.

Exception: In Group R-3 and U occupancies of light-frame construction, deep foundation elements supporting foundation walls, isolated interior posts detailed so the element is not subject to lateral loads or exterior decks and patios are not subject to interconnection where the soils are of adequate stiffness, subject to the approval of the building official.

1810.4 Installation. Deep foundations shall be installed in accordance with Section 1810.4. Where a single deep foundation element comprises two or more sections of different materials or different types spliced together, each section shall satisfy the applicable conditions of installation.

1810.4.1 Structural integrity. Deep foundation elements shall be installed in such a manner and sequence as to prevent distortion or damage that may adversely affect the structural integrity of adjacent structures or of foundation elements being installed or already in place and as to avoid compacting the surrounding soil to the extent that other foundation elements cannot be installed properly.

1810.4.1.1 Compressive strength of precast concrete piles. A precast concrete pile shall not be driven before the concrete has attained a compressive strength of at least 75 percent of the specified compressive strength (f'_{c}), but not less than the strength sufficient to withstand handling and driving forces.

1810.4.1.2 Casing. Where cast-in-place deep foundation elements are formed through unstable soils and concrete is placed in an open-drilled hole, a casing shall be inserted in the hole prior to placing the concrete. Where the casing is withdrawn during concreting, the level of concrete shall be maintained above the bottom of the casing at a sufficient height to offset any hydrostatic or lateral soil pressure. Driven casings shall be mandrel driven their full length in contact with the surrounding soil.

1810.4.1.3 Driving near uncased concrete. Deep foundation elements shall not be driven within six element diameters center to center in granular soils or within one-half the element length in cohesive soils of an uncased element filled with concrete less than 48 hours old unless approved by the building official. If the concrete surface in any completed element rises or drops, the element shall be replaced. Driven uncased deep foundation elements shall not be installed in soils that could cause heave.

1810.4.1.4 Driving near cased concrete. Deep foundation elements shall not be driven within four and one-half average diameters of a cased element filled with concrete less than 24 hours old unless approved by the building official. Concrete shall not be placed in casings within heave range of driving.

1810.4.1.5 Defective timber piles. Any substantial sudden increase in rate of penetration of a timber pile shall be investigated for possible damage. If the sudden increase in rate of penetration cannot be correlated to soil strata, the pile shall be removed for inspection or rejected.

1810.4.2 Identification. Deep foundation materials shall be identified for conformity to the specified grade with this identity maintained continuously from the point of manufacture to the point of installation or shall be tested by an approved agency to determine conformity to the specified grade. The approved agency shall furnish an affidavit of compliance to the building official.
1810.4.3 Location plan. A plan showing the location and designation of deep foundation elements by an identification system shall be filed with the building official prior to installation of such elements. Detailed records for elements shall bear an identification corresponding to that shown on the plan.

1810.4.4 Preexcavation. The use of jetting, augering or other methods of preexcavation shall be subject to the approval of the building official. Where permitted, preexcavation shall be carried out in the same manner as used for deep foundation elements subject to load tests and in such a manner that will not impair the carrying capacity of the elements already in place or damage adjacent structures. Element tips shall be driven below the preexcavated depth until the required resistance or penetration is obtained.

1810.4.5 Vibratory driving. Vibratory drivers shall only be used to install deep foundation elements where the element load capacity is verified by load tests in accordance with Section 1810.3.3.1.2. The installation of production elements shall be controlled according to power consumption, rate of penetration or other approved means that ensure element capacities equal or exceed those of the test elements.

1810.4.6 Heaved elements. Deep foundation elements that have heaved during the driving of adjacent elements shall be redriven as necessary to develop the required capacity and penetration, or the capacity of the element shall be verified by load tests in accordance with Section 1810.3.3.1.2.

1810.4.7 Enlarged base cast-in-place elements. Enlarged bases for cast-in-place deep foundation elements formed by compacting concrete or by driving a precast base shall be formed in or driven into granular soils. Such elements shall be constructed in the same manner as successful prototype test elements driven for the project. Shafts extending through peat or other organic soil shall be encased in a permanent steel casing. Where a cased shaft is used, the shaft shall be adequately reinforced to resist column action or the annular space around the shaft shall be filled sufficiently to reestablish lateral support by the soil. Where heave occurs, the element shall be replaced unless it is demonstrated that the element is undamaged and capable of carrying twice its design load.

1810.4.8 Hollow-stem augered, cast-in-place elements. Where concrete or grout is placed by pumping through a hollow-stem auger, the auger shall be permitted to rotate in a clockwise direction during withdrawal. As the auger is withdrawn at a steady rate or in increments not to exceed 1 foot (305 mm), concreting or grouting pumping pressures shall be measured and maintained high enough at all times to offset hydrostatic and lateral earth pressures. Concrete or grout volumes shall be measured to ensure that the volume of concrete or grout placed in each element is equal to or greater than the theoretical volume of the hole created by the auger. Where the installation process of any element is interrupted or a loss of concreting or grouting pressure occurs, the element shall be redrilled to 5 feet (1524 mm) below the elevation of the tip of the auger when the installation was interrupted or concrete or grout pressure was lost and reformed. Augered cast-in-place elements shall not be installed within six diameters center to center of an element filled with concrete or grout less than 12 hours old, unless approved by the building official. If the concrete or grout level in any completed element drops due to installation of an adjacent element, the element shall be replaced.

1810.4.9 Socketed drilled shafts. The rock socket and pipe or tube casing of socketed drilled shafts shall be thoroughly cleaned of foreign materials before filling with concrete. Steel cores shall be bedded in cement grout at the base of the rock socket.

1810.4.10 Micropiles. Micropile deep foundation elements shall be permitted to be formed in holes advanced by rotary or percussive drilling methods, with or without casing. The elements shall be grouted with a fluid cement grout. The grout shall be pumped through a tremie pipe extending to the bottom of the element until grout of suitable quality returns at the top of the element. The following requirements apply to specific installation methods:

1. For micropiles grouted inside a temporary casing, the reinforcing bars shall be inserted prior to withdrawal of the casing. The casing shall be withdrawn in a controlled manner with the grout level maintained at the top of the element to ensure that the grout completely fills the drill hole. During withdrawal of the casing, the grout level inside the casing shall be monitored to verify that the flow of grout inside the casing is not obstructed.

2. For a micropile or portion thereof grouted in an open drill hole in soil without temporary casing, the minimum design diameter of the drill hole shall be verified by a suitable device during grouting.

3. For micropiles designed for end bearing, a suitable means shall be employed to verify that the bearing surface is properly cleaned prior to grouting.

4. Subsequent micropiles shall not be drilled near elements that have been grouted until the grout has had sufficient time to harden.

5. Micropiles shall be grouted as soon as possible after drilling is completed.

6. For micropiles designed with a full-length casing, the casing shall be pulled back to the top of the bond zone and reinserted or some other suitable means employed to assure grout coverage outside the casing.

1810.4.11 Helical piles. Helical piles shall be installed to specified embedment depth and torsional resistance criteria as determined by a registered design professional. The torque applied during installation shall not exceed the maximum allowable installation torque of the helical pile.

1810.4.12 Special inspection. Special inspections in accordance with Sections 1704.8 and 1704.9 shall be provided for driven and cast-in-place deep foundation elements, respectively. Special inspections in accordance with Section 1704.10 shall be provided for helical piles.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 18A – SOILS AND FOUNDATIONS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AC</td>
<td>SS</td>
<td>SS/CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AGR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DWR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SLC</td>
</tr>
</tbody>
</table>

- Adopt entire chapter: X X X X X
- Adopt entire chapter as amended (amended sections listed below): blank
- Adopt only those sections that are listed below: blank
- Chapter/Section: blank
CHAPTER 18A
SOILS AND FOUNDATIONS

This chapter has been revised in its entirety; there will be no marginal markings.

SECTION 1801A
GENERAL

1801A.1 Scope. The provisions of this chapter shall apply to building and foundation systems. Refer to Appendix J, Grading, for requirements governing grading, excavation and earthwork construction, including fills and embankments.

1801A.1.1 Application. The scope of application of Chapter 18A is as follows:

1. Structures regulated by the Division of the State Architect—Structural Safety, which include those applications listed in Section 1.9.2.1 (DSA-SS), and 1.9.2.1 (DSA-SS/CC). These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Applications listed in Section 1.10.1 and 1.10.4 regulated by the Office of Statewide Health Planning and Development (OSHPD). These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 18 and any applicable amendments therein.

1801A.1.2 Amendments in this chapter. DSA-SS and DSA-SS/CC adopt this chapter and all amendments therein.

Exception: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

1. Division of the State Architect—Structural Safety:
 [DSA-SS] For applications listed in Section 1.9.2.1.
 [DSA-SS/CC] For applications listed in Section 1.9.2.1.

2. Office of Statewide Health Planning and Development:
 [OSHPD 1] - For applications listed in Section 1.10.1.
 [OSHPD 4] - For applications listed in Section 1.10.4.

1801A.1.3 Reference to other chapters.

1801A.1.3.1 [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 16A, 19A, 21A, 22A and 34A, the provisions in Chapters 16, 19, 21, 22 and 34 respectively shall apply instead.

1801A.2 Design basis. Allowable bearing pressures, allowable stresses and design formulas provided in this chapter shall be used with the allowable stress design load combinations specified in Section 1605A.3. The quality and design of materials used structurally in excavations and foundations shall comply with the requirements specified in Chapters 16A, 19A, 21A, 22A and 23 of this code. Excavations and fills shall also comply with Chapter 33.

SECTION 1802A
DEFINITIONS

1802A.1 Definitions. The following words and terms shall, for the purposes of this chapter, have the meanings shown herein.

DEEP FOUNDATION. A deep foundation is a foundation element that does not satisfy the definition of a shallow foundation.

DRILLED SHAFT. A drilled shaft is a cast-in-place deep foundation element constructed by drilling a hole (with or without permanent casing) into soil or rock and filling it with fluid concrete.

Socketed drilled shaft. A socketed drilled shaft is a drilled shaft with a permanent pipe or tube casing that extends down to bedrock and an uncased socket drilled into the bedrock.

HELICAL PILE. Manufactured steel deep foundation element consisting of a central shaft and one or more helical bearing plates. A helical pile is installed by rotating it into the ground. Each helical bearing plate is formed into a screw thread with a uniform defined pitch.

MICROPILE. A micropile is a bored, grouted-in-place deep foundation element that develops its load-carrying capacity by means of a bond zone in soil, bedrock or a combination of soil and bedrock.

SHALLOW FOUNDATION. A shallow foundation is an individual or strip footing, a mat foundation, a slab-on-grade foundation or a similar foundation element.
SECTION 1803A
GEOTECHNICAL INVESTIGATIONS

1803A.1 General. Geotechnical investigations shall be conducted in accordance with Section 1803A.2 and reported in accordance with Section 1803A.7. The classification and investigation of the soil shall be made under the responsible charge of a California registered geotechnical engineer. All recommendations contained in geotechnical and engineering geology reports shall be subject to the approval of the enforcement agency. All reports shall be prepared and signed by a registered geotechnical engineer and an engineering geologist where applicable.

1803A.2 Investigations required. Geotechnical investigations shall be conducted in accordance with Sections 1803A.3 through 1803A.6.

Exception: Geotechnical reports are not required for one-story, wood-frame and light-steel-frame buildings of Type II or Type V construction and 4,000 square feet (371 m²) or less in floor area, not located within Earthquake Fault Zones or Seismic Hazard Zones as shown in the most recently published maps from the California Geological Survey (CGS). Allowable foundation and lateral soil pressure values may be determined from Table 1806A.2.

1803A.3 Basis of investigation. Soil classification shall be based on observation and any necessary tests of the materials disclosed by borings, test pits or other subsurface exploration made in appropriate locations. Additional studies shall be made as necessary to evaluate slope stability, soil strength, position and adequacy of load-bearing soils, the effect of moisture variation on soil-bearing capacity, compressibility, liquefaction and expansiveness.

1803A.3.1 Scope of investigation. The scope of the geotechnical investigation including the number and types of borings or soundings, the equipment used to drill or sample, the in-situ testing equipment and the laboratory testing program shall be determined by a registered design professional.

There shall not be less than one boring or exploration shaft for each 5,000 square feet (465 m²) of building area at the foundation level with a minimum of two provided for any one building. A boring may be considered to reflect subsurface conditions relevant to more than one building, subject to the approval of the enforcement agency.

Borings shall be of sufficient size to permit visual examination of the soil in place or, in lieu thereof, cores shall be taken.

Borings shall be of sufficient depth and size to adequately characterize subsurface conditions.

1803A.4 Qualified representative. The investigation procedure and apparatus shall be in accordance with generally accepted engineering practice. The registered design professional shall have a fully qualified representative on site during all boring or sampling operations.

1803A.5 Investigated conditions. Geotechnical investigations shall be conducted as indicated in Sections 1803A.5.1 through 1803A.5.12.

1803A.5.1 Classification. Soil materials shall be classified in accordance with ASTM D 2487.

1803A.5.2 Questionable soil. Where the classification, strength or compressibility of the soil is in doubt or where a load-bearing value superior to that specified in this code is claimed, the building official shall be permitted to require that a geotechnical investigation be conducted.

1803A.5.3 Expansive soil. In areas likely to have expansive soil, the building official shall require soil tests to determine where such soils do exist.

Soils meeting all four of the following provisions shall be considered expansive, except that tests to show compliance with Items 1, 2 and 3 shall not be required if the test prescribed in Item 4 is conducted:

1. Plasticity index (PI) of 15 or greater, determined in accordance with ASTM D 4318.
2. More than 10 percent of the soil particles pass a No. 200 sieve (75 μm), determined in accordance with ASTM D 422.
3. More than 10 percent of the soil particles are less than 5 micrometers in size, determined in accordance with ASTM D 422.
4. Expansion index greater than 20, determined in accordance with ASTM D 4829.

1803A.5.4 Ground-water table. A subsurface soil investigation shall be performed to determine whether the existing ground-water table is above or within 5 feet (1524 mm) below the elevation of the lowest floor level where such floor is located below the finished ground level adjacent to the foundation.

1803A.5.5 Deep foundations. Where deep foundations will be used, a geotechnical investigation shall be conducted and shall include all of the following, unless sufficient data upon which to base the design and installation is otherwise available:

1. Recommended deep foundation types and installed capacities.
2. Recommended center-to-center spacing of deep foundation elements.
3. Driving criteria.
4. Installation procedures.
5. Field inspection and reporting procedures (to include procedures for verification of the installed bearing capacity where required).
6. Load test requirements.
7. Suitability of deep foundation materials for the intended environment.
8. Designation of bearing stratum or strata.
9. Reductions for group action, where necessary.

1803A.5.6 Rock strata. Where subsurface explorations at the project site indicate variations or doubtful characteristics in the structure of the rock upon which foundations are to be constructed, a sufficient number of borings shall be
made to a depth of not less than 10 feet (3048 mm) below the level of the foundations to provide assurance of the soundness of the foundation bed and its load-bearing capacity.

1803A.5.7 Excavation near foundations. Where excavation will remove lateral support from any foundation, an investigation shall be conducted to assess the potential consequences and address mitigation measures.

1803A.5.8 Compacted fill material. Where shallow foundations will bear on compacted fill material more than 12 inches (305 mm) in depth, a geotechnical investigation shall be conducted and shall include all of the following:

1. Specifications for the preparation of the site prior to placement of compacted fill material.
2. Specifications for material to be used as compacted fill.
3. Test methods to be used to determine the maximum dry density and optimum moisture content of the material to be used as compacted fill.
4. Maximum allowable thickness of each lift of compacted fill material.
5. Field test method for determining the in-place dry density of the compacted fill.
6. Minimum acceptable in-place dry density expressed as a percentage of the maximum dry density determined in accordance with Item 3.
7. Number and frequency of field tests required to determine compliance with Item 6.

1803A.5.9 Controlled low-strength material (CLSM). Where shallow foundations will bear on controlled low-strength material (CLSM), a geotechnical investigation shall be conducted and shall include all of the following:

1. Specifications for the preparation of the site prior to placement of the CLSM.
2. Specifications for the CLSM.
3. Laboratory or field test method(s) to be used to determine the compressive strength or bearing capacity of the CLSM.
4. Test methods for determining the acceptance of the CLSM in the field.
5. Number and frequency of field tests required to determine compliance with Item 4.

1803A.5.10 Alternate setback and clearance. Where setbacks or clearances other than those required in Section 1808A.7 are desired, the building official shall be permitted to require a geotechnical investigation by a registered design professional to demonstrate that the intent of Section 1808A.7 would be satisfied. Such an investigation shall include consideration of material, height of slope, slope gradient, load intensity and erosion characteristics of slope material.

1803A.5.11 Seismic Design Categories C through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, a geotechnical investigation shall be conducted, and shall include an evaluation of all of the following potential geologic and seismic hazards:

1. Slope instability.
2. Liquefaction.
3. Differential settlement.
4. Surface displacement due to faulting or lateral spreading.

1803A.5.12 Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, the geotechnical investigation required by Section 1803A.5.11, shall also include:

1. The determination of lateral pressures on foundation walls and retaining walls due to earthquake motions.
2. The potential for liquefaction and soil strength loss evaluated for site peak ground accelerations, magnitudes and source characteristics consistent with the design earthquake ground motions. Peak ground acceleration shall be determined based on a site-specific study taking into account soil amplification effects, as specified in Chapter 21 of ASCE 7, or, in the absence of such a study, peak ground accelerations shall be assumed equal to $S_{D} / 2.5$, where S_{D} is determined in accordance with Section 1613A.5.4.
3. An assessment of potential consequences of liquefaction and soil strength loss, including estimation of differential settlement, lateral movement, lateral loads on foundations, reduction in foundation soil-bearing capacity, increases in lateral pressures on retaining walls and flotation of buried structures.
4. Discussion of mitigation measures such as, but not limited to, ground stabilization, selection of appropriate foundation type and depths, selection of appropriate structural systems to accommodate anticipated displacements and forces, or any combination of these measures and how they shall be considered in the design of the structure.

1803A.6 Site data.

1803A.6.1 Engineering geologic reports.

1803A.6.1.1 Geologic and earthquake engineering reports shall be required for all proposed construction.

Exceptions:

1. Reports are not required for one-story, wood-frame and light-steel-frame buildings of Type II or Type V construction and 4,000 square feet (371 m²) or less in floor area, not located within Earthquake Fault Zones or Seismic Hazard Zones as shown in the most recently published maps from the California Geological Survey (CGS); nonstructural, associated structural or voluntary structural alterations and incidental structural additions or alterations, and structural repairs for other than earthquake damage.
2. A previous report for a specific site may be resubmitted, provided that a reevaluation is made and the report is found to be currently appropriate.

1803A.6.1.2 The purpose of the engineering geologic report shall be to identify geologic and seismic conditions that may require project mitigations. The reports shall contain data which provide an assessment of the nature of the site and potential for earthquake damage based on appropriate investigations of the regional and site geology, project foundation conditions and the potential seismic shaking at the site. The report shall be prepared by a California-certified engineering geologist in consultation with a California-registered geotechnical engineer.

The preparation of the engineering geologic report shall consider the most recent CGS Note 48: Checklist for the Review of Engineering Geology and Seismology Reports for California Public School, Hospitals, and Essential Services Buildings. In addition, the most recent version of CGS Special Publication 42, Fault Rupture Hazard Zones in California, shall be considered for project sites proposed within an Alquist-Priolo Earthquake Fault Zone. The most recent version of CGS Special Publication 117, Guidelines for Evaluating and Mitigating Seismic Hazards in California, shall be considered for project sites proposed within a Seismic Hazard Zone. All conclusions shall be supported by satisfactory data and analysis.

In addition to requirements in Sections 1803A.5.11 and 1803A.5.12, the report shall include, but shall not be limited to, the following:

1. Geologic investigation.
2. Evaluation of the known active and potentially active faults, both regional and local.

1803A.6.2 Supplemental ground-response report. If site-specific ground-motion procedures, as set forth in ASCE 7 Chapter 21, or ground-motion response history analysis, as set forth in ASCE 7 Chapter 16, Section 17.3 or Section 18.2.3, are used for design, then a supplemental ground-response report may be required. All conclusions and ground-motion parameters shall be supported by data and analysis.

The three Next Generation Attenuation (NGA) relations used for the 2008 USGS seismic hazards maps for Western United States (WUS) shall be utilized to determine the site-specific ground motion. When supported by data and analysis, other NGA relations, that were not used for the 2008 USGS maps, shall be permitted as additions or substitutions. No fewer than three NGA relations shall be utilized.

Site-specific Probabilistic Site Hazard Analyses (PSHA) for structures that incorporate the NGA relations shall use the maximum rotated component of ground motion.

1803A.6.2.1 The ground-motion element shall be prepared by a registered geotechnical engineer or geophysicist (depending on the scope of the element), or engineering geologist licensed in the state of California, and having professional specialization in earthquake analyses. The ground-motion element shall present a detailed characterization of earthquake ground motions for the site, which incorporates data given in the geotechnical report. The level of ground motion considered by the ground-motion element shall be as described in ASCE 7 Chapter 21. The characterization of ground motion in the ground-motion element shall be given, according to the requirements of the analysis, in terms of:

1. Elastic structural response spectra.
2. Time-history plot of predicted ground motion at the site.
3. Other analyses in conformance with accepted engineering and seismological practice.

1803A.6.2.2 The advanced geotechnical element shall contain the results of dynamic geotechnical analyses specified by the approved geotechnical report. Where site response analysis, as set forth in ASCE 7 Section 21.1, is required, the response model shall be fully explained. The input data and assumptions shall be fully documented, and the surface ground motions recommended for design shall be clearly identified.

The supplemental ground-response report shall be submitted to the enforcement agency for review and approval. The review shall determine whether the ground-motion response evaluations of the site are adequately represented. The enforcement agency may require additional information, analysis or clarification of potential ground-response issues reported in the supplemental ground-response report for the proposed building site.

1803A.7 Geotechnical reporting. Where geotechnical investigations are required, a written report of the investigations shall be submitted to the building official by the owner or authorized agent at the time of permit application. The geotechnical report shall provide completed evaluations of the foundation conditions of the site and the potential geologic/seismic hazards affecting the site. The geotechnical report shall include, but shall not be limited to, site-specific evaluations of design criteria related to the nature and extent of foundation materials, groundwater conditions, liquefaction potential, settlement potential and slope stability. The report shall contain the results of the analyses of problem areas identified in the engineering geologic report. The geotechnical report shall incorporate estimates of the characteristics of site ground motion provided in the engineering geologic report. This geotechnical
report shall include, but need not be limited to, the following information:

1. A plot showing the location of the soil investigations.
2. A complete record of the soil boring and penetration test logs and soil samples.
3. A record of the soil profile.
4. Elevation of the water table, if encountered. Historic high ground water elevations shall be addressed in the report to adequately evaluate liquefaction and settlement potential.
5. Recommendations for foundation type and design criteria, including but not limited to: bearing capacity of natural or compacted soil; provisions to mitigate the effects of expansive soils; mitigation of the effects of liquefaction, differential settlement and varying soil strength; and the effects of adjacent loads.
7. Deep foundation information in accordance with Section 1803A.5.5.
8. Special design and construction provisions for foundations of structures founded on expansive soils, as necessary.
9. Compacted fill material properties and testing in accordance with Section 1803A.5.8.
10. Controlled low-strength material properties and testing in accordance with Section 1803A.5.9.

The report shall consider the effects of stepped footings addressed in Section 1809A.3.

The report shall consider the effects of seismic hazards in accordance with Section 1803A.6.

SECTION 1804A
EXCAVATION, GRADING AND FILL

1804A.1 Excavation near foundations. Excavation for any purpose shall not remove lateral support from any foundation without first underpinning or protecting the foundation against settlement or lateral translation.

1804A.2 Placement of backfill. The excavation outside the foundation shall be backfilled with soil that is free of organic material, construction debris, cobbles and boulders or with a controlled low-strength material (CLSM). The backfill shall be placed in lifts and compacted in a manner that does not damage the foundation or the waterproofing or dampproofing material.

Exception: CLSM need not be compacted.

1804A.3 Site grading. The ground immediately adjacent to the foundation shall be sloped away from the building at a slope of not less than one unit vertical in 20 units horizontal (5-percent slope) for a minimum distance of 10 feet (3048 mm) measured perpendicular to the face of the wall. If physical obstructions or lot lines prohibit 10 feet (3048 mm) of horizontal distance, a 5-percent slope shall be provided to an approved alternative method of diverting water away from the foundation. Swales used for this purpose shall be sloped a minimum of 2 percent where located within 10 feet (3048 mm) of the building foundation. Impervious surfaces within 10 feet (3048 mm) of the building foundation shall be sloped a minimum of 2 percent away from the building.

Exception: Where climatic or soil conditions warrant, the slope of the ground away from the building foundation shall be permitted to be reduced to not less than one unit vertical in 48 units horizontal (2-percent slope).

The procedure used to establish the final ground level adjacent to the foundation shall account for additional settlement of the backfill.

1804A.4 Grading and fill in flood hazard areas. In flood hazard areas established in Section 1612A.3, grading and/or fill shall not be approved:

1. Unless such fill is placed, compacted and sloped to minimize shifting, slumping and erosion during the rise and fall of flood water and, as applicable, wave action.
2. In floodways, unless it has been demonstrated through hydrologic and hydraulic analyses performed by a registered design professional in accordance with standard engineering practice that the proposed grading or fill, or both, will not result in any increase in flood levels during the occurrence of the design flood.
3. In flood hazard areas subject to high-velocity wave action, unless such fill is conducted and/or placed to avoid diversion of water and waves toward any building or structure.
4. Where design flood elevations are specified but floodways have not been designated, unless it has been demonstrated that the cumulative effect of the proposed flood hazard area encroachment, when combined with all other existing and anticipated flood hazard area encroachment, will not increase the design flood elevation more than 1 foot (305 mm) at any point.

1804A.5 Compacted fill material. Where shallow foundations will bear on compacted fill material, the compacted fill shall comply with the provisions of an approved geotechnical report, as set forth in Section 1803A.

Exception: Compacted fill material 12 inches (305 mm) in depth or less need not comply with an approved report, provided the in-place dry density is not less than 90 percent of the maximum dry density at optimum moisture content determined in accordance with ASTM D 1557. The compaction shall be verified by special inspection in accordance with Section 1704A.7.

1804A.6 Controlled low-strength material (CLSM). Where shallow foundations will bear on controlled low-strength material (CLSM), the CLSM shall comply with the provisions of an approved geotechnical report, as set forth in Section 1803A.

SECTION 1805A
DAMPPROOFING AND WATERPROOFING

1805A.1 General. Walls or portions thereof that retain earth and enclose interior spaces and floors below grade shall be waterproofed and dampproofed in accordance with this sec-
tion, with the exception of those spaces containing groups other than residential and institutional where such omission is not detrimental to the building or occupancy.

Ventilation for crawl spaces shall comply with Section 1203.4.

180SA.1.1 Story above grade plane. Where a basement is considered a story above grade plane and the finished ground level adjacent to the basement wall is below the basement floor elevation for 25 percent or more of the perimeter, the floor and walls shall be dampproofed in accordance with Section 1805A.2 and a foundation drain shall be installed in accordance with Section 1805A.4.2. The foundation drain shall be installed around the portion of the perimeter where the basement floor is below ground level. The provisions of Sections 1803A.5.4, 1805A.3 and 1805A.4.1 shall not apply in this case.

180SA.1.2 Under-floor space. The finished ground level of an under-floor space such as a crawl space shall not be located below the bottom of the footings. Where there is evidence that the ground-water table rises to within 6 inches (152 mm) of the ground level at the outside building perimeter, or that the surface water does not readily drain from the building site, the ground level of the under-floor space shall be as high as the outside finished ground level, unless an approved drainage system is provided. The provisions of Sections 1803A.5.4, 1805A.2, 1805A.3 and 1805A.4 shall not apply in this case.

180SA.1.2.1 Flood hazard areas. For buildings and structures in flood hazard areas as established in Section 1612A.3, the finished ground level of an under-floor space such as a crawl space shall be equal to or higher than the outside finished ground level on at least one side.

Exception: Under-floor spaces of Group R-3 buildings that meet the requirements of FEMA/FIA-TB-11.

180SA.1.3 Ground-water control. Where the ground-water table is lowered and maintained at an elevation not less than 6 inches (152 mm) below the bottom of the lowest floor, the floor and walls shall be dampproofed in accordance with Section 1805A.2. The design of the system to lower the ground-water table shall be based on accepted principles of engineering that shall consider, but not necessarily be limited to, permeability of the soil, rate at which water enters the drainage system, rated capacity of pumps, head against which pumps are to operate and the rated capacity of the disposal area of the system.

180SA.2 Dampproofing. Where hydrostatic pressure will not occur as determined by Section 1803A.5.4, floors and walls shall be dampproofed in accordance with this section.

180SA.2.1 Floors. Dampproofing materials for floors shall be installed between the floor and the base course required by Section 1805A.4.1, except where a separate floor is provided above a concrete slab.

Where installed beneath the slab, dampproofing shall consist of not less than 6-mil (0.006 inch; 0.152 mm) polyethylene with joints lapped not less than 6 inches (152 mm), or other approved methods or materials. Where permitted to be installed on top of the slab, dampproofing shall consist of mopped-on bitumen, not less than 4-mil (0.004 inch; 0.102 mm) polyethylene, or other approved methods or materials. Joints in the membrane shall be lapped and sealed in accordance with the manufacturer’s installation instructions.

180SA.2.2 Walls. Dampproofing materials for walls shall be installed on the exterior surface of the wall, and shall extend from the top of the footing to above ground level.

Dampproofing shall consist of a bituminous material, 3 pounds per square yard (16 N/m²) of acrylic modified cement, 1/8 inch (3.2 mm) coat of surface-bonding mortar complying with ASTM C 887, any of the materials permitted for waterproofing by Section 1805A.3.2 or other approved methods or materials.

180SA.2.2.1 Surface preparation of walls. Prior to application of dampproofing materials on concrete walls, holes and recesses resulting from the removal of form ties shall be sealed with a bituminous material or other approved methods or materials. Unit masonry walls shall be parged on the exterior surface below ground level with not less than 1/8 inch (9.5 mm) of portland cement mortar. The parging shall be coved at the footing.

Exception: Parging of unit masonry walls is not required where a material is approved for direct application to the masonry.

180SA.3 Waterproofing. Where the ground-water investigation required by Section 1803A.5.4 indicates that a hydrostatic pressure condition exists, and the design does not include a ground-water control system as described in Section 1805A.1.3, walls and floors shall be waterproofed in accordance with this section.

180SA.3.1 Floors. Floors required to be waterproofed shall be of concrete and designed and constructed to withstand the hydrostatic pressures to which the floors will be subjected.

Waterproofing shall be accomplished by placing a membrane of rubberized asphalt, butyl rubber, fully adhered/full bonded HDPE or polyolefin composite membrane or not less than 6-mil [0.006 inch (0.152 mm)] polyvinyl chloride with joints lapped not less than 6 inches (152 mm) or other approved materials under the slab. Joints in the membrane shall be lapped and sealed in accordance with the manufacturer’s installation instructions.

180SA.3.2 Walls. Walls required to be waterproofed shall be of concrete or masonry and shall be designed and constructed to withstand the hydrostatic pressures and other lateral loads to which the walls will be subjected.

Waterproofing shall be applied from the bottom of the wall to not less than 12 inches (305 mm) above the maximum elevation of the ground-water table. The remainder of the wall shall be dampproofed in accordance with Section 1805A.2.2. Waterproofing shall consist of two-ply hot-mopped felts, not less than 6-mil (0.006 inch; 0.152 mm) polyvinyl chloride, 40-mil (0.040 inch; 1.02 mm) polymer-modified asphalt, 6-mil (0.006 inch; 0.152 mm) polyethylene or other approved methods or materials capable of bridging nonstructural cracks. Joints in the membrane shall be lapped and sealed in accordance with the manufacturer’s installation instructions.
1805A.3.2.1 Surface preparation of walls. Prior to the application of waterproofing materials on concrete or masonry walls, the walls shall be prepared in accordance with Section 1805A.2.2.1.

1805A.3.3 Joints and penetrations. Joints in walls and floors, joints between the wall and floor and penetrations of the wall and floor shall be made water-tight utilizing approved methods and materials.

1805A.4 Subsoil drainage system. Where a hydrostatic pressure condition does not exist, dampproofing shall be provided and a base shall be installed under the floor and a drain installed around the foundation perimeter. A subsoil drainage system designed and constructed in accordance with Section 1805A.1.3 shall be deemed adequate for lowering the ground-water table.

1805A.4.1 Floor base course. Floors of basements, except as provided for in Section 1805A.1.1, shall be placed over a floor base course not less than 4 inches (102 mm) in thickness that consists of gravel or crushed stone containing not more than 10 percent of material that passes through a No. 4 (4.75 mm) sieve.

Exception: Where a site is located in well-drained gravel or sand/gravel mixture soils, a floor base course is not required.

1805A.4.2 Foundation drain. A drain shall be placed around the perimeter of a foundation that consists of gravel or crushed stone containing not more than 10-percent material that passes through a No. 4 (4.75 mm) sieve. The drain shall extend a minimum of 12 inches (305 mm) beyond the outside edge of the footing. The thickness shall be such that the bottom of the drain is not higher than the bottom of the base under the floor, and that the top of the drain is not less than 6 inches (152 mm) above the top of the footing. The top of the drain shall be covered with an approved filter membrane material. Where a drain tile or perforated pipe is used, the invert of the pipe or tile shall not be higher than the floor elevation. The top of joints or the top of perforations shall be protected with an approved filter membrane material. The pipe or tile shall be placed on not less than 2 inches (51 mm) of gravel or crushed stone complying with Section 1805A.4.1, and shall be covered with not less than 6 inches (152 mm) of the same material.

1805A.4.3 Drainage discharge. The floor base and foundation perimeter drain shall discharge by gravity or mechanical means into an approved drainage system that complies with the California Plumbing Code.

Exception: Where a site is located in well-drained gravel or sand/gravel mixture soils, a dedicated drainage system is not required.

SECTION 1806A
PRESUMPTIVE LOAD-BEARING VALUES OF SOILS

1806A.1 Load combinations. The presumptive load-bearing values provided in Table 1806A.2 shall be used with the allowable stress design load combinations specified in Section 1605A.3. The values of vertical foundation pressure and lateral bearing pressure given in Table 1806A.2 shall be permitted to be increased by one-third where used with the alternative basic load combinations of Section 1605A.3.2 that include wind or earthquake loads.

1806A.2 Presumptive load-bearing values. The load-bearing values used in design for supporting soils near the surface shall not exceed the values specified in Table 1806A.2 unless data to substantiate the use of higher values are submitted and approved. Where the building official has reason to doubt the classification, strength or compressibility of the soil, the requirements of Section 1803A.5.2 shall be satisfied.

Presumptive load-bearing values shall apply to materials with similar physical characteristics and dispositions. Mud, organic silt, organic clays, peat or unprepared fill shall not be assumed to have a presumptive load-bearing capacity unless data to substantiate the use of such a value are submitted.

Exception: A presumptive load-bearing capacity shall be permitted to be used where the building official deems the load-bearing capacity of mud, organic silt or unprepared fill is adequate for the support of lightweight or temporary structures.

1806A.3 Lateral load resistance. Where the presumptive values of Table 1806A.2 are used to determine resistance to lateral loads, the calculations shall be in accordance with Sections 1806A.3.1 through 1806A.3.4.

1806A.3.1 Combined resistance. The total resistance to lateral loads shall be permitted to be determined by combining the values derived from the lateral bearing pressure and the lateral sliding resistance specified in Table 1806A.2.

1806A.3.2 Lateral sliding resistance limit. For clay, sandy clay, silty clay, clayey silt, silt and sandy silt, in no case shall the lateral sliding resistance exceed one-half the dead load.

1806A.3.3 Increase for depth. The lateral bearing pressures specified in Table 1806A.2 shall be permitted to be increased by the tabular value for each additional foot (305 mm) of depth to a maximum of 15 times the tabular value.

1806A.3.4 Increase for poles. Isolated poles for uses such as flagpoles or signs and poles used to support buildings that are not adversely affected by a 1/2 inch (12.7 mm) motion at the ground surface due to short-term lateral loads shall be permitted to be designed using lateral bearing pressures equal to two times the tabular values.

SECTION 1807A
FOUNDATION WALLS, RETAINING WALLS AND EMBEDDED POSTS AND POLES

1807A.1 Foundation walls. Foundation walls shall be designed and constructed in accordance with Sections 1807A.1.1 through 1807A.1.6. Foundation walls shall be supported by foundations designed in accordance with Section 1808A.

1807A.1.1 Design lateral soil loads. Foundation walls shall be designed for the lateral soil loads determined by a geotechnical investigation in accordance with Section 1803A.
SOILS AND FOUNDATIONS

TABLE 1806A.2
PRESUMPTIVE LOAD-BEARING VALUES

<table>
<thead>
<tr>
<th>CLASS OF MATERIALS</th>
<th>VERTICAL FOUNDATION PRESSURE (psf)</th>
<th>LATERAL BEARING PRESSURE (psf/ft below natural grade)</th>
<th>LATERAL SLIDING RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
<td>1,200</td>
<td>0.70</td>
</tr>
<tr>
<td>2. Sedimentary and foliated rock</td>
<td>4,000</td>
<td>400</td>
<td>0.35</td>
</tr>
<tr>
<td>3. Sandy gravel and/or gravel (GW and GP)</td>
<td>3,000</td>
<td>200</td>
<td>0.35</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC)</td>
<td>2,000</td>
<td>150</td>
<td>0.25</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)</td>
<td>1,500</td>
<td>100</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 0.0479 kPa, 1 pound per square foot per foot = 0.157 kPa/m.

a. Coefficient to be multiplied by the dead load.
b. Cohesion value to be multiplied by the contact area, as limited by Section 1806A.3.2.

1807A.1.2 Unbalanced backfill height. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab on grade is provided and is in contact with the interior surface of the foundation wall, the unbalanced backfill height shall be permitted to be measured from the exterior finish ground level to the top of the interior concrete slab.

1807A.1.3 Rubble stone foundation walls. Not permitted by DSA-SS or DSA-SS/CC & OSHPD.

1807A.1.4 Permanent wood foundation systems. Not permitted by DSA-SS or DSA-SS/CC & OSHPD.

1807A.1.5 Concrete and masonry foundation walls. Concrete and masonry foundation walls shall be designed in accordance with Chapter 19A or 21A, as applicable.

1807A.2 Retaining walls. Retaining walls shall be designed in accordance with Sections 1807A.2.1 through 1807A.2.3. Freestanding cantilever walls shall be designed in accordance with Section 1807A.2.4.

1807A.2.1 General. Retaining walls shall be designed to ensure stability against overturning, sliding, excessive foundation pressure and water uplift. Where a keyway is extended below the wall base with the intent to engage passive pressure and enhance sliding stability, lateral soil pressures on both sides of the keyway shall be considered in the sliding analysis.

1807A.2.2 Design lateral soil loads. Retaining walls shall be designed for the lateral soil loads determined by a geotechnical investigation in accordance with Section 1803A.

1807A.2.3 Safety factor. Retaining walls shall be designed to resist the lateral action of soil to produce sliding and overturning with a minimum safety factor of 1.5 in each case. The load combinations of Section 1605A shall not apply to this requirement. Instead, design shall be based on 0.7 times nominal earthquake loads, 1.0 times other nominal loads, and investigation with one or more of the variable loads set to zero. The safety factor against lateral sliding shall be taken as the available soil resistance at the base of the retaining wall foundation divided by the net lateral force applied to the retaining wall.

Exception: Where earthquake loads are included, the minimum safety factor for retaining wall sliding and overturning shall be 1.1.

1807A.2.4 Freestanding cantilever walls. A stability check against the possibility of overturning shall be performed for isolated spread footings which support freestanding cantilever walls. The stability check shall be made by dividing R_p used for the wall by 2.0. The allowable soil pressure may be doubled for this evaluation.

Exception: For overturning about the principal axis of rectangular footings with symmetrical vertical loading and the design lateral force applied, a triangular or trapezoidal soil pressure distribution which covers the full width of the footing will meet the stability requirement.

1807A.3 Embedded posts and poles. Designs to resist both axial and lateral loads employing posts or poles as columns embedded in earth or in concrete footings in earth shall be in accordance with Sections 1807A.3.1 through 1807A.3.3.
1807A.3.1 Limitations. The design procedures outlined in this section are subject to the following limitations:

1. The frictional resistance for structural walls and slabs on silts and clays shall be limited to one-half of the normal force imposed on the soil by the weight of the footing or slab.

2. Posts embedded in earth shall not be used to provide lateral support for structural or nonstructural materials such as plaster, masonry or concrete unless bracing is provided that develops the limited deflection required.

Wood poles shall be treated in accordance with AWPA U1 for sawn timber posts (Commodity Specification A, Use Category 4B) and for round timber posts (Commodity Specification B, Use Category 4B).

1807A.3.2 Design criteria. The depth to resist lateral loads shall be determined using the design criteria established in Sections 1807A.3.2.1 through 1807A.3.2.3, or by other methods approved by the building official.

1807A.3.2.1 Nonconstrained. The following formula shall be used in determining the depth of embedment required to resist lateral loads where no lateral constraint is provided at the ground surface, such as by a rigid floor or rigid ground surface pavement, and where no lateral constraint is provided above the ground surface, such as by a structural diaphragm.

\[
d = 0.5A \{1 + \left[1 + (4.36h/A)\right]^{1/2}\}
\]

(Equation 18A-1)

where:

\[
A = 2.34P/S_1 b.
\]

\[
b = \text{Diameter of round post or footing or diagonal dimension of square post or footing, feet (m)}.\]

\[
d = \text{Depth of embedment in earth in feet (m) but not over 12 feet (3658 mm) for purpose of computing lateral pressure.}\]

\[
h = \text{Distance in feet (m) from ground surface to point of application of "P."}\]

\[
P = \text{Applied lateral force in pounds (kN).}\]

\[
S_1 = \text{Allowable lateral soil-bearing pressure as set forth in Section 1806A.2 based on a depth equal to the depth of embedment in pounds per square foot (kPa).}\]

1807A.3.2.2 Constrained. The following formula shall be used to determine the depth of embedment required to resist lateral loads where lateral constraint is provided at the ground surface, such as by a rigid floor or pavement.

\[
d = \frac{4.25Ph}{S_1 b}
\]

(Equation 18A-2)

or alternatively

\[
d = \frac{4.25M_g}{S_3 b}
\]

(Equation 18A-3)

where:

\[
M_g = \text{Moment in the post at grade, in foot-pounds (kN-m).}\]

\[
S_3 = \text{Allowable lateral soil-bearing pressure as set forth in Section 1806A.2 based on a depth equal to the depth of embedment in pounds per square foot (kPa).}\]

1807A.3.2.3 Vertical load. The resistance to vertical loads shall be determined using the vertical foundation pressure set forth in Table 1806A.2.

1807A.3.3 Backfill. The backfill in the annular space around columns not embedded in poured footings shall be by one of the following methods:

1. Backfill shall be of concrete with a specified compressive strength of not less than 2,000 psi (13.8 MPa). The hole shall not be less than 4 inches (102 mm) larger than the diameter of the column at its bottom or 4 inches (102 mm) larger than the diagonal dimension of a square or rectangular column.

2. Backfill shall be of clean sand. The sand shall be thoroughly compacted by tamping in layers not more than 8 inches (203 mm) in depth.

3. Backfill shall be of controlled low-strength material (CLSM).

SECTION 1808A
FOUNDATIONS

1808A.1 General. Foundations shall be designed and constructed in accordance with Sections 1808A.2 through 1808A.9. Shallow foundations shall also satisfy the requirements of Section 1809A. Deep foundations shall also satisfy the requirements of Section 1810A.

1808A.2 Design for capacity and settlement. Foundations shall be so designed that the allowable bearing capacity of the soil is not exceeded, and that differential settlement is minimized. Foundations in areas with expansive soils shall be designed in accordance with the provisions of Section 1808A.6.

The enforcing agency may require an analysis of foundation elements to determine subgrade deformations in order to evaluate their effect on the superstructure, including story drift.

1808A.3 Design loads. Foundations shall be designed for the most unfavorable effects due to the combinations of loads specified in Section 1605A.2 or 1605A.3. The dead load is permitted to include the weight of foundations and overlying fill. Reduced live loads, as specified in Sections 1607A.9 and 1607A.11, shall be permitted to be used in the design of foundations.
1808A.3.1 Seismic overturning. Where foundations are proportioned using the load combinations of Section 1605.2 or 1605A.3.1, and the computation of seismic overturning effects is by equivalent lateral force analysis or modal analysis, the proportioning shall be in accordance with Section 12.13.4 of ASCE 7.

1808A.4 Vibratory loads. Where machinery operations or other vibrations are transmitted through the foundation, consideration shall be given in the foundation design to prevent detrimental disturbances of the soil.

1808A.5 Shifting or moving soils. Where it is known that the shallow subsoils are of a shifting or moving character, foundations shall be carried to a sufficient depth to ensure stability.

1808A.6 Design for expansive soils. Foundations for buildings and structures founded on expansive soils shall be designed in accordance with Section 1808A.6.1 or 1808A.6.2.

Exception: Foundation design need not comply with Section 1808A.6.1 or 1808A.6.2 where one of the following conditions is satisfied:

1. The soil is removed in accordance with Section 1808A.6.3; or
2. The building official approves stabilization of the soil in accordance with Section 1808A.6.4.

1808A.6.1 Foundations. Foundations placed on or within the active zone of expansive soils shall be designed to resist differential volume changes and to prevent structural damage to the supported structure. Deflection and racking of the supported structure shall be limited to that which will not interfere with the usability and serviceability of the structure.

Foundations placed below where volume change occurs or below expansive soil shall comply with the following provisions:

1. Foundations extending into or penetrating expansive soils shall be designed to prevent uplift of the supported structure.
2. Foundations penetrating expansive soils shall be designed to resist forces exerted on the foundation due to soil volume changes or shall be isolated from the expansive soil.

1808A.6.2 Slab-on-ground foundations. Moments, shears and deflections for use in designing slab-on-ground, mat or raft foundations on expansive soils shall be determined in accordance with WRJICRSJ Design of Slab-on-Ground Foundations or PTI Standard Requirements for Analysis of Shallow Concrete Foundations on Expansive Soils. Using the moments, shears and deflections determined above, non prestressed slabs-on-ground, mat or raft foundations on expansive soils shall be designed in accordance with WRJICRSJ Design of Slab-on-Ground Foundations and post-tensioned slab-on-ground, mat or raft foundations on expansive soils shall be designed in accordance with PTI Standard Requirements for Design of Shallow Post-Tensioned Concrete Foundations on Expansive Soils. It shall be permitted to analyze and design such slabs by other methods that account for soil-structure interaction, the deformed shape of the soil support, the plate or stiffened plate action of the slab as well as both center lift and edge lif conditions. Such alternative methods shall be rational and the basis for all aspects and parameters of the method shall be available for peer review.

1808A.6.3 Removal of expansive soil. Where expansive soil is removed in lieu of designing foundations in accordance with Section 1808A.6.1 or 1808A.6.2, the soil shall be removed to a depth sufficient to ensure a constant moisture content in the remaining soil. Fill material shall not contain expansive soils and shall comply with Section 1804A.5 or 1804A.6.

Exception: Expansive soil need not be removed to the depth of constant moisture, provided the confining pressure in the expansive soil created by the fill and supported structure exceeds the swell pressure.

1808A.6.4 Stabilization. Where the active zone of expansive soils is stabilized in lieu of designing foundations in accordance with Section 1808A.6.1 or 1808A.6.2, the soil shall be stabilized by chemical, dewatering, presaturation or equivalent techniques.

1808A.7 Foundations on or adjacent to slopes. The placement of buildings and structures on or adjacent to slopes steeper than one unit vertical in three units horizontal (33.3-percent slope) shall comply with Sections 1804A.5 through 1808A.7.5.

1808A.7.1 Building clearance from ascending slopes. In general, buildings below slopes shall be set a sufficient distance from the slope to provide protection from slope drainage, erosion and shallow failures. Except as provided in Section 1808A.7.5 and Figure 1808A.7.1, the following criteria will be assumed to provide this protection. Where the existing slope is steeper than one unit vertical in one unit horizontal (100-percent slope), the toe of the slope shall be assumed to be at the intersection of a horizontal plane drawn from the top of the foundation and a plane drawn tangent to the slope at an angle of 45 degrees (0.79 rad) to the horizontal. Where a retaining wall is constructed at the toe of the slope, the height of the slope shall be measured from the top of the wall to the top of the slope.

1808A.7.2 Foundation setback from descending slope surface. Foundations on or adjacent to slope surfaces shall be founded in firm material with an embedment and set back from the slope surface sufficient to provide vertical and lateral support for the foundation without detrimental settlement. Except as provided for in Section 1808A.7.5 and Figure 1808A.7.1, the following setback is deemed adequate to meet the criteria. Where the slope is steeper than 1 unit vertical in 1 unit horizontal (100-percent slope), the required setback shall be measured from an imaginary plane 45 degrees (0.79 rad) to the horizontal, projected upward from the toe of the slope.

1808A.7.3 Pools. The setback between pools regulated by this code and slopes shall be equal to one-half the building footing setback distance required by this section. That portion of the pool wall within a horizontal distance of 7 feet
(2134 mm) from the top of the slope shall be capable of supporting the water in the pool without soil support.

1808A.7.4 Foundation elevation. On graded sites, the top of any exterior foundation shall extend above the elevation of the street gutter at point of discharge or the inlet of an approved drainage device a minimum of 12 inches (305 mm) plus 2 percent. Alternate elevations are permitted subject to the approval of the building official, provided it can be demonstrated that required drainage to the point of discharge and away from the structure is provided at all locations on the site.

1808A.7.5 Alternate setback and clearance. Alternate setbacks and clearances are permitted, subject to the approval of the building official. The building official shall be permitted to require a geotechnical investigation as set forth in Section 1803A.5.10.

1808A.8 Concrete foundations. The design, materials and construction of concrete foundations shall comply with Sections 1808A.8.1 through 1808A.8.6 and the provisions of Chapter 19A.

1808A.8.1 Concrete or grout strength and mix proportioning. Concrete or grout in foundations shall have a specified compressive strength (f') not less than the largest applicable value indicated in Table 1808A.8.1.

Where concrete is placed through a funnel hopper at the top of a deep foundation element, the concrete mix shall be designed and proportioned so as to produce a cohesive workable mix having a slump of not less than 4 inches (102 mm) and not more than 8 inches (204 mm). Where concrete or grout is to be pumped, the mix design including slump shall be adjusted to produce a pumpable mixture.

1808A.8.2 Concrete cover. The concrete cover provided for prestressed and nonprestressed reinforcement in foundations shall be no less than the largest applicable value specified in Table 1808A.8.2. Longitudinal bars spaced less than 1\(\frac{1}{2}\) inches (38 mm) clear distance apart shall be considered bundled bars for which the concrete cover provided shall also be no less than that required by Section 7.7.4 of ACI 318. Concrete cover shall be measured from the concrete surface to the outermost surface of the steel to which the cover requirement applies. Where concrete is placed in a temporary or permanent casing or a mandrel, the inside face of the casing or mandrel shall be considered the concrete surface.

1808A.8.3 Placement of concrete. Concrete shall be placed in such a manner as to ensure the exclusion of any foreign matter and to secure a full-size foundation. Concrete shall not be placed through water unless a tremie or other method approved by the building official is used. Where placed under or in the presence of water, the concrete shall be deposited by approved means to ensure minimum segregation of the mix and negligible turbulence of the water. Where depositing concrete from the top of a deep foundation element, the concrete shall be chuted directly into smooth-sided pipes or tubes or placed in a rapid and continuous operation through a funnel hopper centered at the top of the element.

1808A.8.4 Protection of concrete. Concrete foundations shall be protected from freezing during depositing and for a period of not less than five days thereafter. Water shall not be allowed to flow through the deposited concrete.

1808A.8.5 Forming of concrete. Concrete foundations are permitted to be cast against the earth where, in the opinion of the building official, soil conditions do not require formwork. Where formwork is required, it shall be in accordance with Chapter 6 of ACI 318.

1808A.8.6 Seismic requirements. See Section 1908A for additional requirements for foundations of structures assigned to Seismic Design Category D, E or F.

For structures assigned to Seismic Design Category D, E or F, provisions of ACI 318, Sections 21.12.1 through 21.12.4, shall apply where not in conflict with the provisions of Sections 1808A through 1810A.

1808A.9 Vertical masonry foundation elements. Vertical masonry foundation elements that are not foundation piers as defined in Section 2102.1 shall be designed as piers, walls or columns, as applicable, in accordance with TMS 402/ACI 530/ASCE 5.
SOILS AND FOUNDATIONS

TABLE 1808A.8.1
MINIMUM SPECIFIED COMPRESSIVE STRENGTH f'_c OF CONCRETE OR GROUT

<table>
<thead>
<tr>
<th>FOUNDATION ELEMENT OR CONDITION</th>
<th>SPECIFIED COMPRESSIVE STRENGTH, f'_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Foundations for other structures assigned to Seismic Design Category D, E or F</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>2. Precast nonprestressed driven piles</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>3. Socketed drilled shafts</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>4. Micropiles</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>5. Precast prestressed driven piles</td>
<td>5,000 psi</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 0.00689 MPa.

TABLE 1808A.8.2
MINIMUM CONCRETE COVER

<table>
<thead>
<tr>
<th>FOUNDATION ELEMENT OR CONDITION</th>
<th>MINIMUM COVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shallow foundations</td>
<td>In accordance with Section 7.7 of ACI 318</td>
</tr>
<tr>
<td>2. Precast nonprestressed deep foundation elements Exposed to seawater Not manufactured under plant conditions Manufactured under plant control conditions</td>
<td>3 inches 2 inches In accordance with Section 7.7.3 of ACI 318</td>
</tr>
<tr>
<td>3. Precast prestressed deep foundation elements Exposed to seawater Other</td>
<td>2.5 inches In accordance with Section 7.7.3 of ACI 318</td>
</tr>
<tr>
<td>4. Cast-in-place deep foundation elements not enclosed by a steel pipe, tube or permanent casing</td>
<td>2.5 inches</td>
</tr>
<tr>
<td>5. Cast-in-place deep foundation elements enclosed by a steel pipe, tube or permanent casing</td>
<td>1 inch</td>
</tr>
<tr>
<td>6. Structural steel core within a steel pipe, tube or permanent casing</td>
<td>2 inches</td>
</tr>
<tr>
<td>7. Cast-in-place drilled shafts enclosed by a stable rock socket</td>
<td>1.5 inches</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

SECTION 1809A
SHALLOW FOUNDATIONS

1809A.1 General. Shallow foundations shall be designed and constructed in accordance with Sections 1809A.2 through 1809A.13.

1809A.2 Supporting soils. Shallow foundations shall be built on undisturbed soil, compacted fill material or controlled low-strength material (CLSM). Compacted fill material shall be placed in accordance with Section 1804A.5. CLSM shall be placed in accordance with Section 1804A.6.

1809A.3 Stepped footings. The top surface of footings shall be level. The bottom surface of footings shall be permitted to have a slope not exceeding one unit vertical in 10 units horizontal (10-percent slope). Footings shall be stepped where it is necessary to change the elevation of the top surface of the footing or where the surface of the ground slopes more than one unit vertical in 10 units horizontal (10-percent slope).

Individual steps in continuous footings shall not exceed 18 inches (457 mm) in height and the slope of a series of such steps shall not exceed 1 unit vertical to 2 units horizontal (50 percent slope) unless otherwise recommended by a geotechnical report. The steps shall be detailed on the drawings. The local effects due to the discontinuity of the steps shall be considered in the design of the foundation.

1809A.4 Depth and width of footings. The minimum depth of footings below the undisturbed ground surface shall be 12 inches (305 mm). Where applicable, the requirements of Section 1809A.5 shall also be satisfied. The minimum width of footings shall be 12 inches (305 mm).

1809A.5 Frost protection. Except where otherwise protected from frost, foundations and other permanent supports of build-
SOILS AND FOUNDATIONS

ings and structures shall be protected from frost by one or more of the following methods:

1. Extending below the frost line of the locality;
2. Constructing in accordance with ASCE 32; or
3. Erecting on solid rock.

Exception: Free-standing buildings meeting all of the following conditions shall not be required to be protected:

1. Assigned to Occupancy Category I, in accordance with Section 1604A.5;
2. Area of 600 square feet (56 m²) or less for light-frame construction or 400 square feet (37 m²) or less for other than light-frame construction; and
3. Eave height of 10 feet (3048 mm) or less.

Shallow foundations shall not bear on frozen soil unless such frozen condition is of a permanent character.

1809A.6 Location of footings. Footings on granular soil shall be so located that the line drawn between the lower edges of adjoining footings shall not have a slope steeper than 30 degrees (0.52 rad) with the horizontal, unless the material supporting the higher footing is braced or retained or otherwise laterally supported in an approved manner or a greater slope has been properly established by engineering analysis.

1809A.7 Prescriptive footings for light-frame construction. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1809A.8 Plain concrete footings. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1809A.9 Masonry-unit footings. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1809A.10 Reserved.

1809A.11 Steel grillage footings. Grillage footings of structural steel shapes shall be separated with approved steel spacers and be entirely encased in concrete with at least 6 inches (152 mm) on the bottom and at least 4 inches (102 mm) at all other points. The spaces between the shapes shall be completely filled with concrete or cement grout.

1809A.12 Timber footings. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1809A.13 Footing seismic ties. Where a structure is assigned to Seismic Design Category D, E or F in accordance with Section 1613A, individual spread footings founded on soil defined in Section 1613A.5.2 as Site Class E or F shall be interconnected by ties. Unless it is demonstrated that equivalent restraint is provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade, ties shall be capable of carrying, in tension or compression, a force equal to the lesser of the product of the larger footing design gravity load times the seismic coefficient, SD, divided by 10 and 25 percent of the smaller footing design gravity load.

1809A.14 Pipes and trenches. Unless otherwise recommended by the soils report, open or backfilled trenches parallel with a footing shall not be below a plane having a downward slope of 1 unit vertical to 2 units horizontal (50 percent slope) from a line 9 inches (229 mm) above the bottom edge of the footing, and not closer than 18 inches (457 mm) from the face of such footing.

Where pipes cross under footings, the footings shall be specially designed. Pipe sleeves shall be provided where pipes cross through footings or footing walls and sleeve clearances shall provide for possible footing settlement, but not less than 1 inch (25 mm) all around pipe.

Exception: Alternate trench locations and pipe clearances are permitted when accepted by the registered design professional in responsible charge and the enforcement agent.

SECTION 1810A
DEEP FOUNDATIONS

1810A.1 General. Deep foundations shall be analyzed, designed, detailed and installed in accordance with Sections 1810A.1 through 1810A.4.

1810A.1.1 Geotechnical investigation. Deep foundations shall be designed and installed on the basis of a geotechnical investigation as set forth in Section 1803A.

1810A.1.2 Use of existing deep foundation elements. Deep foundation elements left in place where a structure has been demolished shall not be used for the support of new construction unless satisfactory evidence is submitted to the building official, which indicates that the elements are sound and meet the requirements of this code. Such elements shall be load tested or redriven to verify their capacities. The design load applied to such elements shall be the lowest allowable load as determined by tests or redriving data.

1810A.1.3 Deep foundation elements classified as columns. Deep foundation elements standing unbraced in air, water or fluid soils shall be classified as columns and designed as such in accordance with the provisions of this code from their top down to the point where adequate lateral support is provided in accordance with Section 1810A.2.1.

Exception: Where the unsupported height to least horizontal dimension of a cast-in-place deep foundation element does not exceed three, it shall be permitted to design and construct such an element as a pedestal in accordance with ACI 318.

1810A.1.4 Special types of deep foundations. The use of types of deep foundation elements not specifically mentioned herein is permitted, subject to the approval of the building official, upon the submission of acceptable test data, calculations and other information relating to the structural properties and load capacity of such elements. The allowable stresses for materials shall not in any case exceed the limitations specified herein.

1810A.2 Analysis. The analysis of deep foundations for design shall be in accordance with Sections 1810A.2.1 through 1810A.2.5.

1810A.2.1 Lateral support. Any soil other than fluid soil shall be deemed to afford sufficient lateral support to prevent buckling of deep foundation elements and to permit the
design of the elements in accordance with accepted engineering practice and the applicable provisions of this code.

Where deep foundation elements stand unbraced in air, water or fluid soils, it shall be permitted to consider them laterally supported at a point 5 feet (1524 mm) into stiff soil or 10 feet (3048 mm) into soft soil unless otherwise approved by the building official on the basis of a geotechnical investigation by a registered design professional.

18104.2.2 Stability. Deep foundation elements shall be braced to provide lateral stability in all directions. Three or more elements connected by a rigid cap shall be considered braced, provided that the elements are located in radial directions from the centroid of the group not less than 60 degrees (1 rad) apart. A two-element group in a rigid cap shall be considered to be braced along the axis connecting the two elements. Methods used to brace deep foundation elements shall be subject to the approval of the building official.

Deep foundation elements supporting walls shall be placed alternately in lines spaced at least 1 foot (305 mm) apart and located symmetrically under the center of gravity of the wall load carried, unless effective measures are taken to provide for eccentricity and lateral forces, or the foundation elements are adequately braced to provide for lateral stability.

Exceptions:

1. Isolated cast-in-place deep foundation elements without lateral bracing shall be permitted where the least horizontal dimension is no less than 2 feet (610 mm), adequate lateral support in accordance with Section 1810A.2.1 is provided for the entire height and the height does not exceed 12 times the least horizontal dimension.

2. A single row of deep foundation elements without lateral bracing is permitted for one- and two-family dwellings and lightweight construction not exceeding two stories above grade plane or 35 feet (10668 mm) in building height, provided the centers of the elements are located within the width of the supported wall.

18104.2.3 Settlement. The settlement of a single deep foundation element or group thereof shall be estimated based on approved methods of analysis. The predicted settlement shall cause neither harmful distortion of, nor instability in, the structure, nor cause any element to be loaded beyond its capacity.

18104.2.4 Lateral loads. The moments, shears and lateral deflections used for design of deep foundation elements shall be established considering the nonlinear interaction of the shaft and soil, as determined by a registered design professional. Where the ratio of the depth of embedment of the element to its least horizontal dimension is less than or equal to 1, it shall be permitted to assume the element is rigid.

18104.2.4.1 Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F, deep foundation elements on Site Class E or F sites, as determined in Section 1613A.5.2, shall be designed and constructed to withstand maximum imposed curvatures from earthquake ground motions and structure response. Curvatures shall include free-field soil strains modified for soil-foundation-structure interaction coupled with foundation element deformations associated with earthquake loads imparted to the foundation by the structure.

Exception: Deep foundation elements that satisfy the following additional detailing requirements shall be deemed to comply with the curvature capacity requirements of this section.

1. Precast prestressed concrete piles detailed in accordance with Section 1810A.3.8.3.3.

2. Cast-in-place deep foundation elements with a minimum longitudinal reinforcement ratio of 0.005 extending the full length of the element and detailed in accordance with Sections 21.6.4.2, 21.6.4.3 and 21.6.4.4 of ACI 318 as required by Section 1810A.3.9.4.2.2.

18104.2.5 Group effects. The analysis shall include group effects on lateral behavior where the center-to-center spacing of deep foundation elements in the direction of lateral force is less than eight times the least horizontal dimension of an element. The analysis shall include group effects on axial behavior where the center-to-center spacing of deep foundation elements is less than three times the least horizontal dimension of an element.

18104.3 Design and detailing. Deep foundations shall be designed and detailed in accordance with Sections 1810A.3.1 through 1810A.3.12.

18104.3.1 Design conditions. Design of deep foundations shall include the design conditions specified in Sections 1810A.3.1.1 through 1810A.3.1.6, as applicable.

18104.3.1.1 Design methods for concrete elements. Where concrete deep foundations are laterally supported in accordance with Section 1810A.2.1 for the entire height and applied forces cause bending moments no greater than those resulting from accidental eccentricities, structural design of the element using the load combinations of Section 1605A.3 and the allowable stresses specified in this chapter shall be permitted. Otherwise, the structural design of concrete deep foundation elements shall use the load combinations of Section 1605A.2 and approved strength design methods.

18104.3.1.2 Composite elements. Where a single deep foundation element comprises two or more sections of different materials or different types spliced together, each section of the composite assembly shall satisfy the applicable requirements of this code, and the maximum allowable load in each section shall be limited by the structural capacity of that section.

18104.3.1.3 Mislocation. The foundation or superstructure shall be designed to resist the effects of the mislocation of any deep foundation element by no less than 3 inches (76 mm). To resist the effects of mislocation, compressive overload of deep foundation
elements to 110 percent of the allowable design load shall be permitted.

1810A.3.1.4 Driven piles. Driven piles shall be designed and manufactured in accordance with accepted engineering practice to resist all stresses induced by handling, driving and service loads.

1810A.3.1.5 Helical piles. Helical piles shall be designed and manufactured in accordance with accepted engineering practice to resist all stresses induced by installation into the ground and service loads.

1810A.3.1.5.1 Helical Piles Seismic Requirements. For structures assigned to Seismic Design Category D, E or F, capacities of helical piles shall be determined in accordance with Section 1810A.3.3 by at least two project specific preproduction tests for each soil profile, size and depth of helical pile. At least two percent of all production piles shall be proof tested to the load determined in accordance with Section 1615A.1.10.

Helical piles shall satisfy corrosion resistance requirements of ICC-ES AC 358. In addition, all helical pile materials that are subject to corrosion shall include at least 1/16 inch corrosion allowance.

Helical piles shall not be considered as carrying any horizontal loads.

1810A.3.1.6 Casings. Temporary and permanent casings shall be of steel and shall be sufficiently strong to resist collapse and sufficiently water tight to exclude any foreign materials during the placing of concrete. Where a permanent casing is considered reinforcing steel, the steel shall be protected under the conditions specified in Section 1810A.3.2.5. Horizontal joints in the casing shall be spliced in accordance with Section 1810A.3.6.

1810A.3.2 Materials. The materials used in deep foundation elements shall satisfy the requirements of Sections 1810A.3.2.1 through 1810A.3.2.8, as applicable.

1810A.3.2.1 Concrete. Where concrete is cast in a steel pipe or where an enlarged base is formed by compacting concrete, the maximum size for coarse aggregate shall be 3/4 inch (19.1 mm). Concrete to be compacted shall have a zero slump.

1810A.3.2.1.1 Seismic hooks. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613A, the ends of hoops, spirals and ties used in concrete deep foundation elements shall be terminated with seismic hooks, as defined in ACI 318, and shall be turned into the confined concrete core.

1810A.3.2.2 Prestressing steel. Prestressing steel shall conform to ASTM A 416.

1810A.3.2.3 Structural steel. Structural steel piles, steel pipe and fully welded steel piles fabricated from plates shall conform to ASTM A 36, ASTM A 252, ASTM A 283, ASTM A 572, ASTM A 588, ASTM A 690, ASTM A 913 or ASTM A 992.

1810A.3.2.4 Timber. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1810A.3.2.5 Protection of materials. Where boring records or site conditions indicate possible deleterious action on the materials used in deep foundation elements because of soil constituents, changing water levels or other factors, the elements shall be adequately protected by materials, methods or processes approved by the building official. Protective materials shall be applied to the elements so as not to be rendered ineffective by installation. The effectiveness of such protective measures for the particular purpose shall have been thoroughly established by satisfactory service records or other evidence.

1810A.3.2.6 Allowable stresses. The allowable stresses for materials used in deep foundation elements shall not exceed those specified in Table 1810A.3.2.6.

1810A.3.2.7 Increased allowable compressive stress for cased cast-in-place elements. The allowable compressive stress in the concrete shall be permitted to be increased as specified in Table 1810A.3.2.6 for those portions of permanently cased cast-in-place elements that satisfy all of the following conditions:

1. The design shall not use the casing to resist any portion of the axial load imposed.
2. The casing shall have a sealed tip and be mandrel driven.
3. The thickness of the casing shall not be less than manufacturer’s standard gage No. 14 (0.068 inch) (1.75 mm).
4. The casing shall be seamless or provided with seams of strength equal to the basic material and be of a configuration that will provide confinement to the cast-in-place concrete.
5. The ratio of steel yield strength (F_y) to specified compressive strength ($f'c$) shall not be less than six.
6. The nominal diameter of the element shall not be greater than 16 inches (406 mm).

1810A.3.2.8 Justification of higher allowable stresses. Use of allowable stresses greater than those specified in Section 1810A.3.2.6 shall be permitted where supporting data justifying such higher stresses is filed with the building official. Such substantiating data shall include:

1. A geotechnical investigation in accordance with Section 1803A; and
2. Load tests in accordance with Section 1810A.3.3.1.2, regardless of the load supported by the element.

The design and installation of the deep foundation elements shall be under the direct supervision of a registered design professional knowledgeable in the field of soil mechanics and deep foundations who shall submit a report to the building official stating that the elements as installed satisfy the design criteria.
TABLE 1810A.3.2.6
ALLOWABLE STRESSES FOR MATERIALS USED IN DEEP FOUNDATION ELEMENTS

<table>
<thead>
<tr>
<th>MATERIAL TYPE AND CONDITION</th>
<th>MAXIMUM ALLOWABLE STRESS *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Concrete or grout in compression<sup>a</sup></td>
<td>0.4 f''_c</td>
</tr>
<tr>
<td>Cast-in-place with a permanent casing in accordance with Section 1810A.3.2.7</td>
<td></td>
</tr>
<tr>
<td>Cast-in-place in a pipe, tube, other permanent casing or rock</td>
<td>0.33 f''_c</td>
</tr>
<tr>
<td>Cast-in-place without a permanent casing</td>
<td>0.3 f''_c</td>
</tr>
<tr>
<td>Precast nonprestressed</td>
<td>0.3 f''_c</td>
</tr>
<tr>
<td>Precast prestressed</td>
<td>0.33 $f''c$ - 0.27 $f{pc}$</td>
</tr>
<tr>
<td>2. Nonprestressed reinforcement in compression</td>
<td>0.4 f_y ≤ 30,000 psi</td>
</tr>
<tr>
<td>3. Structural steel in compression</td>
<td>0.5 F_y ≤ 32,000 psi</td>
</tr>
<tr>
<td>Cores within concrete-filled pipes or tubes</td>
<td></td>
</tr>
<tr>
<td>Pipes, tubes or H-piles, where justified in accordance with Section 1810A.3.2.8</td>
<td>0.4 F_y ≤ 32,000 psi</td>
</tr>
<tr>
<td>Pipes or tubes for micropiles</td>
<td>0.35 F_y ≤ 16,000 psi</td>
</tr>
<tr>
<td>Other pipes, tubes or H-piles</td>
<td>0.6 F_y ≤ 0.5 F_u</td>
</tr>
<tr>
<td>4. Nonprestressed reinforcement in tension</td>
<td>0.6 f_t</td>
</tr>
<tr>
<td>Within micropiles</td>
<td>0.5 f_t ≤ 24,000 psi</td>
</tr>
<tr>
<td>Other conditions</td>
<td></td>
</tr>
<tr>
<td>5. Structural steel in tension</td>
<td>0.5 F_y ≤ 32,000 psi</td>
</tr>
<tr>
<td>Pipes, tubes or H-piles, where justified in accordance with Section 1810A.3.2.8</td>
<td>0.35 F_y ≤ 16,000 psi</td>
</tr>
<tr>
<td>Other pipes, tubes or H-piles</td>
<td>0.6 F_y ≤ 0.5 F_u</td>
</tr>
<tr>
<td>6. Timber</td>
<td>In accordance with the AF&PA NDS</td>
</tr>
</tbody>
</table>

a. f''_c is the specified compressive strength of the concrete or grout; f_y is the compressive stress on the gross concrete section due to effective prestress forces only; F_y is the specified yield strength of reinforcement; F_u is the specified minimum yield stress of structural steel; F_{pc} is the specified minimum tensile stress of structural steel.

b. The stresses specified apply to the gross cross-sectional area within the concrete surface. Where a temporary or permanent casing is used, the inside face of the casing shall be considered the concrete surface.

1810A.3.3 Determination of allowable loads. The allowable axial and lateral loads on deep foundation elements shall be determined by an approved formula, load tests or method of analysis.

1810A.3.3.1 Allowable axial load. The allowable axial load on a deep foundation element shall be determined in accordance with Sections 1810A.3.3.1.1 through 1810A.3.3.1.9.

1810A.3.3.1.1 Driving criteria. The allowable compressive load on any driven deep foundation element where determined by the application of an approved driving formula shall not exceed 40 tons (356 kN). For allowable loads above 40 tons (356 kN), the wave equation method of analysis shall be used to estimate driveability for both driving stresses and net displacement per blow at the ultimate load. Allowable loads shall be verified by load tests in accordance with Section 1810A.3.3.1.2. The formula or wave equation load shall be determined for gravity-drop or power-actuated hammers and the hammer energy used shall be the maximum consistent with the size, strength and weight of the driven elements. The use of a follower is permitted only with the approval of the building official. The introduction of fresh hammer cushion or pile cushion material just prior to final penetration is not permitted.

1810A.3.3.1.2 Load tests. Where design compressive loads are greater than those determined using the allowable stresses specified in Section 1810A.3.2.6, where the design load for any deep foundation element is in doubt, or where cast-in-place deep foundation elements have an enlarged base formed either by compacting concrete or by driving a precast base, control test elements shall be tested in accordance with ASTM D 1143 or ASTM D 4945. At least one element shall be load tested in each area of uniform subsoil conditions. Where required by the building official, additional elements shall be load tested where necessary to establish the safe design capacity. The resulting allowable loads shall not be more than one-half of the ultimate axial load capacity of the test element as assessed by one of the published methods listed in Section 1810A.3.3.1.3 with consideration for the test type, duration and subsoil. The ultimate axial load capacity shall be determined by a registered design professional with consideration given to tolerable total and differential settlements at design load in accordance with Section 1810A.2.3. In subsequent installation of the balance of deep foundation elements, all elements shall be deemed to have a supporting capacity equal to that of the control element where such elements are of the same type, size and relative
length as the test element; are installed using the same or comparable methods and equipment as the test element; are installed in similar subsoil conditions as the test element; and, for driven elements, where the rate of penetration (e.g., net displacement per blow) of such elements is equal to or less than that of the test element driven with the same hammer through a comparable driving distance.

1810A.3.3.1.3 Load test evaluation methods. It shall be permitted to evaluate load tests of deep foundation elements using any of the following methods:

1. Davisson Offset Limit.
2. Brinch-Hansen 90% Criterion.
4. Other methods approved by the building official.

1810A.3.3.1.4 Allowable frictional resistance. The assumed frictional resistance developed by any uncased cast-in-place deep foundation element shall not exceed one-sixth of the bearing value of the soil material at minimum depth as set forth in Table 1806A.2, up to a maximum of 500 psf (24 kPa), unless a greater value is allowed by the building official on the basis of a geotechnical investigation as specified in Section 1803A or a greater value is substantiated by a load test in accordance with Section 1810A.3.3.1.2. Frictional resistance and bearing resistance shall not be assumed to act simultaneously unless determined by a geotechnical investigation in accordance with Section 1803A.

1810A.3.3.1.5 Uplift capacity of a single deep foundation element. Where required by the design, the uplift capacity of a single deep foundation element shall be determined by an approved method of analysis based on a minimum factor of safety of three or by load tests conducted in accordance with ASTM D 3689. The maximum allowable uplift load shall not exceed the ultimate load capacity as determined in Section 1810A.3.3.1.2, using the results of load tests conducted in accordance with ASTM D 3689, divided by a factor of safety of two.

Exception: Where uplift is due to wind or seismic loading, the minimum factor of safety shall be two where capacity is determined by an analysis and one and one-half where capacity is determined by load tests.

1810A.3.3.1.6 Uplift capacity of grouped deep foundation elements. For grouped deep foundation elements subjected to uplift, the allowable working uplift load for the group shall be calculated by an approved method of analysis where the deep foundation elements in the group are placed at a center-to-center spacing of at least 2.5 times the least horizontal dimension of the largest single element, the allowable working uplift load for the group is permitted to be calculated as the lesser of:

1. The proposed individual uplift working load times the number of elements in the group.
2. Two-thirds of the effective weight of the group and the soil contained within a block defined by the perimeter of the group and the length of the element.

1810A.3.3.1.7 Load-bearing capacity. Deep foundation elements shall develop ultimate load capacities of at least twice the design working loads in the designated load-bearing layers. Analysis shall show that no soil layer underlying the designated load-bearing layers causes the load-bearing capacity safety factor to be less than two.

1810A.3.3.1.8 Bent deep foundation elements. The load-bearing capacity of deep foundation elements discovered to have a sharp or sweeping bend shall be determined by an approved method of analysis or by load testing a representative element.

1810A.3.3.1.9 Helical piles. The allowable axial design load, \(P_u \), of helical piles shall be determined as follows:

\[
P_u = 0.5 P_s \\
(Equation 18A-4)
\]

where \(P_s \) is the least value of:

1. Sum of the areas of the helical bearing plates times the ultimate bearing capacity of the soil or rock comprising the bearing stratum.
2. Ultimate capacity determined from well-documented correlations with installation torque.
3. Ultimate capacity determined from load tests.
4. Ultimate axial capacity of pile shaft.
5. Ultimate axial capacity of pile shaft couplings.
6. Sum of the ultimate axial capacity of helical bearing plates affixed to pile.

1810A.3.3.2 Allowable lateral load. Where required by the design, the lateral load capacity of a single deep foundation element or a group thereof shall be determined by an approved method of analysis or by lateral load tests to at least twice the proposed design working load. The resulting allowable load shall not be more than one-half of the load that produces a gross lateral movement of 1 inch (25 mm) at the lower of the top of foundation element and the ground surface, unless it can be shown that the predicted lateral movement shall cause neither harmful distortion of, nor instability in, the structure, nor cause any element to be loaded beyond its capacity.

1810A.3.3.4 Subsiding soils. Where deep foundation elements are installed through subsiding fills or other subsiding strata and derive support from underlying firmer materials, consideration shall be given to the downward frictional forces that may be imposed on the elements by the subsiding upper strata.

Where the influence of subsiding fills is considered as imposing loads on the element, the allowable stresses speci-
SOILS AND FOUNDATIONS

fied in this chapter shall be permitted to be increased where satisfactory substantiating data are submitted.

1810A.3.5 Dimensions of deep foundation elements. The dimensions of deep foundation elements shall be in accordance with Sections 1810A.3.5.1 through 1810A.3.5.3, as applicable.

1810A.3.5.1 Precast. The minimum lateral dimension of precast concrete deep foundation elements shall be 8 inches (203 mm). Corners of square elements shall be chamfered.

1810A.3.5.2 Cast-in-place or grouted-in-place. Cast-in-place and grouted-in-place deep foundation elements shall satisfy the requirements of this section.

1810A.3.5.2.1 Cased. Cast-in-place deep foundation elements with a permanent casing shall have a nominal outside diameter of not less than 8 inches (203 mm).

1810A.3.5.2.2 Uncased. Cast-in-place deep foundation elements without a permanent casing shall have a diameter of not less than 12 inches (305 mm). The element length shall not exceed 30 times the average diameter.

Exception: The length of the element is permitted to exceed 30 times the diameter, provided the design and installation of the deep foundations are under the direct supervision of a registered design professional knowledgeable in the field of soil mechanics and deep foundations. The registered design professional shall submit a report to the building official stating that the elements were installed in compliance with the approved construction documents.

1810A.3.5.2.3 Micropiles. Micropiles shall have an outside diameter of 12 inches (305 mm) or less. The minimum diameter set forth elsewhere in Section 1810A.3.5 shall not apply to micropiles.

1810A.3.5.3 Steel. Steel deep foundation elements shall satisfy the requirements of this section.

1810A.3.5.3.1 H-piles. Sections of H-piles shall comply with the following:

1. The flange projections shall not exceed 14 times the minimum thickness of metal in either the flange or the web and the flange widths shall not be less than 80 percent of the depth of the section.

2. The nominal depth in the direction of the web shall not be less than 8 inches (203 mm).

3. Flanges and web shall have a minimum nominal thickness of 3/4 inch (9.5 mm).

1810A.3.5.3.2 Steel pipes and tubes. Steel pipes and tubes used as deep foundation elements shall have a nominal outside diameter of not less than 8 inches (203 mm). Where steel pipes or tubes are driven open ended, they shall have a minimum of 0.34 square inch (219 mm²) of steel in cross section to resist each 1,000 foot-pounds (1356 Nm) of pile hammer energy, or shall have the equivalent strength for steels having a yield strength greater than 35,000 psi (241 MPa) or the wave equation analysis shall be permitted to be used to assess compression stresses induced by driving to evaluate if the pile section is appropriate for the selected hammer. Where a pipe or tube with wall thickness less than 0.179 inch (4.6 mm) is driven open ended, a suitable cutting shoe shall be provided. Concrete-filled steel pipes or tubes in structures assigned to Seismic Design Category C, D, E or F shall have a wall thickness of not less than 5/32 inch (5 mm). The pipe or tube casing for socketed drilled shafts shall have a nominal outside diameter of not less than 18 inches (457 mm), a wall thickness of not less than 7/16 inch (9.5 mm) and a suitable steel driving shoe welded to the bottom; the diameter of the rock socket shall be approximately equal to the inside diameter of the casing.

Exceptions:

1. There is no minimum diameter for steel pipes or tubes used in micropiles.

2. For mandrel-driven pipes or tubes, the minimum wall thickness shall be 1/10 inch (2.5 mm).

1810A.3.5.3.3 Helical piles. Dimensions of the central shaft and the number, size and thickness of helical bearing plates shall be sufficient to support the design loads.

1810A.3.6 Splices. Splices shall be constructed so as to provide and maintain true alignment and position of the component parts of the deep foundation element during installation and subsequent thereto and shall be designed to resist the axial and shear forces and moments occurring at the location of the splice during driving and for design load combinations. Where deep foundation elements of the same type are being spliced, splices shall develop not less than 50 percent of the bending strength of the weaker section. Where deep foundation elements of different materials or different types are being spliced, splices shall develop the full compressive strength and not less than 50 percent of the tension and bending strength of the weaker section. Where structural steel cores are to be spliced, the ends shall be milled or ground to provide full contact and shall be full-depth welded.

Splices occurring in the upper 10 feet (3048 mm) of the embedded portion of an element shall be designed to resist at allowable stresses the moment and shear that would result from an assumed eccentricity of the axial load of 3 inches (76 mm), or the element shall be braced in accordance with Section 1810A.2.2 to other deep foundation elements that do not have splices in the upper 10 feet (3048 mm) of embedment.

1810A.3.6.1 Seismic Design Categories C through F. For structures assigned to Seismic Design Category C, D, E or F splices of deep foundation elements shall develop the lesser of the following:

1. The full strength of the deep foundation element; and
2. The axial and shear forces and moments from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

1810A.3.7 Top of element detailing at cutoffs. Where a minimum length for reinforcement or the extent of closely spaced confinement reinforcement is specified at the top of a deep foundation element, provisions shall be made so that those specified lengths or extents are maintained after cutoff.

1810A.3.8 Precast concrete piles. Precast concrete piles shall be designed and detailed in accordance with Sections 1810A.3.8.1 through 1810A.3.8.3.

1810A.3.8.1 Reinforcement. Longitudinal steel shall be arranged in a symmetrical pattern and be laterally tied with steel ties or wire spiral spaced center to center as follows:

1. At not more than 1 inch (25 mm) for the first five ties or spirals at each end; then
2. At not more than 4 inches (102 mm), for the remainder of the first 2 feet (610 mm) from each end; and then
3. At not more than 6 inches (152 mm) elsewhere.

The size of ties and spirals shall be as follows:

1. For piles having a least horizontal dimension of 16 inches (406 mm) or less, wire shall not be smaller than 0.22 inch (5.6 mm) (No. 5 gage).
2. For piles having a least horizontal dimension of more than 16 inches (406 mm) and less than 20 inches (508 mm), wire shall not be smaller than 0.238 inch (6 mm) (No. 4 gage).
3. For piles having a least horizontal dimension of 20 inches (508 mm) and larger, wire shall not be smaller than 1/8 inch (6.4 mm) round or 0.259 inch (6.6 mm) (No. 3 gage).

1810A.3.8.2 Precast nonprestressed piles. Precast nonprestressed concrete piles shall comply with the requirements of Sections 1810A.3.8.2.1 through 1810A.3.8.2.3.

1810A.3.8.2.1 Minimum reinforcement. Longitudinal reinforcement shall consist of at least four bars with a minimum longitudinal reinforcement ratio of 0.008.

1810A.3.8.2.2 Seismic reinforcement in Seismic Design Categories C through F. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613A, precast nonprestressed piles shall be reinforced as specified in this section. The minimum longitudinal reinforcement ratio shall be 0.01 throughout the length. Transverse reinforcement shall consist of closed ties or spirals with a minimum 1/4 inch (9.5 mm) diameter. Spacing of transverse reinforcement shall not exceed the smaller of eight times the diameter of the smallest longitudinal bar or 6 inches (152 mm) within a distance of three times the least pile dimension from the bottom of the pile cap. Spacing of transverse reinforcement shall not exceed 6 inches (152 mm) throughout the remainder of the pile.

1810A.3.8.2.3 Additional seismic reinforcement in Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, transverse reinforcement shall be in accordance with Section 1810A.3.9.4.2.

1810A.3.8.3 Precast prestressed piles. Precast prestressed concrete piles shall comply with the requirements of Sections 1810A.3.8.3.1 through 1810A.3.8.3.3.

1810A.3.8.3.1 Effective prestress. The effective prestress in the pile shall not be less than 400 psi (2.76 MPa) for piles up to 30 feet (9144 mm) in length, 550 psi (3.79 MPa) for piles up to 50 feet (15240 mm) in length and 700 psi (4.83 MPa) for piles greater than 50 feet (15240 mm) in length.

Effective prestress shall be based on an assumed loss of 30,000 psi (207 MPa) in the prestressing steel. The tensile stress in the prestressing steel shall not exceed the values specified in ACI 318.

1810A.3.8.3.2 Seismic reinforcement in Seismic Design Category C. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1810A.3.8.3.3 Seismic reinforcement in Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, precast prestressed piles shall have transverse reinforcement in accordance with the following:

1. Requirements in ACI 318, Chapter 21, need not apply, unless specifically referenced.
2. Where the total pile length in the soil is 35 feet (10668 mm) or less, the lateral transverse reinforcement in the ductile region shall occur through the length of the pile. Where the pile length exceeds 35 feet (10668 mm), the ductile pile region shall be taken as the greater of 35 feet (10668 mm) or the distance from the underside of the pile cap to the point of zero curvature plus three times the least pile dimension.
3. In the ductile region, the center-to-center spacing of the spirals or hoop reinforcement shall not exceed one-fifth of the least pile dimension, six times the diameter of the longitudinal strand or 8 inches (203 mm), whichever is smallest.
4. Circular spiral reinforcement shall be spliced by lapping one full turn and bending the end of each spiral to a 90-degree hook or by use of a mechanical or welded splice complying with Section 12.14.3 of ACI 318.
5. Where the transverse reinforcement consists of circular spirals, the volumetric ratio of spiral transverse reinforcement in the ductile region shall comply with the following:

\[
\rho_s = 0.25(f'_c f_{ps})(A_g/A_{eh} - 1.0) \\
[0.5 + 1.4P(f'_c A_g)]
\]

\textbf{(Equation 18A-6)}

but not less than:

\[
\rho_s = 0.12(f'_c f_{ps}) [0.5 + 1.4P(f'_c A_g)] \\
\geq 0.12 f'_c / f_{ps}
\]

\textbf{(Equation 18A-7)}

and need not exceed:

\[
\rho_s = 0.021
\]

\textbf{(Equation 18A-8)}

where:

- \(A_g\) = Pile cross-sectional area, square inches (mm²).
- \(A_{eh}\) = Core area defined by spiral outside diameter, square inches (mm²).
- \(f'_c\) = Specified compressive strength of concrete, psi (MPa).
- \(h_s\) = Yield strength of spiral reinforcement (ksi or MPa).
- \(P\) = Axial load on pile, pounds (kN), as determined from Equations 16A-5 and 16A-7.
- \(\rho_s\) = Volumetric ratio (vol. spiral/vol. core).

6. Where transverse reinforcement consists of rectangular hoops and cross ties, the total cross-sectional area of lateral transverse reinforcement in the ductile region with spacing, \(s\), and perpendicular dimension, \(h_s\), shall conform to:

\[
A_{sh} = 0.3 s h_s (f'_c f_{ph})(A_g/A_{sh} - 1.0) \\
[0.5 + 1.4P(f'_c A_g)]
\]

\textbf{(Equation 18A-9)}

but not less than:

\[
A_{sh} = 0.12 s h_s (f'_c f_{ph}) [0.5 + 1.4P(f'_c A_g)]
\]

\textbf{(Equation 18A-10)}

where:

- \(f_{ph}\) = \(\leq 70,000\) psi (483 MPa).
- \(h_s\) = Cross-sectional dimension of pile core measured center to center of hoop reinforcement, inch (mm).
- \(s\) = Spacing of transverse reinforcement measured along length of pile, inch (mm).
- \(A_{sh}\) = Cross-sectional area of transverse reinforcement, square inches (mm²).

\(f'_c\) = Specified compressive strength of concrete, psi (MPa).

The hoops and cross ties shall be equivalent to deformed bars not less than No.3 in size. Rectangular hoop ends shall terminate at a corner with seismic hooks.

Outside of the length of the pile requiring transverse confinement reinforcing, the spiral or hoop reinforcing with a volumetric ratio not less than one-half of that required for transverse confinement reinforcing shall be provided.

1810A.3.9 Cast-in-place deep foundations. Cast-in-place deep foundation elements shall be designed and detailed in accordance with Sections 1810A.3.9.1 through 1810A.3.9.6.

1810A.3.9.1 Design cracking moment. The design cracking moment (\(\phi M_n\)) for a cast-in-place deep foundation element not enclosed by a structural steel pipe or tube shall be determined using the following equation:

\[
\phi M_n = 3\sqrt{f'c S_m} \]

\textbf{(Equation 18A-11)}

where:

- \(f'_c\) = Specified compressive strength of concrete or grout, psi (MPa).
- \(S_m\) = Elastic section modulus, neglecting reinforcement and casing, cubic inches (mm²).

1810A.3.9.2 Required reinforcement. Where subject to uplift or where the required moment strength determined using the load combinations of Section 1605A.2 exceeds the design cracking moment determined in accordance with Section 1810A.3.9.1, cast-in-place deep foundations not enclosed by a structural steel pipe or tube shall be reinforced.

1810A.3.9.3 Placement of reinforcement. Reinforcement where required shall be assembled and tied together and shall be placed in the deep foundation element as a unit before the reinforced portion of the element is filled with concrete.

Exceptions:

1. Steel dowels embedded 5 feet (1524 mm) or less shall be permitted to be placed after concreting, while the concrete is still in a semifluid state.

2. For deep foundation elements installed with a hollow-stem auger, tied reinforcement shall be placed after elements are concreted, while the concrete is still in a semifluid state. Longitudinal reinforcement without lateral ties shall be placed either through the hollow stem of the auger prior to concreting or after concreting, while the concrete is still in a semifluid state.

3. For Group R-3 and U occupancies not exceeding two stories of light-frame construction, reinforcement is permitted to be placed after concreting, while the concrete is still in a semi-
fluid state, and the concrete cover requirement is permitted to be reduced to 2 inches (51 mm), provided the construction method can be demonstrated to the satisfaction of the building official.

1810A.3.9.4 Seismic reinforcement. Where a structure is assigned to Seismic Design Category C, reinforcement shall be provided in accordance with Section 1810A.3.9.4.1. Where a structure is assigned to Seismic Design Category D, E or F, reinforcement shall be provided in accordance with Section 1810A.3.9.4.2.

Exceptions:

1. Isolated deep foundation elements supporting posts of Group R-3 and U occupancies not exceeding two stories of light-frame construction shall be permitted to be reinforced as required by rational analysis but with not less than one No. 4 bar, without ties or spirals, where detailed so the element is not subject to lateral loads and the soil provides adequate lateral support in accordance with Section 1810A.2.1.

2. Isolated deep foundation elements supporting posts and bracing from decks and patios appurtenant to Group R-3 and U occupancies not exceeding two stories of light-frame construction shall be permitted to be reinforced as required by rational analysis but with not less than one No. 4 bar, without ties or spirals, where the lateral load, \(E \), to the top of the element does not exceed 200 pounds (890 N) and the soil provides adequate lateral support in accordance with Section 1810A.2.1.

3. Deep foundation elements supporting the concrete foundation wall of Group R-3 and U occupancies not exceeding two stories of light-frame construction shall be permitted to be reinforced as required by rational analysis but with not less than two No. 4 bars, without ties or spirals, where the design cracking moment determined in accordance with Section 1810A.3.9.1 exceeds the required moment strength determined using the load combinations of Section 12.4.3.2 of ASCE 7 and the soil provides adequate lateral support in accordance with Section 1810A.2.1.

4. Closed ties or spirals where required by Section 1810A.3.9.4.2 shall be permitted to be limited to the top 3 feet (914 mm) of deep foundation elements 10 feet (3048 mm) or less in depth supporting Group R-3 and U occupancies of Seismic Design Category D, not exceeding two stories of light-frame construction.

1810A.3.9.4.1 Seismic reinforcement in Seismic Design Category C. For structures assigned to Seismic Design Category C in accordance with Section 1613A, cast-in-place deep foundation elements shall be reinforced as specified in this section. Reinforcement shall be provided where required by analysis.

A minimum of four longitudinal bars, with a minimum longitudinal reinforcement ratio of 0.0025, shall be provided for throughout the minimum reinforced length of the element as defined below starting at the top of the element. The minimum reinforced length of the element shall be taken as the greatest of the following:

1. One-third of the element length;
2. A distance of 10 feet (3048 mm);
3. Three times the least element dimension; and
4. The distance from the top of the element to the point where the design cracking moment determined in accordance with Section 1810A.3.9.1 exceeds the required moment strength determined using the load combinations of Section 1605A.2.

Transverse reinforcement shall consist of closed ties or spirals with a minimum \(\frac{3}{8} \) inch (9.5 mm) diameter. Spacing of transverse reinforcement shall not exceed the smaller of 6 inches (152 mm) or 8-longitudinal-bar diameters, within a distance of three times the least element dimension from the bottom of the pile cap. Spacing of transverse reinforcement shall not exceed 16 longitudinal bar diameters throughout the remainder of the reinforced length.

Exceptions:

1. The requirements of this section shall not apply to concrete cast in structural steel pipes or tubes.
2. A spiral-welded metal casing of a thickness not less than manufacturer's standard gage No. 14 gage (0.068 inch) is permitted to provide concrete confinement in lieu of the closed ties or spirals. Where used as such, the metal casing shall be protected against possible deleterious action due to soil constituents, changing water levels or other factors indicated by boring records of site conditions.

1810A.3.9.4.2 Seismic reinforcement in Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, cast-in-place deep foundation elements shall be reinforced as specified in this section. Reinforcement shall be provided where required by analysis.

A minimum of four longitudinal bars, with a minimum longitudinal reinforcement ratio of 0.005, shall
be provided throughout the minimum reinforced length of the element as defined below starting at the top of the element. The minimum reinforced length of the element shall be taken as the greatest of the following:

1. One-half of the element length;
2. A distance of 10 feet (3048 mm);
3. Three times the least element dimension; and
4. The distance from the top of the element to the point where the design cracking moment determined in accordance with Section 1810A.3.9.1 exceeds the required moment strength determined using the load combinations of Section 1605A.2.

Transverse reinforcement shall consist of closed ties or spirals no smaller than No.3 bars for elements with a least dimension up to 20 inches (508 mm), and No. 4 bars for larger elements. Throughout the remainder of the reinforced length outside the regions with transverse confinement reinforcement, as specified in Section 1810A.3.9.4.2.1 or 1810A.3.9.4.2.2, the spacing of transverse reinforcement shall not exceed the least of the following:

1. 12 longitudinal bar diameters;
2. One-half the least dimension of the element; and
3. 12 inches (305 mm).

Exceptions:
1. The requirements of this section shall not apply to concrete cast in structural steel pipes or tubes.
2. A spiral-welded metal casing of a thickness not less than manufacturer’s standard gage No. 14 gage (0.068 inch) is permitted to provide concrete confinement in lieu of the closed ties or spirals. Where used as such, the metal casing shall be protected against possible deleterious action due to soil constituents, changing water levels or other factors indicated by boring records of site conditions.

1810A.3.9.4.2.1 Site Classes A through D. For Site Class A, B, C or D sites, transverse confinement reinforcement shall be provided in the element in accordance with Sections 21.6.4.2, 21.6.4.3 and 21.6.4.4 of ACI 318 within three times the least element dimension of the pile cap and within seven times the least element dimension of the interfaces of strata that are hard or stiff and strata that are liquefiable or are composed of soft- to medium-stiff clay.

1810A.3.9.5 Belled drilled shafts. Where drilled shafts are belled at the bottom, the edge thickness of the bell shall not be less than that required for the edge of footings. Where the sides of the bell slope at an angle less than 60 degrees (1 rad) from the horizontal, the effects of vertical shear shall be considered.

1810A.3.9.6 Socketed drilled shafts. Socketed drilled shafts shall have a permanent pipe or tube casing that extends down to bedrock and an uncased socket drilled into the bedrock, both filled with concrete. Socketed drilled shafts shall have reinforcement or a structural steel core for the length as indicated by an approved method of analysis.

The depth of the rock socket shall be sufficient to develop the full load-bearing capacity of the element with a minimum safety factor of two, but the depth shall not be less than the outside diameter of the pipe or tube casing. The design of the rock socket is permitted to be predicated on the sum of the allowable load-bearing pressure on the bottom of the socket plus bond along the sides of the socket.

Where a structural steel core is used, the gross cross-sectional area of the core shall not exceed 25 percent of the gross area of the drilled shaft.

1810A.3.10 Micropiles. Micropiles shall be designed and detailed in accordance with Sections 1810A.3.10.1 through 1810A.3.10.4.

1810A.3.10.1 Construction. Micropiles shall develop their load-carrying capacity by means of a bond zone in soil, bedrock or a combination of soil and bedrock. Micropiles shall be grouted and have either a steel pipe or tube or steel reinforcement at every section along the length. It shall be permitted to transition from deformed reinforcing bars to steel pipe or tube reinforcement by extending the bars into the pipe or tube section by at least their development length in tension in accordance with ACI 318.

1810A.3.10.2 Materials. Reinforcement shall consist of deformed reinforcing bars in accordance with ASTM A 615 Grade 60 or 75 or ASTM A 722 Grade 150.

The steel pipe or tube shall have a minimum wall thickness of 0.16 inch (4.8 mm). Splices shall comply with Section 1810A.3.6. The steel pipe or tube shall have a minimum yield strength of 45,000 psi (310 MPa) and a minimum elongation of 15 percent as shown by mill certifications or two coupon test samples per 40,000 pounds (18 160 kg) of pipe or tube.

1810A.3.10.3 Reinforcement. For micropiles or portions thereof grouted inside a temporary or permanent casing or inside a hole drilled into bedrock or a hole drilled with grout, the steel pipe or tube or steel rein-
2010 CALIFORNIA BUILDING CODE

SOILS AND FOUNDATIONS

Forces shall be designed to carry at least 40 percent of the design compression load. Micropiles or portions thereof grouted in an open hole in soil without temporary or permanent casing and without suitable means of verifying the hole diameter during grouting shall be designed to carry the entire compression load in the reinforcing steel. Where a steel pipe or tube is used for reinforcement, the portion of the grout enclosed within the pipe is permitted to be included in the determination of the allowable stress in the grout.

1810A.3.10.4 Seismic requirements. For structures assigned to Seismic Design Category D, E or F, a permanent steel casing having a minimum thickness of ¼ inch (10 mm) shall be provided from the top of the micropile down to a minimum of 120 percent of the point of zero curvature. Capacity of micropiles shall be determined in accordance with Section 1810A.3.3 by at least two project specific preproduction tests for each soil profile, size and depth of micropile. At least two percent of all production piles shall be proof tested to the load determined in accordance with Section 1615A.1.10.

Steel casing length in soil shall be considered as unbonded and shall not be considered as contributing to friction. Casing shall provide confinement at least equivalent to hoop reinforcing required by ACI 318 Section 21.12.4.

Reinforcement shall have Class I corrosion protection in accordance with PTI Recommendations for Prestressed Rock and Soil Anchors. Steel casing design shall include at least ¼ inch corrosion allowance.

Micropiles shall not be considered as carrying any horizontal loads.

1810A.3.11 Pile caps. Pile caps shall be of reinforced concrete, and shall include all elements to which vertical deep foundation elements are connected, including grade beams and mats. The soil immediately below the pile cap shall not be considered as carrying any vertical load. The tops of vertical deep foundation elements shall be embedded not less than 3 inches (76 mm) into pile caps and the caps shall extend at least 4 inches (102 mm) beyond the edges of the elements. The tops of elements shall be cut or chipped back to sound material before capping.

1810A.3.11.1 Seismic Design Categories C through F. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section 1613A, concrete deep foundation elements shall be connected to the pile cap by embedding the element reinforcement or field-placed dowels anchored in the element into the pile cap for a distance equal to their development length in accordance with ACI 318. It shall be permitted to connect precast prestressed piles to the pile cap by developing the element prestressing strands into the pile cap provided the connection is ductile. For deformed bars, the development length is the full development length for compression, or tension in the case of uplift, without reduction for excess reinforcement in accordance with Section 12.2.5 of ACI 318. Alternative measures for laterally confining concrete and maintaining toughness and ductile-like behavior at the top of the element shall be permitted provided the design is such that any hinging occurs in the confined region.

The minimum transverse steel ratio for confinement shall not be less than one-half of that required for columns.

For resistance to uplift forces, anchorage of steel pipes, tubes or H-piles to the pile cap shall be made by means other than concrete bond to the bare steel section. Concrete-filled steel pipes or tubes shall have reinforcement of not less than 0.01 times the cross-sectional area of the concrete fill developed into the cap and extending into the fill a length equal to two times the required cap embedment, but not less than the development length in tension of the reinforcement.

1810A.3.11.2 Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, deep foundation element resistance to uplift forces or rotational restraint shall be provided by anchorage into the pile cap, designed considering the combined effect of axial forces due to uplift and bending moments due to fixity to the pile cap. Anchorage shall develop a minimum of 25 percent of the strength of the element in tension. Anchorage into the pile cap shall be capable of developing the following:

1. In the case of uplift, the least of the following: nominal tensile strength of the longitudinal reinforcement in a concrete element; the nominal tensile strength of a steel element; the frictional force developed between the element and the soil multiplied by 1.3; and the axial tension force resulting from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

2. In the case of rotational restraint, the lesser of the following: the axial force, shear forces and bending moments resulting from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7 or development of the full axial, bending and shear nominal strength of the element.

Where the vertical lateral-force-resisting elements are columns, the pile cap flexural strengths shall exceed the column flexural strength. The connection between batter piles and pile caps shall be designed to resist the nominal strength of the pile acting as a short column. Batter piles and their connection shall be capable of resisting forces and moments from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

1810A.3.12 Grade beams. For structures assigned to Seismic Design Category D, E or F in accordance with Section 1613A, grade beams shall comply with the provisions in Section 21.12.3 of ACI 318 for grade beams, except where they have the capacity to resist the forces from the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7.

1810A.3.13 Seismic ties. For structures assigned to Seismic Design Category C, D, E or F in accordance with Section
1613A, individual deep foundations shall be interconnected by ties. Unless it can be demonstrated that equivalent restraint is provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils or very dense granular soils, ties shall be capable of carrying, in tension or compression, a force equal to the lesser of the product of the larger pile cap or column design gravity load times the seismic coefficient, S_{D}, divided by 10, and 25 percent of the smaller pile or column design gravity load.

Exception: In Group R-3 and U occupancies of light-frame construction, deep foundation elements supporting foundation walls, isolated interior posts detailed so the element is not subject to lateral loads or exterior decks and patios are not subject to interconnection where the soils are of adequate stiffness, subject to the approval of the building official.

1810A.4 Installation. Deep foundations shall be installed in accordance with Section 1810A.4. Where a single deep foundation element comprises two or more sections of different materials or different types spliced together, each section shall satisfy the applicable conditions of installation.

1810A.4.1 Structural integrity. Deep foundation elements shall be installed in such a manner and sequence as to prevent distortion or damage that may adversely affect the structural integrity of adjacent structures or of foundation elements being installed or already in place and as to avoid compacting the surrounding soil to the extent that other foundation elements cannot be installed properly.

1810A.4.1.1 Compressive strength of precast concrete piles. A precast concrete pile shall not be driven before the concrete has attained a compressive strength of at least 75 percent of the specified compressive strength (f'_c), but not less than the strength sufficient to withstand handling and driving forces.

1810A.4.1.2 Casing. Where cast-in-place deep foundation elements are formed through unstable soils and concrete is placed in an open-drilled hole, a casing shall be inserted in the hole prior to placing the concrete. Where the casing is withdrawn during concreting, the level of concrete shall be maintained above the bottom of the casing at a sufficient height to offset any hydrostatic or lateral soil pressure. Driven casings shall be mandrel driven their full length in contact with the surrounding soil.

1810A.4.1.3 Driving near uncased concrete. Deep foundation elements shall not be driven within six element diameters center to center in granular soils or within one-half the element length in cohesive soils of an uncased element filled with concrete less than 48 hours old unless approved by the building official. If the concrete surface in any completed element rises or drops, the element shall be replaced. Driven uncased deep foundation elements shall not be installed in soils that could cause heave.

1810A.4.1.4 Driving near cased concrete. Deep foundation elements shall not be driven within four and one-half average diameters of a cased element filled with concrete less than 24 hours old unless approved by the building official. Concrete shall not be placed in casings within heave range of driving.

1810A.4.1.5 Defective timber piles. Not permitted by DSA-SS, DSA-SS/CC or OSHPD.

1810A.4.2 Identification. Deep foundation materials shall be identified for conformity to the specified grade with this identity maintained continuously from the point of manufacture to the point of installation or shall be tested by an approved agency to determine conformity to the specified grade. The approved agency shall furnish an affidavit of compliance to the building official.

1810A.4.3 Location plan. A plan showing the location and designation of deep foundation elements by an identification system shall be filed with the building official prior to installation of such elements. Detailed records for elements shall bear an identification corresponding to that shown on the plan.

1810A.4.4 Preexcavation. The use of jetting, augering or other methods of preexcavation shall be subject to the approval of the building official. Where permitted, preexcavation shall be carried out in the same manner as used for deep foundation elements subject to load tests and in such a manner that will not impair the carrying capacity of the elements already in place or damage adjacent structures. Element tips shall be driven below the preexcavated depth until the required resistance or penetration is obtained.

1810A.4.5 Vibratory driving. Vibratory drivers shall only be used to install deep foundation elements where the element load capacity is verified by load tests in accordance with Section 1810A.3.3.1.2. The installation of production elements shall be controlled according to power consumption, rate of penetration or other approved means that ensure element capacities equal or exceed those of the test elements.

1810A.4.6 Heaved elements. Deep foundation elements that have heaved during the driving of adjacent elements shall be redriven as necessary to develop the required capacity and penetration, or the capacity of the element shall be verified by load tests in accordance with Section 1810A.3.3.1.2.

1810A.4.7 Enlarged base cast-in-place elements. Enlarged bases for cast-in-place deep foundation elements formed by compacting concrete or by driving a precast base shall be formed in or driven into granular soils. Such elements shall be constructed in the same manner as successful prototype test elements driven for the project. Shafts extending through peat or other organic soil shall be encased in a permanent steel casing. Where a cased shaft is used, the shaft shall be adequately reinforced to resist column action or the annular space around the shaft shall be filled sufficiently to reestablish lateral support by the soil. Where heave occurs, the element shall be replaced unless it is demonstrated that the element is undamaged and capable of carrying twice its design load.
1810A.4.8 Hollow-stem augered, cast-in-place elements. Where concrete or grout is placed by pumping through a hollow-stem auger, the auger shall be permitted to rotate in a clockwise direction during withdrawal. As the auger is withdrawn at a steady rate or in increments not to exceed 1 foot (305 mm), concreting or grouting pumping pressures shall be measured and maintained high enough at all times to offset hydrostatic and lateral earth pressures. Concrete or grout volumes shall be measured to ensure that the volume of concrete or grout placed in each element is equal to or greater than the theoretical volume of the hole created by the auger. Where the installation process of any element is interrupted or a loss of concreting or grouting pressure occurs, the element shall be redrilled to 5 feet (1524 mm) below the elevation of the tip of the auger when the installation was interrupted or concrete or grout pressure was lost and reformed. Augered cast-in-place elements shall not be installed within six diameters center to center of an element filled with concrete or grout less than 12 hours old, unless approved by the building official. If the concrete or grout level in any completed element drops due to installation of an adjacent element, the element shall be replaced.

1810A.4.9 Socketed drilled shafts. The rock socket and pipe or tube casing of socketed drilled shafts shall be thoroughly cleaned of foreign materials before filling with concrete. Steel cores shall be bedded in cement grout at the base of the rock socket.

1810A.4.10 Micropiles. Micropile deep foundation elements shall be permitted to be formed in holes advanced by rotary or percussive drilling methods, with or without casing. The elements shall be grouted with a fluid cement grout. The grout shall be pumped through a tremie pipe extending to the bottom of the element until grout of suitable quality returns at the top of the element. The following requirements apply to specific installation methods:

1. For micropiles grouted inside a temporary casing, the reinforcing bars shall be inserted prior to withdrawal of the casing. The casing shall be withdrawn in a controlled manner with the grout level maintained at the top of the element to ensure that the grout completely fills the drill hole. During withdrawal of the casing, the grout level inside the casing shall be monitored to verify that the flow of grout inside the casing is not obstructed.

2. For a micropile or portion thereof grouted in an open drill hole in soil without temporary casing, the minimum design diameter of the drill hole shall be verified by a suitable device during grouting.

3. For micropiles designed for end bearing, a suitable means shall be employed to verify that the bearing surface is properly cleaned prior to grouting.

4. Subsequent micropiles shall not be drilled near elements that have been grouted until the grout has had sufficient time to harden.

5. Micropiles shall be grouted as soon as possible after drilling is completed.

6. For micropiles designed with a full-length casing, the casing shall be pulled back to the top of the bond zone and reinserted or some other suitable means employed to assure grout coverage outside the casing.

1810A.4.11 Helical piles. Helical piles shall be installed to specified embedment depth and torsional resistance criteria as determined by a registered design professional. The torque applied during installation shall not exceed the maximum allowable installation torque of the helical pile.

1810A.4.12 Special inspection. Special inspections in accordance with Sections 1704A.8 and 1704A.9 shall be provided for driven and cast-in-place deep foundation elements, respectively. Special inspections in accordance with Section 1704A.10 shall be provided for helical piles.

SECTION 1811A PRESTRESSED ROCK AND SOIL FOUNDATION ANCHORS

1811A.1 General. The requirements of this section address the use of vertical rock and soil anchors in resisting seismic or wind overturning forces resulting in tension on shallow foundations.

1811A.2 Adoption. Except for the modifications as set forth in Sections 1811A.3 and 1811A.4, all Prestressed Rock and Soil Foundation Anchors shall be designed in accordance with PTI Recommendations for Prestressed Rock and Soil Anchors.

1811A.3 Geotechnical Requirements. Geotechnical report for the Prestressed Rock and Soil Foundation Anchors shall address the following:

1. Minimum diameter and minimum spacing for the anchors including consideration of group effects.

2. Maximum unbonded length and minimum bonded length of the tendon.

3. Maximum recommended anchor tension capacity based upon the soil or rock strength/grout bond and anchor depth/spacing.

5. Anchor axial tension stiffness recommendations at the anticipated anchor axial tension displacements, when required for structural analysis.

6. Minimum grout pressure for installation and post-grout pressure.

7. Class I Corrosion Protection is required for all permanent anchors. Geotechnical report shall specify the corrosion protection recommendations for temporary anchors.

8. Performance test shall be at a minimum of 1.6 times the design loads. There shall be a minimum of two preproduction test anchors. Preproduction test anchors shall be tested to ultimate load or 0.80 times the specified minimum tensile strength of the tendon. A Creep test is required for all prestressed anchors with greater than 10 kips of lock-off prestressing load.
9. Lock-off prestressing load requirements.
10. Acceptable drilling methods.
11. Geotechnical observation and monitoring requirements.

1811A.4 Structural requirements.

1. Tendons shall be thread-bar anchors conforming to ASTM A 722.
2. The anchors shall be placed vertical.
3. Design Loads shall be based upon the load combinations in Section 1605A.3.1 and shall not exceed 60 percent of the specified minimum tensile strength of the tendons.
4. Ultimate Load shall be based upon Section 1615A.1.10 and shall not exceed 80 percent of the specified minimum tensile strength of the tendons.
5. The anchor shall be designed to fail in grout bond to the soil or rock before pullout of the soil wedge by group effect.
6. Foundation design shall incorporate the affect of lock-off loads.
7. Design shall account for as-built locations of soil anchors considering all the acceptable construction tolerances.
8. Design shall account for both short and long term deformation.
9. Enforcement agency may require consideration of anchor deformation in evaluating deformation compatibility or building drift where it may be significant.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 19 – CONCRETE

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter/Section

- 1901.1.1
- 1901.1.2
- 1901.1.3
- 1901.1.4
- 1908.1.2
- 1908.1.3
- 1908.1.9.1
- 1911.11.1
- 1912.1.1
- 1912.1.2
- 1912.2 & subsections
- 1916.1
- 1916.1.2
- 1916.1.3
- 1916.1.4
- 1916.1.5
- 1916.1.6
- 1916.1.7
- 1916.1.8
- 1916.1.9
- 1916.1.10
- 1916.1.11
- 1916.1.11.1
- 1916.1.11.2
- 1916.1.11.3
- 1916.1.11.4
- 1916.1.11.5
- 1916.2.1
- 1916.2.2
- 1916.3.1
- 1916.3.2.1
- 1916.3.2.2
- 1916.3.3.1
- 1916.3.3.2
- 1916.4.1
- 1916.4.2

(continued)
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 19 – CONCRETE—continued

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.4</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.6</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.7</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.8</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.9</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.4.10</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.5.1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.5.2</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.5.3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.5.4</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.5.5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916.6</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 19
CONCRETE

Italics are used for text within Sections 1903 through 1908 of this code to indicate provisions that differ from ACI 318.

SECTION 1901
GENERAL

1901.1 Scope. The provisions of this chapter shall govern the materials, quality control, design and construction of concrete used in structures.

1901.1.1 Application. The scope of application of Chapter 19 is as follows:

Community college buildings regulated by the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC), as listed in Section 1.9.2.2.

1901.1.2 Amendments in this chapter. DSA-SS/CC adopts this chapter and all amendments.

Exceptions: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

Division of the State Architect-Structural Safety/Community Colleges:

[DSA-SS/CC] For applications listed in Section 1.9.2.2.

1901.1.3 Reference to other chapters. [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 17 and 18, the provisions in Chapters 17A, and 18A, respectively, shall apply instead.

1901.1.4 Amendments. [DSA-SS/CC] See Section 1916 for additional requirements applicable to community colleges.

1901.2 Plain and reinforced concrete. Structural concrete shall be designed and constructed in accordance with the requirements of this chapter and ACI 318 as amended in Section 1908 of this code. Except for the provisions of Sections 1904 and 1910, the design and construction of slabs on grade shall not be governed by this chapter unless they transmit vertical loads or lateral forces from other parts of the structure to the soil.

1901.3 Source and applicability. The format and subject matter of Sections 1902 through 1907 of this chapter are patterned after, and in general conformity with, the provisions for structural concrete in ACI 318.

1901.4 Construction documents. The construction documents for structural concrete construction shall include:

1. The specified compressive strength of concrete at the stated ages or stages of construction for which each concrete element is designed.
2. The specified strength or grade of reinforcement.

3. The size and location of structural elements, reinforcement and anchors.
4. Provision for dimensional changes resulting from creep, shrinkage and temperature.
5. The magnitude and location of prestressing forces.
6. Anchorage length of reinforcement and location and length of lap splices.
7. Type and location of mechanical and welded splices of reinforcement.
8. Details and location of contraction or isolation joints specified for plain concrete.
10. Stressing sequence for posttensioning tendons.
11. For structures assigned to Seismic Design Category D, E or F, a statement if slab on grade is designed as a structural diaphragm (see Section 21.12.3.4 of ACI 318).

1901.5 Special inspection. The special inspection of concrete elements of buildings and structures and concreting operations shall be as required by Chapter 17.

SECTION 1902
DEFINITIONS

1902.1 General. The words and terms defined in ACI 318 shall, for the purposes of this chapter and as used elsewhere in this code for concrete construction, have the meanings shown in ACI 318 as modified by Section 1908.1.1.

SECTION 1903
SPECIFICATIONS FOR TESTS AND MATERIALS

1903.1 General. Materials used to produce concrete, concrete itself and testing thereof shall comply with the applicable standards listed in ACI 318. Where required, special inspections and tests shall be in accordance with Chapter 17.

1903.2 Glass fiber reinforced concrete. Glass fiber reinforced concrete (GFRC) and the materials used in such concrete shall be in accordance with the PCI MNL 128 standard.
SECTION 1904
DURABILITY REQUIREMENTS

1904.1 Water-cementitious materials ratio. Where maximum water-cementitious materials ratios are specified in ACI 318, they shall be calculated in accordance with ACI 318, Section 4.1.

1904.2 Exposure categories and classes. Concrete shall be assigned to exposure classes in accordance with ACI 318, Section 4.2, based on:

1. Exposure to freezing and thawing in a moist condition or deicer chemicals;
2. Exposure to sulfates in water or soil;
3. Exposure to water where the concrete is intended to have low permeability; and
4. Exposure to chlorides from deicing chemicals, salt, saltwater, brackish water, seawater or spray from these sources, where the concrete has steel reinforcement.

1904.3 Concrete properties. Concrete mixtures shall conform to the most restrictive maximum water-cementitious materials ratios and minimum specified concrete compressive strength requirements of ACI 318, Section 4.3, based on the exposure classes assigned in Section 1904.2.

Exception: For occupancies and appurtenances thereto in Group R occupancies that are in buildings less than four stories above grade plane, normal-weight aggregate concrete is permitted to comply with the requirements of Table 1904.3 based on the weathering classification (freezing and thawing) determined from Figure 1904.3 in lieu of the requirements of ACI 318, Table 4.3.1.

1904.4 Freezing and thawing exposures. Concrete that will be exposed to freezing and thawing, in the presence of moisture, with or without deicing chemicals being present, shall comply with Sections 1904.4.1 and 1904.4.2.

1904.4.1 Air entrainment. Concrete exposed to freezing and thawing while moist shall be air entrained in accordance with ACI 318, Section 4.4.1.

1904.4.2 Deicing chemicals. For concrete exposed to freezing and thawing in the presence of moisture and deicing chemicals, the maximum weight of fly ash, other pozzolans, silica fume or slag that is included in the concrete shall not exceed the percentages of the total weight of cementitious materials permitted by ACI 318, Section 4.4.2.

1904.5 Alternative cementitious materials for sulfate exposure. Alternative combinations of cementitious materials for use in sulfate-resistant concrete to those listed in ACI 318, Table 4.3.1 shall be permitted in accordance with ACI 318, Section 4.5.1.

SECTION 1905
CONCRETE QUALITY, MIXING AND PLACING

1905.1 General. The required strength and durability of concrete shall be determined by compliance with the proportioning, testing, mixing and placing provisions of Sections 1905.1.1 through 1905.13.

1905.1.1 Strength. Concrete shall be proportioned to provide an average compressive strength as prescribed in Section 1905.3 and shall satisfy the durability criteria of Section 1904. Concrete shall be produced to minimize the frequency of strengths below \(f'_{c} \), as prescribed in Section 1905.6.3. For concrete designed and constructed in accordance with this chapter, \(f'_{c} \) shall not be less than 2,500 psi (17.22 MPa). No maximum specified compressive strength shall apply unless restricted by a specific provision of this code or ACI 318.

1905.2 Selection of concrete proportions. Concrete proportions shall be determined in accordance with the provisions of ACI 318, Section 5.2.

1905.3 Proportioning on the basis of field experience and/or trial mixtures. Concrete proportioning determined on the basis of field experience and/or trial mixtures shall be done in accordance with ACI 318, Section 5.3.

<table>
<thead>
<tr>
<th>TYPE OR LOCATION OF CONCRETE CONSTRUCTION</th>
<th>MINIMUM SPECIFIED COMpressive STRENGTH ((f'_{c}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement walls(^{c}) and foundations not exposed to the weather</td>
<td>Negligible exposure</td>
</tr>
<tr>
<td>Basement slabs and interior slabs on grade, except garage floor slabs</td>
<td>2,500</td>
</tr>
<tr>
<td>Basement walls(^{c}), foundation walls, exterior walls and other vertical concrete surfaces exposed to the weather</td>
<td>2,500</td>
</tr>
<tr>
<td>Driveways, curbs, walks, patios, porches, carport slabs, steps and other flatwork exposed to the weather, and garage floor slabs</td>
<td>2,500</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 0.00689 MPa.

a. Concrete in these locations that can be subjected to freezing and thawing during construction shall be of air-entrained concrete in accordance with Section 1904.2.1.

b. Concrete shall be air entrained in accordance with Section 1904.4.1.

c. Structural plain concrete basement walls are exempt from the requirements for exposure conditions of Section 1904.3 (see Section 1909.6.1).

d. For garage floor slabs where a steel trowel finish is used, the total air content required by Section 1904.4.1 is permitted to be reduced to not less than 3 percent, provided the minimum specified compressive strength of the concrete is increased to 4,000 psi.
1905.4 Proportioning without field experience or trial mixtures. Concrete proportioning determined without field experience or trial mixtures shall be done in accordance with ACI 318, Section 5.4.

1905.5 Average strength reduction. As data become available during construction, it is permissible to reduce the amount by which the average compressive strength (f''_c) is required to exceed the specified value of f'_c, in accordance with ACI 318, Section 5.5.

1905.6 Evaluation and acceptance of concrete. The criteria for evaluation and acceptance of concrete shall be as specified in Sections 1905.6.2 through 1905.6.5.

1905.6.1 Qualified technicians. Concrete shall be tested in accordance with the requirements in Sections 1905.6.2 through 1905.6.5. Qualified field testing technicians shall perform tests on fresh concrete at the job site, prepare specimens required for curing under field conditions, prepare specimens required for testing in the laboratory and record the temperature of the fresh concrete when preparing specimens for strength tests. Qualified laboratory technicians shall perform all required laboratory tests.

1905.6.2 Frequency of testing. The frequency of conducting strength tests of concrete and the minimum number of tests shall be as specified in ACI 318, Section 5.6.2.

Exception: When the total volume of a given class of concrete is less than 50 cubic yards (38 m3), strength tests are not required when evidence of satisfactory strength is submitted to and approved by the building official.

1905.6.3 Strength test specimens. Specimens prepared for acceptance testing of concrete in accordance with Section 1905.6.2 and strength test acceptance criteria shall comply with the provisions of ACI 318, Section 5.6.3.

1905.6.4 Field-cured specimens. Where required by the building official to determine adequacy of curing and protection of concrete in the structure, specimens shall be pre-
pared, cured, tested and test results evaluated for acceptance in accordance with ACI 318, Section 5.6.4.

1905.6.5 Low-strength test results. Where any strength test (see ACI 318, Section 5.6.2.4) falls below the specified value of f''_c, the provisions of ACI 318, Section 5.6.5, shall apply.

1905.7 Preparation of equipment and place of deposit. Prior to concrete being placed, the space to receive the concrete and the equipment used to deposit it shall comply with ACI 318, Section 5.7.

1905.8 Mixing. Mixing of concrete shall be performed in accordance with ACI 318, Section 5.8.

1905.9 Conveying. The method and equipment for conveying concrete to the place of deposit shall comply with ACI 318, Section 5.9.

1905.10 Depositing. The depositing of concrete shall comply with the provisions of ACI 318, Section 5.10.

1905.11 Curing. The length of time, temperature and moisture conditions for curing of concrete shall be in accordance with ACI 318, Section 5.11.

1905.12 Cold weather requirements. Concrete to be placed during freezing or near-freezing weather shall comply with the requirements of ACI 318, Section 5.12.

1905.13 Hot weather requirements. Concrete to be placed during hot weather shall comply with the requirements of ACI 318, Section 5.13.

SECTION 1906 FORMWORK, EMBEDDED PIPES AND CONSTRUCTION JOINTS

1906.1 Formwork. The design, fabrication and erection of forms shall comply with ACI 318, Section 6.1.

1906.2 Removal of forms, shores and reshores. The removal of forms and shores, including from slabs and beams (except where cast on the ground), and the installation of reshores shall comply with ACI 318, Section 6.2.

1906.3 Conduits and pipes embedded in concrete. Conduits, pipes and sleeves of any material not harmful to concrete and within the limitations of ACI 318, Section 6.3, are permitted to be embedded in concrete with approval of the registered design professional.

1906.4 Construction joints. Construction joints, including their location, shall comply with the provisions of ACI 318, Section 6.4.

SECTION 1907 DETAILS OF REINFORCEMENT

1907.1 Hooks. Standard hooks on reinforcing bars used in concrete construction shall comply with ACI 318, Section 7.1.

1907.2 Minimum bend diameters. Minimum reinforcement bend diameters utilized in concrete construction shall comply with ACI 318, Section 7.2.

1907.3 Bending. The bending of reinforcement shall comply with ACI 318, Section 7.3.

1907.4 Surface conditions of reinforcement. The surface conditions of reinforcement shall comply with the provisions of ACI 318, Section 7.4.

1907.5 Placing reinforcement. The placement of reinforcement, including tolerances on depth and cover, shall comply with the provisions of ACI 318, Section 7.5. Reinforcement shall be accurately placed and adequately supported before concrete is placed.

1907.6 Spacing limits for reinforcement. The clear distance between reinforcing bars, bundled bars, tendons and ducts shall comply with ACI 318, Section 7.6.

1907.7 Concrete protection for reinforcement. The minimum specified concrete cover for reinforcement shall comply with Sections 1907.7.1 through 1907.7.8.

1907.7.1 Cast-in-place concrete (nonprestressed). Minimum specified concrete cover shall be provided for reinforcement in nonprestressed, cast-in-place concrete construction in accordance with ACI 318, Section 7.7.1.

1907.7.2 Cast-in-place concrete (prestressed). The minimum specified concrete cover for prestressed and nonprestressed reinforcement, ducts and end fittings in cast-in-place prestressed concrete shall comply with ACI 318, Section 7.7.2.

1907.7.3 Precast concrete (manufactured under plant control conditions). The minimum specified concrete cover for prestressed and nonprestressed reinforcement, ducts and end fittings in precast concrete manufactured under plant control conditions shall comply with ACI 318, Section 7.7.3.

1907.7.4 Bundled bars. The minimum specified concrete cover for bundled bars shall comply with ACI 318, Section 7.7.4.

1907.7.5 Headed shear stud reinforcement. For headed shear stud reinforcement, the minimum specified concrete cover shall comply with ACI 318, Section 7.7.5.

1907.7.6 Corrosive environments. In corrosive environments or other severe exposure conditions, prestressed and nonprestressed reinforcement shall be provided with additional protection in accordance with ACI 318, Section 7.7.6.

1907.7.7 Future extensions. Exposed reinforcement, inserts and plates intended for bonding with future extensions shall be protected from corrosion.

1907.7.8 Fire protection. When this code requires a thickness of cover for fire protection greater than the minimum concrete cover in Section 1907.7, such greater thickness shall be specified.

1907.8 Special reinforcement details for columns. Offset bent longitudinal bars in columns and load transfer in structural steel cores of composite compression members shall comply with the provisions of ACI 318, Section 7.8.

1907.9 Connections. Connections between concrete framing members shall comply with the provisions of ACI 318, Section 7.9.
1907.10 Lateral reinforcement for compression members. Lateral reinforcement for concrete compression members shall comply with the provisions of ACI 318, Section 7.10.

1907.11 Lateral reinforcement for flexural members. Lateral reinforcement for compression reinforcement in concrete flexural members shall comply with the provisions of ACI 318, Section 7.11.

1907.12 Shrinkage and temperature reinforcement. Reinforcement for shrinkage and temperature stresses in concrete members shall comply with the provisions of ACI 318, Section 7.12.

1907.13 Requirements for structural integrity. The detailing of reinforcement and connections between concrete members shall comply with the provisions of ACI 318, Section 7.13, to improve structural integrity.

SECTION 1908
MODIFICATIONS TO ACI 318

1908.1 General. The text of ACI 318 shall be modified as indicated in Sections 1908.1.1 through 1908.1.10.

1908.1.1 ACI 318, Section 2.2. Modify existing definitions and add the following definitions to ACI 318, Section 2.2.

DETAILED PLAIN CONCRETE STRUCTURAL WALL. A wall complying with the requirements of Chapter 22, including 22.6.7.

ORDINARY PRECAST STRUCTURAL WALL. A precast wall complying with the requirements of Chapters 1 through 18.

ORDINARY REINFORCED CONCRETE STRUCTURAL WALL. A cast-in-place wall complying with the requirements of Chapters 1 through 18.

ORDINARY STRUCTURAL PLAIN CONCRETE WALL. A wall complying with the requirements of Chapter 22, excluding 22.6.7.

SPECIAL STRUCTURAL WALL. A cast-in-place or precast wall complying with the requirements of 21.1.3 through 21.1.7, 21.9 and 21.10, as applicable, in addition to the requirements for ordinary reinforced concrete structural walls or ordinary precast structural walls, as applicable. Where ASCE 7 refers to a "special reinforced concrete structural wall," it shall be deemed to mean a "special structural wall."

WALL PIER. A wall segment with a horizontal length-to-thickness ratio of at least 2.5, but not exceeding 6, whose clear height is at least two times its horizontal length.

1908.1.2 ACI 318, Section 21.1.1. Modify ACI 318 Sections 21.1.1.3 and 21.1.1.7 to read as follows:

21.1.1.3 – Structures assigned to Seismic Design Category A shall satisfy requirements of Chapters 1 to 19 and 22; Chapter 21 does not apply. Structures assigned to Seismic Design Category B, C, D, E or F also shall satisfy 21.1.1.4 through 21.1.1.8, as applicable. Except for structural elements of plain concrete complying with Section 1908.1.8 of the California Building Code, structural elements of plain concrete are prohibited in structures assigned to Seismic Design Category C, D, E or F.

21.1.1.7 – Structural systems designated as part of the seismic-force-resisting system shall be restricted to those permitted by ASCE 7. Except for Seismic Design Category A, for which Chapter 21 does not apply, the following provisions shall be satisfied for each structural system designated as part of the seismic-force-resisting system, regardless of the Seismic Design Category:

(a) Ordinary moment frames shall satisfy 21.2.
(b) Ordinary reinforced concrete structural walls and ordinary precast structural walls need not satisfy any provisions in Chapter 21.
(c) Intermediate moment frames shall satisfy 21.3.
(d) Intermediate precast structural walls shall satisfy 21.4.
(e) Special moment frames shall satisfy 21.5 through 21.8.
(f) Special structural walls shall satisfy 21.9.
(g) Special structural walls constructed using precast concrete shall satisfy 21.10.
(h) [BSC] In Seismic Design Category D, E or F, concrete tilt-up wall panels which exceed the limitations of intermediate precast structural wall systems shall satisfy 21.9 in addition to 21.4.2. and 21.4.3.

All special moment frames and special structural walls shall also satisfy 21.1.3 through 21.1.7.

1908.1.3 ACI 318, Section 21.4. Modify ACI 318, Section 21.4, by renumbering Section 21.4.3 to become 21.4.4 and adding new Sections 21.4.3, 21.4.5, 21.4.6 and 21.4.7 to read as follows:

21.4.3 – Connections that are designed to yield shall be capable of maintaining 80 percent of their design strength at the deformation induced by the design displacement or shall use Type 2 mechanical splices.

21.4.4 – Elements of the connection that are not designed to yield shall develop at least 1.5 Sy.

21.4.5 – [BSC] Wall piers in Seismic Design Category D, E or F shall comply with Section 1908.1.4 of this code.

21.4.6 – Wall piers not designed as part of a moment frame in SDC C shall have transverse reinforcement designed to resist the shear forces determined from 21.3.3. Spacing of transverse reinforcement shall not exceed 8 inches (203 mm). Transverse reinforcement shall be extended beyond the pier clear height for at least 12 inches (305 mm).

Exceptions:
2. Wall piers along a wall line within a story where other shear wall segments provide lateral support to the wall piers and such segments have a total stiffness of at least six times the sum of the stiffnesses of all the wall piers.

21.4.7 - Wall segments with a horizontal length-to-thickness ratio less than 2.5 shall be designed as columns.

1908.1.4 ACI 318, Section 21.9. Modify ACI 318, Section 21.9, by adding new Section 21.9.10 to read as follows:
21.9.10 - Wall piers and wall segments.
21.9.10.1 - Wall piers not designed as a part of a special moment frame shall have transverse reinforcement designed to satisfy the requirements in 21.9.10.2.

Exceptions:
2. Wall piers along a wall line within a story where other shear wall segments provide lateral support to the wall piers and such segments have a total stiffness of at least six times the sum of the stiffnesses of all the wall piers.

21.9.10.2 - Transverse reinforcement with seismic hooks at both ends shall be designed to resist the shear forces determined from 21.6.5.1. Spacing of transverse reinforcement shall not exceed 6 inches (152 mm). Transverse reinforcement shall be extended beyond the pier clear height for at least 12 inches (305 mm).

21.9.10.3 - Wall segments with a horizontal length-to-thickness ratio less than 2.5 shall be designed as columns.

1908.1.5 ACI 318, Section 21.10. Modify ACI 318, Section 21.10.2, to read as follows:
21.10.2 - Special structural walls constructed using precast concrete shall satisfy all the requirements of 21.9 for cast-in-place special structural walls in addition to Sections 21.4.2 through 21.4.4.

1908.1.6 ACI 318, Section 21.12.1.1. Modify ACI 318, Section 21.12.1.1, to read as follows:
21.12.1.1 - Foundations resisting earthquake-induced forces or transferring earthquake-induced forces between a structure and ground shall comply with the requirements of Section 21.12 and other applicable provisions of ACI 318 unless modified by Chapter 18 of the California Building Code.

1908.1.7 ACI 318, Section 22.6. Modify ACI 318, Section 22.6, by adding new Section 22.6.7 to read as follows:
22.6.7 - Detailed plain concrete structural walls.
22.6.7.1 - Detailed plain concrete structural walls are walls conforming to the requirements of ordinary structural plain concrete walls and 22.6.7.2.
22.6.7.2 - Reinforcement shall be provided as follows:
(a) Vertical reinforcement of at least 0.20 square inch (129 mm²) in cross-sectional area shall be provided continuously from support to support at each corner, at each side of each opening and at the ends of walls. The continuous vertical bar required beside an opening is permitted to substitute for one of the two No. 5 bars required by 22.6.6.5.

(b) Horizontal reinforcement at least 0.20 square inch (129 mm²) in cross-sectional area shall be provided:
1. Continuously at structurally connected roof and floor levels and at the top of walls;
2. At the bottom of load-bearing walls or in the top of foundations where dowelled to the wall; and
3. At a maximum spacing of 120 inches (3048 mm).

Reinforcement at the top and bottom of openings, where used in determining the maximum spacing specified in Item 3 above, shall be continuous in the wall.

1908.1.8 ACI 318, Section 22.10. Delete ACI 318, Section 22.10, and replace with the following:
22.10 - Plain concrete in structures assigned to Seismic Design Category C, D, E or F.
22.10.1 - Structures assigned to Seismic Design Category C, D, E or F shall not have elements of structural plain concrete, except as follows:
(a) Structural plain concrete basement, foundation or other walls below the base are permitted in detached one- and two-family dwellings three stories or less in height constructed with stud-bearing walls. In dwellings assigned to Seismic Design Category D or E, the height of the wall shall not exceed 8 feet (2438 mm), the thickness shall not be less than 7/8 inches (190 mm), and the wall shall retain no more than 4 feet (1219 mm) of unbalanced fill. Walls shall have reinforcement in accordance with 22.6.6.5.
(b) Isolated footings of plain concrete supporting pedestals or columns are permitted, provided the projection of the footing beyond the face of the supported member does not exceed the footing thickness.
Exception: In detached one- and two-family dwellings three stories or less in height, the projection of the footing beyond the face of the supported member is permitted to exceed the footing thickness.
(c) Plain concrete footings supporting walls are permitted, provided the footings have at least two continuous longitudinal reinforcing bars. Bars shall not be smaller than No. 4 and shall have a total area of not less than 0.002 times the gross cross-sectional area of the footing. For footings that exceed 8 inches (203 mm) in thickness, a minimum of one bar shall be provided at the top and
bottom of the footing. Continuity of reinforcement shall be provided at corners and intersections.

Exceptions:

1. In detached one- and two-family dwellings three stories or less in height and constructed with stud-bearing walls, plain concrete footings without longitudinal reinforcement supporting walls are permitted.

2. For foundation systems consisting of a plain concrete footing and a plain concrete stemwall, a minimum of one bar shall be provided at the top of the stemwall and at the bottom of the footing.

3. Where a slab on ground is cast monolithically with the footing, one No. 5 bar is permitted to be located at either the top of the slab or bottom of the footing.

1908.1.9 ACI 318, Section D.3.3. Modify ACI 318, Section D.3.3.1 and add Section D.3.3.7 to read as follows:

D.3.3.1 – The provisions of Appendix D do not apply to the design of anchors in plastic hinge zones of concrete structures under earthquake forces or anchors defined in Section D.3.3.7.

D.3.3.7 – For anchors of wood sill plates with nominal diameters not exceeding 3/4 in. (15.9 mm) with embedment of 7 in. (178 mm) or greater, located a minimum of 2.5d from edge of concrete and 15d from end of concrete, design strength in shear parallel to edge of concrete shall be permitted to be determined in accordance with Section 2305.

1908.1.10 ACI 318, Section D.4.2.2. Delete ACI 318, Section D.4.2.2, and replace with the following:

D.4.2.2 – The concrete breakout strength requirements for anchors in tension shall be considered satisfied by the design procedure of D.5.2 provided Equation D-8 is not used for anchor embedments exceeding 25 inches. The concrete breakout strength requirements for anchors in shear with diameters not exceeding 2 inches shall be considered satisfied by the design procedure of D.6.2. For anchors in shear with diameters exceeding 2 inches, shear anchor reinforcement shall be provided in accordance with the procedures of D.6.2.9.

SECTION 1909
STRUCTURAL PLAIN CONCRETE

1909.1 Scope. The design and construction of structural plain concrete, both cast-in-place and precast, shall comply with the minimum requirements of Section 1909 and ACI 318, Chapter 22, as modified in Section 1908.

1909.1.1 Special structures. For special structures, such as arches, underground utility structures, gravity walls and shielding walls, the provisions of this section shall govern where applicable.

1909.2 Limitations. The use of structural plain concrete shall be limited to:

1. Members that are continuously supported by soil, such as walls and footings, or by other structural members capable of providing continuous vertical support.

2. Members for which arch action provides compression under all conditions of loading.

3. Walls and pedestals.

The use of structural plain concrete columns and structural plain concrete footings on piles is not permitted. See Section 1908.1.8 for additional limitations on the use of structural plain concrete.
1909.3 Joints. Contraction or isolation joints shall be provided to divide structural plain concrete members into flexurally discontinuous elements in accordance with ACI 318, Section 22.3.

1909.4 Design. Structural plain concrete walls, footings and pedestals shall be designed for adequate strength in accordance with ACI 318, Sections 22.4 through 22.8.

Exception: For Group R-3 occupancies and buildings of other occupancies less than two stories above grade plane of light-frame construction, the required edge thickness of ACI 318 is permitted to be reduced to 6 inches (152 mm), provided that the footing does not extend more than 4 inches (102 mm) on either side of the supported wall.

1909.5 Precast members. The design, fabrication, transportation and erection of precast, structural plain concrete elements shall be in accordance with ACI 318, Section 22.9.

1909.6 Walls. In addition to the requirements of this section, structural plain concrete walls shall comply with the applicable requirements of ACI 318, Chapter 22.

1909.6.1 Basement walls. The thickness of exterior basement walls and foundation walls shall not be less than 7 1/2 inches (191 mm).

1909.6.2 Other walls. Except as provided for in Section 1909.6.1, the thickness of bearing walls shall not be less than 1/3h, the unsupported height or length, whichever is shorter, but not less than 5 1/2 inches (140 mm).

1909.6.3 Openings in walls. Not less than one No. 5 bar shall be provided around window, door and similar sized openings. The bar shall be anchored to develop fy in tension at the corners of openings.

SECTION 1910
MINIMUM SLAB PROVISIONS

1910.1 General. The thickness of concrete floor slabs supported directly on the ground shall not be less than 3 1/2 inches (89 mm). A 6-mil (0.006 inch; 0.15 mm) polyethylene vapor retarder with joints lapped not less than 6 inches (152 mm) shall be placed between the base course or subgrade and the concrete floor slab, or other approved equivalent methods or materials shall be used to retard vapor transmission through the floor slab.

Exception: A vapor retarder is not required:
1. For detached structures accessory to occupancies in Group R-3, such as garages, utility buildings or other unheated facilities.
2. For unheated storage rooms having an area of less than 70 square feet (6.5 m²) and carports attached to occupancies in Group R-3.
3. For buildings of other occupancies where migration of moisture through the slab from below will not be detrimental to the intended occupancy of the building.
4. For driveways, walks, patios and other flatwork which will not be enclosed at a later date.
5. Where approved based on local site conditions.

SECTION 1911
ANCHORAGE TO CONCRETE—ALLOWABLE STRESS DESIGN

1911.1 Scope. The provisions of this section shall govern the allowable stress design of headed bolts and headed stud anchors cast in normal-weight concrete for purposes of transmitting structural loads from one connected element to the other. These provisions do not apply to anchors installed in hardened concrete or where load combinations include earthquake loads or effects. The bearing area of headed anchors shall be not less than one and one-half times the shank area. Where strength design is used, or where load combinations include earthquake loads or effects, the design strength of anchors shall be determined in accordance with Section 1912. Bolts shall conform to ASTM A 307 or an approved equivalent.

1911.1.1 Power actuated fasteners. [OSHPD 2] Power actuated fasteners qualified in accordance with ICC-ES AC 70 shall be deemed to satisfy the requirements of this section.

Power actuated fasteners shall be permitted for seismic shear when they are specifically listed in ICC-ES Report (ICC-ESR) for such service and for interior nonshear wall partitions. Power actuated fastener shall not be used to anchor exterior cladding or curtain wall systems.

1911.2 Allowable service load. The allowable service load for headed anchors in shear or tension shall be as indicated in Table 1911.2. Where anchors are subject to combined shear and tension, the following relationship shall be satisfied:

\[
(P_t/P_s)^{0.3} + (V_s/V_t)^{0.5} \leq 1
\]

(Equation 19-1)

where:

- \(P_t \) = Applied tension service load, pounds (N).
- \(P_s \) = Allowable tension service load from Table 1911.2, pounds (N).
- \(V_t \) = Applied shear service load, pounds (N).
- \(V_s \) = Allowable shear service load from Table 1911.2, pounds (N).

1911.3 Required edge distance and spacing. The allowable service loads in tension and shear specified in Table 1911.2 are for the edge distance and spacing specified. The edge distance and spacing are permitted to be reduced to 50 percent of the values specified with an equal reduction in allowable service load. Where edge distance and spacing are reduced less than 50 percent, the allowable service load shall be determined by linear interpolation.

1911.4 Increase in allowable load. Increase of the values in Table 1911.2 by one-third is permitted where the provisions of Section 1605.3.2 permit an increase in allowable stress for wind loading.

1911.5 Increase for special inspection. Where special inspection is provided for the installation of anchors, a 100-percent increase in the allowable tension values of Table 1911.2 is permitted. No increase in shear value is permitted.
TABLE 1911.2

ALLOWABLE SERVICE LOAD ON EMBEDDED BOLTS (pounds)

<table>
<thead>
<tr>
<th>BOLT DIAMETER (inches)</th>
<th>MINIMUM EMBEEDMENT (inches)</th>
<th>EDGE DISTANCE (inches)</th>
<th>SPACING (inches)</th>
<th>MINIMUM CONCRETE STRENGTH (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$f'_{c} = 2,500$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tension</td>
</tr>
<tr>
<td>1/8</td>
<td>21/2</td>
<td>11/2</td>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>5/32</td>
<td>3</td>
<td>21/4</td>
<td>41/2</td>
<td>500</td>
</tr>
<tr>
<td>1/4</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1,450</td>
</tr>
<tr>
<td>5/32</td>
<td>41/2</td>
<td>31/4</td>
<td>71/2</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>41/2</td>
<td>61/4</td>
<td>71/2</td>
<td>2,125</td>
</tr>
<tr>
<td>5/32</td>
<td>5</td>
<td>41/2</td>
<td>9</td>
<td>2,250</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>71/2</td>
<td>9</td>
<td>2,825</td>
</tr>
<tr>
<td>1/2</td>
<td>6</td>
<td>51/4</td>
<td>101/2</td>
<td>2,550</td>
</tr>
<tr>
<td>3/8</td>
<td>7</td>
<td>6</td>
<td>12</td>
<td>3,050</td>
</tr>
<tr>
<td>1/2</td>
<td>8</td>
<td>61/4</td>
<td>131/2</td>
<td>3,400</td>
</tr>
<tr>
<td>11/8</td>
<td>9</td>
<td>71/2</td>
<td>15</td>
<td>4,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square inch = 0.00689 MPa, 1 pound = 4.45 N.

SECTION 1912

ANCHORAGE TO CONCRETE—STRENGTH DESIGN

1912.1 Scope. The provisions of this section shall govern the strength design of anchors installed in concrete for purposes of transmitting structural loads from one connected element to the other. Headed bolts, headed studs and hooked (J- or L-) bolts cast in concrete and expansion anchors and undercut anchors installed in hardened concrete shall be designed in accordance with Appendix D of ACI 318 as modified by Sections 1908.1.9 and 1908.1.10, provided they are within the scope of Appendix D.

The strength design of anchors that are not within the scope of Appendix D of ACI 318, and as amended in Sections 1908.1.9 and 1908.1.10, shall be in accordance with an approved procedure.

1912.1.1 Mechanical anchors and specialty inserts. [OSHPD 2] Mechanical anchors qualified in accordance with ICC-ES AC 193 shall be deemed to satisfy the requirements of this section.

Specialty inserts, including cast-in-place specialty inserts, tested in accordance with ICC-ES AC 193 shall be deemed to satisfy the requirements of this section.

Exception: Anchors prequalified for seismic applications need not be governed by the steel strength of a ductile steel element.

1912.2 Post-installed adhesive anchors. [OSHPD 2] Adhesive anchors qualified in accordance with ICC-ES AC 308 shall be deemed to satisfy the requirements of this section.

Exceptions:

1. Adhesive anchors shall not be permitted in overhead applications or application with sustained (continuous) tension load that can lead to creep.

2. Anchors prequalified for seismic applications need not be governed by the steel strength of a ductile steel element.

1912.2 Tests for post-installed anchors in concrete. [OSHPD 2] When post-installed anchors are used in lieu of cast-in-place bolts, the installation verification test loads, frequency, and acceptance criteria shall be in accordance with this section.

1912.2.1 General. Test loads or torques and acceptance criteria shall be shown on the construction documents.

If any anchor fails testing, all anchors of the same type shall be tested, which are installed by the same trade, not previously tested until twenty (20) consecutive anchors pass, then resume the initial test frequency.

1912.2.2 Test loads. Required test loads shall be determined by one of the following methods:

1. Twice the maximum allowable tension load or one and a quarter (1 1/4) times the maximum design strength of anchors as provided in International Code Council – Evaluation Service Report (ICC-ESR) or determined in accordance with Appendix D of ACI 318.

Tension test load need not exceed 80 percent of the nominal yield strength of the anchor element (= 0.8 A_{sy}/f_{yd}).
2. The manufacturer's recommended installation torque as approved in an ICC-ESR.

1912.2.3 Test frequency. When post-installed anchors are used for sill plate bolting applications, 10 percent of the anchors shall be tested.

When post-installed anchors are used for other structural applications, all such anchors shall be tested.

When post-installed anchors are used for nonstructural applications such as equipment anchorage, 50 percent or alternate bolts in a group, including at least one-half the anchors in each group, shall be tested.

The testing of the post-installed anchors shall be done in the presence of the special inspector and a report of the test results shall be submitted to the enforcement agency.

Exceptions:

1. Undercut anchors that allow visual confirmation of full set shall not require testing.

2. Where the factored design tension on anchors is less than 100 lb and those anchors are clearly noted on the approved construction documents, only 10 percent of those anchors shall be tested.

3. Where adhesive anchor systems are used to install reinforcing dowel bars in hardened concrete, only 25 percent of the dowels shall be tested if all of the following conditions are met:
 a. The dowels are used exclusively to transmit shear forces across joints between existing and new concrete.
 b. The number of dowels in any one member equals or exceeds twelve (12).
 c. The dowels are uniformly distributed across seismic force resisting members (such as shear walls, collectors and diaphragms).

 Anchors to be tested shall be selected at random by the special inspector/inspector of record (IOR).

4. Testing of shear dowels across cold joints in slabs on grade, where the slab is not part of the lateral force-resisting system shall not be required.

5. Testing is not required for power actuated fasteners used to attach tracks of interior nonshear wall partitions for shear only, where there are at least three fasteners per segment of track.

1912.2.4 Test acceptance criteria. Acceptance criteria for post-installed anchors shall be based on ICC-ESR or manufacturers written instruction, acceptable to the enforcement agency. Field test shall satisfy following minimum requirements.

1. Hydraulic ram method:

 Anchors tested with a hydraulic jack or spring loaded devices shall maintain the test load for a minimum of 15 seconds and shall exhibit no discernible movement during the tension test, e.g., as evidenced by loosening of the washer under the nut.

For adhesive anchors, where other than bond is being tested, the testing device shall not restrict the concrete shear cone type failure mechanism from occurring.

2. Torque wrench method:

 Anchors tested with a calibrated torque wrench must attain the specified torque within 1/2 turn of the nut.

 Exceptions:
 a. Wedge or sleeve type:
 One-quarter (1/4) turn of the nut for a 3/8 in. sleeve anchor only.
 b. Threaded type:
 One-quarter (1/4) turn of the screw after initial seating of the screw head.

1912.2.5 Testing procedure. Test procedure shall be as required by the ICC-ESR. Manufacturer's recommendation for testing may be approved by the enforcement agency, when ICC-ESR does not provide a testing procedure.

SECTION 1913 SHOTCRETE

1913.1 General. Shotcrete is mortar or concrete that is pneumatically projected at high velocity onto a surface. Except as specified in this section, shotcrete shall conform to the requirements of this chapter for plain or reinforced concrete.

1913.2 Proportions and materials. Shotcrete proportions shall be selected that allow suitable placement procedures using the delivery equipment selected and shall result in finished in-place hardened shotcrete meeting the strength requirements of this code.

1913.3 Aggregate. Coarse aggregate, if used, shall not exceed 3/4 inch (19.1 mm).

1913.4 Reinforcement. Reinforcement used in shotcrete construction shall comply with the provisions of Sections 1913.4.1 through 1913.4.4.

1913.4.1 Size. The maximum size of reinforcement shall be No. 5 bars unless it is demonstrated by preconstruction tests that adequate encasement of larger bars will be achieved.

1913.4.2 Clearance. When No. 5 or smaller bars are used, there shall be a minimum clearance between parallel reinforcement bars of 2 1/2 inches (64 mm). When bars larger than No. 5 are permitted, there shall be a minimum clearance between parallel bars equal to six diameters of the bars used. When two curtains of steel are provided, the curtain nearer the nozzle shall have a minimum spacing equal to 12 bar diameters and the remaining curtain shall have a minimum spacing of six bar diameters.

 Exception: Subject to the approval of the building official, required clearances shall be reduced where it is demonstrated by preconstruction tests that adequate encasement of the bars used in the design will be achieved.

1913.4.3 Splices. Lap splices of reinforcing bars shall utilize the noncontact lap splice method with a minimum clearance of 2 inches (51 mm) between bars. The use of contact
lap splices necessary for support of the reinforcing is permitted when approved by the building official, based on satisfactory preconstruction tests that show that adequate encasement of the bars will be achieved, and provided that the splice is oriented so that a plane through the center of the spliced bars is perpendicular to the surface of the shotcrete.

1913.4.4 Spirally tied columns. Shotcrete shall not be applied to spirally tied columns.

1913.5 Preconstruction tests. When required by the building official, a test panel shall be shot, cured, cored or sawn, examined and tested prior to commencement of the project. The sample panel shall be representative of the project and simulate job conditions as closely as possible. The panel thickness and reinforcing shall reproduce the thickest and most congested area specified in the structural design. It shall be shot at the same angle, using the same nozzleman and with the same concrete mix design that will be used on the project. The equipment used in preconstruction testing shall be the same equipment used in the work requiring such testing, unless substitute equipment is approved by the building official.

1913.6 Rebound. Any rebound or accumulated loose aggregate shall be removed from the surfaces to be covered prior to placing the initial or any succeeding layers of shotcrete. Rebound shall not be used as aggregate.

1913.7 Joints. Except where permitted herein, unfinished work shall not be allowed to stand for more than 30 minutes unless edges are sloped to a thin edge. For structural elements that will be under compression and for construction joints shown on the approved construction documents, square joints are permitted. Before placing additional material adjacent to previously applied work, sloping and square edges shall be cleaned and wetted.

1913.8 Damage. In-place shotcrete that exhibits sags, sloughs, segregation, honeycombing, sand pockets or other obvious defects shall be removed and replaced. Shotcrete above sags and sloughs shall be removed and replaced while still plastic.

1913.9 Curing. During the curing periods specified herein, shotcrete shall be maintained above 40°F (4°C) and in moist condition.

1913.9.1 Initial curing. Shotcrete shall be kept continuously moist for 24 hours after shotcreting is complete or shall be sealed with an approved curing compound.

1913.9.2 Final curing. Final curing shall continue for seven days after shotcreting, or for three days if high-early-strength cement is used, or until the specified strength is obtained. Final curing shall consist of the initial curing process or the shotcrete shall be covered with an approved moisture-retaining cover.

1913.9.3 Natural curing. Natural curing shall not be used in lieu of that specified in this section unless the relative humidity remains at or above 85 percent, and is authorized by the registered design professional and approved by the building official.

1913.10 Strength tests. Strength tests for shotcrete shall be made by an approved agency on specimens that are representative of the work and which have been water soaked for at least 24 hours prior to testing. When the maximum-size aggregate is larger than 3/4 inch (9.5 mm), specimens shall consist of not less than three 3-inch-diameter (76 mm) cores or 3-inch (76 mm) cubes. When the maximum-size aggregate is 3/4 inch (9.5 mm) or smaller, specimens shall consist of not less than 2-inch-diameter (51 mm) cores or 2-inch (51 mm) cubes.

1913.10.1 Sampling. Specimens shall be taken from the in-place work or from test panels, and shall be taken at least once each shift, but not less than one for each 50 cubic yards (38.2 m³) of shotcrete.

1913.10.2 Panel criteria. When the maximum-size aggregate is larger than 3/4 inch (9.5 mm), the test panels shall have minimum dimensions of 18 inches by 18 inches (457 mm by 457 mm). When the maximum size aggregate is 3/4 inch (9.5 mm) or smaller, the test panels shall have minimum dimensions of 12 inches by 12 inches (305 mm by 305 mm). Panels shall be shot in the same position as the work, during the course of the work and by the nozzlemen doing the work. The conditions under which the panels are cured shall be the same as the work.

1913.10.3 Acceptance criteria. The average compressive strength of three cores from the in-place work or a single test panel shall equal or exceed 0.85 f’c, with no single core less than 0.75 f’c. The average compressive strength of three cubes taken from the in-place work or a single test panel shall equal or exceed f’c, with no individual cube less than 0.88 f’c. To check accuracy, locations represented by erratic core or cube strengths shall be retested.

SECTION 1914
REINFORCED GYPSUM CONCRETE

1914.1 General. Reinforced gypsum concrete shall comply with the requirements of ASTM C 317 and ASTM C 956.

1914.2 Minimum thickness. The minimum thickness of reinforced gypsum concrete shall be 2 inches (51 mm) except the minimum required thickness shall be reduced to 11/2 inches (38 mm), provided the following conditions are satisfied:

1. The overall thickness, including the formboard, is not less than 2 inches (51 mm).
2. The clear span of the gypsum concrete between supports does not exceed 33 inches (838 mm).
3. Diaphragm action is not required.
4. The design live load does not exceed 40 pounds per square foot (psf) (1915 Pa).

SECTION 1915
CONCRETE-FILLED PIPE COLUMNS

1915.1 General. Concrete-filled pipe columns shall be manufactured from standard, extra-strong or double-extra-strong steel pipe or tubing that is filled with concrete so placed and manipulated as to secure maximum density and to ensure complete filling of the pipe without voids.
1916.1 Tests and materials. Where required, special inspections and tests shall be in accordance with the approved rules or as determined by a test.

1916.3 Connections. Caps, base plates and connections shall be of approved types and shall be positively attached to the shell and anchored to the concrete core. Welding of brackets without mechanical anchorage shall be prohibited. Where the pipe is slotted to accommodate webs of brackets or other connections, the integrity of the shell shall be restored by welding to ensure hooping action of the composite section.

1916.4 Reinforcement. To increase the safe load-supporting capacity of concrete-filled pipe columns, the steel reinforcement shall be in the form of rods, structural shapes or pipe embedded in the concrete core with sufficient clearance to ensure the composite action of the section, but not nearer than 1 inch (25 mm) to the exterior steel shell. Structural shapes used as reinforcement shall be milled to ensure bearing on cap and base plates.

1916.5 Fire-resistance-rating protection. Pipe columns shall be of such size or so protected as to develop the required fire-resistance ratings specified in Table 601. Where an outer steel shell is used to enclose the fire protective covering, the shell shall not be included in the calculations for strength of the column section. The minimum diameter of pipe columns shall be 4 inches (102 mm) except that in structures of Type V construction not exceeding three stories above grade plane or 40 feet (12 192 mm) in building height, pipe columns used in basements and as secondary steel members shall have a minimum diameter of 3 inches (76 mm).

1916.6 Approvals. Details of column connections and splices shall be shop fabricated by approved methods and shall be approved only after tests in accordance with the approved rules. Shop-fabricated concrete-filled pipe columns shall be inspected by the building official or by an approved representative of the manufacturer at the plant.

ADDITIONAL REQUIREMENTS [DSA-SS/CC]

1916.1.1 Glass fiber reinforced concrete. Glass fiber reinforced concrete (GFRC) and the materials used in such concrete shall be in accordance with the PCIMNL128 standard.

1916.1.2 Fly ash. Replace ACI 318 Section 3.2.2 as follows:

Fly ash or other pozzolan can be used as a partial substitute for ASTM C 150 portland cement, as follows:

1. Fly ash or other pozzolan shall conform to ASTM C 618 for Class N or Class F materials (Class C is not permitted), and

2. More than 15 percent by weight of fly ash or other pozzolans shall be permitted to be substituted for ASTM C 150 portland cement if the mix design is proportioned per Section 1905.3. See Section 1904 for durability requirements.

3. More than 40 percent by weight of ground-granulated blast-furnace slag conforming to ASTM C 989 shall be permitted to be substituted for ASTM C 150 portland cement if the mix design is proportioned per Section 1905.3. See Section 1904 for durability requirements.

1916.1.3 ACI 318, Section 3.3.2. Modify ACI 318 Section 3.3.2 by adding the following:

Aggregate size limitations waiver shall be approved by the enforcement agency.

Evidence that the aggregate used is not reactive in the presence of cement alkalis may be required by the enforcement agency. If new aggregate sources are to be used or if past experience indicates problems with existing aggregate sources, test the aggregate for potential reactivity according to ASTM C 289 to determine potential reactivity in the presence of cement.

If the results of the test are other than innocuous, selected concrete proportions using the aggregate (see Section 1905.2) shall be tested in accordance with ASTM C 1567. If the results of this test indicate an expansion greater than 0.10 percent at 16-days age, provide mitigation with one of the cementitious material systems noted below such that an expansion of less than 0.10 percent at 16-days age is obtained:

1. Low-alkali portland cement containing not more than 0.6 percent total alkali when calculated as sodium oxide, as determined by the method given in ASTM C 114.

2. Blended hydraulic cement, Type IS or IP, conforming to ASTM C 595, except that Type IS cement shall not contain less than 40 percent slag constituent.

3. Replacement of not less than 15 percent by weight of the portland cement used by a ground granulated blast-furnace slag conforming to ASTM C 989.

1916.1.4 Discontinuous steel fibers. Modify ACI 318 Section 3.5.1 by adding the following:

Discontinuous steel fibers shall not be permitted.

1916.1.5 Cementitious material. The concrete supplier shall furnish to the enforcement agency certification that the cement proposed for use on the project has been manufactured and tested in compliance with the requirements of ASTM C 150 for portland cement and ASTM C 595 or ASTM C 1157 for blended hydraulic cement, whichever is applicable. When a mineral admixture or ground granulated blast-furnace slag is proposed for use, the concrete supplier shall furnish to the enforcement agency certification that they have been manufactured and tested in compliance with ASTM C 618 or ASTM C 989, whichever is applicable. The concrete producer shall provide copies of the cementitious
material supplier’s certificate of compliance that represents the materials used by date of shipment for concrete. Cementitious materials without certification of compliance shall not be used.

1916.1.6 Tests of reinforcing bars. Where samples are taken from bundles as delivered from the mill, with the bundles identified as to heat number and provided the mill analyses accompany the report, one tensile test and one bend test shall be made from a specimen from each 10 tons (9080 kg) or fraction thereof of each size of reinforcing steel.

Where positive identification of the heat number cannot be made or where random samples are to be taken, one series of tests shall be made from each 2½ tons (2270 kg) or fraction thereof of each size of reinforcing steel.

Tests of reinforcing bars may be waived by the structural engineer with the approval of the Building Official for one-story buildings provided certified mill test reports are provided for each shipment of such reinforcement.

1916.1.7 Tests for prestressing steel and anchorage. All wires or bars of each size from each mill heat and all strands from each manufactured reel to be shipped to the site shall be assigned an individual lot number and shall be tagged in such a manner that each lot can be accurately identified at the job site. Each lot of tendon and anchorage assemblies and bar couplers to be installed shall be likewise identified.

The following samples of materials and tendons selected by the engineer or the designated testing laboratory from the prestressing steel at the plant or job site shall be furnished by the contractor and tested by an approved independent testing agency:

1. For wire, strand or bars, 7-foot-long (2134 mm) samples shall be taken from the coils of wire or strands or rods. A minimum of one random sample per 5,000 pounds (2270 kg) of each heat or lot used on the job shall be selected.

2. For prefabricated prestressing tendons other than bars, one completely fabricated tendon 10 feet (3048 mm) in length between grips with anchorage assembly at one end shall be furnished for each size and type of tendon and anchorage assembly.

Variations of the bearing plate size need not be considered.

The anchorages of unbonded tendons shall develop at least 95 percent of the minimum specified ultimate strength of the prestressing steel. The total elongation of the tendon under ultimate load shall not be less than 2 percent measured in a minimum gage length of 10 feet (3048 mm).

Anchorages of bonded tendons shall develop at least 90 percent of the minimum specified strength of the prestressing steel tested in an unbonded state. All couplings shall develop at least 95 percent of the minimum specified strength of the prestressing steel and shall not reduce the elongation at rupture below the requirements of the tendon itself.

3. If the prestressing tendon is a bar, one 7-foot (2134 mm) length complete with one end anchorage shall be furnished and, in addition, if couplers are to be used with the bar, two 4-foot (1219 mm) lengths of bar fabricated to fit and equipped with one coupler shall be furnished.

4. Mill tests of materials used for end anchorages shall be furnished. In addition, at least one Brinnell hardness test shall be made of each thickness of bearing plate.

1916.1.8 Composite construction cores. Cores of the completed composite concrete construction shall be taken to demonstrate the shear strength along the contact surfaces. The cores shall be taken when the cast-in-place concrete is approximately 28 days old and shall be tested by a shear loading parallel to the joint between the precast concrete and the cast-in-place concrete. The minimum unit shear strength of the contact surface area of the core shall not be less than 100 psi (689 kPa).

At least one core shall be taken from each building for each 5,000 square feet (465 m²) of area of composite concrete construction and not less than three cores shall be taken from each project. The architect or structural engineer in responsible charge of the project or his or her representative shall designate the location for sampling.

1916.1.9 Tests of shotcrete. Testing of shotcrete shall follow the provisions of Section 1913A and the general requirements of ACI 318 Section 5.6.

1916.1.10 Gypsum field tests. Field tests shall be made during construction to verify gypsum strength. One sample consisting of three specimens shall be made for each 5,000 square feet (465 m²) or fraction thereof of all gypsum poured, but not less than one sample shall be taken from each half-day’s pour.

1916.1.11 Tests for post-installed anchors in concrete. When post-installed anchors are used in lieu of cast-in-place bolts, the installation verification test loads frequency and acceptance criteria shall be in accordance with this section.

1916.1.11.1 General. Test loads or torques and acceptance criteria shall be shown on the construction documents.

If any anchor fails testing, all anchors of the same type shall be tested, which are installed by the same trade, not previously tested until twenty (20) consecutive anchors pass, then resume the initial test frequency.

1916.1.11.2 Test loads. Required test loads shall be determined by one of the following methods:

1. Twice the maximum allowable tension load or one and a quarter (1¼) times the maximum design strength of anchors as provided in International Code Council – Evaluation Service Report (ICC-ESR) or determined in accordance with Appendix D of ACI 318.
Tension test load need not exceed 80 percent of the nominal yield strength of the anchor element \((= 0.8 A_{yw}) \).

2. The manufacturer's recommended installation torque as approved in an ICC-ESR.

1916.1.11.3 Test frequency. When post-installed anchors are used for sill plate bolting applications, 10 percent of the anchors shall be tested.

When post-installed anchors are used for other structural applications, all such anchors shall be tested.

When post-installed anchors are used for nonstructural applications such as equipment anchorages, 50 percent or alternate bolts in a group, including at least one-half the anchors in each group, shall be tested.

The testing of the post-installed anchors shall be done in the presence of the special inspector and a report of the test results shall be submitted to the enforcement agency.

Exceptions:

1. Undercut anchors that allow visual confirmation of full set shall not require testing.

2. Where the factored design tension on anchors is less than 100 lb and those anchors are clearly noted on the approved construction documents, only 10 percent of those anchors shall be tested.

3. Where adhesive anchor systems are used to install reinforcing dowel bars in hardened concrete, only 25 percent of the dowels shall be tested if all the following conditions are met:

 a. The dowels are used exclusively to transmit shear forces across joints between existing and new concrete.

 b. The number of dowels in any one member equals or exceeds 12.

 c. The dowels are uniformly distributed across seismic force resisting members (such as shear walls, collectors and diaphragms).

 Anchors to be tested shall be selected at random by the special inspector/inspector of record (IOR).

4. Testing of shear dowels across cold joints in slabs on grade, where the slab is not part of the lateral force-resisting system shall not be required.

5. Testing is not required for power actuated fasteners used to attach tracks of interior nonshear wall partitions for shear only, where there are at least three fasteners per segment of track.

1916.1.11.4 Test acceptance criteria. Acceptance criteria for post-installed anchors shall be based on ICC-ESR or manufacturers written instruction, acceptable to the enforcement agency. Field test shall satisfy following minimum requirements.

1. Hydraulic ram method:

 Anchors tested with a hydraulic jack or spring loaded devices shall maintain the test load for a minimum of 15 seconds and shall exhibit no discernable movement during the tension test, e.g., as evidenced by loosening of the washer under the nut.

 For adhesive anchors, where other than bond is being tested, the testing device shall not restrict the concrete shear cone type failure mechanism from occurring.

2. Torque wrench method:

 Anchors tested with a calibrated torque wrench must attain the specified torque within \(1/2 \) turn of the nut.

 Exceptions:

 1. Wedge or sleeve type:

 One-quarter \((1/4) \) turn of the nut for a \(3/8 \) in. sleeve anchor only.

 2. Threaded type:

 One-quarter \((1/4) \) turn of the screw after initial seating of the screw head.

1916.1.11.5. Testing procedure. Test procedure shall be as required by the ICC-ESR. Manufacturer's recommendation for testing may be approved by the enforcement agency, when ICC-ESR does not provide a testing procedure.

1916.2 Concrete quality, mixing and testing.

1916.2.1 Selection of concrete proportions. A registered civil engineer with experience in concrete mix design shall select the relative amounts of ingredients to be used as basic proportions of the concrete mixes proposed for use under ACI 318, Section 5.2.

1916.2.2 Sample frequency. Replace ACI 318 Section 5.6.2.1 as follows:

5.6.2.1 Samples for strength tests of each class of concrete placed each day shall be taken not less than once a day, or not less than once for each 50 cubic yards (345 m\(^3\)) of concrete, or not less than once for each 2,000 square feet (186 m\(^2\)) of surface area for slabs or walls. Additional samples for seven-day compressive strength tests shall be taken for each class of concrete at the beginning of the concrete work or whenever the mix or aggregate is changed.

1916.3 Formwork, embedded pipes and construction joints.

1916.3.1 Removal of forms, shores and reshores. No portion of the forming and shoring system may be removed less than 12 hours after placing. When stripping time is less than the specified curing time, measures shall be taken to provide adequate curing and thermal protection of the stripped concrete.
1916.3.2 Conduits and pipes embedded in concrete.

1916.3.2.1 Large openings. Openings larger than 12 inches (305 mm) in any dimension shall be detailed on the structural plans. Nothing in this section shall be construed to permit work in violation of fire and panic or other safety standards.

1916.3.2.2 Adequate support. Pipes and conduits shall be adequately supported and secured against displacement before concrete is placed.

1916.3.3 Construction joints.

1916.3.3.1 Joint details. Typical details and proposed locations of construction joints shall be indicated on the plans.

1916.3.3.2 Surface preparation. The surface of all horizontal construction joints shall be cleaned and roughened by exposing clean aggregate solidly embedded in mortar matrix. In the event that the contact surface becomes coated with earth, sawdust, etc., after being cleaned, the entire surface so coated shall be re-cleaned.

1916.4 Modifications to ACI 318

1916.4.1 ACI 318, Section 14.9. Modify ACI 318 by adding Section 14.9 as follows:

14.9—Foundation walls. Horizontal reinforcing of concrete foundation walls for wood-frame or light-steel buildings shall consist of the equivalent of not less than one No. 5 bar located at the top and bottom of the wall. Where such walls exceed 3 feet (914 mm) in height, intermediate horizontal reinforcing shall be provided at spacing not to exceed 2 feet (610 mm) on center. Minimum vertical reinforcing shall consist of No. 3 bars at 24 inches (610 mm) on center.

Where concrete foundation walls or curbs extend above the floor line and wood-frame or light-steel exterior, bearing or shear walls, they shall be doweled to the foundation wall below with a minimum of No. 3 bars at 24 inches (610 mm) on center. Where the height of the wall above the floor line exceeds 18 inches (457 mm), the wall above and below the floor line shall meet the requirements of ACI 318 Section 14.3.

1916.4.2 ACI 318, Section 18.21. Add Section 18.21.5 to ACI 318 as follows:

18.21.5—Prequalification of anchorages and coupler. Post-tensioned anchorages and couplers for unbonded tendons shall be prequalified for use in prestressed concrete. Data shall be submitted by the post-tensioning materials fabricator from an approved independent testing agency to show compliance with the following dynamic test requirements:

A dynamic test shall be performed on a representative specimen and the tendon shall withstand, without failure, 500,000 cycles from 60 percent to 66 percent of its minimum specified ultimate strength and 50 cycles from 40 percent to 80 percent of its minimum specified ultimate strength. The period of each cycle involves the change from the lower stress level to the upper stress level and back to the lower. The specimen used for the second dynamic test need not be the same used for the first dynamic test. Systems utilizing multiple strands, wires or bars may be tested utilizing a test tendon of smaller capacity than the full-size tendon. The test tendon shall duplicate the behavior of the full-size tendon and generally shall not have less than 10 percent of the capacity of the full-size tendon.

The above test data must be on file at the enforcement agency for post-tensioning systems to be used. General approval will be based on satisfactory performance. Tests shall be required for prestressing steel and anchorages.

The average bearing stress, f_x/A_b, on the concrete created by the anchorage plates shall not exceed the following:

\[f_{cp} = \frac{0.6 f'_c \sqrt{A_b}}{A'} \]

but not greater than f'_c

At transfer load

\[f_{cp} = 0.8 f'_c \sqrt{A_b} / A' - 0.2 \]

but not greater than $1.25 f'_c$, where:

f_{cp} = Permissible compressive concrete stress.

f'_c = Compressive strength of concrete.

f_{ci} = Compressive strength of concrete at time of initial prestress.

A'_b = Maximum area of the portion of the concrete anchorage surface that is geometrically similar to and concentric with the area of the anchorage.

A_b = Bearing area of the anchorage.

P = Prestress force in tendon.

1916.4.3 ACI 318, Section 18. Add Section 18.23 to ACI 318 as follows:

18.23 - Post-tensioned flat slab.

18.23.1—Span-depth ratio. The ratio of the span to depth of the slab continuous over at least three supports with cantilevers at the ends shall not be greater than 40 for floor slabs or 44 for roof slabs.

18.23.2—Distribution of tendons. The use of banded tendons is acceptable. Maximum tendon spacing shall be six times the slab thickness, not to exceed 42 inches (1067 mm). A minimum prestress level of 125 psi (861 kPa) on the local slab section tributary to the tendon or tendon group is required. A minimum of two tendons in flat slabs shall be placed over columns in each direction. Tendons at slab edges shall be placed 6 inches (152 mm) clear of the slab edge. Tendons shall be firmly supported at intervals not exceeding 42 inches (1067 mm) to prevent displacement during concrete placement. Tendons shall not be bundled in groups greater than five monostrand tendons. At horizontal plane deviations grouped tendons at curved
portions must be separated with 1-inch-minimum (25 mm) clear between each tendon.

18.23.3—Slab edge reinforcement. The slab edges, including interior openings with anchorages, shall be reinforced with two No. 5 bars, one top and one bottom, minimum, with a No. 3 hairpin placed each side of each anchorage or tendon carrying an effective prestressing force of 50,000 pounds (223 kN) or less. These hairpins shall be increased to No. 4 hairpins if the effective force per anchorage or tendon is greater than 50,000 pounds (223 kN).

1916.4.4 ACI 318, Section 21.4. In addition to the requirements of Section 1908.1.3, wall piers in Seismic Design Category D, E or F shall comply with Section 1908.1.4.

1916.4.5 ACI 318, Section 21.9.2.2. Modify ACI 318, Section 21.9.2.2 by adding the following:

Where boundary members are not required by ACI 318 Section 21.9.6, minimum reinforcement parallel to the edges of all structural walls and the boundaries of all openings shall consist of twice the cross-sectional area of the minimum shear reinforcement required per lineal foot of wall. Horizontal extent of boundary element shall be per ACI 318 Section 21.9.6.4 (a) and (b).

1916.4.6 ACI 318, Section 21.11.4. Modify ACI 318 by adding Section 21.9.4.6 as follows:

21.9.4.6 - Walls and portions of walls with $P_s > 0.35P_o$ shall not be considered to contribute to the calculated strength of the structure for resisting earthquake-induced forces. Such walls shall conform to the requirements of ACI 318 Section 21.13.

1916.4.7 ACI 318, Section 21.11.4. Modify ACI 318 Section 21.11.4 by adding the following:

Collector and boundary elements in topping slabs placed over precast floor and roof elements shall not be less than 3 inches (76 mm) or d_b thick, where d_b is the diameter of the largest reinforcement in the topping slab.

1916.4.8 ACI 318, Section 21.11.7. Modify ACI 318 Section 21.11.7 by adding Section 21.11.7.7 as follows:

21.11.7.7 - Where boundary members are not required by ACI 318 Section 21.11.7.5, minimum reinforcement parallel to the edges of all diaphragms and the boundaries of all openings shall consist of twice the cross-sectional area of the minimum shear reinforcement required per lineal foot of diaphragm.

1916.4.9 ACI 318, Chapter 22. Plain concrete is not permitted.

1916.4.10 ACI 318, Section D.3.3. Modify ACI 318, Section D.3.3.1 and add Section D.3.3.7 to read as follows:

D.3.3.1 – The provisions of Appendix D do not apply to the design of anchors in plastic hinge zones of concrete structures under earthquake forces or to anchors that meet the requirements of Section D.3.3.7.

D.3.3.7 – For wood sill plates a minimum of 1 1/4 inches (38 mm) in net thickness, the allowable lateral design values of cast-in anchors in shear parallel to the grain of the wood sill plate are permitted to be determined in accordance with Section 2305 of the International Building Code, provided they comply with all of the following:

1. Their maximum nominal diameter is 5/8 inches (16 mm);
2. They are embedded into the concrete a minimum of 7 inches (178 mm);
3. They are located a minimum of 2 1/4 anchor diameters from the edges of the concrete parallel to the grain of the wood sill plate; and
4. They are located a minimum of 15 anchor diameters from the end of the concrete perpendicular to the grain of the wood sill plate.

1916.5 Shotcrete.

1916.5.1 Preconstruction tests. A test panel prepared in accordance with Section 1913.5 is required. Approval from the enforcement agency must be obtained prior to performing test panels.

1916.5.2 Surface preparation. Concrete or masonry to receive shotcrete shall have the entire surface thoroughly cleaned and roughened by sand blasting, and just prior to receiving shotcrete, shall be thoroughly cleaned of all debris, dirt and dust. Concrete and masonry shall be wetted before shotcrete is deposited, but not so wet as to overcome suction.

1916.5.3 Joints. The film of laitance which forms on the surface of the shotcrete shall be removed within approximately two hours after application by brushing with a stiff broom. If this film is not removed within two hours, it shall be removed by thorough wire brushing or sand blasting. Construction joints over eight hours old shall be thoroughly cleaned with air and water prior to receiving shotcrete.

1916.5.4 Forms and ground wires for shotcrete. Forms for shotcrete shall be substantial and rigid. Forms shall be built and placed so as to permit the escape of air and rebound.

Adequate ground wires, which are to be used as screeds, shall be placed to establish the thickness, surface planes and form of the shotcrete work. All surfaces shall be rodded to these wires.

1916.5.5 Placing. Shotcrete shall be placed in accordance with ACI 506.

1916.6 Existing concrete structures. The structural use of existing concrete with a core strength less than 1,500 psi (10.3 MPa) is not permitted in rehabilitation work.

For existing concrete structures, sufficient cores shall be taken at representative locations throughout the structure, as designated by the architect or structural engineer, so that knowledge will be had of the in-place strength of the concrete. At least three cores shall be taken from each building for each 4,000 square feet (372 m²) of floor area, or fraction thereof. Cores shall be at least 4 inches (102 mm) in diameter. Cores as small as 2.75 inches (70 mm) in diameter may be allowed by the enforcement agency when reinforcement is closely spaced and the coarse aggregate does not exceed 1/4 inch (19 mm).
<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 19A
CONCRETE

Italics are used for text within Sections 1903A through 1908A of this code to indicate provisions that differ from ACI 318. State of California amendments in these sections are shown in italics and underlined.

SECTION 1901A
GENERAL

1901A.1 Scope. The provisions of this chapter shall govern the materials, quality control, design and construction of concrete used in structures.

1901A.1.1 Application. The scope of application of Chapter 19A is as follows:

1. Structures regulated by the Division of the State Architect-Structural Safety (DSA-SS), which include those applications listed in Section 1.9.2. These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Applications listed in Sections 1.10.1 and 1.10.4, regulated by the Office of Statewide Health Planning and Development (OSHPD). These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing non-load-bearing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 19 and any applicable amendments therein.

1901A.1.2 Amendments in this chapter. DSA-SS and OSHPD adopt this chapter and all amendments.

Exception: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

1. Division of the State Architect—Structural Safety: [DSA-SS] For applications listed in Section 1.9.2.
2. Office of Statewide Health Planning and Development: [OSHPD 1] - For applications listed in Section 1.10.1.
 [OSHPD 4] - For applications listed in Section 1.10.4.

1901A.2 Plain and reinforced concrete. Structural concrete shall be designed and constructed in accordance with the requirements of this chapter and ACI 318 as amended in Section 1908A of this code. Except for the provisions of Sections 1904A and 1910A, the design and construction of slabs on grade shall not be governed by this chapter unless they transmit vertical loads or lateral forces from other parts of the structure to the soil.

1901A.3 Source and applicability. The format and subject matter of Sections 1902A through 1907A of this chapter are patterned after, and in general conformity with, the provisions for structural concrete in ACI 318.

1901A.4 Construction documents. The construction documents for structural concrete construction shall include:

1. The specified compressive strength of concrete at the stated ages or stages of construction for which each concrete element is designed.
2. The specified strength or grade of reinforcement.
3. The size and location of structural elements, reinforcement and anchors.
4. Provision for dimensional changes resulting from creep, shrinkage and temperature.
5. The magnitude and location of prestressing forces.
6. Anchorage length of reinforcement and location and length of lap splices.
7. Type and location of mechanical and welded splices of reinforcement.
8. Details and location of contraction or isolation joints specified for plain concrete.
10. Stressing sequence for posttensioning tendons.
11. For structures assigned to Seismic Design Category D, E or F, a statement if slab on grade is designed as a structural diaphragm (see Section 21.12.3.4 of ACI 318).

1901A.5 Special inspection. The special inspection of concrete elements of buildings and structures and concreting operations shall be as required by Chapter 17A.

SECTION 1902A
DEFINITIONS

1902A.1 General. The words and terms defined in ACI 318 shall, for the purposes of this chapter and as used elsewhere in this code for concrete construction, have the meanings shown in ACI 318 as modified by Section 1908A.1.1.
TABLE 1904A.3
MINIMUM SPECIFIED COMPRESSIVE STRENGTH (f'_c**)**

<table>
<thead>
<tr>
<th>TYPE OR LOCATION OF CONCRETE CONSTRUCTION</th>
<th>MINIMUM SPECIFIED COMPRESSIVE STRENGTH (f'_c at 28 days, psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negligible exposure</td>
</tr>
<tr>
<td>Basement walls and foundations not exposed to the weather</td>
<td>2,500</td>
</tr>
<tr>
<td>Basement slabs and interior slabs on grade, except garage floor slabs</td>
<td>2,500</td>
</tr>
<tr>
<td>Basement walls, foundation walls, exterior walls and other vertical concrete surfaces exposed to the weather</td>
<td>2,500</td>
</tr>
<tr>
<td>Driveways, curbs, walks, patios, porches, carport slabs, steps and other flatwork exposed to the weather, and garage floor slabs</td>
<td>2,500</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 0.00689 MPa.

\(a\). Concrete in these locations that can be subjected to freezing and thawing during construction shall be of air-entrained concrete in accordance with Section 1904A.2.1.

\(b\). Concrete shall be air entrained in accordance with Section 1904A.4.1.

\(c\). Structural plain concrete basement walls are exempt from the requirements for exposure conditions of Section 1904A.3 (see Section 1909A.6.1).

\(d\). For garage floor slabs where a steel trowel finish is used, the total air content required by Section 1904A.4.1 is permitted to be reduced to not less than 3 percent, provided the minimum specified compressive strength of the concrete is increased to 4,000 psi.

**FIGURE 1904A.3
WEATHERING PROBABILITY MAP FOR CONCRETE\(^a, b, c\)**

\(a\). Lines defining areas are approximate only. Local areas can be more or less severe than indicated by the region classification.

\(b\). A "severe" classification is where weather conditions encourage or require the use of deicing chemicals or where there is potential for a continuous presence of moisture during frequent cycles of freezing and thawing. A "moderate" classification is where weather conditions occasionally expose concrete in the presence of moisture to freezing and thawing, but where deicing chemicals are not generally used. A "negligible" classification is where weather conditions rarely expose concrete in the presence of moisture to freezing and thawing.

\(c\). Alaska and Hawaii are classified as severe and negligible, respectively.
SECTION 1903A
SPECIFICATIONS FOR TESTS AND MATERIALS

1903A.1 General. Materials used to produce concrete, concrete itself and testing thereof shall comply with the applicable standards listed in ACI 318. Where required, special inspections and tests shall be in accordance with Chapter 17A and Section 1916A.

1903A.2 Glass fiber reinforced concrete. Glass fiber reinforced concrete (GFRC) and the materials used in such concrete shall be in accordance with the PCI MNL 128 standard.

1903A.3 Reporting requirements – Modify ACI 318 Section 3.2.1 by the following:

Each component (a) through (g), when present, as a percentage of total cementitious materials shall be reported for each mix design.

1903A.4 Fly ash. Replace ACI 318 Section 3.2.2 as follows:

Fly ash or other pozzolan can be used as a partial substitute for ASTM C 150 portland cement, as follows:

1. Fly ash or other pozzolan shall conform to ASTM C 618 for Class N or Class F materials (Class C is not permitted), and

2. More than 15 percent by weight of fly ash or other pozzolans shall be permitted to be substituted for ASTM C 150 portland cement if the mix design is proportioned per Section 1905A.3. See Section 1904A for durability requirements.

3. More than 40 percent by weight of ground-granulated blast-furnace slag conforming to ASTM C 989 shall be permitted to be substituted for ASTM C 150 portland cement if the mix design is proportioned per Section 1905A.3. See Section 1904A for durability requirements.

1903A.5 ACI 318 Section 3.3.2. Modify ACI 318, Section 3.3.2 by adding the following:

Aggregates shall be approved by the enforcement agency.

Evidence that the aggregate used is not reactive in the presence of cement alkalis may be required by the enforcement agency. If new aggregate sources are to be used or if past experience indicates problems with existing aggregate sources, test the aggregate for potential reactivity according to ASTM C 289 to determine potential reactivity in the presence of cement.

If the results of the test are other than innocuous, selected concrete proportions using the aggregate (see Section 1905A.2) shall be tested in accordance with ASTM C 1567. If the results of this test indicate an expansion greater than 0.10 percent at 16-days age, provide mitigation with one of the cementitious material systems noted below such that an expansion of less than 0.10 percent at 16-days age is obtained:

1. Low-alkali portland cement containing not more than 0.6 percent total alkali when calculated as sodium oxide, as determined by the method given in ASTM C 114.

2. Blended hydraulic cement, Type IS or IP, conforming to ASTM C 595, except that Type IS cement shall not contain less than 40 percent slag constituent.

3. Replacement of not less than 15 percent by weight of the portland cement used by a mineral admixture conforming to ASTM C 618 for Class N or F materials. (Class C is not permitted).

4. Replacement of not less than 40 percent by weight of the portland cement used by a ground-granulated blast-furnace slag conforming to ASTM C 989.

1903A.6 Discontinuous steel fibers. Modify ACI 318 Section 3.5.1 by adding the following:

Discontinuous steel fibers are not permitted.

1903A.7 Welding of reinforcing bars. Modify ACI 318 Section 3.5.2 by adding the following:

If mill test reports are not available, chemical analysis shall be made of bars representative of the bars to be welded. Bars with a carbon equivalent (C.E.) above 0.75 shall not be welded. Welding shall not be done on or within two bar diameters of any bent portion of a bar that has been bent cold. Welding of crossing bars shall not be permitted for assembly of reinforcement unless authorized by the structural engineer and approved by the enforcement agency per approved procedures.

SECTION 1904A
DURABILITY REQUIREMENTS

1904A.1 Water-cementitious materials ratio. Where maximum water-cementitious materials ratios are specified in ACI 318, they shall be calculated in accordance with ACI 318, Section 4.1.

1904A.2 Exposure categories and classes. Concrete shall be assigned to exposure classes in accordance with ACI 318, Section 4.2, based on:

1. Exposure to freezing and thawing in a moist condition or deicer chemicals;

2. Exposure to sulfates in water or soil;

3. Exposure to water where the concrete is intended to have low permeability; and

4. Exposure to chlorides from deicing chemicals, salt, saltwater, brackish water, seawater or spray from these sources, where the concrete has steel reinforcement.

1904A.3 Concrete properties. Concrete mixtures shall conform to the most restrictive maximum water-cementitious materials ratios and minimum specified concrete compressive strength requirements of ACI 318, Section 4.3, based on the exposure classes assigned in Section 1904A.2.

Exception: For occupancies and appendages thereto in Group R occupancies that are in buildings less than four stories above grade plane, normal-weight aggregate concrete is permitted to comply with the requirements of Table 1904A.3 based on the weathering classification (freezing and thawing) determined from Figure 1904A.3 in lieu of the requirements of ACI 318, Table 4.3.1.
CONCRETE QUALITY, MIXING AND PLACING

1904A.4 Freezing and thawing exposures. Concrete that will be exposed to freezing and thawing, in the presence of moisture, with or without deicing chemicals being present, shall comply with Sections 1904A.4.1 and 1904A.4.2.

1904A.4.1 Air entrainment. Concrete exposed to freezing and thawing while moist shall be air entrained in accordance with ACI 318, Section 4.4.1.

1904A.4.2 Deicing chemicals. For concrete exposed to freezing and thawing in the presence of moisture and deicing chemicals, the maximum weight of fly ash, other pozzolans, silica fume or slag that is included in the concrete shall not exceed the percentages of the total weight of cementitious materials permitted by ACI 318, Section 4.4.2.

1904A.5 Alternative cementitious materials for sulfate exposure. Alternative combinations of cementitious materials for use in sulfate-resistant concrete to those listed in ACI 318, Table 4.3.1 shall be permitted in accordance with ACI 318, Section 4.5.1.

SECTION 1905A

1905A.1 General. The required strength and durability of concrete shall be determined by compliance with the proportioning, testing, mixing and placing provisions of Sections 1905A.1.1 through 1905A.13.

1905A.1.1 Strength. Concrete shall be proportioned to provide an average compressive strength as prescribed in Section 1905A.3 and shall satisfy the durability criteria of Section 1904A. Concrete shall be produced to minimize the frequency of strengths below \(f' \), as prescribed in Section 1905A.6.3. For concrete designed and constructed in accordance with this chapter, \(f' \) shall not be less than 3,000 psi (20.7 MPa). No maximum specified compressive strength shall apply unless restricted by a specific provision of this code or ACI 318. Reinforced concrete with specified compressive strength higher than 8,000 psi shall require prior approval of structural design method and acceptance criteria by the enforcement agency.

1905A.2 Selection of concrete proportions. Concrete proportions shall be determined in accordance with the provisions of ACI 318, Section 5.2.

A registered civil engineer with experience in concrete mix design shall select the relative amounts of ingredients to be used as basic proportions of the concrete mixes proposed for use under this provision.

1905A.3 Proportioning on the basis of field experience and/or trial mixtures. Concrete proportioning determined on the basis of field experience and/or trial mixtures shall be done in accordance with ACI 318, Section 5.3.

1905A.4 Proportioning without field experience or trial mixtures. Concrete proportioning determined without field experience or trial mixtures shall be done in accordance with ACI 318, Section 5.4.

1905A.5 Average strength reduction. As data become available during construction, it is permissible to reduce the amount by which the average compressive strength \(f' \) is required to exceed the specified value of \(f' \), in accordance with ACI 318, Section 5.5.

1905A.6 Evaluation and acceptance of concrete. The criteria for evaluation and acceptance of concrete shall be as specified in Sections 1905A.6.2 through 1905A.6.5.

1905A.6.1 Qualified technicians. Concrete shall be tested in accordance with the requirements in Sections 1905A.6.2 through 1905A.6.5. Qualified field testing technicians shall perform tests on fresh concrete at the job site, prepare specimens required for curing under field conditions, prepare specimens required for testing in the laboratory and record the temperature of the fresh concrete when preparing specimens for strength tests. Qualified laboratory technicians shall perform all required laboratory tests.

1905A.6.2 Frequency of testing. The frequency of conducting strength tests of concrete and the minimum number of tests shall be as specified in ACI 318, Section 5.6.2 except as modified in Section 1905A.6.2.1.

1905A.6.2.1 Sample frequency. Replace ACI 318 Section 5.6.2.1 as follows:

5.6.2.1 Samples for strength tests of each class of concrete placed each day shall be taken not less than once a day or not less than once for each 50 cubic yards (345 m³) of concrete, or not less than once for each 2,000 square feet (186 m²) of surface area for slabs or walls. Additional samples for seven-day compressive strength tests shall be taken for each class of concrete at the beginning of the concrete work or whenever the mix or aggregate is changed.

1905A.6.3 Strength test specimens. Specimens prepared for acceptance testing of concrete in accordance with Section 1905A.6.2 and strength test acceptance criteria shall comply with the provisions of ACI 318, Section 5.6.3.

1905A.6.4 Field-cured specimens. Where required by the building official to determine adequacy of curing and protection of concrete in the structure, specimens shall be prepared, cured, tested and test results evaluated for acceptance in accordance with ACI 318, Section 5.6.4.

1905A.6.5 Low-strength test results. Where any strength test (see ACI 318, Section 5.6.2.4) falls below the specified value of \(f' \), the provisions of ACI 318, Section 5.6.5, shall apply.

1905A.7 Preparation of equipment and place of deposit. Prior to concrete being placed, the space to receive the concrete and the equipment used to deposit it shall comply with ACI 318, Section 5.7.

1905A.8 Mixing. Mixing of concrete shall be performed in accordance with ACI 318, Section 5.8.

1905A.9 Conveying. The method and equipment for conveying concrete to the place of deposit shall comply with ACI 318, Section 5.9.

1905A.10 Depositing. The depositing of concrete shall comply with the provisions of ACI 318, Section 5.10.
1905A.10.1 Consolidation in congested areas. Where conditions make consolidation difficult, or where reinforcement is congested, a mix design with smaller size aggregates, shall be used as approved by the architect, structural engineer and the enforcement agency.

1905A.11 Curing. The length of time, temperature and moisture conditions for curing of concrete shall be in accordance with ACI 318, Section 5.11.

1905A.12 Cold weather requirements. Concrete to be placed during freezing or near-freezing weather shall comply with the requirements of ACI 318, Section 5.12.

When mixing concrete during cold weather, the mix shall have a temperature of at least 50°F (10.0°C), but not more than 90°F (32.2°C). The concrete shall be maintained at a temperature of at least 50°F (10.0°C) for not less than 72 hours after placing. When necessary, concrete materials shall be heated before mixing. Special precautions shall be taken for the protection of transit-mixed concrete to maintain a temperature of at least 50°F (10.0°C).

1905A.13 Hot weather requirements. Concrete to be placed during hot weather shall comply with the requirements of ACI 318, Section 5.13.

SECTION 1906A
FORMWORK, EMBEDDED PIPES AND CONSTRUCTION JOINTS

1906A.1 Formwork. The design, fabrication and erection of forms shall comply with ACI 318, Section 6.1.

1906A.2 Removal of forms, shores and reshores. The removal of forms and shores, including from slabs and beams (except where cast on the ground), and the installation of reshores shall comply with ACI 318, Section 6.2.

No portion of the forming and shoring system may be removed less than 12 hours after placing. When stripping time is less than the specified curing time, measures shall be taken to provide adequate curing and thermal protection of the stripped concrete.

1906A.3 Conduits and pipes embedded in concrete. Conduits, pipes and sleeves of any material not harmful to concrete and within the limitations of ACI 318, Section 6.3, are permitted to be embedded in concrete with approval of the registered design professional.

1906A.3.1 Large openings. Openings larger than 12 inches (305 mm) in any dimension shall be detailed on the structural plans. Nothing in this section shall be construed to permit work in violation of fire and panic or other safety standards.

1906A.3.2 Adequate support. Pipes and conduits shall be adequately supported and secured against displacement before concrete is placed.

1906A.4 Construction joints. Construction joints, including their location, shall comply with the provisions of ACI 318, Section 6.4.

Typical details and proposed locations of construction joints shall be indicated on the plans.

1906A.4.1 Surface preparation. The surface of all horizontal construction joints shall be cleaned and roughened by exposing clean aggregate solidly embedded in mortar matrix.

In the event that the contact surface becomes coated with earth, sawdust, etc., after being cleaned, the entire surface so coated shall be recleamed.

SECTION 1907A
DETAILS OF REINFORCEMENT

1907A.1 Hooks. Standard hooks on reinforcing bars used in concrete construction shall comply with ACI 318, Section 7.1.

1907A.2 Minimum bend diameters. Minimum reinforcement bend diameters utilized in concrete construction shall comply with ACI 318, Section 7.2.

1907A.3 Bending. The bending of reinforcement shall comply with ACI 318, Section 7.3.

1907A.4 Surface conditions of reinforcement. The surface conditions of reinforcement shall comply with the provisions of ACI 318, Section 7.4.

1907A.5 Placing reinforcement. The placement of reinforcement, including tolerances on depth and cover, shall comply with the provisions of ACI 318, Section 7.5. Reinforcement shall be accurately placed and adequately supported before concrete is placed.

1907A.5.1 Prestressing tendons. Prestressing tendons shall be placed within plus or minus 1/8 inch (6.4mm) tolerance for member depths equal to and less than 8 inches (203 mm) and not to exceed the lesser of 1/4 inch (9.5 mm) or one third the minimum concrete cover for member depths greater than 8 inches (203 mm).

1907A.6 Spacing limits for reinforcement. The clear distance between reinforcing bars, bundled bars, tendons and ducts shall comply with ACI 318, Section 7.6.

1907A.7 Concrete protection for reinforcement. The minimum specified concrete cover for reinforcement shall comply with Sections 1907A.7.1 through 1907A.7.8.

1907A.7.1 Cast-in-place concrete (nonprestressed). Minimum specified concrete cover shall be provided for reinforcement in prestressed, cast-in-place concrete construction in accordance with ACI 318, Section 7.7.1.

1907A.7.2 Cast-in-place concrete (prestressed). The minimum specified concrete cover for prestressed and nonprestressed reinforcement, ducts and end fittings in cast-in-place prestressed concrete shall comply with ACI 318, Section 7.7.2.

1907A.7.3 Precast concrete (manufactured under plant control conditions). The minimum specified concrete cover for prestressed and nonprestressed reinforcement, ducts and end fittings in precast concrete manufactured under plant control conditions shall comply with ACI 318, Section 7.7.3.
1907A.7.4 Bundled bars. The minimum specified concrete cover for bundled bars shall comply with ACI 318, Section 7.7.4.

1907A.7.5 Headed shear stud reinforcement. For headed shear stud reinforcement, the minimum specified concrete cover shall comply with ACI 318, Section 7.7.5.

1907A.7.6 Corrosive environments. In corrosive environments or other severe exposure conditions, prestressed and nonprestressed reinforcement shall be provided with additional protection in accordance with ACI 318, Section 7.7.6.

1907A.7.7 Future extensions. Exposed reinforcement, inserts and plates intended for bonding with future extensions shall be protected from corrosion.

1907A.7.8 Fire protection. When this code requires a thickness of cover for fire protection greater than the minimum concrete cover in Section 1907A.7, such greater thickness shall be specified.

1907A.8 Special reinforcement details for columns. Offset bent longitudinal bars in columns and load transfer in structural steel cores of composite compression members shall comply with the provisions of ACI 318, Section 7.8.

1907A.9 Connections. Connections between concrete framing members shall comply with the provisions of ACI 318, Section 7.9.

1907A.10 Lateral reinforcement for compression members. Lateral reinforcement for concrete compression members shall comply with the provisions of ACI 318, Section 7.10.

1907A.11 Lateral reinforcement for flexural members. Lateral reinforcement for compression reinforcement in concrete flexural members shall comply with the provisions of ACI 318, Section 7.11.

1907A.12 Shrinkage and temperature reinforcement. Reinforcement for shrinkage and temperature stresses in concrete members shall comply with the provisions of ACI 318, Section 7.12.

1907A.13 Requirements for structural integrity. The detailing of reinforcement and connections between concrete members shall comply with the provisions of ACI 318, Section 7.13, to improve structural integrity.

SECTION 1908A MODIFICATIONS TO ACI 318

1908A.1 General. The text of ACI 318 shall be modified as indicated in Sections 1908A.1.1 through 1908A.1.32.

1908A.1.1 ACI 318, Section 2.2. Modify existing definitions and add the following definitions to ACI 318, Section 2.2.

DESIGN DISPLACEMENT. Total lateral displacement expected for the design earthquake, as specified by Section 12.8.6 of ASCE 7.

DETAILED PLAIN CONCRETE STRUCTURAL WALL. A wall complying with the requirements of Chapter 22, including 22.6.7.

ORDINARY PRECAST STRUCTURAL WALL. A precast wall complying with the requirements of Chapters 1 through 18.

ORDINARY REINFORCED CONCRETE STRUCTURAL WALL. A cast-in-place wall complying with the requirements of Chapters 1 through 18.

ORDINARY STRUCTURAL PLAIN CONCRETE WALL. A wall complying with the requirements of Chapter 22, excluding 22.6.7.

SPECIAL STRUCTURAL WALL. A cast-in-place or precast wall complying with the requirements of 21.1.3 through 21.1.7, 21.9 and 21.10, as applicable, in addition to the requirements for ordinary reinforced concrete structural walls or ordinary precast structural walls, as applicable. Where ASCE 7 refers to a "special reinforced concrete structural wall," it shall be deemed to mean a "special structural wall."

WALL PIER. A wall segment with a horizontal length-to-thickness ratio of at least 2.5, but not exceeding 6, whose clear height is at least two times its horizontal length.

1908A.1.2 ACI 318, Section 8.13.5. Replace ACI 318 Section 8.13.5 as follows:

8.13.5 - Permanent burned clay or concrete tile fillers shall be considered only as forms and shall not be included in the calculations involving shear or bending moments.

The thickness of the concrete slab on the permanent fillers shall be designed as described in ACI Section 8.13.6 as modified in Section 1908A.1.3.

1908A.1.3 ACI 318, Section 8.13.6. Replace ACI 318 Section 8.13.6 as follows:

8.13.6 - Where removable forms or fillers are used, the thickness of the concrete slab shall not be less than \(\frac{7}{8} \) of the clear distance between joists and in no case less than \(\frac{3}{4} \) inches (64 mm). Such slab shall be reinforced at right angles to the joists with at least the amount of reinforcement required for flexure, considering load concentrations, if any, but in no case shall the reinforcement be less than that required by ACI 318 Section 7.12.

1908A.1.4 ACI 318, Section 8.13. Add Section 8.13.9 to ACI 318 as follows:

8.13.9 Concrete bridging. Concrete bridging shall be provided as follows: one near the center of spans for 20 to 30 feet (6096 mm to 9144 mm) spans and two near the third points of spans over 30 feet (9144 mm). Such bridging shall be either:

(a) A continuous concrete web having a depth equal to the joist and a width not less than \(\frac{3}{4} \) inches (89 mm) reinforced with a minimum of one No. 4 bar in the top and bottom; or

(b) Any other concrete element capable of transferring a concentrated load of 1000 pounds (4.5 kN) from any joist to the two adjacent joists.

Such bridging shall not be required in roof framing if an individual member is capable of carrying dead load.
plus a concentrated load of 1,500 pounds (6.7 kN) at any
point.

1908A.1.5 ACI 318, Section 10.5.3, Modify ACI 318 Section
10.5.3 by adding the following:

This section shall not be used for members that resist
seismic loads, except that reinforcement provided for
foundation elements for one-story wood-frame or
one-story light steel buildings need not be more than
one-third greater than that required by analysis for all
loading conditions.

1908A.1.6 ACI 318, Section 12.14.3, Add Section 12.14.3.6
to ACI 318 as follows:

12.14.3.6 - Welded splices and mechanical connections
shall have the clearance and coverage requirements
of ACI Sections 7.6 and 7.7.

1908A.1.7 ACI 318, Section 14.2.6, Replace ACI 318 Section
14.2.6 as follows:

14.2.6 - Walls shall be anchored to intersecting elements
such as floors or roofs or to columns, pilasters, buttresses
and intersecting walls and footings with reinforcement at
least equivalent to No. 4 bars at 12 inches (305 mm) on
center for each layer of reinforcement.

1908A.1.8 Reserved.

1908A.1.9 Reserved.

1908A.1.10 ACI 318, Section 14.5 - Empirical design
method. Not permitted by OSHPD and DSA-SS.

1908A.1.11 ACI 318, Section 14.6.1, Replace ACI 318 Section
14.6.1 as follows:

14.6.1 - Nonbearing walls or nonbearing shear walls
shall have a thickness of not less than 4 inches (102 mm)
or a thickness less than \(\frac{1}{6} \) of the shorter unsupported
distance between vertical or horizontal stiffening ele-
ments.

Where walls are supported laterally by vertical ele-
ments, the stiffness of each vertical element shall exceed
that of the tributary area of the wall.

1908A.1.12 ACI 318, Section 14.9, Modify ACI 318 by add-
ing Section 14.9 as follows:

14.9 - Foundation walls. Horizontal reinforcing of con-
crete foundation walls for wood-frame or light-steel
buildings shall consist of the equivalent of not less than
one No. 5 bar located at the top and bottom of the wall.
Where such walls exceed 3 feet (914 mm) in height, in-
termediate horizontal reinforcing shall be provided at spac-
ing not to exceed 2 feet (610 mm) on center. Minimum
vertical reinforcing shall consist of No. 3 bars at 24
inches (610 mm) on center.

Where concrete foundation walls or curbs extend
above the floor line and support wood-frame or
light-steel exterior bearing or shear walls, they shall be
dowelled to the foundation wall below with a minimum of
No. 3 bars at 24 inches (610 mm) on center. Where the
height of the wall above the floor line exceeds 18 inches
(457 mm), the wall above and below the floor line shall
meet the requirements of ACI 318 Section 14.3.

1908A.1.13 Reserved.

1908A.1.14 ACI 318 Section 16, Add Section 16.11 to ACI
318 as follows:

16.11 - Reinforcement. Perimeters of precast walls shall
be reinforced continuously with a minimum of one No. 5
bar extending the full height and width of the wall panel.
Bars shall be continuous around corners. Where wall
panels do not abut columns or other wall panels, perime-
ter bars shall be retained by hooked wall bars. Edges of
openings in precast walls shall be reinforced with a mini-
mum of one No. 5 bar continuous past corners sufficient
to develop the bar.

A continuous tie or bond beam shall be provided at the
roof line either as a part of the roof structure or part of
the wall panels as described in the next paragraph below.
This tie may be designed as the edge member of the roof
diaphragm but, in any case, shall not be less than equiva-
 lent to two No. 6 bars continuous. A continuous tie equi-
 valent to two No. 5 bars minimum shall also be provided
either in the footing or with an enlarged section of the
floor slab.

Wall panels of shear wall buildings shall be connected
to columns or to each other in such a manner as to
develop at least 75 percent of the horizontal wall steel.
Half of this continuous horizontal reinforcing may be
concentrated in bond or tie beams at the top and bottom
of the walls and at points of intermediate lateral support.
If possible, cast in-place joints with reinforcing bars
extending from the panels into the joint a sufficient dis-
tance to meet the splice requirements of ACI 318 Section
12.15 for Class A shall be used. The reinforcing bars or
welded tie details shall not be spaced over eight times the
wall thickness vertically nor fewer than four used in the
wall panel height. Where wall panels are designed for
their respective overturning forces, the panel connec-
tions need not comply with the requirements of this para-
graph.

Where splicing of reinforcement must be made at
points of maximum stress or at closer spacing than per-
mitted by ACI 318 Section 7.6, welding may be used
when the entire procedure is suitable for the particular
quality of steel used and the ambient conditions. Unless
the welds develop 125 percent of the specified yield
strength of the steel used, reinforcement in the form of
continuous bars or fully anchored dowels shall be added
to provide 25 percent excess steel area and the welds
shall develop not less than the specified yield strength of
the steel.

Exception: Nonbearing, nonshear panels such as
nonstructural architectural cladding panels or col-
umn covers are not required to meet the provisions of
this section.
1908A.15 ACI 318, Section 17.5.1. Modify ACI 318 Section 17.5.1 by adding Sections 17.5.1.1 and 17.5.1.2 as follows:

17.5.1.1 - Full transfer of horizontal shear forces may be assumed when all of the following are satisfied:

1. Contact surfaces are clean, free of laitance and intentionally roughened to full amplitude of approximately 1/4 inch (6.4 mm).
2. Minimum ties are provided in accordance with ACI 318 Section 17.6.
3. Web members are designed to resist total vertical shear, and
4. All shear reinforcement is fully anchored into all interconnected elements.

17.5.1.2 - If all requirements of ACI 318 Section 17.5.1.1 are not satisfied, horizontal shear shall be investigated in accordance with ACI 318 Section 17.5.3 or 17.5.4.

1908A.16 ACI 318, Section 18.2.3. Modify ACI 318 Section 18.2.3 by adding the following:

For prestressed concrete members with recessed or dapped ends, an analysis of the connections shall be made in accordance with procedures given in PCI Design Handbook, 7th Edition.

1908A.17 ACI 318 Section 18.2.4. Modify ACI 318 Section 18.2.4 by adding the following:

Where prestressed concrete elements are restrained from movement, an analysis of the stresses in the prestressed elements and loads in the adjoining structural system induced by the above-described effects shall be made in accordance with PCI Design Handbook, 7th Edition.

1908A.18 ACI 318, Section 18.2. Add Section 18.2.7 to ACI 318 as follows:

18.2.7 - Span to depth ratio. Span to depth ratios for prestressed concrete elements shall not exceed the following, except when calculations of deflections prove that greater values may be used without adverse effects:

Beams 30
One-way slabs 40
Two-way floor slabs 40
Two-way roof slabs 44
Flat slabs See CBC Section 1908A.1.21

These ratios should be decreased for special conditions such as heavy loads and simple spans.

Maximum deflection criteria shall be in accordance with ACI 318 Section 9.5.

1908A.19 Reserved.

1908A.1.20 ACI 318, Section 18.21. Add Section 18.21.5 to ACI 318 as follows:

18.21.5 - Prequalification of anchorages and couplers. Posttensioned anchorages and couplers for unbonded tendons shall be prequalified for use in prestressed concrete. Data shall be submitted by the posttensioning materials fabricator from an approved independent testing agency to show compliance with the following dynamic test requirements:

A dynamic test shall be performed on a representative specimen and the tendon shall withstand without failure 500,000 cycles from 60 percent to 66 percent of its minimum specified ultimate strength and 50 cycles from 40 percent to 80 percent of its minimum specified ultimate strength. The period of each cycle involves the change from the lower stress level to the upper stress level and back to the lower. The specimen used for the second dynamic test need not be the same used for the first dynamic test. Systems utilizing multiple strands, wires or bars may be tested utilizing a test tendon of smaller capacity than the full-size tendon. The test tendon shall duplicate the behavior of the full-size tendon and generally shall not have less than 10 percent of the capacity of the full-size tendon.

The above test data must be on file at the enforcement agency for posttensioning systems to be used. General approval will be based on satisfactory performance. Tests shall be required for prestressing steel and anchors.

The average bearing stress, P/A_b, on the concrete created by the anchorage should not exceed the following:

At service load

$$f_{w} = 0.6 f'_c \sqrt{A'/A_b}$$

but not greater than f'_c

At transfer load

$$f_{w} = 0.8 f'_c \sqrt{A'/A_b} = 0.2$$

but not greater than 1.25 f'_c, where:

f_{w} = permissible compressive concrete stress.

f'_c = compressive strength of concrete.

f'_c = compressive strength of concrete at time of initial prestress.

A' = maximum area of the portion of the concrete anchorage surface that is geometrically similar to and concentric with the area of the anchorage.

A_b = bearing area of the anchorage.

P = prestress force in tendon.

1908A.21 ACI 318, Section 18. Add Section 18.23 to ACI 318 as follows:

18.23 - Prestressed flat slab.

18.23.1 - Span to depth ratio. The ratio of the span to depth of the slab continuous over at least three supports with cantilevers at the ends shall not be greater than 40 for floor slabs or 44 for roof slabs.

18.23.2 - Distribution of tendons. The use of banded tendons is acceptable. Maximum tendon spacing shall be six times the slab thickness, not to exceed 42 inches (1067 mm). A minimum prestress level of 125
psi (861 kPa) on the local slab section tributary to the tendon or tendon group is required. A minimum of two tendons in flat slabs shall be placed over columns in each direction. Tendons at slab edges shall be placed 6 inches (152 mm) clear of the slab edge. Tendons shall be firmly supported at intervals not exceeding 42 inches (1067 mm) to prevent displacement during concrete placement. Tendons shall not be bundled in groups greater than five monostrand tendons. At horizontal plane deviations, grouped tendons at curved portions must be separated with 1-inch-minimum (25 mm) clear between each tendon.

18.23.3 - Slab edge reinforcement. The slab edges, including interior openings with anchorages, shall be reinforced with two No. 5 bars, one top and one bottom minimum, with a No. 3 hairpin placed each side of each anchorage or tendon carrying an effective prestressing force of 50,000 pounds (223 kN) or less. These hairpins shall be increased to No. 4 hairpins if the effective force per anchorage or tendon is greater than 50,000 pounds (223 kN).

1908A.1.22 (Chapter 19, Section 1908.1.2) ACI 318, Section 21.1.1. Modify ACI 318 Sections 21.1.1.3 and 21.1.1.7 to read as follows:

21.1.1.3 – Structures shall satisfy requirements of Chapters 1 to 19. Structures assigned to Seismic Design Category D, E or F also shall satisfy 21.1.1.4 through 21.1.1.8, as applicable. Structural elements of plain concrete are prohibited in structures assigned to Seismic Design Category D, E or F.

21.1.1.7 – Structural systems designated as part of the seismic-force-resisting system shall be restricted to those permitted by ASCE 7. The following provisions shall be satisfied for each structural system designated as part of the seismic-force-resisting system, regardless of the Seismic Design Category:

(a) [DSA-SS] Intermediate precast structural walls shall satisfy 21.4.
(b) Special moment frames shall satisfy 21.5 through 21.8.
(c) Special structural walls shall satisfy 21.9.
(d) Special structural walls constructed using precast concrete shall satisfy 21.10.

All special moment frames and special structural walls shall also satisfy 21.1.3 through 21.1.7.

1908A.1.23 (Chapter 19, Section 1908.1.3) ACI 318, Section 21.4. [DSA-SS] Modify ACI 318, Section 21.4, by renumbering Section 21.4.3 to become 21.4.4 and adding new Sections 21.4.3, 21.4.5 and 21.4.6 to read as follows:

21.4.3 – Connections that are designed to yield shall be capable of maintaining 80 percent of their design strength at the deformation induced by the design displacement or shall use Type 2 mechanical splices.
21.4.4 – Elements of the connection that are not designed to yield shall develop at least 1.5 S_y.

21.4.5 – Wall piers in Seismic Design Category D, E or F shall comply with Section 1908.1.6 of this code.

21.4.6 – Wall segments with a horizontal length-to-thickness ratio less than 2.5 shall be designed as columns.

1908A.1.24 ACI 318, Section 21.9.2.2. Modify ACI 318, Section 21.9.2.2 by adding the following:

Where boundary members are not required by ACI 318 Section 21.9.6, minimum reinforcement parallel to the edges of all structural walls and the boundaries of all openings shall consist of twice the cross-sectional area of the minimum shear reinforcement required per lineal foot of wall. Horizontal extent of boundary element shall be per ACI 318 Section 21.9.6.4 (a) & (b).

1908A.1.25 ACI 318, Section 21.9.4. Modify ACI 318 by adding Section 21.9.4.6 as follows:

21.9.4.6 - Walls and portions of walls with $P_r > 0.35 \overline{P}$ shall not be considered to contribute to the calculated strength of the structure for resisting earthquake-induced forces. Such walls shall conform to the requirements of ACI 318 Section 21.13.

1908A.1.26 (Chapter 19, Section 1908.1.4) ACI 318, Section 21.9. Modify ACI 318, Section 21.9, by adding new Section 21.9.10 to read as follows:

21.9.10 – Wall piers and wall segments.

21.9.10.1 – Wall piers not designed as a part of a special moment frame shall have transverse reinforcement designed to satisfy the requirements in 21.9.10.2.

Exceptions:

2. Wall piers along a wall line within a story where other shear wall segments provide lateral support to the wall piers and such segments have a total stiffness of at least six times the sum of the stiffnesses of all the wall piers.

21.9.10.2 – Transverse reinforcement with seismic hooks at both ends shall be designed to resist the shear forces determined from 21.6.5.1. Spacing of transverse reinforcement shall not exceed 6 inches (152 mm). Transverse reinforcement shall be extended beyond the pier clear height for at least 12 inches (305 mm).

21.9.10.3 – Wall segments with a horizontal length-to-thickness ratio less than 2.5 shall be designed as columns.

1908A.1.27 (Chapter 19, Section 1908.1.5) ACI 318, Section 21.10. Modify ACI 318, Section 21.10.2, to read as follows:

21.10.2 – Special structural walls constructed using precast concrete shall satisfy all the requirements of 21.9 for cast-in-place special structural walls in addition to Sections 21.4.2 through 21.4.4.
1908A.1.28 ACI 318, Section 21.11.4. Modify ACI 318 Section 21.11.4 by adding the following:

Collector and boundary elements in topping slabs placed over precast floor and roof elements shall not be less than 3 inches (76 mm) or 6\(d_0\) thick, where \(d_0\) is the diameter of the largest reinforcement in the topping slab.

1908A.1.29 ACI 318, Section 21.11.7. Modify ACI 318 Section 21.11.7 by adding Section 21.11.7 as follows:

21.11.7. Where boundary members are not required by ACI 318 Section 21.11.7, minimum reinforcement parallel to the edges of all diaphragms and the boundaries of all openings shall consist of twice the cross-sectional area of the minimum shear reinforcement required per linear foot of diaphragm.

1908A.1.30 (Chapter 19, Section 1908.1.6) ACI 318, Section 21.12.1.1. Modify ACI 318, Section 21.12.1.1, to read as follows:

21.12.1.1 - Foundations resisting earthquake-induced forces or transferring earthquake-induced forces between a structure and ground shall comply with the requirements of Section 21.12 and other applicable provisions of ACI 318 unless modified by Chapter 18A of the California Building Code.

1908A.1.31 (Chapter 19, Section 1908.1.9) ACI 318, Section D.3.3.3. Modify ACI 318, Sections D.3.3.1, D.3.3.4 and D.3.3.5, and add D.3.3.7 to read as follows:

D.3.3.1 - The provisions of Appendix D do not apply to the design of anchors in plastic hinge zones of concrete structures under earthquake forces or to anchors that meet the requirements of Section D.3.3.7.

D.3.3.4 - Anchors shall be designed to be governed by the steel strength of a ductile steel element as determined in accordance with D.5.1 and D.6.1, unless either D.3.3.5 or D.3.3.6 is satisfied.

Exception: Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 need not satisfy Section D.3.3.4.

D.3.3.5 - Instead of D.3.3.4, the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a force level corresponding to anchor forces no greater than the design strength of anchors specified in D.3.3.3.

Exception: Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 need not satisfy Section D.3.3.5.

D.3.3.7 - For wood sill plates a minimum of 1/2 inches (38 mm) in net thickness, the allowable lateral design values of cast-in anchors in shear parallel to the grain of the wood sill plate are permitted to be determined in accordance with Section 2305 of the California Building Code, provided they comply with all of the following:

1. Their maximum nominal diameter is 1/2 inches (16 mm);
2. They are embedded into the concrete a minimum of 7 inches (178 mm);
3. They are located a minimum of 1/2 anchor diameters from the edges of the concrete parallel to the grain of the wood sill plate; and
4. They are located a minimum of 1/2 anchor diameters from the end of the concrete perpendicular to the grain of the wood sill plate.

1908A.1.32 (Chapter 19, Section 1908.10) ACI 318, Section D.4.2.2. Delete ACI 318, Section D.4.2.2, and replace with the following:

D.4.2.2 - The concrete breakout strength requirements for anchors in tension shall be considered satisfied by the design procedure of D.5.2 provided Equation D-8 is not used for anchor embedments exceeding 25 inches. The concrete breakout strength requirements for anchors in shear with diameters not exceeding 2 inches shall be considered satisfied by the design procedure of D.6.2. For anchors in shear with diameters exceeding 2 inches, shear anchor reinforcement shall be provided in accordance with the procedures of D.6.2.9.

SECTION 1909A
STRUCTURAL PLAIN CONCRETE
NOT PERMITTED BY OSHPD AND DSA-SS

SECTION 1910A
MINIMUM SLAB PROVISIONS

1910A.1 General. The thickness of concrete floor slabs supported directly on the ground shall not be less than 3 1/2 inches (89 mm). A 6-mil (0.006 inch; 0.15 mm) polyethylene vapor retarder with joints lapped not less than 6 inches (152 mm) shall be placed between the base course or subgrade and the concrete floor slab, or other approved equivalent methods or materials shall be used to retard vapor transmission through the floor slab.

Exception: A vapor retarder is not required:

1. For detached structures accessory to occupancies in Group R-3, such as garages, utility buildings or other unheated facilities.
2. For unheated storage rooms having an area of less than 70 square feet (6.5 m²) and carports attached to occupancies in Group R-3.
3. For buildings of other occupancies where migration of moisture through the slab from below will not be detrimental to the intended occupancy of the building.
4. For driveways, walks, patios and other flatwork which will not be enclosed at a later date.
5. Where approved based on local site conditions.
SECTION 1911A
ANCHORAGE TO CONCRETE—ALLOWABLE STRESS DESIGN

1911A.1 Scope. The provisions of this section shall govern the allowable stress design of headed bolts and headed stud anchors cast in normal-weight concrete for purposes of transmitting structural loads from one connected element to the other. These provisions do not apply to anchors installed in hardened concrete or where load combinations include earthquake loads or effects. The bearing area of headed anchors shall be not less than one and one-half times the shank area. Where strength design is used, or where load combinations include earthquake loads or effects, the design strength of anchors shall be determined in accordance with Section 1912A. Bolts shall conform to ASTM A307 or an approved equivalent.

1911A.1.1 Power actuated fasteners. Power actuated fasteners qualified in accordance with ICC-ES AC 70 shall be deemed to satisfy the requirements of this section.

Power actuated fasteners shall be permitted for seismic shear when they are specifically listed in ICC-ES Report (ICC-ESR) for such service and for interior nonshear wall partitions. Power actuated fastener shall not be used to anchor exterior cladding or curtain wall systems.

1911A.2 Allowable service load. The allowable service load for headed anchors in shear or tension shall be as indicated in Table 1911A.2. Where anchors are subject to combined shear and tension, the following relationship shall be satisfied:

\[
(P_s / P_t)^{0.5} + (V_s / V_t)^{0.5} \leq 1
\]

(Equation 19A-1)

where:

\[P_s = \text{Applied tension service load, pounds (N).}\]

\[P_t = \text{Allowable tension service load from Table 1911A.2, pounds (N).}\]

\[V_s = \text{Applied shear service load, pounds (N).}\]

\[V_t = \text{Allowable shear service load from Table 1911A.2, pounds (N).}\]

1911A.3 Required edge distance and spacing. The allowable service loads in tension and shear specified in Table 1911A.2 are for the edge distance and spacing specified. The edge distance and spacing are permitted to be reduced to 50 percent of the values specified with an equal reduction in allowable service load. Where edge distance and spacing are reduced less than 50 percent, the allowable service load shall be determined by linear interpolation.

1911A.4 Increase in allowable load. Increase of the values in Table 1911A.2 by one-third is permitted where the provisions of Section 1605A.3.2 permit an increase in allowable stress for wind loading.

1911A.5 Increase for special inspection. Where special inspection is provided for the installation of anchors, a 100-percent increase in the allowable tension values of Table 1911A.2 is permitted. No increase in shear value is permitted.

SECTION 1912A
ANCHORAGE TO CONCRETE—STRENGTH DESIGN

1912A.1 Scope. The provisions of this section shall govern the strength design of anchors installed in concrete for purposes of transmitting structural loads from one connected element to the other. Headed bolts, headed studs and hooked (J- or L-) bolts cast in concrete and expansion anchors and undercut anchors installed in hardened concrete shall be designed in accordance with Appendix D of ACI 318 as modified by Sections 1908A.1.30 and 1908A.1.31, provided they are within the scope of Appendix D.

<table>
<thead>
<tr>
<th>TABLE 1911A.2 ALLOWABLE SERVICE LOAD ON EMBEDDED BOLTS (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOLT DIAMETER (inches)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\frac{5}{8})</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(7/8)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\frac{11}{4})</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square inch = 0.00689 MPa, 1 pound = 4.45 N.
The strength design of anchors that are not within the scope of Appendix D of ACI 318, and as amended in Sections 1908A.1.30 and 1908A.1.31, shall be in accordance with an approved procedure.

1912A.1.1 Specialty inserts. Specialty inserts, including cast-in-place specialty inserts, tested in accordance with ICC-ES AC 193 shall be deemed to satisfy the requirements of this section.

SECTION 1913A
SHOTCRETE

1913A.1 General. Shotcrete is mortar or concrete that is pneumatically projected at high velocity onto a surface. Except as specified in this section, shotcrete shall conform to the requirements of this chapter for reinforced concrete and the provisions of ACI 506. The specified compressive strength of shotcrete shall not be less than 3,000 psi (20.69 MPa).

Concrete or masonry to receive shotcrete shall have the entire surface thoroughly cleaned and roughened by sand blasting, and just prior to receiving shotcrete, shall be thoroughly cleaned of all debris, dirt and dust. Concrete and masonry shall be wetted before shotcrete is deposited, but not so wet as to overcome suction. Sand for sand blasting shall be clean, sharp and uniform in size, with no particles that will pass a 50-mesh screen.

1913A.2 Proportions and materials. Shotcrete proportions shall be selected that allow suitable placement procedures using the delivery equipment selected and shall result in finished in-place hardened shotcrete meeting the strength requirements of this code.

1913A.3 Aggregate. Coarse aggregate, if used, shall not exceed 3/4 inch (19.1 mm).

For shear walls, when total rebar in any direction is more than 0.31 in2/ft or rebar size is larger than #5, shotcrete shall conform to course aggregate grading No. 2 per Table 1.1 of ACI 506.

1913A.4 Reinforcement. Reinforcement used in shotcrete construction shall comply with the provisions of Sections 1913A.4.1 through 1913A.4.4.

1913A.4.1 Size. The maximum size of reinforcement shall be No. 5 bars unless it is demonstrated by preconstruction tests that adequate encasement of larger bars will be achieved.

1913A.4.2 Clearance. When No. 5 or smaller bars are used, there shall be a minimum clearance between parallel reinforcement bars of 2/3 inches (64 mm). When bars larger than No. 5 are permitted, there shall be a minimum clearance between parallel bars equal to six diameters of the bars used. When two curtains of steel are provided, the curtain nearer the nozzle shall have a minimum spacing equal to 12 bar diameters and the remaining curtain shall have a minimum spacing of six bar diameters.

Exception: Subject to the approval of the building official, required clearances shall be reduced where it is demonstrated by preconstruction tests that adequate encasement of the bars used in the design will be achieved.

1913A.4.3 Splices. Lap splices of reinforcing bars shall utilize the noncontact lap splice method with a minimum clearance of 2 inches (51 mm) between bars. The use of contact lap splices necessary for support of the reinforcing is permitted when approved by the building official, based on satisfactory preconstruction tests that show that adequate encasement of the bars will be achieved, and provided that the splice is oriented so that a plane through the center of the spliced bars is perpendicular to the surface of the shotcrete.

1913A.4.4 Spirally tied columns. Shotcrete shall not be applied to spirally tied columns.

1913A.5 Preconstruction tests. A test panel shall be shot, cured, cored or sawn, examined and tested prior to commencement of the project. The sample panel shall be representative of the project and simulate job conditions as closely as possible. The panel thickness and reinforcing shall reproduce the thickest and most congested area specified in the structural design. It shall be shot at the same angle, using the same nozzleman and with the same concrete mix design that will be used on the project. The equipment used in preconstruction testing shall be the same equipment used in the work requiring such testing, unless substitute equipment is approved by the building official.

1913A.6 Rebound. Any rebound or accumulated loose aggregate shall be removed from the surfaces to be covered prior to placing the initial or any succeeding layers of shotcrete. Rebound shall not be used as aggregate.

1913A.7 Joints. Except where permitted herein, unfinished work shall not be allowed to stand for more than 30 minutes unless edges are sloped to a thin edge. For structural elements that will be under compression and for construction joints shown on the approved construction documents, square joints are permitted. Before placing additional material adjacent to previously applied work, sloping and square edges shall be cleaned and wetted.

The film of laitance which forms on the surface of the shotcrete shall be removed within approximately two hours after application by brushing with a stiff broom. If this film is not removed within two hours, it shall be removed by thorough wire brushing or sand blasting. Construction joints over eight hours old shall be thoroughly cleaned with air and water prior to receiving shotcrete.

1913A.8 Damage. In-place shotcrete that exhibits sags, sloughs, segregation, honeycombing, sand pockets or other obvious defects shall be removed and replaced. Shotcrete above sags and sloughs shall be removed and replaced while still plastic.

1913A.9 Curing. During the curing periods specified herein, shotcrete shall be maintained above 40°F (4°C) and in moist condition.

1913A.9.1 Initial curing. Shotcrete shall be kept continuously moist for 24 hours after shotcreting is complete or shall be sealed with an approved curing compound.

1913A.9.2 Final curing. Final curing shall continue for seven days after shotcreting, or for three days if high-
early-strength cement is used, or until the specified strength is obtained. Final curing shall consist of the initial curing process or the shotcrete shall be covered with an approved moisture-retaining cover.

1913A.9.3 Natural curing. Natural curing shall not be used in lieu of that specified in this section unless the relative humidity remains at or above 85 percent, and is authorized by the registered design professional and approved by the building official.

1913A.10 Strength tests. Strength tests for shotcrete shall be made in accordance with ASTM standards by an approved agency on specimens that are representative of the work and which have been water soaked for at least 24 hours prior to testing. When the maximum-size aggregate is larger than 3/8 inch (9.5 mm), specimens shall consist of not less than three 3-inch-diameter (76 mm) cores or 3-inch (76 mm) cubes. When the maximum-size aggregate is 3/8 inch (9.5 mm) or smaller, specimens shall consist of not less than 2-inch-diameter (51 mm) cores or 2-inch (51 mm) cubes.

1913A.10.1 Sampling. Specimens shall be taken from the in-place work or from test panels, and shall be taken at least once each shift, but not less than one for each 50 cubic yards (38.2 m³) of shotcrete.

1913A.10.2 Panel criteria. When the maximum-size aggregate is larger than 3/8 inch (9.5 mm), the test panels shall have minimum dimensions of 18 inches by 18 inches (457 mm by 457 mm). When the maximum size aggregate is 3/8 inch (9.5 mm) or smaller, the test panels shall have minimum dimensions of 12 inches by 12 inches (305 mm by 305 mm). Panels shall be shot in the same position as the work, during the course of the work and by the nozzlemen doing the work. The conditions under which the panels are cured shall be the same as the work. Approval from the enforcement agency shall be obtained prior to performing the test panel method.

1913A.10.3 Acceptance criteria. The average compressive strength of three cores from the in-place work or a single test panel shall equal or exceed 0.85 \(f'_c \) with no single core less than 0.75 \(f'_c \). The average compressive strength of three cubes taken from the in-place work or a single test panel shall equal or exceed \(f'_c \), with no individual cube less than 0.88 \(f'_c \). To check accuracy, locations represented by erratic core or cube strengths shall be retested.

1913A.11 Forms and ground wires for shotcrete. Forms for shotcrete shall be substantial and rigid. Forms shall be built and placed so as to permit the escape of air and rebound.

Adequate ground wires, which are to be used as screeds, shall be placed to establish the thickness, surface planes and form of the shotcrete work. All surfaces shall be rodded to these wires.

1913A.12 Placing. Shotcrete shall be placed in accordance with ACI 506.
1915A.6 Approvals. Details of column connections and splices shall be shop fabricated by approved methods and shall be approved only after tests in accordance with the approved rules. Shop-fabricated concrete-filled pipe columns shall be inspected by the building official or by an approved representative of the manufacturer at the plant.

SECTION 1916A
CONCRETE, REINFORCEMENT
AND ANCHOR TESTING

1916A.1 Cementitious material. The concrete supplier shall furnish to the enforcement agency certification that the cement proposed for use on the project has been manufactured and tested in compliance with the requirements of ASTM C 150 for portland cement and ASTM C 595 or ASTM C 1157 for blended hydraulic cement, whichever is applicable. When a mineral admixture or ground granulated blast-furnace slag is proposed for use, the concrete supplier shall furnish to the enforcement agency certification that they have been manufactured and tested in compliance with ASTM C 618 or ASTM C 989, whichever is applicable. The concrete supplier shall provide copies of the cementitious material supplier’s Certificate of Compliance that represents the materials used by date of shipment for concrete. Cementitious materials without Certification of Compliance shall not be used.

1916A.2 Tests of reinforcing bars. Where samples are taken from bundles as delivered from the mill, the bundles identified as to heat number and provided the mill analyses accompany the report, one tensile test and one bend test shall be made from a specimen from each 10 tons (9080 kg) or fraction thereof of each size of reinforcing steel.

Where positive identification of the heat number cannot be made or where random samples are to be taken, one series of tests shall be made from each 2 1/2 tons (2270 kg) or fraction thereof of each size of reinforcing steel.

Tests of reinforcing bars may be waived by the structural engineer with the approval of the Building Official for one-story buildings, provided certified mill test reports are provided for each shipment of such reinforcement.

1916A.3 Tests for prestressing steel and anchorage. All wires or bars of each size from each heat and all strands from each manufactured reel to be shipped to the site shall be assigned an individual lot number and shall be tagged in such a manner that each lot can be accurately identified at the jobsite. Each lot of tendon and anchorage assemblies and bar couplers to be installed shall be likewise identified.

The following samples of materials and tendons selected by the engineer or the designated testing laboratory from the prestressing steel at the plant or jobsite shall be furnished by the contractor and tested by an approved independent testing agency:

1. For wire, strand or bars, 7-foot-long (2134 mm) samples shall be taken of the coil of wire or strand reel or rods. A minimum of one random sample per 5,000 pounds (2270 kg) of each heat or lot used on the job shall be selected.

2. For prefabricated prestressing tendons other than bars, one completely fabricated tendon 10 feet (3048 mm) in length between grips with anchorage assembly at one end shall be furnished for each size and type of tendon and anchorage assembly.

Variations of the bearing plate size need not be considered.

The anchorages of unbonded tendons shall develop at least 95 percent of the minimum specified ultimate strength of the prestressing steel. The total elongation of the tendon under ultimate load shall not be less than 2 percent measured in a minimum gage length of 10 feet (3048 mm).

Anchorages of bonded tendons shall develop at least 90 percent of the minimum specified strength of the prestressing steel tested in an unbonded state. All couplings shall develop at least 95 percent of the minimum specified strength of the prestressing steel and shall not reduce the elongation at rupture below the requirements of the tendon itself.

3. If the prestressing tendon is a bar, one 7-foot (2134 mm) length complete with one end anchorage shall be furnished and, in addition, if couplers are to be used with the bar, two 4-foot (1219 mm) lengths of bar fabricated to fit and equipped with one coupler shall be furnished.

4. Mill tests of materials used for end anchorages shall be furnished. In addition, at least one Brinnell hardness test shall be made of each thickness of bearing plate.

1916A.4 Composite construction cores. Cores of the completed composite concrete construction shall be taken to demonstrate the shear strength along the contact surfaces. The cores shall be tested when the cast-in-place concrete is approximately 28 days old and shall be tested by a shear loading parallel to the joint between the precast concrete and the cast-in-place concrete. The minimum unit shear strength of the contact surface area of the core shall not be less than 100 psi (689 kPa).

At least one core shall be taken from each building for each 5,000 square feet (465 m²) of area of composite concrete construction and not less than three cores shall be taken from each project. The architect or structural engineer in responsible charge of the project or his or her representative shall designate the location for sampling.

1916A.5 Tests of shotcrete. Testing of shotcrete shall follow the provisions of Section 1913A and the general requirements of ACI 318 Section 5.6.

1916A.6 Gypsum field tests. Field tests shall be made during construction to verify gypsum strength. One sample consisting of three specimens shall be made for each 5,000 square feet (465 m²) or fraction thereof of all gypsum poured, but not less than one sample shall be taken from each half day’s pour.

1916A.7 Tests for post-installed anchors in concrete. When post-installed anchors are used in lieu of cast-in place bolts, the installation verification test loads, frequency and acceptance criteria shall be in accordance with this section.
1916A.7.1 General. Test loads or torques and acceptance criteria shall be shown on the construction documents.

If any anchor fails testing, all anchors of the same type shall be tested, which are installed by the same trade, not previously tested until twenty (20) consecutive anchors pass, then resume the initial test frequency.

1916A.7.2 Test loads. Required test loads shall be determined by one of the following methods:

1. Twice the maximum allowable tension load or one and a quarter (1¼) times the maximum design strength of anchors as provided in International Code Council – Evaluation Service Report (ICC-ESR) or determined in accordance with Appendix D of ACI 318.

 Tension test load need not exceed 80 percent of the nominal yield strength of the anchor element (= 0.8 A₁f₁ₚ).

2. The manufacturer's recommended installation torque as approved in an ICC-ESR.

1916A.7.3 Test frequency. When post-installed anchors are used for sill plate bolting applications, 10 percent of the anchors shall be tested.

When post-installed anchors are used for other structural applications, all such anchors shall be tested.

When post-installed anchors are used for nonstructural applications such as equipment anchorage, 50 percent or alternate bolts in a group, including at least one-half the anchors in each group, shall be tested.

The testing of the post-installed anchors shall be done in the presence of the special inspector and a report of the test results shall be submitted to the enforcement agency.

Exceptions:

1. Undercut anchors that allow visual confirmation of full set shall not require testing.

2. Where the factored design tension on anchors is less than 100 lb and those anchors are clearly noted on the approved construction documents, only 10 percent of those anchors shall be tested.

3. Where adhesive anchor systems are used to install reinforcing dowel bars in hardened concrete, only 25 percent of the dowels shall be tested if all of the following conditions are met:
 a. The dowels are used exclusively to transmit shear forces across joints between existing and new concrete.
 b. The number of dowels in any one member equals or exceeds 12.
 c. The dowels are uniformly distributed across seismic force resisting members (such as shear walls, collectors and diaphragms).

 Anchors to be tested shall be selected at random by the special inspector/inspector of record (IOR).

4. Testing of shear dowels across cold joints in slabs on grade, where the slab is not part of the lateral force-resisting system shall not be required.

5. Testing is not required for power actuated fasteners used to attach tracks of interior non-shear wall partitions for shear only, where there are at least three fasteners per segment of track.

1916A.7.4 Test acceptance criteria. Acceptance criteria for post-installed anchors shall be based on ICC-ESR or manufacturers written instruction, acceptable to the enforcement agency. Field test shall satisfy following minimum requirements.

1. Hydraulic ram method:

 Anchors tested with a hydraulic jack or spring loaded devices shall maintain the test load for a minimum of 15 seconds and shall exhibit no discernable movement during the tension test, e.g., as evidenced by loosening of the washer under the nut.

 For adhesive anchors, where other than bond is being tested, the testing device shall not restrict the concrete shear cone type failure mechanism from occurring.

2. Torque wrench method:

 Anchors tested with a calibrated torque wrench must attain the specified torque within 1/2 turn of the nut.

 Exceptions:
 a. Wedge or sleeve type:

 One-quarter (1/4) turn of the nut for a 3/8 in. sleeve anchor only.

 b. Threaded type:

 One-quarter (1/4) turn of the screw after initial seating of the screw head.

1916A.7.5 Testing procedure. Test procedure shall be as required by the ICC-ESR. Manufacturer's recommendation for testing may be approved by the enforcement agency, when ICC-ESR does not provide a testing procedure.

SECTION 1917A Existing concrete structures

1917A.1. Existing concrete structures.

The structural use of existing concrete with a core strength less than 1,500 psi (10.3MPa) is not permitted in rehabilitation work.

For existing concrete structures, sufficient cores shall be taken at representative locations throughout the structure, as designated by the architect or structural engineer, so that knowledge will be had of the in-place strength of the concrete. At least three cores shall be taken from each building for each 4,000 square feet (372 m²) of floor area, or fraction thereof. Cores shall be at least 4 inches (102 mm) in diameter. Cores as small as 2.75 inches (70 mm) in diameter may be allowed by the enforcement agency when reinforcement is closely spaced and the coarse aggregate does not exceed 1/4 inch (19 mm).
1917A.2 Crack repair by epoxy injection. [OSHPD 1 & 4]
Crack repair by epoxy injection of concrete and masonry member shall conform to all requirements of ACI 503.7.

1917A.3 Concrete strengthening by externally bonded fiber reinforced polymer (FRP). Design and construction of externally bonded FRP systems for strengthening concrete structures shall be in accordance with ACI 440.2R.

Exceptions:

1) Near-Surface Mounted (NSM) FRP bars shall not be permitted.

2) Strengthening of shear walls and diaphragms (including chords and collectors) shall be considered as an alternative system.

Design capacities, reliability, serviceability of FRP materials shall be permitted to be established in accordance with ICC-ES AC 125. Minimum inspection requirements of FRP composite systems shall be in accordance with ICC-ES AC 178.
California Building Code-Matrix Adoption Table

Chapter 20 – Aluminum

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(amended sections listed below)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003.1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 20
ALUMINUM

SECTION 2001
GENERAL
2001.1 Scope. This chapter shall govern the quality, design, fabrication and erection of aluminum.

SECTION 2002
MATERIALS
2002.1 General. Aluminum used for structural purposes in buildings and structures shall comply with AA ASM 35 and AA ADM 1. The nominal loads shall be the minimum design loads required by Chapter 16.

SECTION 2003
INSPECTION
2003.1 Inspection. [DSA-SS, DSA-SS/CC, OSHPD 1 & 4] Inspection of aluminum shall be required in accordance with the requirements for steel in Chapter 17A.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 21 - MASONRY

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter/Section

- 2101.1.1
- 2101.1.2
- 2101.1.3
- 2101.1.4
- 2113.9.1
- 2114.1
- 2114.2
- 2114.3
- 2114.4
- 2114.5
- 2114.6.1
- 2114.6.2
- 2114.7
- 2114.8
- 2114.9.1
- 2114.9.2.1
- 2114.9.2.2
- 2114.9.3
- 2114.10
- 2114.11.1
- 2114.11.2
- 2114.11.3
- 2114.12
- 2114.13
- 2114.14

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 21
MASONRY

SECTION 2101
GENERAL

2101.1 Scope. This chapter shall govern the materials, design, construction and quality of masonry.

2101.1.1 Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC) - Application. The scope of application of Chapter 21 is as follows:

Community college buildings regulated by the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC) as listed in Section 1.9.2.2.

2101.1.2 Amendments in this chapter. DSA-SS/CC adopts this chapter and all amendments.

Exception: Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC) amendments appear in this chapter preceded with the appropriate acronym, as follows:

(Division of the State Architect-Structural Safety/Community Colleges:
[DSA-SS/CC] - For community college buildings listed in Section 1.9.2.2.

2101.1.3 Reference to other chapters. [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 17 and 18, the provisions in Chapters 17A and 18A respectively shall apply instead.

2101.1.4 Amendments. [DSA-SS/CC] See Section 2114 for additional requirements.

2101.2 Design methods. Masonry shall comply with the provisions of one of the following design methods in this chapter as well as the requirements of Sections 2101 through 2104. Masonry designed by the allowable stress design provisions of Section 2101.2.1, the strength design provisions of Section 2101.2.2 or the prestressed masonry provisions of Section 2101.2.3 shall comply with Section 2105.

2101.2.1 Allowable stress design. Masonry designed by the allowable stress design method shall comply with the provisions of Sections 2106 and 2107.

2101.2.2 Strength design. Masonry designed by the strength design method shall comply with the provisions of Sections 2106 and 2108, except that autoclaved aerated concrete (AAC) masonry shall comply with the provisions of Section 2106, Section 1613.6.4 and Chapter 1 and Appendix A of TMS 402/ACI 530/ASCE 5.

2101.2.3 Prestressed masonry. Prestressed masonry shall be designed in accordance with Chapters 1 and 4 of TMS 402/ACI 530/ASCE 5 and Section 2106. Special inspection during construction shall be provided as set forth in Section 1704.5.

2101.2.4 Empirical design. Masonry designed by the empirical design method shall comply with the provisions of Sections 2106 and 2109 or Chapter 5 of TMS 402/ACI 530/ASCE 5.

2101.2.5 Glass unit masonry. Glass unit masonry shall comply with the provisions of Section 2110 or Chapter 7 of TMS 402/ACI 530/ASCE 5.

2101.2.6 Masonry veneer. Masonry veneer shall comply with the provisions of Chapter 14 or Chapter 6 of TMS 402/ACI 530/ASCE 5.

2101.3 Construction documents. The construction documents shall show all of the items required by this code including the following:

1. Specified size, grade, type and location of reinforcement, anchors and wall ties.
2. Reinforcing bars to be welded and welding procedure.
4. Provisions for dimensional changes resulting from elastic deformation, creep, shrinkage, temperature and moisture.
5. Loads used in the design of masonry.
6. Specified compressive strength of masonry at stated ages or stages of construction for which masonry is designed, except where specifically exempted by this code.
7. Details of anchorage of masonry to structural members, frames and other construction, including the type, size and location of connectors.
8. Size and location of conduits, pipes and sleeves.
9. The minimum level of testing and inspection as defined in Chapter 17, or an itemized testing and inspection program that meets or exceeds the requirements of Chapter 17.

2101.3.1 Fireplace drawings. The construction documents shall describe in sufficient detail the location, size and construction of masonry fireplaces. The thickness and characteristics of materials and the clearances from walls, partitions and ceilings shall be indicated.

SECTION 2102
DEFINITIONS AND NOTATIONS

2102.1 General. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

AAC MASONRY. Masonry made of autoclaved aerated concrete (AAC) units, manufactured without internal reinforcement and bonded together using thin- or thick-bed mortar.

ADOBE CONSTRUCTION. Construction in which the exterior load-bearing and nonload-bearing walls and partitions are of unfired clay masonry units, and floors, roofs and interior...
framing are wholly or partly of wood or other approved materials.

Adobe, stabilized. Unfired clay masonry units to which admixtures, such as emulsified asphalt, are added during the manufacturing process to limit the units' water absorption so as to increase their durability.

Adobe, unstabilized. Unfired clay masonry units that do not meet the definition of “Adobe, stabilized.”

ANCHOR. Metal rod, wire or strap that secures masonry to its structural support.

ARCHITECTURAL TERRA COTTA. Plain or ornamental hard-burned modified clay units, larger in size than brick, with glazed or unglazed ceramic finish.

AREA.

Bedded. The area of the surface of a masonry unit that is in contact with mortar in the plane of the joint.

Gross cross-sectional. The area delineated by the out-to-out specified dimensions of masonry in the plane under consideration.

Net cross-sectional. The area of masonry units, grout and mortar crossed by the plane under consideration based on out-to-out specified dimensions.

AUTOCLAVED AERATED CONCRETE (AAC). Low-density cementitious product of calcium silicate hydrates, whose material specifications are defined in ASTM C 1386.

BED JOINT. The horizontal layer of mortar on which a masonry unit is laid.

BOND BEAM. A horizontal grouted element within masonry in which reinforcement is embedded.

BRICK.

Calcium silicate (sand lime brick). A masonry unit made of sand and lime.

Clay or shale. A masonry unit made of clay or shale, usually formed into a rectangular prism while in the plastic state and burned or fired in a kiln.

Concrete. A masonry unit having the approximate shape of a rectangular prism and composed of inert aggregate particles embedded in a hardened cementitious matrix.

CAST STONE. A building stone manufactured from portland cement concrete precast and used as a trim, veneer or facing on or in buildings or structures.

CELL. A void space having a gross cross-sectional area greater than 1\(\frac{1}{2}\) square inches (967 mm\(^2\)).

CHIMNEY. A primarily vertical enclosure containing one or more passageways for conveying flue gases to the outside atmosphere.

CHIMNEY TYPES.

High-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, high-heat appliances producing combustion gases in excess of 2,000°F (1093°C) measured at the appliance flue outlet (see Section 2113.11.3).

Low-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, low-heat appliances producing combustion gases not in excess of 1,000°F (538°C) under normal operating conditions, but capable of producing combustion gases of 1,400°F (760°C) during intermittent forces firing for periods up to 1 hour. Temperatures shall be measured at the appliance flue outlet.

Masonry type. A field-constructed chimney of solid masonry units or stones.

Medium-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, medium-heat appliances producing combustion gases not exceeding 2,000°F (1093°C) measured at the appliance flue outlet (see Section 2113.11.2).

CLEANOUT. An opening to the bottom of a grout space of sufficient size and spacing to allow the removal of debris.

COLLAR JOINT. Vertical longitudinal joint between wythes of masonry or between masonry and backup construction that is permitted to be filled with mortar or grout.

COMPRESSIVE STRENGTH OF MASONRY. Maximum compressive force resisted per unit of net cross-sectional area of masonry, determined by the testing of masonry prisms or a function of individual masonry units, mortar and grout.

CONNECTOR. A mechanical device for securing two or more pieces, parts or members together, including anchors, wall ties and fasteners.

COVER. Distance between surface of reinforcing bar and edge of member.

DIMENSIONS.

Actual. The measured dimension of a masonry unit or element.

Nominal. The specified dimension plus an allowance for the joints with which the units are to be laid. Thickness is given first, followed by height and then length.

Specified. The dimensions specified for the manufacture or construction of masonry, masonry units, joints or any other component of a structure.

FIREPLACE. A hearth and fire chamber or similar prepared place in which a fire may be made and which is built in conjunction with a chimney.

FIREPLACE THROAT. The opening between the top of the firebox and the smoke chamber.

FOUNDATION PIER. An isolated vertical foundation member whose horizontal dimension measured at right angles to its thickness does not exceed three times its thickness and whose height is equal to or less than four times its thickness.

GROUTED MASONRY.

Grouted hollow-unit masonry. That form of grouted masonry construction in which certain designated cells of hollow units are continuously filled with grout.
Grouted multiwythe masonry. That form of grouted masonry construction in which the space between the wythes is solidly or periodically filled with grout.

HEAD JOINT. Vertical mortar joint placed between masonry units within the wythe at the time the masonry units are laid.

HEIGHT, WALLS. The vertical distance from the foundation wall or other immediate support of such wall to the top of the wall.

MASONRY. A built-up construction or combination of building units or materials of clay, shale, concrete, glass, gypsum, stone or other approved units bonded together with or without mortar or grout or other accepted methods of joining.

Ashlar masonry. Masonry composed of various-sized rectangular units having sawed, dressed or squared bed surfaces, properly bonded and laid in mortar.

Coursed ashlar. Ashlar masonry laid in courses of stone of equal height for each course, although different courses shall be permitted to be of varying height.

Glass unit masonry. Masonry composed of glass units bonded by mortar.

Plain masonry. Masonry in which the tensile resistance of the masonry is taken into consideration and the effects of stresses in reinforcement are neglected.

Random ashlar. Ashlar masonry laid in courses of stone set without continuous joints and laid up without drawn patterns. When composed of material cut into modular heights, discontinuous but aligned horizontal joints are discernible.

Reinforced masonry. Masonry construction in which reinforcement acting in conjunction with the masonry is used to resist forces.

Solid masonry. Masonry consisting of solid masonry units laid contiguously with the joints between the units filled with mortar.

Unreinforced (plain) masonry. Masonry in which the tensile resistance of masonry is taken into consideration and the resistance of the reinforcing steel, if present, is neglected.

MASONRY UNIT. Brick, tile, stone, glass block or concrete block conforming to the requirements specified in Section 2103.

Clay. A building unit larger in size than a brick, composed of burned clay, shale, fired clay or mixtures thereof.

Concrete. A building unit or block larger in size than 12 inches by 4 inches by 4 inches (305 mm by 102 mm by 102 mm) made of cement and suitable aggregates.

Hollow. A masonry unit whose net cross-sectional area in any plane parallel to the load-bearing surface is less than 75 percent of its gross cross-sectional area measured in the same plane.

Solid. A masonry unit whose net cross-sectional area in every plane parallel to the load-bearing surface is 75 percent or more of its gross cross-sectional area measured in the same plane.

MORTAR. A plastic mixture of approved cementitious materials, fine aggregates and water used to bond masonry or other structural units.

MORTAR, SURFACE-BONDING. A mixture to bond concrete masonry units that contains hydraulic cement, glass fiber reinforcement with or without inorganic fillers or organic modifiers and water.

PRESTRESSED MASONRY. Masonry in which internal stresses have been introduced to counteract potential tensile stresses in masonry resulting from applied loads.

PRISM. An assemblage of masonry units and mortar with or without grout used as a test specimen for determining properties of the masonry.

RUBBLE MASONRY. Masonry composed of roughly shaped stones.

Coursed rubble. Masonry composed of roughly shaped stones fitting approximately on level beds and well bonded.

Random rubble. Masonry composed of roughly shaped stones laid without regularity of coursing but well bonded and fitted together to form well-divided joints.

Rough or ordinary rubble. Masonry composed of unsquared field stones laid without regularity of coursing but well bonded.

RUNNING BOND. The placement of masonry units such that head joints in successive courses are horizontally offset at least one-quarter the unit length.

SHEAR WALL.

Detailed plain masonry shear wall. A masonry shear wall designed to resist lateral forces neglecting stresses in reinforcement, and designed in accordance with Section 2106.1.

Intermediate prestressed masonry shear wall. A prestressed masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106.1.

Intermediate reinforced masonry shear wall. A masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106.1.

Ordinary plain masonry shear wall. A masonry shear wall designed to resist lateral forces neglecting stresses in reinforcement, and designed in accordance with Section 2106.1.

Ordinary plain prestressed masonry shear wall. A prestressed masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106.1.

Ordinary reinforced masonry shear wall. A masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106.1.

Special prestressed masonry shear wall. A prestressed masonry shear wall designed to resist lateral forces considering stresses in reinforcement and designed in accordance
MASONRY

with Section 2106.1 except that only grouted, laterally restrained tendons are used.

Special reinforced masonry shear wall. A masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106.1.

SHELL. The outer portion of a hollow masonry unit as placed in masonry.

SPECIFIED. Required by construction documents.

SPECIFIED COMpressive STRENGTH OF MASONRY, f'_{ck}. Minimum compressive strength, expressed as force per unit of net cross-sectional area, required of the masonry used in construction by the construction documents, and upon which the project design is based. Whenever the quantity f'_{ck} is under the radical sign, the square root of numerical value only is intended and the result has units of pounds per square inch (psi) (MPa).

STACK BOND. The placement of masonry units in a bond pattern is such that head joints in successive courses are vertically aligned. For the purpose of this code, requirements for stack bond shall apply to masonry laid in other than running bond.

STONE MASONRY. Masonry composed of field, quarried or cast stone units bonded by mortar.

Ashlar stone masonry. Stone masonry composed of rectangular units having sawed, dressed or squared bed surfaces and bonded by mortar.

Rubble stone masonry. Stone masonry composed of irregular-shaped units bonded by mortar.

STRENGTH.

Design strength. Nominal strength multiplied by a strength reduction factor.

Nominal strength. Strength of a member or cross section calculated in accordance with these provisions before application of any strength-reduction factors.

Required strength. Strength of a member or cross section required to resist factored loads.

THIN-BED MORTAR. Mortar for use in construction of AAC unit masonry with joints 0.06 inch (1.5 mm) or less.

TIE, LATERAL. Loop of reinforcing bar or wire enclosing longitudinal reinforcement.

TIE, WALL. A connector that connects wythes of masonry walls together.

TILE. A ceramic surface unit, usually relatively thin in relation to facial area, made from clay or a mixture of clay or other ceramic materials, called the body of the tile, having either a “glazed” or “unglazed” face and fired above red heat in the course of manufacture to a temperature sufficiently high enough to produce specific physical properties and characteristics.

TILE, STRUCTURAL CLAY. A hollow masonry unit composed of burned clay, shale, fire clay or mixture thereof, and having parallel cells.

WALL. A vertical element with a horizontal length-to-thickness ratio greater than three, used to enclose space.

Cavity wall. A wall built of masonry units or of concrete, or a combination of these materials, arranged to provide an airspace within the wall, and in which the inner and outer parts of the wall are tied together with metal ties.

Composite wall. A wall built of a combination of two or more masonry units bonded together, one forming the backup and the other forming the facing elements.

Dry-stacked, surface-bonded wall. A wall built of concrete masonry units where the units are stacked dry, without mortar on the bed or head joints, and where both sides of the wall are coated with a surface-bonding mortar.

Masonry-bonded hollow wall. A wall built of masonry units so arranged as to provide an airspace within the wall, and in which the facing and backing of the wall are bonded together with masonry units.

Parapet wall. The part of any wall entirely above the roof line.

WEB. An interior solid portion of a hollow masonry unit as placed in masonry.

WYTHE. Each continuous, vertical section of a wall, one masonry unit in thickness.

NOTATIONS.

\bar{d}_{b} = Diameter of reinforcement, inches (mm).

F_s = Allowable tensile or compressive stress in reinforcement, psi (MPa).

\bar{f}_r = Modulus of rupture, psi (MPa).

f'_{MC} = Specified compressive strength of AAC masonry, the minimum compressive strength for a class of AAC masonry as specified in ASTM C 1386, psi (MPa).

f'_{m} = Specified compressive strength of masonry at age of 28 days, psi (MPa).

f'_{mi} = Specified compressive strength of masonry at the time of prestress transfer, psi (MPa).

K = The lesser of the masonry cover, clear spacing between adjacent reinforcement, or five times d_{b}, inches (mm).

L_s = Distance between supports, inches (mm).

l_d = Required development length or lap length of reinforcement, inches (mm).

P = The applied load at failure, pounds (N).

S_t = Thickness of the test specimen measured parallel to the direction of load, inches (mm).

S_w = Width of the test specimen measured parallel to the loading cylinder, inches (mm).

SECTION 2103
MASONRY CONSTRUCTION MATERIALS

2103.1 Concrete masonry units. Concrete masonry units shall conform to the following standards: ASTM C 55 for concrete brick; ASTM C 73 for calcium silicate face brick; ASTM
C 90 for load-bearing concrete masonry units or ASTM C 744 for precast concrete and calcium silicate masonry units.

2103.2 Clay or shale masonry units. Clay or shale masonry units shall conform to the following standards: ASTM C 34 for structural clay load-bearing wall tile; ASTM C 56 for structural clay non-load-bearing wall tile; ASTM C 62 for building brick (solid masonry units made from clay or shale); ASTM C 1088 for solid units of thin veneer brick; ASTM C 126 for ceramic-glazed structural clay facing tile, facing brick and solid masonry units; ASTM C 212 for structural clay facing tile; ASTM C 216 for facing brick (solid masonry units made from clay or shale); ASTM C 652 for hollow brick (hollow masonry units made from clay or shale) or ASTM C 1405 for glazed brick (single-fired solid brick units).

Exception: Structural clay tile for nonstructural use in fireproofing of structural members and in wall furring shall not be required to meet the compressive strength specifications. The fire-resistance rating shall be determined in accordance with ASTM E 119 or UL 263 and shall comply with the requirements of Table 602.

2103.3 AAC masonry. AAC masonry units shall conform to ASTM C 1386 for the strength class specified.

2103.4 Stone masonry units. Stone masonry units shall conform to the following standards: ASTM C 503 for marble building stone (exterior); ASTM C 568 for limestone building stone; ASTM C 615 for granite building stone; ASTM C 616 for sandstone building stone; or ASTM C 629 for slate building stone.

2103.5 Ceramic tile. Ceramic tile shall be as defined in, and shall conform to the requirements of, ANSI A137.1.

2103.6 Glass unit masonry. Hollow glass units shall be partially evacuated and have a minimum average glass face thickness of 1/16 inch (4.8 mm). Solid glass-block units shall be provided when required. The surfaces of units intended to be in contact with mortar shall be treated with a polyvinyl butyral coating or latex-based paint. Reclaimed units shall not be used.

2103.7 Second-hand units. Second-hand masonry units shall not be reused unless they conform to the requirements of new units. The units shall be of whole, sound materials and free from cracks and other defects that will interfere with proper laying or use. Old mortar shall be cleaned from the unit before reuse.

2103.8 Mortar. Mortar for use in masonry construction shall conform to ASTM C 270 and Articles 2.1 and 2.6 A of TMS 602/ACI 530.1/ASCE 6, except for mortars listed in Sections 2103.9, 2103.10 and 2103.11. Type S or N mortar conforming to ASTM C 270 shall be used for glass unit masonry.

2103.9 Surface-bonding mortar. Surface-bonding mortar shall comply with ASTM C 887. Surface bonding of concrete masonry units shall comply with ASTM C 946.

2103.10 Mortars for ceramic wall and floor tile. Portland cement mortars for installing ceramic wall and floor tile shall comply with ANSI A108.1A and ANSI A108.1B and be of the compositions indicated in Table 2103.10.

Table 2103.10 CERAMIC TILE MORTAR COMPOSITIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MORTAR</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Scratchcoat</td>
<td>1 cement; 1/2 hydrated lime; 4 dry or 5 damp sand</td>
</tr>
<tr>
<td></td>
<td>Setting bed and leveling coat</td>
<td>1 cement; 1/2 hydrated lime; 5 damp sand to 1 cement; 1 hydrated lime, 7 damp sand</td>
</tr>
<tr>
<td>Floors</td>
<td>Setting bed</td>
<td>1 cement; 1/2 hydrated lime; 5 dry or 6 damp sand; or 1 cement; 5 dry or 6 damp sand</td>
</tr>
<tr>
<td>Ceilings</td>
<td>Scratchcoat and sand bed</td>
<td>1 cement; 1/2 hydrated lime; 2 1/2 dry sand or 3 damp sand</td>
</tr>
</tbody>
</table>

2103.10.1 Dry-set portland cement mortars. Premixed prepared portland cement mortars, which require only the addition of water and are used in the installation of ceramic tile, shall comply with ANSI A118.1. The shear bond strength for tile set in such mortar shall be as required in accordance with ANSI A118.4. Tile set in dry-set portland cement mortar shall be installed in accordance with ANSI A108.5.

2103.10.2 Latex-modified portland cement mortar. Latex-modified portland cement thin-set mortars in which latex is added to dry-set mortar as a replacement for all or part of the gauging water that are used for the installation of ceramic tile shall comply with ANSI A118.4. Tile set in latex-modified portland cement shall be installed in accordance with ANSI A108.5.

2103.10.3 Epoxy mortar. Ceramic tile set and grouted with chemical-resistant epoxy shall comply with ANSI A118.3. Tile set and grouted with epoxy shall be installed in accordance with ANSI A108.6.

2103.10.4 Furan mortar and grout. Chemical-resistant furan mortar and grout that are used to install ceramic tile shall comply with ANSI A118.5. Tile set and grouted with furan shall be installed in accordance with ANSI A108.8.

2103.10.5 Modified epoxy-emulsion mortar and grout. Modified epoxy-emulsion mortar and grout that are used to install ceramic tile shall comply with ANSI A118.8. Tile set and grouted with modified epoxy-emulsion mortar and grout shall be installed in accordance with ANSI A108.9.

2103.10.6 Organic adhesives. Water-resistant organic adhesives used for the installation of ceramic tile shall comply with ANSI A136.1. The shear bond strength after water immersion shall not be less than 40 psi (275 kPa) for Type I adhesive and not less than 20 psi (138 kPa) for Type II adhesive when tested in accordance with ANSI A136.1. Tile set in organic adhesives shall be installed in accordance with ANSI A108.4.

2103.10.7 Portland cement grouts. Portland cement grouts used for the installation of ceramic tile shall comply with ANSI A118.6. Portland cement grouts for tile work shall be installed in accordance with ANSI A108.10.
2103.11 Mortar for AAC masonry. Thin-bed mortar for AAC masonry shall comply with Article 2.1 C.1 of TMS 602/ACI 530.1/ASCE 6. Mortar used for the leveling courses of AAC masonry shall comply with Article 2.1 C.2 of TMS 602/ACI 530.1/ASCE 6.

2103.12 Grout. Grout shall comply with Article 2.2 of TMS 602/ACI 530.1/ASCE 6.

2103.13 Metal reinforcement and accessories. Metal reinforcement and accessories shall conform to Article 2.4 of TMS 602/ACI 530.1/ASCE 6. Where unidentified reinforcement is approved for use, not less than three tension and three bending tests shall be made on representative specimens of the reinforcement from each shipment and grade of reinforcing steel proposed for use in the work.

SECTION 2104 CONSTRUCTION

2104.1 Masonry construction. Masonry construction shall comply with the requirements of Sections 2104.1.1 through 2104.4 and with TMS 602/ACI 530.1/ASCE 6.

2104.1.1 Tolerances. Masonry, except masonry veneer, shall be constructed within the tolerances specified in TMS 602/ACI 530.1/ASCE 6.

2104.1.2 Placing mortar and units. Placement of mortar, grout, and clay, concrete, glass, and AAC masonry units shall comply with TMS 602/ACI 530.1/ASCE 6.

2104.1.3 Installation of wall ties. Wall ties shall be installed in accordance with TMS 602/ACI 530.1/ASCE 6.

2104.1.4 Chases and recesses. Chases and recesses shall be constructed as masonry units are laid. Masonry directly above chases or recesses wider than 12 inches (305 mm) shall be supported on lintels.

2104.1.5 Lintels. The design for lintels shall be in accordance with the masonry design provisions of either Section 2107 or 2108.

2104.1.6 Support on wood. Masonry shall not be supported on wood girders or other forms of wood construction except as permitted in Section 2304.12.

2104.2 Corbeled masonry. Corbeled masonry shall comply with the requirements of Section 1.12 of TMS 402/ACI 530/ASCE 5.

2104.2.1 Molded cornices. Unless structural support and anchorage are provided to resist the overturning moment, the center of gravity of projecting masonry or molded cornices shall lie within the middle one-third of the supporting wall. Terra cotta and metal cornices shall be provided with a structural frame of approved noncombustible material anchored in an approved manner.

2104.3 Cold weather construction. The cold weather construction provisions of TMS 602/ACI 530.1/ASCE 6, Article 1.8 C, shall be implemented when the ambient temperature falls below 40°F (4°C).

2104.4 Hot weather construction. The hot weather construction provisions of TMS 602/ACI 530.1/ASCE 6, Article 1.8 D, shall be implemented when the ambient air temperature exceeds 100°F (37.8°C), or 90°F (32.2°C) with a wind velocity greater than 8 mph (12.9 km/hr).

SECTION 2105 QUALITY ASSURANCE

2105.1 General. A quality assurance program shall be used to ensure that the constructed masonry is in compliance with the construction documents.

The quality assurance program shall comply with the inspection and testing requirements of Chapter 17.

2105.2 Acceptance relative to strength requirements.

2105.2.1 Compliance with f', and f',AAC. Compressive strength of masonry shall be considered satisfactory if the compressive strength of each masonry wythe and grouted collar joint equals or exceeds the value of f',m for clay and concrete masonry and f',AAC for AAC masonry. For partially grouted clay and concrete masonry, the compressive strength of both the grouted and ungrouted masonry shall equal or exceed the applicable f',m. At the time of prestress, the compressive strength of the masonry shall equal or exceed f',m, which shall be less than or equal to f',m.

2105.2.2 Determination of compressive strength. The compressive strength for each wythe shall be determined by the unit strength method or by the prism test method as specified herein.

2105.2.2.1 Unit strength method.

2105.2.2.1.1 Clay masonry. The compressive strength of masonry shall be determined based on the strength of the units and the type of mortar specified using Table 2105.2.2.1.1, provided:

1. Units are sampled and tested to verify compliance with ASTM C 62, ASTM C 216 or ASTM C 652.
2. Thickness of bed joints does not exceed 5/16 inch (15.9 mm).
3. For grouted masonry, the grout meets one of the following requirements:
 3.1. Grout conforms to Article 2.2 of TMS 602/ACI 530.1/ASCE 6.
 3.2. Minimum grout compressive strength equals or exceeds f',m but not less than 2,000 psi (13.79 MPa). The compressive strength of grout shall be determined in accordance with ASTM C 1019.
TABLE 2105.2.2.1.1

<table>
<thead>
<tr>
<th>NET AREA COMPRESSION STRENGTH OF CLAY MASONRY UNITS (psi)</th>
<th>NET AREA COMPRESSION STRENGTH OF MASONRY UNITS (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type M or S mortar</td>
<td>Type N mortar</td>
</tr>
<tr>
<td>1,700</td>
<td>2,100</td>
</tr>
<tr>
<td>3,350</td>
<td>4,150</td>
</tr>
<tr>
<td>4,950</td>
<td>6,200</td>
</tr>
<tr>
<td>6,600</td>
<td>8,250</td>
</tr>
<tr>
<td>8,250</td>
<td>10,300</td>
</tr>
<tr>
<td>9,900</td>
<td>—</td>
</tr>
<tr>
<td>11,500</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 0.00689 MPa.

2105.2.2.1.2 Concrete masonry. The compressive strength of masonry shall be determined based on the strength of the unit and type of mortar specified using Table 2105.2.2.1.2, provided:

1. Units are sampled and tested to verify compliance with ASTM C 55 or ASTM C 90.
2. Thickness of bed joints does not exceed 1/8 inch (15.9 mm).
3. For grouted masonry, the grout meets one of the following requirements:
 3.1. Grout conforms to Article 2.2 of TMS 602/ACI 530.1/ASCE 6.
 3.2. Minimum grout compressive strength equals or exceeds f'_{AC} but not less than 2,000 psi (13.79 MPa). The compressive strength of grout shall be determined in accordance with ASTM C 1019.

TABLE 2105.2.2.1.2

<table>
<thead>
<tr>
<th>NET AREA COMPRESSION STRENGTH OF CONCRETE MASONRY UNITS (psi)</th>
<th>NET AREA COMPRESSION STRENGTH OF MASONRY UNITS (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type M or S mortar</td>
<td>Type N mortar</td>
</tr>
<tr>
<td>1,250</td>
<td>1,300</td>
</tr>
<tr>
<td>1,900</td>
<td>2,150</td>
</tr>
<tr>
<td>2,800</td>
<td>3,050</td>
</tr>
<tr>
<td>3,750</td>
<td>4,050</td>
</tr>
<tr>
<td>4,800</td>
<td>5,250</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square inch = 0.00689 MPa.

a. For units less than 4 inches in height, 85 percent of the values listed.

2105.2.2.1.3 AAC masonry. The compressive strength of AAC masonry shall be based on the strength of the AAC masonry unit only and the following shall be met:

1. Units conform to ASTM C 1386.
2. Thickness of bed joints does not exceed 1/8 inch (3.2 mm).

3. For grouted masonry, the grout meets one of the following requirements:
 3.1. Grout conforms to Article 2.2 of TMS 602/ACI 530.1/ASCE 6.
 3.2. Minimum grout compressive strength equals or exceeds f'_{AC} but not less than 2,000 psi (13.79 MPa). The compressive strength of grout shall be determined in accordance with ASTM C 1019.

2105.2.2.2 Prism test method.

2105.2.2.2.1 General. The compressive strength of clay and concrete masonry shall be determined by the prism test method:

1. Where specified in the construction documents.
2. Where masonry does not meet the requirements for application of the unit strength method in Section 2105.2.2.1.

2105.2.2.2.2 Number of prisms per test. A prism test shall consist of three prisms constructed and tested in accordance with ASTM C 1314.

2105.3 Testing prisms from constructed masonry. When approved by the building official, acceptance of masonry that does not meet the requirements of Section 2105.2.2.1 or 2105.2.2.2 shall be permitted to be based on tests of prisms cut from the masonry construction in accordance with Sections 2105.3.1, 2105.3.2 and 2105.3.3.

2105.3.1 Prism sampling and removal. A set of three masonry prisms that are at least 28 days old shall be saw cut from the masonry for each 5,000 square feet (465 m²) of the wall area that is in question but not less than one set of three masonry prisms for the project. The length, width and height dimensions of the prisms shall comply with the requirements of ASTM C 1314. Transporting, preparation and testing of prisms shall be in accordance with ASTM C 1314.

2105.3.2 Compressive strength calculations. The compressive strength of prisms shall be the value calculated in accordance with ASTM C 1314, except that the net cross-sectional area of the prism shall be based on the net mortar bedded area.

2105.3.3 Compliance. Compliance with the requirement for the specified compressive strength of masonry, f'_{MN}, shall be considered satisfied provided the modified compressive strength equals or exceeds the specified f'_{MN}. Additional testing of specimens cut from locations in question shall be permitted.

SECTION 2106

SEISMIC DESIGN

2106.1 Seismic design requirements for masonry. Masonry structures and components shall comply with the requirements in Section 1.17 of TMS 402/ACI 530/ASCE 5 depending on the structure’s seismic design category as determined in Section 1613.
SECTION 2107
ALLOWABLE STRESS DESIGN

2107.1 General. The design of masonry structures using allowable stress design shall comply with Section 2106 and the requirements of Chapters 1 and 2 of TMS 402/ACI 530/ASCE 5 except as modified by Sections 2107.2 through 2107.5.

2107.2 TMS 402/ACI 530/ASCE 5, Section 2.1.2, load combinations. Delete Section 2.1.2.1.

2107.3 TMS 402/ACI 530/ASCE 5, Section 2.1.9.7.1.1, lap splices. Modify Section 2.1.9.7.1.1 as follows:

2.1.9.7.1.1 The minimum length of lap splices for reinforcing bars in tension or compression, \(l_p \), shall be

\[
l_p = 0.002 d_b f_y
\]

(Equation 21-1)

For SI: \(l_p = 0.29 d_b f_y \)

but not less than 12 inches (305 mm). In no case shall the length of the lapped splice be less than 40 bar diameters.

where:

- \(d_b \) = Diameter of reinforcement, inches (mm).
- \(f_y \) = Computed stress in reinforcement due to design loads, psi (MPa).

In regions of moment where the design tensile stresses in the reinforcement are greater than 80 percent of the allowable steel tension stress, \(F_y \), the lap length of splices shall be increased not less than 50 percent of the minimum required length. Other equivalent means of stress transfer to accomplish the same 50 percent increase shall be permitted. Where epoxy coated bars are used, lap length shall be increased by 50 percent.

2107.4 TMS 402/ACI 530/ASCE 5, Section 2.1.9.7, splices of reinforcement. Modify Section 2.1.9.7 as follows:

2.1.9.7 Splices of reinforcement. Lap splices, welded splices or mechanical splices are permitted in accordance with the provisions of this section. All welding shall conform to AWS D1.4. Welded splices shall be of ASTM A706 steel reinforcement. Reinforcement larger than No. 9 (M #29) shall be spliced using mechanical connections in accordance with Section 2.1.9.7.3.

2107.5 TMS 402/ACI 530/ASCE 5, Section 2.3.6, maximum bar size. Add the following to Chapter 2:

2.3.6 Maximum bar size. The bar diameter shall not exceed one-eighth of the least dimension of the cell, course or collar joint in which it is placed.

SECTION 2108
STRENGTH DESIGN OF MASONRY

2108.1 General. The design of masonry structures using strength design shall comply with Section 2106 and the requirements of Chapters 1 and 3 of TMS 402/ACI 530/ASCE 5, except as modified by Sections 2108.2 through 2108.3.

Exception: AAC masonry shall comply with the requirements of Chapter 1 and Appendix A of TMS 402/ACI 530/ASCE 5.

2108.2 TMS 402/ACI 530/ASCE 5, Section 3.3.3.3 development. Modify the second paragraph of Section 3.3.3.3 as follows:

The required development length of reinforcement shall be determined by Equation (3-16), but shall not be less than 12 inches (305 mm) and need not be greater than 72 \(d_b \).

2108.3 TMS 402/ACI 530/ASCE 5, Section 3.3.3.4, splices. Modify items (b) and (c) of Section 3.3.3.4 as follows:

3.3.3.4 (b). A welded splice shall have the bars butted and welded to develop at least 125 percent of the yield strength, \(f_y \), of the bar in tension or compression, as required. Welded splices shall be of ASTM A706 steel reinforcement. Welded splices shall not be permitted in plastic hinge zones of intermediate or special reinforced walls or special moment frames of masonry.

3.3.3.4 (c). Mechanical splices shall be classified as Type 1 or 2 according to Section 21.2.6.1 of ACI 318. Type 1 mechanical splices shall not be used within a plastic hinge zone or within a beam-column joint of intermediate or special reinforced masonry shear walls or special moment frames. Type 2 mechanical splices are permitted in any location within a member.

SECTION 2109
EMPIRICAL DESIGN OF MASONRY

2109.1 General. Empirically designed masonry shall conform to the requirements of Chapter 5 of TMS 402/ACI 530/ASCE 5, except where otherwise noted in this section.

2109.1.1 Limitations. The use of empirical design of masonry shall be limited as noted in Section 5.1.2 of TMS 402/ACI 530/ASCE 5. The use of dry-stacked, surface-bonded masonry shall be prohibited in Occupancy Category IV structures. In buildings that exceed one or more of the limitations of Section 5.1.2 of TMS 402/ACI 530/ASCE 5, masonry shall be designed in accordance with the engineered design provisions of Section 2101.2.1, 2101.2.2 or 2101.2.3 or the foundation wall provisions of Section 1807.1.5.

2109.2 Surface-bonded walls. Dry-stacked, surface-bonded concrete masonry walls shall comply with the requirements of Chapter 5 of TMS 402/ACI 530/ASCE 5, except where otherwise noted in this section.

2109.2.1 Strength. Dry-stacked, surface-bonded concrete masonry walls shall be of adequate strength and proportions to support all superimposed loads without exceeding the allowable stresses listed in Table 2109.2.1. Allowable stresses not specified in Table 2109.2.1 shall comply with the requirements of TMS 402/ACI 530/ASCE 5.
2109.3 Adobe construction. Adobe construction shall comply with this section and shall be subject to the requirements of this code for Type V construction, Chapter 5 of TMS 402/ACI 530/ASCE 5, and this section.

2109.3.1 Unstabilized adobe.

2109.3.1.1 Compressive strength. Adobe units shall have an average compressive strength of 300 psi (2068 kPa) when tested in accordance with ASTM C 67. Five samples shall be tested and no individual unit is permitted to have a compressive strength of less than 250 psi (1724 kPa).

2109.3.1.2 Modulus of rupture. Adobe units shall have an average modulus of rupture of 50 psi (345 kPa) when tested in accordance with the following procedure. Five samples shall be tested and no individual unit shall have a modulus of rupture of less than 35 psi (241 kPa).

2109.3.1.2.1 Support conditions. A cured unit shall be simply supported by 2-inch-diameter (51 mm) cylindrical supports located 2 inches (51 mm) in from each end and extending the full width of the unit.

2109.3.1.2.2 Loading conditions. A 2-inch-diameter (51 mm) cylinder shall be placed at midspan parallel to the supports.

2109.3.1.2.3 Testing procedure. A vertical load shall be applied to the cylinder at the rate of 500 pounds per minute (37 N/s) until failure occurs.

2109.3.1.2.4 Modulus of rupture determination. The modulus of rupture shall be determined by the equation:

\[f_r = \frac{3 PL}{2SW} \]
(Equation 21-2)

where, for the purposes of this section only:

- \(S_w \) = Width of the test specimen measured parallel to the loading cylinder, inches (mm).
- \(f_r \) = Modulus of rupture, psi (MPa).
- \(L_s \) = Distance between supports, inches (mm).
- \(S_t \) = Thickness of the test specimen measured parallel to the direction of load, inches (mm).
- \(P \) = The applied load at failure, pounds (N).

2109.3.1.3 Moisture content requirements. Adobe units shall have a moisture content not exceeding 4 percent by weight.

2109.3.1.4 Shrinkage cracks. Adobe units shall not contain more than three shrinkage cracks and any single shrinkage crack shall not exceed 3 inches (76 mm) in length or 1/6 inch (3.2 mm) in width.

2109.3.2 Stabilized adobe.

2109.3.2.1 Material requirements. Stabilized adobe shall comply with the material requirements of unstabilized adobe in addition to Sections 2109.3.2.1.1 and 2109.3.2.1.2.

2109.3.2.1.1 Soil requirements. Soil used for stabilized adobe units shall be chemically compatible with the stabilizing material.

2109.3.2.1.2 Absorption requirements. A 4-inch (102 mm) cube, cut from a stabilized adobe unit dried to a constant weight in a ventilated oven at 212°F (100°C) to 239°F (100°C to 115°C), shall not absorb more than 21/2 percent moisture by weight when placed upon a constantly water-saturated, porous surface for seven days. A minimum of five specimens shall be tested and each specimen shall be cut from a separate unit.

2109.3.3 Allowable stress. The allowable compressive stress based on gross cross-sectional area of adobe shall not exceed 30 psi (207 kPa).

2109.3.4 Construction.

2109.3.4.1 General. Adobe construction shall be limited as stated in Sections 2109.3.4.1.1 through 2109.3.4.1.4.

2109.3.4.1.1 Height restrictions. Adobe construction shall be limited to buildings not exceeding one story, except that two-story construction is allowed when designed by a registered design professional.

2109.3.4.1.2 Mortar restrictions. Mortar for stabilized adobe units shall comply with Chapter 21 or adobe soil. Adobe soil used as mortar shall comply with material requirements for stabilized adobe. Mortar for unstabilized adobe shall be portland cement mortar.
2109.3.4.1.3 Mortar joints. Adobe units shall be laid with full head and bed joints and in full running bond.

2109.3.4.1.4 Parapet walls. Parapet walls constructed of adobe units shall be waterproofed.

2109.3.4.2 Wall thickness. The minimum thickness of exterior walls in one-story buildings shall be 10 inches (254 mm). The walls shall be laterally supported at intervals not exceeding 24 feet (7315 mm). The minimum thickness of interior load-bearing walls shall be 8 inches (203 mm). In no case shall the unsupported height of any wall constructed of adobe units exceed 10 times the thickness of such wall.

2109.3.4.3 Foundations. Foundations for adobe construction shall be in accordance with Sections 2109.3.4.3.1 and 2109.3.4.3.2.

2109.3.4.3.1 Foundation support. Walls and partitions constructed of adobe units shall be supported by foundations or footings that extend not less than 6 inches (152 mm) above adjacent ground surfaces and are constructed of solid masonry (excluding adobe) or concrete. Footings and foundations shall comply with Chapter 18.

2109.3.4.3.2 Lower course requirements. Stabilized adobe units shall be used in adobe walls for the first 4 inches (102 mm) above the finished first-floor elevation.

2109.3.4.4 Isolated piers or columns. Adobe units shall not be used for isolated piers or columns in a load-bearing capacity. Walls less than 24 inches (610 mm) in length shall be considered isolated piers or columns.

2109.3.4.5 Tie beams. Exterior walls and interior load-bearing walls constructed of adobe units shall have a continuous tie beam at the level of the floor or roof bearing and meeting the following requirements.

2109.3.4.5.1 Concrete tie beams. Concrete tie beams shall be a minimum depth of 6 inches (152 mm) and a minimum width of 10 inches (254 mm). Concrete tie beams shall be continuously reinforced with a minimum of two No. 4 reinforcing bars. The specified compressive strength of concrete shall be at least 2,500 psi (17.2 MPa).

2109.3.4.5.2 Wood tie beams. Wood tie beams shall be solid or built up of lumber having a minimum nominal thickness of 1 inch (25 mm), and shall have a minimum depth of 6 inches (152 mm) and a minimum width of 10 inches (254 mm). Joints in wood tie beams shall be spliced a minimum of 6 inches (152 mm). No splices shall be allowed within 12 inches (305 mm) of an opening. Wood used in tie beams shall be approved naturally decay-resistant or preservative-treated wood.

2109.3.4.6 Exterior finish. Exterior walls constructed of unstabilized adobe units shall have their exterior surface covered with a minimum of two coats of portland cement plaster having a minimum thickness of 3/4 inch (19.1 mm) and conforming to ASTM C 926. Lathing shall comply with ASTM C 1063. Fasteners shall be spaced at 16 inches (406 mm) o.c. maximum. Exposed wood surfaces shall be treated with an approved wood preservative or other protective coating prior to lath application.

2109.3.4.7 Lintels. Lintels shall be considered structural members and shall be designed in accordance with the applicable provisions of Chapter 16.

SECTION 2110 GLASS UNIT MASONRY

2110.1 General. Glass unit masonry construction shall comply with Chapter 7 of TMS 402/ACI 530/ASCE 5 and this section.

2110.1.1 Limitations. Solid or hollow approved glass block shall not be used in fire walls, party walls, fire barriers, fire partitions or smoke barriers, or for load-bearing construction. Such blocks shall be erected with mortar and reinforcement in metal channel-type frames, structural frames, masonry or concrete recesses, embedded panel anchors as provided for both exterior and interior walls or other approved joint materials. Wood strip framing shall not be used in walls required to have a fire-resistance rating by other provisions of this code.

Exceptions:
1. Glass-block assemblies having a fire protection rating of not less than 1/2 hour shall be permitted as opening protectives in accordance with Section 715 in fire barriers, fire partitions and smoke barriers that have a required fire-resistance rating of 1 hour or less and do not enclose exit stairways, exit ramps or exit passageways.
2. Glass-block assemblies as permitted in Section 404.6, Exception 2.

SECTION 2111 MASONRY FIREPLACES

2111.1 Definition. A masonry fireplace is a fireplace constructed of concrete or masonry. Masonry fireplaces shall be constructed in accordance with this section.

2111.2 Footings and foundations. Footings for masonry fireplaces and their chimneys shall be constructed of concrete or solid masonry at least 12 inches (305 mm) thick and shall extend at least 6 inches (153 mm) beyond the face of the fireplace or foundation wall on all sides. Footings shall be founded on natural undisturbed earth or engineered fill below frost depth. In areas not subjected to freezing, footings shall be at least 12 inches (305 mm) below finished grade.

2111.2.1 Ash dump cleanout. Cleanout openings, located within foundation walls below fireboxes, when provided, shall be equipped with ferrous metal or masonry doors and frames constructed to remain tightly closed, except when in use. Cleanouts shall be accessible and located so that ash removal will not create a hazard to combustible materials.

2111.3 Seismic reinforcing. Masonry or concrete fireplaces shall be constructed, anchored, supported and reinforced as required in this chapter. In Seismic Design Category C or D,
masonry and concrete fireplaces shall be reinforced and anchored as detailed in Sections 2111.3.1, 2111.3.2, 2111.4 and 2111.4.1 for chimneys serving fireplaces. In Seismic Design Category A or B, reinforcement and seismic anchorage is not required. In Seismic Design Category E or F, masonry and concrete chimneys shall be reinforced in accordance with the requirements of Sections 2101 through 2108.

2111.3.1 Vertical reinforcing. For fireplaces with chimneys up to 40 inches (1016 mm) wide, four No. 4 continuous vertical bars, anchored in the foundation, shall be placed in the concrete between wythes of solid masonry or within the cells of hollow unit masonry and grouted in accordance with Section 2103.12. For fireplaces with chimneys greater than 40 inches (1016 mm) wide, two additional No. 4 vertical bars shall be provided for each additional 40 inches (1016 mm) in width or fraction thereof.

2111.3.2 Horizontal reinforcing. Vertical reinforcement shall be placed enclosed within 1/4-inch (6.4 mm) ties or other reinforcing of equivalent net cross-sectional area, spaced not to exceed 18 inches (457 mm) on center in concrete; or placed in the bed joints of unit masonry at a minimum of every 18 inches (457 mm) of vertical height. Two such ties shall be provided at each bend in the vertical bars.

2111.4 Seismic anchorage. Masonry and concrete chimneys in Seismic Design Category C or D shall be anchored at each floor, ceiling or roof line more than 6 feet (1829 mm) above grade, except where constructed completely within the exterior walls. Anchorage shall conform to the following requirements.

2111.4.1 Anchorage. Two 1/6-inch by 1-inch (4.8 mm by 25.4 mm) straps shall be embedded a minimum of 12 inches (305 mm) into the chimney. Straps shall be hooked around the outer bars and extend 6 inches (152 mm) beyond the bend. Each strap shall be fastened to a minimum of four floor joists with two 1/6-inch (12.7 mm) bolts.

2111.5 Firebox walls. Masonry fireboxes shall be constructed of solid masonry units, hollow masonry units grouted solid, stone or concrete. When a lining of firebrick at least 2 inches (51 mm) in thickness or other approved lining is provided, the minimum thickness of back and sidewalls shall each be 8 inches (203 mm) of solid masonry, including the lining. The width of joints between firebricks shall not be greater than 1/4 inch (6.4 mm). When no lining is provided, the total minimum thickness of back and sidewalls shall be 10 inches (254 mm) of solid masonry. Firebrick shall conform to ASTM C 27 or ASTM C 1261 and shall be laid with medium-duty refractory mortar conforming to ASTM C 199.

2111.6 Firebox dimensions. The firebox of a concrete or masonry fireplace shall have a minimum depth of 20 inches (508 mm). The throat shall not be less than 8 inches (203 mm) above the firebox opening. The throat opening shall not be less than 4 inches (102 mm) in depth. The cross-sectional area of the passageway above the firebox, including the throat, damper and smoke chamber, shall not be less than the cross-sectional area of the flue.

Exception: Rumford fireplaces shall be permitted provided that the depth of the fireplace is at least 12 inches (305 mm) and at least one-third of the width of the fireplace opening, and the throat is at least 12 inches (305 mm) above the lintel, and at least 1/20 the cross-sectional area of the fireplace opening.

2111.7 Lintel and throat. Masonry over a fireplace opening shall be supported by a lintel of noncombustible material. The minimum required bearing length on each end of the fireplace opening shall be 4 inches (102 mm). The fireplace throat or damper shall be located a minimum of 8 inches (203 mm) above the top of the fireplace opening.

2111.7.1 Damper. Masonry fireplaces shall be equipped with a ferrous metal damper located at least 8 inches (203 mm) above the top of the fireplace opening. Dampers shall be installed in the fireplace or at the top of the flue venting the fireplace, and shall be operable from the room containing the fireplace. Damper controls shall be permitted to be located in the fireplace.

2111.8 Smoke chamber walls. Smoke chamber walls shall be constructed of solid masonry units, hollow masonry units grouted solid, stone or concrete. The total minimum thickness of front, back and sidewalls shall be 8 inches (203 mm) of solid masonry. The inside surface shall be parged smooth with refractory mortar conforming to ASTM C 199. When a lining of firebrick at least 2 inches (51 mm) thick, or a lining of vitrified clay at least 1/6 inch (15.9 mm) thick, is provided, the total minimum thickness of front, back and sidewalls shall be 6 inches (152 mm) of solid masonry, including the lining. Firebrick shall conform to ASTM C 1261 and shall be laid with refractory mortar conforming to ASTM C 199. Vitrified clay linings shall conform to ASTM C 315.

2111.8.1 Smoke chamber dimensions. The inside height of the smoke chamber from the fireplace throat to the beginning of the flue shall not be greater than the inside width of the fireplace opening. The inside surface of the smoke chamber shall not be inclined more than 45 degrees (0.76 rad) from vertical when prefabricated smoke chamber linings are used or when the smoke chamber walls are rolled or sloped rather than corbeled. When the inside surface of the smoke chamber is formed by corbeled masonry, the walls shall not be corbeled more than 30 degrees (0.52 rad) from vertical.

2111.9 Hearth and hearth extension. Masonry fireplace hearths and hearth extensions shall be constructed of concrete or masonry, supported by noncombustible materials, and reinforced to carry their own weight and all imposed loads. No combustible material shall remain against the underside of hearths or hearth extensions after construction.
2111.9.1 Hearth thickness. The minimum thickness of fireplace hearths shall be 4 inches (102 mm).

2111.9.2 Hearth extension thickness. The minimum thickness of hearth extensions shall be 2 inches (51 mm).

Exception: When the bottom of the firebox opening is raised at least 8 inches (203 mm) above the top of the hearth extension, a hearth extension of not less than 1/2-inch-thick (9.5 mm) brick, concrete, stone, tile or other approved noncombustible material is permitted.

2111.10 Hearth extension dimensions. Hearth extensions shall extend at least 16 inches (406 mm) in front of, and at least 8 inches (203 mm) beyond, each side of the fireplace opening. Where the fireplace opening is 6 square feet (0.557 m²) or larger, the hearth extension shall extend at least 20 inches (508 mm) in front of, and at least 12 inches (305 mm) beyond, each side of the fireplace opening.

2111.11 Fireplace clearance. Any portion of a masonry fireplace located in the interior of a building or within the exterior wall of a building shall have a clearance to combustibles of not less than 2 inches (51 mm) from the front faces and sides of masonry fireplaces and not less than 4 inches (102 mm) from the back faces of masonry fireplaces. The airspace shall not be filled, except to provide fireblocking in accordance with Section 2111.12.

Exceptions:
1. Masonry fireplaces listed and labeled for use in contact with combustibles in accordance with UL 127 and installed in accordance with the manufacturer's installation instructions are permitted to have combustible material in contact with their exterior surfaces.
2. When masonry fireplaces are constructed as part of masonry or concrete walls, combustible materials shall not be in contact with the masonry or concrete walls less than 12 inches (306 mm) from the inside surface of the nearest firebox lining.
3. Exposed combustible trim and the edges of sheathing materials, such as wood siding, flooring and drywall, are permitted to abut the masonry fireplace sidewalls and hearth extension, in accordance with Figure 2111.11, provided such combustible trim or sheathing is a minimum of 12 inches (306 mm) from the inside surface of the nearest firebox lining.
4. Exposed combustible mantels or trim is permitted to be placed directly on the masonry fireplace front surrounding the fireplace opening, provided such combustible materials shall not be placed within 6 inches (153 mm) of a fireplace opening. Combustible material directly above and within 12 inches (305 mm) of the fireplace opening shall not project more than 1/4 inch (3.2 mm) for each 1-inch (25 mm) distance from such opening. Combustible materials located along the sides of the fireplace opening that project more than 1 1/2 inches (38 mm) from the face of the fireplace shall have an additional clearance equal to the projection.

2111.12 Fireplace fireblocking. All spaces between fireplaces and floors and ceilings through which fireplaces pass shall be fireblocked with noncombustible material securely fastened in place. The fireblocking of spaces between wood joists, beams or headers shall be to a depth of 1 inch (25 mm) and shall only be placed on strips of metal or metal lath laid across the spaces between combustible material and the chimney.

2111.13 Exterior air. Factory-built or masonry fireplaces covered in this section shall be equipped with an exterior air supply to ensure proper fuel combustion unless the room is mechanically ventilated and controlled so that the indoor pressure is neutral or positive.

2111.13.1 Factory-built fireplaces. Exterior combustion air ducts for factory-built fireplaces shall be listed components of the fireplace, and installed according to the fireplace manufacturer's instructions.

2111.13.2 Masonry fireplaces. Listed combustion air ducts for masonry fireplaces shall be installed according to the terms of their listing and manufacturer's instructions.

2111.13.3 Exterior air intake. The exterior air intake shall be capable of providing all combustion air from the exterior of the dwelling. The exterior air intake shall not be located within a garage, attic, basement or crawl space of the dwelling nor shall the air intake be located at an elevation higher than the firebox. The exterior air intake shall be covered with a corrosion-resistant screen of 1/4-inch (6.4 mm) mesh.

2111.13.4 Clearance. Unlisted combustion air ducts shall be installed with a minimum 1-inch (25 mm) clearance to combustibles for all parts of the duct within 5 feet (1524 mm) of the duct outlet.

2111.13.5 Passageway. The combustion air passageway shall be a minimum of 6 square inches (3870 mm²) and not more than 55 square inches (0.035 m²), except that combustion air systems for listed fireplaces or for fireplaces tested for emissions shall be constructed according to the fireplace manufacturer's instructions.

2111.13.6 Outlet. The exterior air outlet is permitted to be located in the back or sides of the firebox chamber or within 24 inches (610 mm) of the firebox opening or near the floor. The outlet shall be closable and designed to prevent burning material from dropping into concealed combustible spaces.

For SI: 1 inch = 25.4 mm

FIGURE 2111.11
ILLUSTRATION OF EXCEPTION TO FIREPLACE CLEARANCE PROVISION

286 2010 CALIFORNIA BUILDING CODE
SECTION 2112
MASONRY HEATERS

2112.1 Definition. A masonry heater is a heating appliance constructed of concrete or solid masonry, hereinafter referred to as “masonry,” which is designed to absorb and store heat from a solid fuel fire built in the fireplace by routing the exhaust gases through internal heat exchange channels in which the flow path downstream of the fireplace may include flow in a horizontal or downward direction before entering the chimney and which delivers heat by radiation from the masonry surface of the heater.

2112.2 Installation. Masonry heaters shall be installed in accordance with this section and comply with one of the following:

1. Masonry heaters shall comply with the requirements of ASTM E 1602; or
2. Masonry heaters shall be listed and labeled in accordance with UL 1482 and installed in accordance with the manufacturer’s installation instructions.

2112.3 Footings and foundation. The fireplace floor of a masonry heater shall be a minimum thickness of 4 inches (102 mm) of noncombustible material and be supported on a noncombustible footing and foundation in accordance with Section 2113.2.

2112.4 Seismic reinforcing. In Seismic Design Category D, E and F, masonry heaters shall be anchored to the foundation in accordance with Section 2113.3. Seismic reinforcing shall not be required within the body of a masonry heater with a height that is equal to or less than 3.5 times its body width and where the masonry chimney serving the heater is not supported by the body of the heater. Where the masonry chimney shares a common wall with the facing of the masonry heater, the chimney portion of the structure shall be reinforced in accordance with Section 2113.

2112.5 Masonry heater clearance. Combustible materials shall not be placed within 36 inches (765 mm) of the outside surface of a masonry heater in accordance with NFPA 211, Section 8-7 (clearances for solid fuel-burning appliances), and the required space between the heater and combustible material shall be fully vented to permit the free flow of air around all heater surfaces.

Exceptions:

1. When the masonry heater wall thickness is at least 8 inches (203 mm) thick of solid masonry and the wall thickness of the heat exchange channels is at least 5 inches (127 mm) thick of solid masonry, combustible materials shall not be placed within 4 inches (102 mm) of the outside surface of a masonry heater. A clearance of at least 8 inches (203 mm) shall be provided between the gas-tight capping slab of the heater and a combustible ceiling.
2. Masonry heaters listed and labeled in accordance with UL 1482 and installed in accordance with the manufacturer’s instructions.

SECTION 2113
MASONRY CHIMNEYS

2113.1 Definition. A masonry chimney is a chimney constructed of concrete or masonry, hereinafter referred to as “masonry.” Masonry chimneys shall be constructed, anchored, supported and reinforced as required in this chapter.

2113.2 Footings and foundations. Footings for masonry chimneys shall be constructed of concrete or solid masonry at least 12 inches (305 mm) thick and shall extend at least 6 inches (152 mm) beyond the face of the foundation or support wall on all sides. Footings shall be founded on natural undisturbed earth or engineered fill below frost depth. In areas not subjected to freezing, footings shall be at least 12 inches (305 mm) below finished grade.

2113.3 Seismic reinforcing. Masonry or concrete chimneys shall be constructed, anchored, supported and reinforced as required in this chapter. In Seismic Design Category C or D, masonry and concrete chimneys shall be reinforced and anchored as detailed in Sections 2113.3.1, 2113.3.2 and 2113.4. In Seismic Design Category A or B, reinforcement and seismic anchorage is not required. In Seismic Design Category E or F, masonry and concrete chimneys shall be reinforced in accordance with the requirements of Sections 2101 through 2108.

2113.3.1 Vertical reinforcing. For chimneys up to 40 inches (1016 mm) wide, four No. 4 continuous vertical bars anchored in the foundation shall be placed in the concrete between wythes of solid masonry or within the cells of hollow unit masonry and grouted in accordance with Section 2103.12. Grout shall be prevented from bonding with the flue liner so that the flue liner is free to move with thermal expansion. For chimneys greater than 40 inches (1016 mm) wide, two additional No. 4 vertical bars shall be provided for each additional 40 inches (1016 mm) in width or fraction thereof.

2113.3.2 Horizontal reinforcing. Vertical reinforcement shall be placed enclosed within 1/4-inch (6.4 mm) ties, or other reinforcing of equivalent net cross-sectional area, spaced not to exceed 18 inches (457 mm) o.c. in concrete, or placed in the bed joints of unit masonry, at a minimum of every 18 inches (457 mm) of vertical height. Two such ties shall be provided at each bend in the vertical bars.

2113.4 Seismic anchorage. Masonry and concrete chimneys and foundations in Seismic Design Category C or D shall be anchored at each floor, ceiling or roof line more than 6 feet (1829 mm) above grade, except where constructed completely within the exterior walls. Anchorage shall conform to the following requirements.

2113.4.1 Anchorage. Two 1/4-inch by 1-inch (4.8 mm by 25 mm) straps shall be embedded a minimum of 12 inches (305 mm) into the chimney. Straps shall be hooked around the outer bars and extend 6 inches (152 mm) beyond the bend. Each strap shall be fastened to a minimum of four floor joists with two 1/4-inch (12.7 mm) bolts.

2113.5 Corbeling. Masonry chimneys shall not be corbeled more than half of the chimney’s wall thickness from a wall or foundation, nor shall a chimney be corbeled from a wall or...
foundation that is less than 12 inches (305 mm) in thickness unless it projects equally on each side of the wall, except that on the second story of a two-story dwelling, corbeling of chimneys on the exterior of the enclosing walls is permitted to equal the wall thickness. The projection of a single course shall not exceed one-half the unit height or one-third of the unit bed depth, whichever is less.

2113.6 Changes in dimension. The chimney wall or chimney flue lining shall not change in size or shape within 6 inches (152 mm) above or below where the chimney passes through floor components, ceiling components or roof components.

2113.7 Offsets. Where a masonry chimney is constructed with a fireclay flue liner surrounded by one wythe of masonry, the maximum offset shall be such that the centerline of the flue above the offset does not extend beyond the center of the chimney wall below the offset. Where the chimney offset is supported by masonry below the offset in an approved manner, the maximum offset limitations shall not apply. Each individual corbeled masonry course of the offset shall not exceed the projection limitations specified in Section 2113.5.

2113.8 Additional load. Chimneys shall not support loads other than their own weight unless they are designed and constructed to support the additional load. Masonry chimneys are permitted to be constructed as part of the masonry walls or concrete walls of the building.

2113.9 Termination. Chimneys shall extend at least 2 feet (610 mm) higher than any portion of the building within 10 feet (3048 mm), but shall not be less than 3 feet (914 mm) above the highest point where the chimney passes through the roof.

2113.9.1 Spark arrestors. [SFM] All chimneys attached to any appliance or fireplace that burns solid fuel shall be equipped with an approved spark arrester. The spark arrester shall meet all of the following requirements:

1. The net free area of the spark arrester shall not be less than four times the net free area of the outlet of the chimney.

2. The spark arrester screen shall have heat and corrosion resistance equivalent to 12-gage wire, 19-gage galvanized wire or 24-gage stainless steel.

3. Openings shall not permit the passage of spheres having a diameter larger than 1/2 inch (12.7 mm) and shall not block the passage of spheres having a diameter of less than 1/4 inch (9.5 mm).

4. The spark arrester shall be accessible for cleaning and the screen or chimney cap shall be removable to allow for cleaning of the chimney flue.

2113.10 Wall thickness. Masonry chimney walls shall be constructed of concrete, solid masonry units or hollow masonry units grouted solid with not less than 4 inches (102 mm) nominal thickness.

2113.10.1 Masonry veneer chimneys. Where masonry is used as veneer for a framed chimney, through flashing and weep holes shall be provided as required by Chapter 14.

2113.11 Flue lining (material). Masonry chimneys shall be lined. The lining material shall be appropriate for the type of appliance connected, according to the terms of the appliance listing and the manufacturer’s instructions.

2113.11.1 Residential-type appliances (general). Flue lining systems shall comply with one of the following:

1. Clay flue lining complying with the requirements of ASTM C 315.

2. Listed chimney lining systems complying with UL 1777.

3. Factory-built chimneys or chimney units listed for installation within masonry chimneys.

4. Other approved materials that will resist corrosion, erosion, softening or cracking from flue gases and condensate at temperatures up to 1,800°F (982°C).

2113.11.1.1 Flue linings for specific appliances. Flue linings other than those covered in Section 2113.11.1 intended for use with specific appliances shall comply with Sections 2113.11.1.2 through 2113.11.1.4 and Sections 2113.11.1.2 and 2113.11.3.

2113.11.1.2 Gas appliances. Flue lining systems for gas appliances shall be in accordance with the California Mechanical Code.

2113.11.1.3 Pellet fuel-burning appliances. Flue lining and vent systems for use in masonry chimneys with pellet fuel-burning appliances shall be limited to flue lining systems complying with Section 2113.11.1 and pellet vents listed for installation within masonry chimneys (see Section 2113.11.1.5 for marking).

2113.11.1.4 Oil-fired appliances approved for use with L-vent. Flue lining and vent systems for use in masonry chimneys with oil-fired appliances approved for use with Type L vent shall be limited to flue lining systems complying with Section 2113.11.1.4 Oil-fired appliances approved for use with L-vent and listed chimney liners complying with UL 641 (see Section 2113.11.1.5 for marking).

2113.11.1.5 Notice of usage. When a flue is relined with a material not complying with Section 2113.11.1, the chimney shall be plainly and permanently identified by a label attached to a wall, ceiling or other conspicuous location adjacent to where the connector enters the chimney. The label shall include the following message or equivalent language: “This chimney is for use only with (type or category of appliance) that burns (type of fuel). Do not connect other types of appliances.”

2113.11.2 Concrete and masonry chimneys for medium-heat appliances.

2113.11.2.1 General. Concrete and masonry chimneys for medium-heat appliances shall comply with Sections 2113.1 through 2113.5.

2113.11.2.2 Construction. Chimneys for medium-heat appliances shall be constructed of solid masonry units or of concrete with walls a minimum of 8 inches (203 mm) thick, or with stone masonry a minimum of 12 inches (305 mm) thick.

2113.11.2.3 Lining. Concrete and masonry chimneys shall be lined with an approved medium-duty refractory
brick a minimum of 4 1/2 inches (114 mm) thick laid on the 4 1/2-inch bed (114 mm) in an approved medium-duty refractory mortar. The lining shall start 2 feet (610 mm) or more below the lowest chimney connector entrance. Chimneys terminating 25 feet (7620 mm) or less above a chimney connector entrance shall be lined to the top.

2113.11.2.4 Multiple passageway. Concrete and masonry chimneys containing more than one passageway shall have the liners separated by a minimum 4-inch-thick (102 mm) concrete or solid masonry wall.

2113.11.2.5 Termination height. Concrete and masonry chimneys for medium-heat appliances shall extend a minimum of 10 feet (3048 mm) higher than any portion of any building within 25 feet (7620 mm).

2113.11.2.6 Clearance. A minimum clearance of 4 inches (102 mm) shall be provided between the exterior surfaces of a concrete or masonry chimney for medium-heat appliances and combustible material.

2113.11.3 Concrete and masonry chimneys for high-heat appliances.

2113.11.3.1 General. Concrete and masonry chimneys for high-heat appliances shall comply with Sections 2113.1 through 2113.5.

2113.11.3.2 Construction. Chimneys for high-heat appliances shall be constructed with double walls of solid masonry units or of concrete, each wall to be a minimum of 8 inches (203 mm) thick with a minimum air-space of 2 inches (51 mm) between the walls.

2113.11.3.3 Lining. The inside of the interior wall shall be lined with an approved high-duty refractory brick, a minimum of 4 1/2 inches (114 mm) thick laid on the 4 1/2-inch bed (114 mm) in an approved high-duty refractory mortar. The lining shall start at the base of the chimney and extend continuously to the top.

2113.11.3.4 Termination height. Concrete and masonry chimneys for high-heat appliances shall extend a minimum of 20 feet (6096 mm) higher than any portion of any building within 50 feet (15240 mm).

2113.11.3.5 Clearance. Concrete and masonry chimneys for high-heat appliances shall have approved clearance from buildings and structures to prevent overheating combustible materials, permit inspection and maintenance operations on the chimney and prevent danger of burns to persons.

2113.12 Clay flue lining (installation). Clay flue liners shall be installed in accordance with ASTM C 1283 and extend from a point not less than 8 inches (203 mm) below the lowest inlet or, in the case of fireplaces, from the top of the smoke chamber to a point above the enclosing walls. The lining shall be carried up vertically, with a maximum slope no greater than 30 degrees (0.52 rad) from the vertical.

Clay flue liners shall be laid in medium-duty refractory mortar conforming to ASTM C 199 with tight mortar joints left smooth on the inside and installed to maintain an air space or insulation not to exceed the thickness of the flue liner separating the flue liners from the interior face of the chimney masonry walls. Flue lining shall be supported on all sides. Only enough mortar shall be placed to make the joint and hold the liners in position.

2113.13 Additional requirements.

2113.13.1 Listed materials. Listed materials used as flue linings shall be installed in accordance with the terms of their listings and the manufacturer’s instructions.

2113.13.2 Space around lining. The space surrounding a chimney lining system or vent installed within a masonry chimney shall not be used to vent any other appliance.

Exception: This shall not prevent the installation of a separate flue lining in accordance with the manufacturer’s instructions.

2113.14 Multiple flues. When two or more flues are located in the same chimney, masonry wythes shall be built between adjacent flue linings. The masonry wythes shall be at least 4 inches (102 mm) thick and bonded into the walls of the chimney.

Exception: When venting only one appliance, two flues are permitted to adjoin each other in the same chimney with only the flue lining separation between them. The joints of the adjacent flue linings shall be staggered at least 4 inches (102 mm).

2113.15 Flue area (appliance). Chimney flues shall not be smaller in area than the area of the connector from the appliance. Chimney flues connected to more than one appliance shall not be less than the area of the largest connector plus 50 percent of the areas of additional chimney connectors.

Exceptions:

1. Chimney flues serving oil-fired appliances sized in accordance with NFPA 31.
2. Chimney flues serving gas-fired appliances sized in accordance with the California Mechanical Code.

2113.16 Flue area (masonry fireplace). Flue sizing for masonry fireplaces shall be in accordance with Section 2113.16.1 or 2113.16.2.

2113.16.1 Minimum area. Round chimney flues shall have a minimum net cross-sectional area of at least 1/12 of the fireplace opening. Square chimney flues shall have a minimum net cross-sectional area of at least 1/10 of the fireplace opening. Rectangular chimney flues with an aspect ratio less than 2 to 1 shall have a minimum net cross-sectional area of at least 1/10 of the fireplace opening. Rectangular chimney flues with an aspect ratio of 2 to 1 or more shall have a minimum net cross-sectional area of at least 1/6 of the fireplace opening.

2113.16.2 Determination of minimum area. The minimum net cross-sectional area of the flue shall be determined in accordance with Figure 2113.16. A flue size providing at least the equivalent net cross-sectional area shall be used. Cross-sectional areas of clay flue linings are as provided in Tables 2113.16(1) and 2113.16(2) or as provided by the manufacturer or as measured in the field. The height of the chimney shall be measured from the firebox floor to the top of the chimney flue.
TABLE 2113.16(1)
NET CROSS-SECTIONAL AREA OF ROUND FLUE SIZES*

<table>
<thead>
<tr>
<th>FLUE SIZE, INSIDE DIAMETER (inches)</th>
<th>CROSS-SECTIONAL AREA (square inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
</tr>
<tr>
<td>10 3/8</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>113</td>
</tr>
<tr>
<td>15</td>
<td>176</td>
</tr>
<tr>
<td>18</td>
<td>254</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm².
a. Flue sizes are based on ASTM C 315.

TABLE 2113.16(2)
NET CROSS-SECTIONAL AREA OF SQUARE AND RECTANGULAR FLUE SIZES

<table>
<thead>
<tr>
<th>FLUE SIZE, OUTSIDE NOMINAL DIMENSIONS (inches)</th>
<th>CROSS-SECTIONAL AREA (square inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 × 8.5</td>
<td>23</td>
</tr>
<tr>
<td>4.5 × 13</td>
<td>34</td>
</tr>
<tr>
<td>8 × 8</td>
<td>42</td>
</tr>
<tr>
<td>8.5 × 8.5</td>
<td>49</td>
</tr>
<tr>
<td>8 × 12</td>
<td>67</td>
</tr>
<tr>
<td>8.5 × 13</td>
<td>76</td>
</tr>
<tr>
<td>12 × 12</td>
<td>102</td>
</tr>
<tr>
<td>8.5 × 18</td>
<td>101</td>
</tr>
<tr>
<td>13 × 13</td>
<td>127</td>
</tr>
<tr>
<td>12 × 16</td>
<td>131</td>
</tr>
<tr>
<td>13 × 18</td>
<td>173</td>
</tr>
<tr>
<td>16 × 16</td>
<td>181</td>
</tr>
<tr>
<td>16 × 20</td>
<td>222</td>
</tr>
<tr>
<td>18 × 18</td>
<td>233</td>
</tr>
<tr>
<td>20 × 20</td>
<td>298</td>
</tr>
<tr>
<td>20 × 24</td>
<td>335</td>
</tr>
<tr>
<td>24 × 24</td>
<td>431</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm².
2113.17 Inlet. Inlets to masonry chimneys shall enter from the side. Inlets shall have a thimble of fireclay, rigid refractory material or metal that will prevent the connector from pulling out of the inlet or from extending beyond the wall of the liner.

2113.18 Masonry chimney cleanout openings. Cleanout openings shall be provided within 6 inches (152 mm) of the base of each flue within every masonry chimney. The upper edge of the cleanout shall be located at least 6 inches (152 mm) below the lowest chimney inlet opening. The height of the opening shall be at least 6 inches (152 mm). The cleanout shall be provided with a noncombustible cover.

Exception: Chimney flues serving masonry fireplaces, where cleaning is possible through the fireplace opening.

2113.19 Chimney clearances. Any portion of a masonry chimney located in the interior of the building or within the exterior wall of the building shall have a minimum airspace clearance to combustibles of 2 inches (51 mm). Chimneys located entirely outside the exterior walls of the building, including chimneys that pass through the soffit or cornice, shall have a minimum airspace clearance of 1 inch (25 mm). The airspace shall not be filled, except to provide fireblocking in accordance with Section 2113.20.

Exceptions:

1. Masonry chimneys equipped with a chimney lining system listed and labeled for use in chimneys in contact with combustibles in accordance with UL 1777, and installed in accordance with the manufacturer’s instructions, are permitted to have combustible material in contact with their exterior surfaces.

2. Where masonry chimneys are constructed as part of masonry or concrete walls, combustible materials shall not be in contact with the masonry or concrete wall less than 12 inches (305 mm) from the inside surface of the nearest flue lining.

3. Exposed combustible trim and the edges of sheathing materials, such as wood siding, are permitted to abut the masonry chimney sidewalls, in accordance with Figure 2113.19, provided such combustible trim or sheathing is a minimum of 12 inches (305 mm) from the inside surface of the nearest flue lining. Combustible material and trim shall not overlap the corners of the chimney by more than 1 inch (25 mm).

2113.20 Chimney fireblocking. All spaces between chimneys and floors and ceilings through which chimneys pass shall be fireblocked with noncombustible material securely fastened in place. The fireblocking of spaces between wood joists, beams or headers shall be to a depth of 1 inch (25 mm) and shall only be placed on strips of metal or metal lath laid across the spaces between combustible material and the chimney.

SECTION 2114 ADDITIONAL REQUIREMENTS [DSA-SS/CC]

2114.1 General. In addition to the provisions of this chapter, the following requirements shall apply to community college buildings regulated by the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC).

2114.1.1 Prohibitions. The following design, systems and materials are not permitted by DSA:

1. Unreinforced masonry
2. Autoclaved aerated concrete (AAC) masonry
3. Empirical design of masonry
4. Ordinary reinforced masonry shear walls
5. Intermediate reinforced masonry shear walls
6. Prestressed masonry shear walls

2114.2 Mortar. Mortar for use in masonry construction shall conform to ASTM C 270 Type S or M, except for mortars listed in Sections 2103.9 and 2103.10. Type S mortar conforming to ASTM C 270 shall be used for glass unit masonry.

2114.3 Additives and Admixtures.

2114.3.1 General. Additives and admixtures to mortar or grout shall not be used unless approved by the enforcement agency.

2114.3.2 Antifreeze compounds. Antifreeze liquids, chloride salts or other such substances shall not be used in mortar or grout.

2114.3.3 Air entrainment. Air-entraining substances shall not be used in mortar or grout unless tests are conducted to determine compliance with the requirements of this code.

2114.4 Tolerances. The maximum thickness of the initial bed joint in fully grouted masonry walls shall not exceed 1/4 in. (6.4 mm).

2114.5 Glass unit masonry. All mortar for glass unit masonry shall be treated to ensure adhesion between mortar and glass.

2114.6 Grouted masonry.

2114.6.1 General conditions. Prior to grouting, the grout space shall be clean so that all spaces to be filled with grout do not contain mortar projections greater than 1/4 inch (6.4 mm), mortar droppings and other foreign material. Reinforcement shall be clean, properly positioned and solidly embedded in the grout. The grouting of any section of wall shall be completed in one day with no interruptions greater than one hour. At the time of laying, all masonry units shall be free of dust and dirt.
Between grout pours, a horizontal construction joint shall be formed by stopping all wythes at the same elevation and with the grout stopping a minimum of 1 1/2 inches (38 mm) below a mortar joint, except at the top of the wall. Where bond beams occur, the grout pour shall be stopped a minimum of 1/2 inch (12.7 mm) below the top of the masonry.

The construction documents shall completely describe grouting procedures, subject to approval of DSA.

2114.6.2 Construction requirements. Reinforcement and embedded items shall be placed and securely anchored against moving prior to grouting. Bolts shall be accurately set with templates or by approved equivalent means and held in place to prevent dislocation during grouting.

Grout shall be consolidated by mechanical vibration during placement before loss of plasticity in a manner to fill the grout space. Grout pours greater than 12 inches (300 mm) in height shall be consolidated by mechanical vibration to minimize voids due to water loss. Grout not mechanically vibrated shall be puddled.

2114.7 Aluminum equipment. Grout shall not be handled nor pumped utilizing aluminum equipment unless it can be demonstrated with the materials and equipment to be used that there will be no deleterious effect on the strength of the grout.

2114.8 Specified compressive strength. The specified compressive strength, f’ m, assumed in design shall be not less than 1,500 psi (10.34 MPa) for all masonry construction using materials and details of construction required herein. Testing of the constructed masonry shall be provided in accordance with Section 2105.4.

In no case shall the f’ m assumed in design exceed 3,000 psi (20.68 MPa).

2114.9 Additional testing requirements.

2114.9.1 Mortar and grout tests. At the beginning of all masonry work, at least one test sample of the mortar and grout shall be taken on three successive working days and at least at one-week intervals thereafter. They shall meet the minimum strength requirement given in Sections 2103.8 and 2103.12 for mortar and grout, respectively. Additional samples shall be taken whenever any change in materials or job conditions occur, or whenever in the judgment of the architect, structural engineer or the enforcement agency such tests are necessary to determine the quality of the material. When the prism test method of Section 2105.2.2.2 is used, the tests in this section are not required.

Test specimens for mortar and grout shall be made as set forth in ASTM C 1586 and ASTM C 1019.

2114.9.2 Prism test method.

2114.9.2.1 Number of prisms per test. Prior to the start of construction, three prisms shall be constructed and tested in accordance with ASTM C 1314. A set of three masonry prisms shall be built during construction in accordance with ASTM C 1314 for each 5,000 square feet (465 m²) of wall area, but not less than one set of three prisms for the project. Each set of prisms shall equal or exceed f’ m.

2114.9.2.2 Testing prisms from constructed masonry. Acceptance of masonry that does not meet the requirements of Sections 2114.10.1 or 2114.10.2.3 may be based on prism tests conducted in accordance with Section 2105.3.

2114.9.3 Masonry core testing. Not less than two cores shall be taken from each building for each 5,000 square feet (465 m²) of the greater of the masonry wall area or the floor area or fraction thereof. The architect or structural engineer in responsible charge of the project or his or her representative (inspector) shall select the areas for sampling. Cores shall be a minimum of 3 3/4 inches (76 mm) in diameter and shall be taken in such a manner as to exclude masonry unit webs and reinforcing steel. The inspector of record or testing agency shall inspect the coring of the masonry walls.

Visual examination of all cores shall be made and the condition of the cores reported. One half of the number of cores taken shall be tested in shear. The shear test shall test both joints between the grout core and the outer wythes or face shells of the masonry. Shear testing apparatus shall be of a design approved by the enforcement agency. Core samples shall not be soaked before testing. The unit shear on the cross section of the core shall not be less than 2.5 $\sqrt{f'_{m}}$ psi.

All cores shall be submitted to the laboratory for examination regardless of whether the core specimens failed during cutting operation. The laboratory shall report the location where each core was taken, the findings of their visual examination of each core, identify which cores were selected for shear testing and the results of the shear tests.

2114.10 Modifications to TMS 402/ACI 530/ASCE 5.

2114. 10.1 Modify TMS 402/ACI 530/ASCE 5, Section 1.17 as follows:

1. Minimum reinforcement requirements for masonry walls. The total area of reinforcement in reinforced masonry walls shall not be less than 0.003 times the sectional area of the wall. Neither the horizontal nor the vertical reinforcement shall be less than one third of the total. Horizontal and vertical rebars shall be spaced at not more than 24 inches (610 mm) center to center. The minimum reinforcing shall be No. 4, except that No. 3 bars may be used for ties and stirrups. Vertical wall steel shall have dowels of equal size and equal matched spacing in all footings. Reinforcement shall be continuous around wall corners and through intersections. Only reinforcement which is continuous in the wall shall be considered in computing the minimum area of reinforcement. Reinforcement with splices conforming to TMS 402/ACI 530/ASCE 5 as modified by Section 2107 shall be considered as continuous reinforcement.

Horizontal reinforcement shall be provided in the top of footings, at the top of wall openings, at roof and floor levels, and at the top of parapet walls. For walls 12 inches (nominal) (305 mm) or more in thickness, reinforcing shall be equally divided into two layers, except where designed as retaining walls. Where
reinforcement is added above the minimum requirements, such additional reinforcement need not be so divided.

In bearing walls of every type of reinforced masonry, there shall not be less than one No. 5 bar or two No. 4 bars on all sides of, and adjacent to, every opening which exceeds 16 inches (406 mm) in either direction, and such bars shall extend not less than 48 inches beyond the corners of the opening. The bars required by this paragraph shall be in addition to the minimum reinforcement elsewhere required.

When the reinforcement in bearing walls is designed, placed and anchored in position as for columns, the allowable stresses shall be as for columns.

Joint reinforcement shall not be used as principal reinforcement in masonry designed by the strength design method.

2. Minimum reinforcement for masonry columns. The spacing of column ties shall be as follows: not greater than 8 bar diameters, 24 tie diameters, or one half the least dimension of the column for the full column height. Ties shall be at least \(\frac{1}{2} \) inch (10 mm) in diameter and shall be embedded in grout. Top tie shall be within 2 inches (51 mm) of the top of the column or of the bottom of the horizontal bar in the supported beam.

2114.11 Additional requirements for Allowable Stress Design.

2114.11.1 TMS 402/ACI 530/ASCE 5. Modify by adding Sections 2.1.4.3.4 and 2.1.4.3.5 as follows:

2.1.4.3.4 - Edge distance and spacing. Where the anchor bolt edge distance, \(l_{be} \), in the direction of load is less than 12 bolt diameters, the value of \(B_v \) in Formula (2-7) shall be reduced by linear interpolation to zero at an \(l_{be} \) distance of 1½ inches (38 mm) and confining reinforcement consisting of not less than No. 3 hairpins, hooks or stirrups for end bolts and between horizontal reinforcing for other bolts shall be provided. Where adjacent anchors are spaced closer than 8\(d_w \) the allowable shear of the adjacent anchors determined by Formula (2-7) shall be reduced by linear interpolation to 0.75 times the allowable shear value at a center-to-center spacing of four bolt diameters.

2.1.4.3.5 - Anchor bolts size and materials. Anchor bolts shall be hex headed bolts conforming to ASTM A 307 or F1554 with the dimensions of the hex head conforming to ANSI / ASME B18.2.1 or plain rod conforming to ASTM A 36 with threaded ends and double hex nuts at the anchored end. Bent bar anchor bolts shall not be used.

The maximum size anchor shall be \(\frac{1}{2} \)-inch (13 mm) diameter for 6-inch (152 mm) nominal masonry, \(\frac{3}{8} \)-inch (19 mm) diameter for 8-inch (203 mm) nominal masonry, \(\frac{1}{2} \)-inch (22 mm) diameter for 10-inch (254 mm) nominal masonry, and 1-inch (25 mm) diameter for 12-inch (304.8 mm) nominal masonry.

2114.11.2 TMS 402/ACI 530/ASCE 5, Section 2.1.8. Modify by adding the following:

Structural members framing into or supported by walls or columns shall be securely anchored. The end support of girders, beams or other concentrated loads on masonry shall have at least 3 inches (76 mm) in length upon solid bearing not less than 4 inches (102 mm) thick or upon metal bearing plate of adequate design and dimensions to distribute the loads safely on the wall or pier, or upon a continuous reinforced masonry member projecting not less than 3 inches (76 mm) from the face of the wall or other approved methods.

Joists shall have bearing at least 3 inches (76 mm) in length upon solid masonry at least 2\(\frac{1}{2} \) inches (64 mm) thick, or other provisions shall be made to distribute safely the loads on the wall or pier.

2114.11.3 TMS 402/ACI 530/ASCE 5 [DSA-SS/CC] Modify by adding Section 2.1.10 as follows:

2.1.10 - Walls and piers.

Thickness of walls. For thickness limitations of walls as specified in this chapter, nominal thickness shall be used. Stresses shall be determined on the basis of the net thickness of the masonry, with consideration for reduction, such as raked joints.

The thickness of masonry walls shall be designed so that allowable maximum stresses specified in this chapter are not exceeded. Also, no masonry wall shall exceed the height or length-to-thickness ratio or the minimum thickness as specified in this chapter and as set forth in Table 2114.11.3.

Piers. Every pier or wall section which width is less than three times its thickness shall be designed and constructed as required for columns if such pier is a structural member. Every pier or wall section which width is between three and five times its thickness or less than one half the height of adjacent openings shall have all horizontal steel in the form of ties except that in walls 12 inches (305 mm) or less in thickness such steel may be in the form of hair-pins.
TABLE 2114.11.3
MINIMUM THICKNESS OF MASONRY WALLS1,2 [DSA-SS/CC]

<table>
<thead>
<tr>
<th>TYPE OF MASONRY</th>
<th>MAXIMUM RATIO UNSUPPORTED HEIGHT OR LENGTH TO THICKNESS3,4</th>
<th>NOMINAL MINIMUM THICKNESS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEARING OR SHEAR WALLS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Stone masonry</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>2. Reinforced grouted masonry</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>3. Reinforced hollow-unit masonry</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>NONBEARING WALLS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Exterior reinforced walls</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>5. Interior partitions reinforced</td>
<td>36</td>
<td>4</td>
</tr>
</tbody>
</table>

1. For walls of varying thickness, use the least thickness when determining the height or length to thickness ratio.
2. In determining the height or length-to-thickness ratio of a cantilevered wall, the dimension to be used shall be twice the dimension of the end of the wall from the lateral support.
3. Cantilevered walls not part of a building and not carrying applied vertical loads need not meet these minimum requirements but their design must comply with stress and overturning requirements.

2114.12 Glass unit masonry construction. Masonry of glass blocks shall be permitted in nonload-bearing exterior or interior walls and shall conform to the requirements of Section 2114.14. Stresses in glass block shall not be utilized. Glass block may be solid or hollow and may contain inserts.

2114.13 Nonbearing walls. All nonbearing masonry walls shall be reinforced as specified in Section 2114.11.1.1. Fences and interior nonbearing nonshear walls may be of hollow-unit masonry construction grouted in cells containing vertical and horizontal reinforcement. Nonbearing walls may be used to carry a superimposed load of not more than 200 pounds per linear foot (2.92 kN/m).

1. Thickness. Every nonbearing masonry wall shall be so constructed and have a sufficient thickness to withstand all vertical loads and horizontal loads, but in no case shall the thickness of such walls be less than the values set forth in Table 2114.11.3.

| Plaster shall not be considered as contributing to the thickness of a wall in computing the height-to-thickness ratio. |

2. Anchorage. All nonbearing walls shall be anchored as required by Section 1604.8.2 and ASCE 7 Chapter 13. Suspended ceilings or other nonstructural elements shall not be used to provide anchorage for masonry walls.

2114.14 Masonry screen walls. Masonry units may be used in nonbearing decorative screen walls. Units may be laid up in panels with units on edge with the open pattern of the unit exposed in the completed wall.

1. Horizontal Forces. The panels shall be capable of spanning between supports to resist the horizontal forces specified in Chapter 16. Wind loads shall be based on gross projected area of the block.

2. Mortar Joints. Horizontal and vertical joints shall not be less than 1/4 inch (6 mm) thick. All joints shall be completely filled with mortar and shall be “shoved joint” work. The units of a panel shall be so arranged that either the horizontal or the vertical joint containing reinforcing is continuous without offset. This continuous joint shall be reinforced with a minimum of 0.03 square inch (19 mm²) of reinforcing steel. Reinforcement may be embedded in mortar.

3. Reinforcing. Joint reinforcing may be composed of two wires made with welded ladder or trussed wire cross ties. In calculating the resisting capacity of the system, compression and tension in the spaced wires may be utilized. Ladder wire reinforcing shall not be spliced and shall be the widest that the mortar joint will accommodate, allowing 1/2 inch (13 mm) of mortar cover.

4. Size of Panels. The maximum size of panels shall be 144 square feet (13.4 m²), with the maximum dimension in either direction of 15 feet (4572 mm).

5. Panel Support. Each panel shall be supported on all edges by a structural member of concrete, masonry or steel. Supports at the top and ends of the panel shall be by means of confinement of the masonry by at least 1/2 inch (13 mm) into and between the flanges of a steel channel. The space between the end of the panel and the web of the channel shall be filled with resilient material. The use of equivalent configuration in other steel section or in masonry or concrete is acceptable.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 21A – MASONRY

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2113A.9.1</td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 21A
MASONRY

SECTION 2101A
GENERAL

2101A.1 Scope. This chapter shall govern the materials, design, construction and quality of masonry.

2101A.1.1 Application. The scope of application of Chapter 21A is as follows:

1. Applications listed in Section 1.9.2.1 regulated by the Division of the State Architect-Structural Safety (DSA-SS). These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Applications listed in Sections 1.10.1, and 1.10.4 regulated by the Office of Statewide Health Planning and Development (OSHPD). These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 21 and any applicable amendments therein.

2101A.1.2 Amendments in this chapter. DSA-SS adopts this chapter and all amendments.

Exception: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

1. Division of the State Architect-Structural Safety:

[DSA-SS] For applications listed in Section 1.9.2.1.

2. Office of Statewide Health Planning and Development:

[OSHPD 1] - For applications listed in Section 1.10.1.

[OSHPD 4] - For applications listed in Section 1.10.4.

2101A.1.3 Prohibition: The following design, systems, and materials are not permitted by DSA-SS and OSHPD:

1. Unreinforced masonry
2. Autoclaved aerated concrete (AAC) masonry
3. Empirical design of masonry
4. Adobe construction
5. Ordinary reinforced masonry shear walls
6. Intermediate reinforced masonry shear walls
7. Prestressed masonry shear walls

2101A.2 Design methods. Masonry shall comply with the provisions of one of the following design methods in this chapter as well as the requirements of Sections 2101A through 2104A. Masonry designed by the allowable stress design provisions of Section 2101A.2.1, the strength design provisions of Section 2101A.2.2 or the prestressed masonry provisions of Section 2101A.2.3 shall comply with Section 2105A.

2101A.2.1 Allowable stress design. Masonry designed by the allowable stress design method shall comply with the provisions of Sections 2106A and 2107A.

2101A.2.2 Strength design. Masonry designed by the strength design method shall comply with the provisions of Sections 2106A and 2108A.

2101A.2.3 Prestressed masonry. Not permitted by DSA-SS and OSHPD.

2101A.2.4 Empirical design. Not permitted by DSA-SS and OSHPD.

2101A.2.5 Glass unit masonry. Glass unit masonry shall comply with the provisions of Section 2110A.

2101A.2.6 Masonry veneer. Masonry veneer shall comply with the provisions of Chapter 14 or Chapter 6 of TMS 402/ACI 530/ASCE 5.

2101A.3 Construction documents. The construction documents shall show all of the items required by this code including the following:

1. Specified size, grade, type and location of reinforcement, anchors and wall ties.
2. Reinforcing bars to be welded and welding procedure.
4. Provisions for dimensional changes resulting from elastic deformation, creep, shrinkage, temperature and moisture.
5. Loads used in the design of masonry.
6. Specified compressive strength of masonry at stated ages or stages of construction for which masonry is designed, except where specifically exempted by this code.
7. Details of anchorage of masonry to structural members, frames and other construction, including the type, size and location of connectors.
8. Size and location of conduits, pipes and sleeves.
9. The minimum level of testing and inspection as defined in Chapter 17A, or an itemized testing and inspection program that meets or exceeds the requirements of Chapter 17A.

2101A.3.1 Fireplace drawings. The construction documents shall describe in sufficient detail the location, size and construction of masonry fireplaces. The thickness and char-
characteristics of materials and the clearances from walls, partitions and ceilings shall be indicated.

SECTION 2102A
DEFINITIONS AND NOTATIONS

2102A.1 General. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

AAC MASONRY. Masonry made of autoclaved aerated concrete (AAC) units, manufactured without internal reinforcement and bonded together using thin- or thick-bed mortar.

ADOBE CONSTRUCTION. Construction in which the exterior load-bearing and nonload-bearing walls and partitions are of unfired clay masonry units, and floors, roofs and interior framing are wholly or partly of wood or other approved materials.

Adobe, stabilized. Unfired clay masonry units to which admixtures, such as emulsified asphalt, are added during the manufacturing process to limit the units’ water absorption so as to increase their durability.

Adobe, unstabilized. Unfired clay masonry units that do not meet the definition of “Adobe, stabilized.”

ANCHOR. Metal rod, wire or strap that secures masonry to its structural support.

ARCHITECTURAL TERRA COTTA. Plain or ornamental hard-burned modified clay units, larger in size than brick, with glazed or unglazed ceramic finish.

AREA.

Bedded. The area of the surface of a masonry unit that is in contact with mortar in the plane of the joint.

Gross cross-sectional. The area delineated by the out-to-out specified dimensions of masonry in the plane under consideration.

Net cross-sectional. The area of masonry units, grout and mortar crossed by the plane under consideration based on out-to-out specified dimensions.

AUTOCLAVED AERATED CONCRETE (AAC). Low-density cementitious product of calcium silicate hydrates, whose material specifications are defined in ASTM C 1386.

BED JOINT. The horizontal layer of mortar on which a masonry unit is laid.

BOND BEAM. A horizontal grouted element within masonry in which reinforcement is embedded.

BRICK.

Calcium silicate (sand lime brick). A masonry unit made of sand and lime.

Clay or shale. A masonry unit made of clay or shale, usually formed into a rectangular prism while in the plastic state and burned or fired in a kiln.

Concrete. A masonry unit having the approximate shape of a rectangular prism and composed of inert aggregate particles embedded in a hardened cementitious matrix.

CAST STONE. A building stone manufactured from portland cement concrete precast and used as a trim, veneer or facing on or in buildings or structures.

CELL. A void space having a gross cross-sectional area greater than 1 1/2 square inches (967 mm²).

CHIMNEY. A primarily vertical enclosure containing one or more passageways for conveying flue gases to the outside atmosphere.

CHIMNEY TYPES.

High-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, high-heat appliances producing combustion gases in excess of 2,000°F (1093°C) measured at the appliance flue outlet (see Section 2113A.11.3).

Low-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, low-heat appliances producing combustion gases not in excess of 1,000°F (538°C) under normal operating conditions, but capable of producing combustion gases of 1,400°F (760°C) during intermittent forces firing for periods up to 1 hour. Temperatures shall be measured at the appliance flue outlet.

Masonry type. A field-constructed chimney of solid masonry units or stones.

Medium-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, medium-heat appliances producing combustion gases not exceeding 2,000°F (1093°C) measured at the appliance flue outlet (see Section 2113A.11.2).

CLEANOUT. An opening to the bottom of a grout space of sufficient size and spacing to allow the removal of debris.

COLLAR JOINT. Vertical longitudinal joint between wythes of masonry or between masonry and backup construction that is permitted to be filled with mortar or grout.

COMPRESSIVE STRENGTH OF MASONRY. Maximum compressive force resisted per unit of net cross-sectional area of masonry, determined by the testing of masonry prisms or a function of individual masonry units, mortar and grout.

CONNECTOR. A mechanical device for securing two or more pieces, parts or members together, including anchors, wall ties and fasteners.

COVER. Distance between surface of reinforcing bar and edge of member.

DIMENSIONS.

Actual. The measured dimension of a masonry unit or element.

Nominal. The specified dimension plus an allowance for the joints with which the units are to be laid. Thickness is given first, followed by height and then length.

Specified. The dimensions specified for the manufacture or construction of masonry, masonry units, joints or any other component of a structure.
FIREPLACE. A hearth and fire chamber or similar prepared place in which a fire may be made and which is built in conjunction with a chimney.

FIREPLACE THROAT. The opening between the top of the firebox and the smoke chamber.

FOUNDATION PIER. An isolated vertical foundation member whose horizontal dimension measured at right angles to its thickness does not exceed three times its thickness and whose height is equal to or less than four times its thickness.

GROUTED MASONRY.

Grouted hollow-unit masonry. That form of grouted masonry construction in which certain designated cells of hollow units are continuously filled with grout.

Grouted multiwythe masonry. That form of grouted masonry construction in which the space between the wythes is solidly or periodically filled with grout.

HEAD JOINT. Vertical mortar joint placed between masonry units within the wyte at the time the masonry units are laid.

HEIGHT, WALLS. The vertical distance from the foundation wall or other immediate support of such wall to the top of the wall.

MASONRY. A built-up construction or combination of building units or materials of clay, shale, concrete, glass, gypsum, stone or other approved units bonded together with or without mortar or grout or other accepted methods of joining.

Ashlar masonry. Masonry composed of various-sized rectangular units having sawed, dressed or squared bed surfaces, properly bonded and laid in mortar.

Coursed ashlar. Ashlar masonry laid in courses of stone of equal height for each course, although different courses shall be permitted to be of varying height.

Glass unit masonry. Masonry composed of glass units bonded by mortar.

Plain masonry. Masonry in which the tensile resistance of the masonry is taken into consideration and the effects of stresses in reinforcement are neglected.

Random ashlar. Ashlar masonry laid in courses of stone set without continuous joints and laid up without drawn patterns. When composed of material cut into modular heights, discontinuous but aligned horizontal joints are discernible.

Reinforced masonry. Masonry construction in which reinforcement acting in conjunction with the masonry is used to resist forces.

Solid masonry. Masonry consisting of solid masonry units laid contiguously with the joints between the units filled with mortar.

Unreinforced (plain) masonry. Masonry in which the tensile resistance of masonry is taken into consideration and the resistance of the reinforcing steel, if present, is neglected.

MASONRY UNIT. Brick, tile, stone, glass block or concrete block conforming to the requirements specified in Section 2103A.

Clay. A building unit larger in size than a brick, composed of burned clay, shale, fired clay or mixtures thereof.

Concrete. A building unit or block larger in size than 12 inches by 4 inches by 4 inches (305 mm by 102 mm by 102 mm) made of cement and suitable aggregates.

Hollow. A masonry unit whose net cross-sectional area in any plane parallel to the load-bearing surface is less than 75 percent of its gross cross-sectional area measured in the same plane.

Solid. A masonry unit whose net cross-sectional area in every plane parallel to the load-bearing surface is 75 percent or more of its gross cross-sectional area measured in the same plane.

MORTAR. A plastic mixture of approved cementitious materials, fine aggregates and water used to bond masonry or other structural units.

MORTAR, SURFACE-BONDING. A mixture to bond concrete masonry units that contains hydraulic cement, glass fiber reinforcement with or without inorganic fillers or organic modifiers and water.

PRESTRESSED MASONRY. Masonry in which internal stresses have been introduced to counteract potential tensile stresses in masonry resulting from applied loads.

PRISM. An assemblage of masonry units and mortar with or without grout used as a test specimen for determining properties of the masonry.

RUBBLE MASONRY. Masonry composed of roughly shaped stones.

Coursed rubble. Masonry composed of roughly shaped stones fitting approximately on level beds and well bonded.

Random rubble. Masonry composed of roughly shaped stones laid without regularity of coursing but well bonded and fitted together to form well-divided joints.

Rough or ordinary rubble. Masonry composed of unsquared field stones laid without regularity of coursing but well bonded.

RUNNING BOND. The placement of masonry units such that head joints in successive courses are horizontally offset at least one-quarter the unit length.

SHEAR WALL.

Detailed plain masonry shear wall. A masonry shear wall designed to resist lateral forces neglecting stresses in reinforcement, and designed in accordance with Section 2106A.1.

Intermediate prestressed masonry shear wall. A prestressed masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106A.1.

Intermediate reinforced masonry shear wall. A masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106A.1.
Ordinary plain masonry shear wall. A masonry shear wall designed to resist lateral forces neglecting stresses in reinforcement, and designed in accordance with Section 2106A.1.

Ordinary plain prestressed masonry shear wall. A prestressed masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106A.1.

Ordinary reinforced masonry shear wall. A masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106A.1.

Special prestressed masonry shear wall. A prestressed masonry shear wall designed to resist lateral forces considering stresses in reinforcement and designed in accordance with Section 2106A.1 except that only grouted, laterally restrained tendons are used.

Special reinforced masonry shear wall. A masonry shear wall designed to resist lateral forces considering stresses in reinforcement, and designed in accordance with Section 2106A.1.

SHELL. The outer portion of a hollow masonry unit as placed in masonry.

SPECIFIED. Required by construction documents.

SPECIFIED COMpressive STRENGTH OF MASONRY, f'_{mc}. Minimum compressive strength, expressed as force per unit of net cross-sectional area, required of the masonry used in construction by the construction documents, and upon which the project design is based. Whenever the quantity f'_{mc} is under the radical sign, the square root of numerical value only is intended and the result has units of pounds per square inch (psi) (MPa).

STACK BOND. The placement of masonry units in a bond pattern is such that head joints in successive courses are vertically aligned. For the purpose of this code, requirements for stack bond shall apply to masonry laid in other than running bond.

STONE MASONRY. Masonry composed of field, quarried or cast stone units bonded by mortar.

Ashlar stone masonry. Stone masonry composed of rectangular units having sawed, dressed or squared bed surfaces and bonded by mortar.

Rubble stone masonry. Stone masonry composed of irregular-shaped units bonded by mortar.

STRENGTH.

Design strength. Nominal strength multiplied by a strength reduction factor.

Nominal strength. Strength of a member or cross section calculated in accordance with these provisions before application of any strength-reduction factors.

Required strength. Strength of a member or cross section required to resist factored loads.

THIN-BED MORTAR. Mortar for use in construction of AAC unit masonry with joints 0.06 inch (1.5 mm) or less.

TIE, LATERAL. Loop of reinforcing bar or wire enclosing longitudinal reinforcement.

TIE, WALL. A connector that connects wythes of masonry walls together.

TILE. A ceramic surface unit, usually relatively thin in relation to facial area, made from clay or a mixture of clay or other ceramic materials, called the body of the tile, having either a "glazed" or "unglazed" face and fired above red heat in the course of manufacture to a temperature sufficiently high enough to produce specific physical properties and characteristics.

TILE, STRUCTURAL CLAY. A hollow masonry unit composed of burned clay, shale, fire clay or mixture thereof, and having parallel cells.

WALL. A vertical element with a horizontal length-to-thickness ratio greater than three, used to enclose space.

Cavity wall. A wall built of masonry units or of concrete, or a combination of these materials, arranged to provide an airspace within the wall, and in which the inner and outer parts of the wall are tied together with metal ties.

Composite wall. A wall built of a combination of two or more masonry units bonded together, one forming the backup and the other forming the facing elements.

Dry-stacked, surface-bonded wall. A wall built of concrete masonry units where the units are stacked dry, without mortar on the bed or head joints, and where both sides of the wall are coated with a surface-bonding mortar.

Hollow-unit masonry wall. Type of construction made with hollow masonry units in which the units are laid and set in mortar, reinforced and grouted solid except as provided in Section 2114A.

Masonry-bonded hollow wall. A wall built of masonry units so arranged as to provide an airspace within the wall, and in which the facing and backing of the wall are bonded together with masonry units.

Parapet wall. The part of any wall entirely above the roof line.

WEB. An interior solid portion of a hollow masonry unit as placed in masonry.

WYTHE. Each continuous, vertical section of a wall, one masonry unit in thickness.

NOTATIONS.

d_s = Diameter of reinforcement, inches (mm).

F_s = Allowable tensile or compressive stress in reinforcement, psi (MPa).

f_r = Modulus of rupture, psi (MPa).

f'_{mc} = Specified compressive strength of AAC masonry, the minimum compressive strength for a class of AAC masonry as specified in ASTM C 1386, psi (MPa).

f'_{mi} = Specified compressive strength of masonry at age of 28 days, psi (MPa).
MASONRY

SECTION 2103A
MASONRY CONSTRUCTION MATERIALS

2103A.1 Concrete masonry units. Concrete masonry units shall conform to the following standards: ASTM C 55 for concrete brick; ASTM C 73 for calcium silicate face brick; ASTM C 90 for load-bearing concrete masonry units or ASTM C 744 for prefaced concrete and calcium silicate masonry units.

2103A.2 Clay or shale masonry units. Clay or shale masonry units shall conform to the following standards: ASTM C 34 for structural clay load-bearing wall tile; ASTM C 56 for structural clay nonload-bearing wall tile; ASTM C 62 for building brick (solid masonry units made from clay or shale); ASTM C 1088 for solid units of thin veneer brick; ASTM C 126 for ceramic-glazed structural clay facing tile, facing brick and solid masonry units; ASTM C 212 for structural clay facing tile; ASTM C 216 for facing brick (solid masonry units made from clay or shale); ASTM C 652 for hollow brick (hollow masonry units made from clay or shale) or ASTM C 1405 for glazed brick (single-fired solid brick units).

Exception: Structural clay tile for nonstructural use in fireproofing of structural members and in wall furring shall not be required to meet the compressive strength specifications. The fire-resistance rating shall be determined in accordance with ASTM E 119 or UL 263 and shall comply with the requirements of Table 602.

2103A.3 AAC masonry. Not permitted.

2103A.4 Stone masonry units. Stone masonry units shall conform to the following standards: ASTM C 503 for marble building stone (exterior); ASTM C 568 for limestone building stone; ASTM C 615 for granite building stone; ASTM C 616 for sandstone building stone; or ASTM C 629 for slate building stone.

2103A.5 Ceramic tile. Ceramic tile shall be as defined in, and shall conform to the requirements of, ANSI A137.1.

2103A.6 Glass unit masonry. Hollow glass units shall be partially evacuated and have a minimum average glass face thickness of 3/16 inch (4.8 mm). Solid glass-block units shall be provided when required. The surfaces of units intended to be in contact with mortar shall be treated with a polyvinyl butyral coating or latex-based paint. Reclaimed units shall not be used.

2103A.7 Second-hand units. Second-hand masonry units shall not be reused unless they conform to the requirements of new units. The units shall be of whole, sound materials and free from cracks and other defects that will interfere with proper laying or use. Old mortar shall be cleaned from the unit before reuse.

2103A.8 Mortar. Mortar for use in masonry construction shall conform to ASTM C 270 Type S or M, except for mortars listed in Sections 2103A.9 and 2103A.10. Type S mortar conforming to ASTM C 270 shall be used for glass unit masonry.

2103A.9 Surface-bonding mortar. Surface-bonding mortar shall comply with ASTM C 887. Surface bonding of concrete masonry units shall comply with ASTM C 946.

2103A.10 Mortars for ceramic wall and floor tile. Portland cement mortars for installing ceramic wall and floor tile shall comply with ANSI A108.1A and ANSI A108.1B and be of the compositions indicated in Table 2103A.10.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MORTAR</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Scratchcoat</td>
<td>1 cement; 1/8 hydrated lime; 4 dry or 5 damp sand</td>
</tr>
<tr>
<td></td>
<td>Setting bed and leveling coat</td>
<td>1 cement; 1/8 hydrated lime; 5 damp sand to 1 cement 1 hydrated lime, 7 damp sand</td>
</tr>
<tr>
<td>Floors</td>
<td>Setting bed</td>
<td>1 cement; 1/8 hydrated lime; 5 dry or 6 damp sand; or 1 cement; 5 dry or 6 damp sand</td>
</tr>
<tr>
<td>Ceilings</td>
<td>Scratchcoat and sand bed</td>
<td>1 cement; 1/8 hydrated lime; 2 1/2 dry sand or 3 damp sand</td>
</tr>
</tbody>
</table>

2103A.10.1 Dry-set portland cement mortars. Premixed prepared portland cement mortars, which require only the addition of water and are used in the installation of ceramic tile, shall comply with ANSI A118.1. The shear bond strength for tile set in such mortar shall be as required in accordance with ANSI A118.1. Tile set in dry-set portland cement mortar shall be installed in accordance with ANSI A108.5.

2103A.10.2 Latex-modified portland cement mortar. Latex-modified portland cement thin-set mortars in which latex is added to dry-set mortar as a replacement for all or part of the gauging water that are used for the installation of ceramic tile shall comply with ANSI A118.4. Tile set in latex-modified portland cement shall be installed in accordance with ANSI A108.5.

2103A.10.3 Epoxy mortar. Ceramic tile set and grouted with chemical-resistant epoxy shall comply with ANSI A118.3. Tile set and grouted with epoxy shall be installed in accordance with ANSI A108.6.

2103A.10.4 Furan mortar and grout. Chemical-resistant furan mortar and grout that are used to install ceramic tile shall comply with ANSI A118.5. Tile set and grouted with furan shall be installed in accordance with ANSI A108.8.

2103A.10.5 Modified epoxy-emulsion mortar and grout. Modified epoxy-emulsion mortar and grout that are used to install ceramic tile shall comply with ANSI A118.8. Tile set and grouted with modified epoxy-emulsion mortar and grout shall be installed in accordance with ANSI A108.9.
2103A.10.6 Organic adhesives. Water-resistant organic adhesives used for the installation of ceramic tile shall comply with ANSI A136.1. The shear bond strength after water immersion shall not be less than 40 psi (275 kPa) for Type I adhesive and not less than 20 psi (138 kPa) for Type II adhesive when tested in accordance with ANSI A136.1. Tile set in organic adhesives shall be installed in accordance with ANSI A108.4.

2103A.10.7 Portland cement grouts. Portland cement grouts used for the installation of ceramic tile shall comply with ANSI A118.6. Portland cement grouts for tile work shall be installed in accordance with ANSI A108.10.

2103A.12 Grout. Grout shall comply with Article 2.2 of TMS 602/ACI 530.1/ASCE 6.

2103A.12.1 Water. Water content shall be adjusted to provide proper workability and to enable proper placement under existing field conditions, without segregation.

2103A.12.2 Selecting proportions. Proportions of ingredients and any additives shall be based on laboratory or field experience with the grout ingredients and the masonry units to be used. For coarse grout, the coarse and fine aggregates shall be combined such that the fine aggregate part is not greater than 80 percent of the total aggregate weight (mass). Coarse grout proportioned by weight shall contain not less than 364 pounds of cementitious material per cubic yard (335 kg/m³).

2103A.12.3 Aggregate. Coarse grout shall be used in grout spaces 2 inches (51 mm) or more in width and in all filled-cell masonry construction.

2103A.13 Metal reinforcement and accessories. Metal reinforcement and accessories shall conform to Article 2.4 of TMS 602/ACI 530.1/ASCE 6. Where unidentified reinforcement is approved for use, not less than three tension and three bending tests shall be made on representative specimens of the reinforcement from each shipment and grade of reinforcing steel to provide adequate fluidity for placement without segregation.

2103A.14 Additives and admixtures.

2103A.14.1 General. Additives and admixtures to mortar or grout shall not be used unless approved by the enforcement agency.

2103A.14.2 Antifreeze compounds. Antifreeze liquids, chloride salts or other such substances shall not be used in mortar or grout.

2103A.14.3 Air entrainment. Air-entraining substances shall not be used in mortar or grout unless tests are conducted to determine compliance with the requirements of this code.

SECTION 2104A

CONSTRUCTION

2104A.1 Masonry construction. Masonry construction shall comply with the requirements of Sections 2104A.1.1 through 2104A.4 and with TMS 602/ACI 530.1/ASCE 6.

2104A.1.1 Tolerances. Masonry, except masonry veneer, shall be constructed within the tolerances specified in TMS 602/ACI 530.1/ASCE 6.

Exception: The maximum thickness of the initial bed joint in fully grouted masonry walls shall not exceed 1 1/4 in. (31.7 mm).

2104A.1.2 Placing mortar and units. Placement of mortar, grout, and clay, concrete, and glass, masonry units shall comply with TMS 602/ACI 530.1/ASCE 6. All mortar for glass unit masonry contact surfaces shall be treated to ensure adhesion between mortar and glass.

2104A.1.3 Installation of wall ties. Wall ties shall be installed in accordance with TMS 602/ACI 530.1/ASCE 6.

2104A.1.4 Chases and recesses. Chases and recesses shall be constructed as masonry units are laid. Masonry directly above chases or recesses wider than 12 inches (305 mm) shall be supported on lintels.

2104A.1.5 Lintels. The design for lintels shall be in accordance with the masonry design provisions of either Section 2107A or 2108A.

2104A.1.6 Support on wood. Masonry shall not be supported on wood girders or other forms of wood construction except as permitted in Section 2304.12.

2104A.2 Corbeled masonry. Corbeled masonry shall be constructed in accordance with Section 2104A.5.

2104A.2.1 Molded cornices. Unless structural support and anchorage are provided to resist the overturning moment, the center of gravity of projecting masonry or molded cornices shall lie within the middle one-third of the supporting wall. Terra cotta and metal cornices shall be provided with a structural frame of approved noncombustible material anchored in an approved manner.

2104A.3 Cold weather construction. The cold weather construction provisions of TMS 602/ACI 530.1/ASCE 6, Article 1.8 C, shall be implemented when the ambient temperature falls below 40°F (4°C).

2104A.4 Hot weather construction. The hot weather construction provisions of TMS 602/ACI 530.1/ASCE 6, Article 1.8 D, shall be implemented when the ambient air temperature exceeds 100°F (37.8°C), or 90°F (32.2°C) with a wind velocity greater than 8 mph (12.9 km/hr).

2104A.5 Grouted masonry.

2104A.5.1 General conditions. Grouted masonry shall be constructed in such a manner that all elements of the masonry act together as a structural element. Prior to grouting, the grout space shall be clean so that all spaces to be filled with grout do not contain mortar projections greater than 1/4 inch (6.4 mm), mortar droppings and other foreign material. Grout shall be placed so that all spaces to be grouted do not contain voids.

Grout materials and water content shall be controlled to provide adequate fluidity for placement without segregation...
of the constituents, and shall be mixed thoroughly. Reinforcement shall be clean, properly positioned and solidly embedded in the grout.

The grouting of any section of wall shall be completed in one day with no interruptions greater than 1 hour.

Between grout pours, a horizontal construction joint shall be formed by stopping all wythes at the same elevation and with the grout stopping a minimum of 1/2 inch (12.7 mm) below a mortar joint, except at the top of the wall. Where bond beams occur, the grout pour shall be stopped a minimum of 1/2 inch (12.7 mm) below the top of the masonry.

2104A.5.1.1 Reinforced grouted masonry.

2104A.5.1.1 General. Reinforced grouted masonry is that form of construction made with clay or shale brick or made with solid concrete building brick in which interior joints of masonry are filled by pouring grout around reinforcing therein as the work progresses.

At the time of laying, all masonry units shall be free of dust and dirt.

2104A.5.1.1.2 Low-lift grouted construction. Requirements for construction shall be as follows:

1. All units in the two outer wythes shall be laid with full-shoved head joint and bed mortar joints. Masonry headers shall not project into the grout space.

2. The minimum grout space for low-lift grout for low-lift grout masonry shall be 21/2 inches (64 mm). Floaters shall be used where the grout space exceeds 5 inches (127 mm) in width. The thickness of grout between masonry units and floaters shall be a minimum of 1 inch (25 mm). Floaters shall be worked into fresh puddled grout using a vibrating motion until half of the floater is embedded in the grout. All reinforcing and wire ties shall be embedded in the grout. The thickness of the grout between masonry units and reinforcing shall be a minimum of one bar diameter.

3. One tier of a grouted reinforced masonry wall may be carried up 12 inches (305 mm) before grouting, but the other tier shall be laid up and grouted in lifts not to exceed one masonry unit in height. All grout shall be puddled with a mechanical vibrator or wood stick immediately after placing so as to completely fill all voids and to consolidate the grout. All vertical and horizontal steel shall be held firmly in place by a frame or suitable devices.

4. If the work is stopped for one hour or more, the horizontal construction joints shall be formed by stopping all wythes at the same elevation, and with the grout 1/2 inch (13 mm) below the top.

5. Toothing of masonry walls is prohibited. Racking is to be held to a minimum.

2104A.5.1.1.3 High-lift grouted construction. Where high-lift grouting is used, the method shall be subject to the approval of the enforcement agency. Requirements for construction shall be as follows:

1. All units in the two wythes shall be laid with full head and bed mortar joints.

2. The two wythes shall be bonded together with wall ties. Ties shall not be less than No. 9 wire in the form of rectangles 4 inches (102 mm) wide and 2 inches (51 mm) in length less than the overall wall thickness. Kinks, water drips, or deformations shall not be permitted in the ties. One tier of the wall shall be built up not more than 16 inches (406 mm) ahead of the other tier. Ties shall be laid not to exceed 24 inches (610 mm) on center horizontally and 12 inches (305 mm) on center vertically for stack bond.

3. Cleanouts shall be provided for each pour by leaving out every other unit in the bottom tier of the section being poured or by cleanout openings in the foundation. The foundation or other horizontal construction joints shall be cleaned of all loose material and mortar droppings before each pour. The cleanouts shall be sealed before grouting, after inspection.

4. The grout space in high-lift grouted masonry shall be a minimum of 3 1/2 inches (89 mm). All reinforcing and wire ties shall be embedded in the grout. The thickness of the grout between masonry units and reinforcing shall be a minimum of one bar diameter.

5. Vertical grout barriers or dams shall be built of solid masonry across the grout space the entire height of the wall to control the flow of the grout horizontally. Grout barriers shall not be more than 30 feet (9144 mm) apart.

6. An approved admixture of a type that reduces early water loss and produces an expansive action shall be used in high-lift grout.

7. Grouting shall be done in a continuous pour in lifts not exceeding 4 feet (1219 mm). Grout shall be consolidated by mechanical vibration only, and shall be reconsolidated after excess moisture has been absorbed, but before plasticity is lost. The grouting of any section of a wall between control barriers shall be completed in one day, with no interruptions greater than one hour.
2104A.5.1.2 Reinforced hollow-unit masonry.

2104A.5.1.2.1 General. Reinforced hollow-unit masonry is that type of construction made with hollow-masonry units in which cells are continuously filled with grout, and in which reinforcement is embedded. All cells shall be solidly filled with grout in reinforced hollow-unit masonry, except as provided in Section 2114A.1. Construction shall be one of the two following methods: The low-lift method where the maximum height of construction laid before grouting is 4 feet (1220 mm), or the high-lift method where the full height of construction between horizontal cold joints is grouted in one operation. General requirements for construction shall be as follows:

1. All reinforced hollow-unit masonry shall be built to preserve the unobstructed vertical continuity of the cells to be filled. All head joints shall be solidly filled with mortar for a distance in from the face of the wall or unit not less than the thickness of the longitudinal face shells.

2. Mortar shall be as specified in Section 2103A.

3. Walls and cross webs forming such cells to be filled shall be full bedded in mortar to prevent leakage of grout.

4. Bond shall be provided by lapping units in successive vertical courses. Where stack bond is used in reinforced hollow-unit masonry, the open-end type of unit shall be used with vertical reinforcement spaced a maximum of 16 inches (406 mm) on center.

5. Vertical cells to be filled shall have vertical alignment sufficient to maintain a clear unobstructed, continuous vertical cell measuring not less than 2 inches by 3 inches (51 mm by 76 mm), except the minimum cell dimension for high-lift masonry shall be 3 inches (76 mm).

6. At the time of laying, all masonry units shall be free of dust and dirt.

7. Grout shall be a workable mix suitable for placing without segregation and shall be thoroughly mixed. Grout shall be placed by pumping or an approved alternate method and shall be placed before initial set or hardening occurs. Grout shall be consolidated by mechanical vibration during placing and reconsolidated after excess moisture has been absorbed, but before workability is lost. The grouting of any section of a wall shall be completed in one day, with no interruptions greater than one hour.

8. All reinforcing and wire ties shall be embedded in the grout. The space between masonry unit surfaces and reinforcing shall be a minimum of one bar diameter.

9. Horizontal reinforcement shall be placed in bond beam units with a minimum grout cover of 1 inch (25 mm) above steel for each grout pour. The depth of the bond beam channel below the top of the unit shall be a minimum of 1/4 inches (38 mm) and the width shall be 3 inches (76 mm) minimum.

2104A.5.1.2.2 Low-lift grouted construction. Units shall be laid a maximum of 4 feet (1220 mm) before grouting, and all over-hanging mortar and mortar droppings shall be removed. Grouting shall follow each 4 feet (1220 mm) of construction laid and shall be consolidated so as to completely fill all voids and embed all reinforcing steel. When grouting is stopped for 1 hour or longer, horizontal construction joints shall be formed by stopping the pour of grout not less than 1/2 inch (13 mm) or more than 2 inches (51 mm) below the top of the uppermost unit grouted. Horizontal steel shall be fully embedded in grout in an uninterrupted pour.

2104A.5.1.2.3 High-lift grouted construction. Where high-lift grouting is used, the method shall be approved by the enforcement agency. Cleanout openings shall be provided in every cell at the bottom of each pour of grout. Alternatively, if the course at the bottom of the pour is constructed entirely of inverted open-end bond beam units, cleanout openings need only be provided in every reinforced cell at the bottom of each pour of grout. The foundation or other horizontal construction joints shall be cleaned of all loose material and mortar droppings before each pour. The cleanouts shall be sealed before grouting. An approved admixture that reduces early water loss and produces an expansive action shall be used in the grout.

Vertical barriers of masonry may be built across the grout space. The grouting of any section of wall between barriers shall be completed in one day with no interruption longer than one hour.

2104A.5.2 Construction requirements. Reinforcement and embedded items shall be placed and securely anchored against moving prior to grouting. Bolts shall be accurately set with templates or by approved equivalent means and held in place to prevent dislocation during grouting.

Segregation of the grout materials and damage to the masonry shall be avoided during the grouting process.

Grout shall be consolidated by mechanical vibration during placement before loss of plasticity in a manner to fill the grout space. Grout pours greater than 12 inches (300 mm) in height shall be reconsolidated by mechanical vibration to minimize voids due to water loss. Grout not mechanically vibrated shall be puddled.

2104A.6 Aluminum equipment. Grout shall not be handled nor pumped utilizing aluminum equipment unless it can be demonstrated with the materials and equipment to be used that there will be no deleterious effect on the strength of the grout.
SECTION 2105A
QUALITY ASSURANCE

2105A.1 General. A quality assurance program shall be used to ensure that the constructed masonry is in compliance with the construction documents.

The quality assurance program shall comply with the inspection and testing requirements of Chapter 17A.

2105A.2 Acceptance relative to strength requirements.

2105A.2.1 Compliance with f'_{m}. Compressive strength of masonry shall be considered satisfactory if the compressive strength of each masonry wythe and grouted collar joint equals or exceeds the value of f'_{m} for clay and concrete masonry and requirements of Section 2105A.2.2 is satisfied. For partially grouted clay and concrete masonry, the compressive strength of both the grouted and ungrouted masonry shall equal or exceed the applicable f'_{m}. The specified compressive strength, f'_{m}, assumed in design shall be 1,500 psi (10.34 MPa) for all masonry construction using materials and details of construction required herein. Testing of the constructed masonry shall be provided in accordance with Section 2105A.4.

Exception: Subject to the approval of the enforcement agency, higher values of f'_{m} may be used in the design of reinforced grouted masonry and reinforced hollow-unit masonry. The approval shall be based on prism test results submitted by the architect or engineer which demonstrate the ability of the proposed construction to meet prescribed performance criteria for strength and stiffness. The design shall assume that the reinforcement will be placed in a location that will produce the largest stresses within the tolerances allowed in Section 2104A.1.1 and shall take into account the mortar joint depth. In no case shall the f'_{m} assumed in design exceed 3,000 psi (20.7 MPa).

Where an f'_{m} greater than 1,500 psi (10.34 MPa) is approved, the architect or structural engineer shall establish a method of quality control of the masonry construction acceptable to the enforcement agency which shall be described in the contract specifications. Compliance with the requirements for the specified compressive strength of masonry f'_{m} shall be provided in accordance with Sections 2105A.2.2, 2105A.4 and 2105A.5. Substantiation for the specified compressive strength prior to the start of construction may be obtained in accordance with Section 2105A.2.2.3.

2105A.2.2 Determination of compressive strength. The compressive strength for each wythe shall be determined by the unit strength method or by the prism test method as specified herein.

2105A.2.2.1 Unit strength method.

2105A.2.2.1.1 Clay masonry. The compressive strength of masonry shall be determined based on the strength of the units and the type of mortar specified using Table 2105A.2.2.1.1, provided:

Table 2105A.2.2.1.1

<table>
<thead>
<tr>
<th>NET AREA COMPRRESSIVE STRENGTH OF CLAY MASONRY UNITS (psi)</th>
<th>NET AREA COMPRRESSIVE STRENGTH OF MASONRY (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type M or S mortar</td>
<td>Type N mortar</td>
</tr>
<tr>
<td>1,700</td>
<td>2,100</td>
</tr>
<tr>
<td>3,350</td>
<td>4,150</td>
</tr>
<tr>
<td>4,950</td>
<td>6,200</td>
</tr>
<tr>
<td>6,600</td>
<td>8,250</td>
</tr>
<tr>
<td>8,250</td>
<td>10,300</td>
</tr>
<tr>
<td>9,900</td>
<td>—</td>
</tr>
<tr>
<td>11,500</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 0.00689 MPa.

2105A.2.2.1.2 Concrete masonry. The compressive strength of masonry shall be determined based on the strength of the unit and type of mortar specified using Table 2105A.2.2.1.2, provided:

1. Units are sampled and tested to verify compliance with ASTM C 62, ASTM C 216 or ASTM C 652.
2. Thickness of bed joints does not exceed $\frac{5}{8}$ inch (15.9 mm).
3. For grouted masonry, the grout meets one of the following requirements:

1. Grout conforms to Article 2.2 of TMS 602/ACI 530.1/ASCE 6.
2. Minimum grout compressive strength equals or exceeds f'_{m} but not less than 2,000 psi (13.79 MPa). The compressive strength of grout shall be determined in accordance with ASTM C 1019.

For 2010 CALIFORNIA BUILDING CODE
TABLE 2105A.2.2.1.2
COMPRESSIVE STRENGTH OF CONCRETE MASONRY

<table>
<thead>
<tr>
<th>NET AREA COMPRRESSIVE STRENGTH OF CONCRETE MASONRY UNITS (psi)</th>
<th>NET AREA COMPRRESSIVE STRENGTH OF MASONRY (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type M or S mortar</td>
<td>Type N mortar</td>
</tr>
<tr>
<td>1,250</td>
<td>1,300</td>
</tr>
<tr>
<td>1,900</td>
<td>2,150</td>
</tr>
<tr>
<td>2,800</td>
<td>3,050</td>
</tr>
<tr>
<td>3,750</td>
<td>4,050</td>
</tr>
<tr>
<td>4,800</td>
<td>5,250</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square inch = 0.00689 MPa.

2105A.2.2.1.3 AAC masonry. Not permitted.

2105A.2.2.1.4 Mortar and grout tests. These tests are to establish whether the masonry components meet the specified component strengths. At the beginning of all masonry work, at least one test sample of the mortar and grout shall be taken on three successive working days and at least at one-week intervals thereafter. They shall meet the minimum strength requirement given in Sections 2103A.8 and 2103A.12 for mortar and grout, respectively. Additional samples shall be taken whenever any change in materials or job conditions occur, or whenever in the judgment of the architect, structural engineer or the enforcement agency such tests are necessary to determine the quality of the material. When the prism test method of Section 2105A.2.2.2 is used, the tests in this section are not required.

Test specimens for mortar and grout shall be made as set forth in ASTM C 1586 and ASTM C 1019

2105A.2.2.2 Prism test method.

2105A.2.2.2.1 General. The compressive strength of clay and concrete masonry shall be determined by the prism test method prior to the start of construction and during construction:

1. Where specified in the construction documents.
2. Where masonry does not meet the requirements for application of the unit strength method in Section 2105A.2.2.1.
3. Where required by Section 2105A.2.1.

2105A.2.2.2.2 Number of prisms per test. Prior to the start of construction, a prism test shall consist of five prisms constructed and tested in accordance with ASTM C 1314. A set of three masonry prisms shall be built during construction in accordance with ASTM C 1314 for each 5,000 square feet (465 m²) of wall area, but not less than one set of three prisms for the project. Each set of prisms shall equal or exceed f’ m.

2105A.3 Testing prisms from constructed masonry. When approved by the building official, acceptance of masonry that does not meet the requirements of Section 2105A.2.2.1, 2105A.2.2.2, 2105A.4 or 2105A.2.2.1.4 shall be permitted to be based on tests of prisms cut from the masonry construction in accordance with Sections 2105A.3.1, 2105A.3.2 and 2105A.3.3.

2105A.3.1 Prism sampling and removal. A set of three masonry prisms that are at least 28 days old shall be saw cut from the masonry for each 5,000 square feet (465 m²) of the wall area that is in question but not less than one set of three masonry prisms for the project. The length, width and height dimensions of the prisms shall comply with the requirements of ASTM C 1314. Transporting, preparation and testing of prisms shall be in accordance with ASTM C 1314.

2105A.3.2 Compressive strength calculations. The compressive strength of prisms shall be the value calculated in accordance ASTM C 1314, except that the net cross-sectional area of the prism shall be based on the net mortar bedded area.

2105A.3.3 Compliance. Compliance with the requirement for the specified compressive strength of masonry, f’ m, shall be considered satisfied provided the modified compressive strength equals or exceeds the specified f’ m. Additional testing of specimens cut from locations in question shall be permitted.

2105A.4 Masonry core testing. Not less than two cores shall be taken from each building for each 5,000 square feet (465 m²) of the greater of the masonry wall area or the floor area or fraction thereof. The architect or structural engineer in responsible charge of the project or his or her representative (inspector) shall select the areas for sampling. Cores shall be a minimum of 3 3/4 inches (76 mm) in diameter and shall be taken in such a manner as to exclude masonry unit webs and reinforcing steel. The inspector of record or testing agency shall inspect the coring of the masonry walls.

Visual examination of all cores shall be made and the condition of the cores reported. One half of the number of cores taken shall be tested in shear. The shear test shall test both joints between the grout core and the outside wythes or face shells of the masonry. Shear testing apparatus shall be of a design approved by the enforcement agency. Core samples shall not be soaked before testing. The unit shear on the cross section of the core shall not be less than 2.5 √f’ m psi.

All cores shall be submitted to the laboratory for examination regardless of whether the core specimens failed during cutting operation. The laboratory shall report the location where each core was taken, the findings of their visual examination of each core, identify which cores were selected for shear testing and the results of the shear tests.

SECTION 2106A
SEISMIC DESIGN

2106A.1 Seismic design requirements for masonry. Masonry structures and components shall comply with the requirements in Section 1.17 of TMS 402/ACI 530/ASCE 5...
2106A.1.1 Modifications to TMS 402/ACI 530/ASCE 5.

2106A.1.1.1 Modify TMS 402/ACI 530/ASCE 5/Section 1.17 as follows:

1. Minimum reinforcement requirements for masonry walls. The total area of reinforcement in reinforced masonry walls shall not be less than 0.003 times the sectional area of the wall. Neither the horizontal nor the vertical reinforcement shall be less than one third of the total. Horizontal and vertical rebars shall be spaced at not more than 24 inches (610 mm) center to center. The minimum reinforcing shall be No. 4, except that No. 3 bars may be used for ties and stirrups. Vertical wall steel shall have dowels of equal size and equal matched spacing in all footings. Reinforcement shall be continuous around wall corners and through intersections. Only reinforcement which is continuous in the wall shall be considered in computing the minimum area of reinforcement. Reinforcement with splices conforming to TMS 402/ACI 530/ASCE 5 as modified by Section 2107A shall be considered as continuous reinforcement.

Horizontal reinforcement shall be provided in the top of footings, at the top of wall openings, at roof and floor levels, and at the top of parapet walls. For walls 12 inches (nominal) (305 mm) or more in thickness, reinforcing shall be equally divided into two layers, except where designed as retaining walls. Where reinforcement is added above the minimum requirements, such additional reinforcement need not be so divided.

In bearing walls of every type of reinforced masonry, there shall not be less than one No. 5 bar or two No. 4 bars on all sides of, and adjacent to, every opening which exceeds 16 inches (406 mm) in either direction, and such bars shall extend not less than 48 diameters, but in no case less than 24 inches (610 mm) beyond the corners of the opening. The bars required by this paragraph shall be in addition to the minimum reinforcement elsewhere required.

When the reinforcement in bearing walls is designed, placed and anchored in position as for columns, the allowable stresses shall be as for columns.

Joint reinforcement shall not be used as principal reinforcement in masonry designed by the strength design method.

2. Minimum reinforcement for masonry columns. The spacing of column ties shall be as follows: not greater than 8 bar diameters, 24 tie diameters, or one half the least dimension of the column for the full column height. Ties shall be at least 1/4 inch (10 mm) diameter and shall be embedded in grout. Top tie shall be within 2 inches (51 mm) of the top of the column or of the bottom of the horizontal bar in the supported beam.

3. Lateral support. Lateral support of masonry may be provided by cross walls, columns, pilasters, counterforts or buttresses where spanning horizontally or by floors, beams, girts or roofs where spanning vertically. Where walls are supported laterally by vertical elements, the stiffness of each vertical element shall exceed that of the tributary area of the wall.

The clear distance between lateral supports of a beam shall not exceed 32 times the least width of the compression area.

SECTION 2107A
ALLOWABLE STRESS DESIGN

2107A.1 General. The design of masonry structures using allowable stress design shall comply with Section 2106A and the requirements of Chapters 1 and 2 of TMS 402/ACI 530/ASCE 5 except as modified by Sections 2107A.2 through 2107A.9.

2107A.2 TMS 402/ACI 530/ASCE 5, Section 2.1.2, load combinations. Delete Section 2.1.2.1.

2107A.3 TMS 402/ACI 530/ASCE 5, Section 2.1.9.7.1.1, lap splices. Modify Section 2.1.9.7.1.1 as follows:

2.1.9.7.1.1 The minimum length of lap splices for reinforcing bars in tension or compression, \(l_d \), shall be

\[
 l_d = 0.002 \sqrt{\frac{d b}{f_t}} \quad \text{(Equation 21A-1)}
\]

For SI: \(l_d = 0.2944 \sqrt{\frac{d b}{f_t}} \)

but not less than 12 inches (305 mm). In no case shall the length of the lapped splice be less than 40 bar diameters.

where:

\(d_b \) = Diameter of reinforcement, inches (mm).

\(f_t \) = Computed stress in reinforcement due to design loads, psi (MPa).

In regions of moment where the design tensile stresses in the reinforcement are greater than 80 percent of the allowable steel tension stress, \(F_s \), the lap length of splices shall be increased not less than 50 percent of the minimum required length. Other equivalent means of stress transfer to accomplish the same 50 percent increase shall be permitted. Where epoxy coated bars are used, lap length shall be increased by 50 percent.

2107A.4 (Chapter 21, Section 2107.4) TMS 402/ACI 530/ASCE 5, Section 2.1.9.7, splices of reinforcement.

2.1.9.7—Splices of reinforcement. Lap splices, welded splices or mechanical splices are permitted in accordance with the provisions of this section. All welding shall conform to AWS D1.4. Reinforcement larger than No. 9 (M #29) shall be spliced using mechanical connections in accordance with Section 2.1.9.7.3.
2107A.5 (Chapter 21, Section 2107.5) TMS402/ACI 530/ASCE 5, Section 2.3.6, maximum bar size. Add the following to Chapter 2:

2.3.6 Maximum bar size. The bar diameter shall not exceed one-eighth of the nominal wall thickness and shall not exceed one-quarter of the least dimension of the member, course or collar joint in which it is placed.

2107A.6 TMS 402/ACI 530/ASCE 5. Modify by adding Sections 2.1.4.3.4 and 2.1.4.3.5 as follows:

2.1.4.3.4 Edge Distance and Spacing. Where the anchor bolt edge distance, \(d_e \), in the direction of load is less than 12 bolt diameters, the value of \(B \), in Formula (2-7) shall be reduced by linear interpolation to zero at an edge distance of \(12d_e \), and confining reinforcement consisting of not less than No. 3 hairpins, hooks or stirrups for end bolts and between horizontal reinforcing for other bolts shall be provided. Where adjacent anchors are spaced closer than \(8d_e \), the allowable shear of the adjacent anchors determined by Formula (2-7) shall be reduced by linear interpolation to 0.75 times the allowable shear value at a center-to-center spacing of four bolt diameters.

2.1.4.3.5 - Anchor bolts size and materials. Anchor bolts shall be hex headed bolts conforming to ASTM A 307 or F1554 with the dimensions of the hex head conforming to ANSI/ASME B 18.2.1 or plain rod conforming to ASTM A 36 with threaded ends and double hex nuts at the anchored end. Bent bar anchor bolts shall not be used.

The maximum size anchor shall be \(1\sqrt{d_e} \)-inch (13 mm) diameter for 6-inch (152 mm) nominal masonry, \(1/2\)-inch (19 mm) diameter for 8-inch (203 mm) nominal masonry, \(3/8\)-inch (22 mm) diameter for 10-inch (254 mm) nominal masonry, and 1-inch (25 mm) diameter for 12-inch (304.8 mm) nominal masonry.

2107A.7 TMS 402/ACI 530/ASCE 5 Section 2.1.8. Modify by adding the following:

Structural members framing into or supported by walls or columns shall be securely anchored. The end support of girders, beams or other concentrated loads on masonry shall have at least 3 inches (76 mm) in length upon solid bearing not less than 4 inches (102 mm) thick or upon metal bearing plate of adequate design and dimensions to distribute the loads safely on the wall or pier, or upon a continuous reinforced masonry member projecting not less than 3 inches (76 mm) from the face of the wall or other approved methods.

Joists shall have bearing at least 3 inches (76 mm) in length upon solid masonry at least 2\(1/2 \) inches (64 mm) thick, or other provisions shall be made to distribute safely the loads on the wall or pier.

2107A.8 TMS 402/ACI 530/ASCE 5. Modify by adding Section 2.1.10 as follows:

2.1.10 - Walls and Piers.

Thickness of Walls. For thickness limitations of walls as specified in this chapter, nominal thickness shall be used. Stresses shall be determined on the basis of the net thickness of the masonry, with consideration for reduction, such as raked joints.

The thickness of masonry walls shall be designed so that allowable maximum stresses specified in this chapter are not exceeded. Also, no masonry wall shall exceed the height or length-to-thickness ratio or the minimum thickness as specified in this chapter and as set forth in Table 2107A.8.

Piers. Every pier or wall section which width is less than three times its thickness shall be designed and constructed as required for columns if such pier is a structural member. Every pier or wall section which width is between three and five times its thickness or less than one half the height of adjacent openings shall have all horizontal steel in the form of ties except that in walls 12 inches (305 mm) or less in thickness such steel may be in the form of hair-pins.

TABLE 2107A.8

<table>
<thead>
<tr>
<th>TYPE OF MASONRY</th>
<th>MAXIMUM RATIO UNSUPPORTED LENGTH OR HEIGHT TO THICKNESS</th>
<th>NOMINAL MINIMUM THICKNESS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEARING OR SHEAR WALLS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Stone masonry</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>2. Reinforced grouted masonry</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>3. Reinforced hollow-unit masonry</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>NONBEARING WALLS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Exterior reinforced walls</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>5. Interior portions reinforced</td>
<td>36</td>
<td>4</td>
</tr>
</tbody>
</table>

1. For walls of varying thickness, use the least thickness when determining the height or length to thickness ratio.
2. In determining the height or length-to-thickness ratio of a cantilevered wall, the dimension to be used shall be twice the dimension of the end of the wall from the lateral support.
3. Cantilevered walls not part of a building and not carrying applied vertical loads need not meet these minimum requirements but their design must comply with stress and overturning requirements.

2107A.9 [OSHPD 1 & 4] Modify TMS402/ACI 530/ASCE 5, Section 2.3.3.4 by the following: All reinforced masonry components that are subjected to in-plane forces shall have a maximum reinforcement ratio, \(\rho_{max} \), not greater than that computed by Equation 2-22.

SECTION 2108A

STRENGTH DESIGN OF MASONARY

2108A.1 General. The design of masonry structures using strength design shall comply with Section 2106A and the requirements of Chapters 1 and 3 of TMS 402/ACI 530/ASCE 5, except as modified by Sections 2108A.2 through 2108A.3.

2108A.2 TMS 402/ACI 530/ASCE 5, Section 3.3.3.3 development. Modify the second paragraph of Section 3.3.3.3 as follows:

The required development length of reinforcement shall be determined by Equation (3-16), but shall not be less than 12 inches (305 mm) and need not be greater than 72 \(d_e \).

2108A.3 TMS 402/ACI 530/ASCE 5, Section 3.3.3.4, splices. Modify items (b) and (c) of Section 3.3.3.4 as follows:

3.3.3.4 (b). A welded splice shall have the bars butted and welded to develop at least 125 percent of the yield strength,
f_y, of the bar in tension or compression, as required. Welded splices shall be of ASTM A 706 steel reinforcement. Welded splices shall not be permitted in plastic hinge zones of intermediate or special reinforced walls or special moment frames of masonry.

3.3.3.4 (c). Mechanical splices shall be classified as Type 1 or 2 according to Section 21.2.6.1 of ACI 318. Type 1 mechanical splices shall not be used within a plastic hinge zone or within a beam-column joint of intermediate or special reinforced masonry shear walls or special moment frames. Type 2 mechanical splices are permitted in any location within a member.

2111A.3 Seismic reinforcing. Masonry or concrete fireplaces shall be constructed, anchored, supported and reinforced as required in this chapter. In Seismic Design Category C or D, masonry and concrete fireplaces shall be reinforced in accordance with Section 2011A.4. In Seismic Design Category A or B, reinforcement and seismic anchorage is not required. In Seismic Design Category E or F, masonry and concrete chimneys shall be reinforced in accordance with the requirements of Sections 2101A through 2108A.

2111A.3.1 Vertical reinforcing. For fireplaces with chimneys up to 40 inches (1016 mm) wide, four No. 4 continuous vertical bars, anchored in the foundation, shall be placed in the concrete between wythes of solid masonry or within the cells of hollow unit masonry and grouted in accordance with Section 2103A.12. For fireplaces with chimneys greater than 40 inches (1016 mm) wide, two additional No. 4 vertical bars shall be provided for each additional 40 inches (1016 mm) in width or fraction thereof.

2111A.3.2 Horizontal reinforcing. Vertical reinforcement shall be placed enclosed within 1/8-inch (6.4 mm) ties or other reinforcing of equivalent net cross-sectional area, spaced not to exceed 18 inches (457 mm) on center in concrete; or placed in the bed joints of unit masonry at a minimum of every 18 inches (457 mm) of vertical height. Two such ties shall be provided at each bend in the vertical bars.

2111A.4 Seismic anchorage. Masonry and concrete chimneys in Seismic Design Category C or D shall be anchored at each floor, ceiling or roof line more than 6 feet (1829 mm) above grade, except where constructed completely within the exterior walls. Anchorage shall conform to the following requirements.

2111A.4.1 Anchorage. Two 1/4-inch by 1-inch (4.8 mm by 25.4 mm) straps shall be embedded a minimum of 12 inches (305 mm) into the chimney. Straps shall be hooked around the outer bars and extend 6 inches (152 mm) beyond the bend. Each strap shall be fastened to a minimum of four floor joists with two 1/4-inch (12.7 mm) bolts.

2111A.5 Firebox walls. Masonry fireboxes shall be constructed of solid masonry units, hollow masonry units grouted solid, stone or concrete. When a lining of firebrick at least 2 inches (51 mm) in thickness or other approved lining is provided, the minimum thickness of back and sidewalls shall each be 8 inches (203 mm) of solid masonry, including the lining. The width of joints between firebricks shall not be greater than 1/8 inch (6.4 mm). When no lining is provided, the total minimum thickness of back and sidewalls shall be 10 inches (254 mm) of solid masonry. Firebrick shall be placed within 2 inches (508 mm) of the passageway above the firebox, including the throat, and a circulatory chamber which is ducted to the interior of the building. The firebox lining shall be encased with solid masonry to provide a total thickness at the back and sides of not less than 8 inches (203 mm), of which not less than 4 inches (102 mm) shall be of solid masonry or concrete. Circulating air ducts employed with steel fireplaces shall be constructed of metal or masonry.

2111A.6 Firebox dimensions. The firebox of a concrete or masonry fireplace shall have a minimum depth of 20 inches (508 mm). The throat shall not be less than 8 inches (203 mm) above the fireplace opening. The throat opening shall not be less than 4 inches (102 mm) in depth. The cross-sectional area of the passageway above the firebox, including the throat,
MASONRY

damper and smoke chamber, shall not be less than the cross-sectional area of the flue.

Exception: Rumford fireplaces shall be permitted provided that the depth of the fireplace is at least 12 inches (305 mm) and at least one-third of the width of the fireplace opening, and the throat is at least 12 inches (305 mm) above the lintel, and at least \(\frac{1}{3} \) of the cross-sectional area of the fireplace opening.

2111A.7 Lintel and throat. Masonry over a fireplace opening shall be supported by a lintel of noncombustible material. The minimum required bearing length on each end of the fireplace opening shall be 4 inches (102 mm). The fireplace throat or damper shall be located a minimum of 8 inches (203 mm) above the top of the fireplace opening.

2111A.7.1 Damper. Masonry fireplaces shall be equipped with a ferrous metal damper located at least 8 inches (203 mm) above the top of the fireplace opening. Dampers shall be installed in the fireplace or at the top of the flue venting the fireplace, and shall be operable from the room containing the fireplace. Damper controls shall be permitted to be located in the fireplace.

2111A.8 Smoke chamber walls. Smoke chamber walls shall be constructed of solid masonry units, hollow masonry units grouted solid, stone or concrete. The total minimum thickness of front, back and sidewalls shall be 8 inches (203 mm) of solid masonry. The inside surface shall be parged smooth with refractory mortar conforming to ASTM C 199. When a lining of firebrick at least 2 inches (51 mm) thick, or a lining of vitrified clay at least 1/4-inch (15.9 mm) thick, is provided, the total minimum thickness of front, back and sidewalls shall be 6 inches (152 mm) of solid masonry, including the lining. Firebrick shall conform to ASTM C 1261 and shall be laid with refractory mortar conforming to ASTM C 199. Vitrified clay linings shall conform to ASTM C 315.

2111A.8.1 Smoke chamber dimensions. The inside height of the smoke chamber from the fireplace throat to the beginning of the flue shall not be greater than the inside width of the fireplace opening. The inside surface of the smoke chamber shall not be inclined more than 45 degrees (0.76 rad) from vertical when prefabricated smoke chamber linings are used or when the smoke chamber walls are rolled or sloped rather than corbeled. When the inside surface of the smoke chamber is formed by corbeled masonry, the walls shall not be corbeled more than 30 degrees (0.52 rad) from vertical.

2111A.9 Hearth and hearth extension. Masonry fireplace hearths and hearth extensions shall be constructed of concrete or masonry, supported by noncombustible materials, and reinforced to carry their own weight and all imposed loads. No combustible material shall remain against the underside of hearths or hearth extensions after construction.

2111A.9.1 Hearth thickness. The minimum thickness of fireplace hearths shall be 4 inches (102 mm).

2111A.9.2 Hearth extension thickness. The minimum thickness of hearth extensions shall be 2 inches (51 mm).

Exception: When the bottom of the firebox opening is raised at least 8 inches (203 mm) above the top of the hearth extension, a hearth extension of not less than \(\frac{3}{4} \)-inch-thick (9.5 mm) brick, concrete, stone, tile or other approved noncombustible material is permitted.

2111A.10 Hearth extension dimensions. Hearth extensions shall extend at least 16 inches (406 mm) in front of, and at least 8 inches (203 mm) beyond, each side of the fireplace opening. Where the fireplace opening is 6 square feet (0.557 m²) or larger, the hearth extension shall extend at least 20 inches (508 mm) in front of, and at least 12 inches (305 mm) beyond, each side of the fireplace opening.

2111A.11 Fireplace clearance. Any portion of a masonry fireplace located in the interior of a building or within the exterior wall of a building shall have a clearance to combustibles of not less than 2 inches (51 mm) from the front faces and sides of masonry fireplaces and not less than 4 inches (102 mm) from the back faces of masonry fireplaces. The airspace shall not be filled, except to provide fireblocking in accordance with Section 2111A.12.

Exceptions:

1. Masonry fireplaces listed and labeled for use in contact with combustibles in accordance with UL 127 and installed in accordance with the manufacturer’s installation instructions are permitted to have combustible material in contact with their exterior surfaces.

2. When masonry fireplaces are constructed as part of masonry or concrete walls, combustible materials shall not be in contact with the masonry or concrete walls less than 12 inches (306 mm) from the inside surface of the nearest firebox lining.

3. Exposed combustible trim and the edges of sheathing materials, such as wood siding, flooring and drywall, are permitted to abut the masonry fireplace sidewalls and hearth extension, in accordance with Figure 2111A.11, provided such combustible trim or sheathing is a minimum of 12 inches (306 mm) from the inside surface of the nearest firebox lining.

4. Exposed combustible mantels or trim is permitted to be placed directly on the masonry fireplace front surrounding the fireplace opening, provided such combustible materials shall not be placed within 6 inches (153 mm) of a fireplace opening. Combustible material directly above and within 12 inches (305 mm) of the fireplace opening shall not project more than 1/4 inch (3.2 mm) for each 1-inch (25 mm) distance from such opening. Combustible materials located along the sides of the fireplace opening that project more than 1/2 inches (38 mm) from the face of the fireplace shall have an additional clearance equal to the projection.
2111A.12 Fireplace fireblocking. All spaces between fireplaces and floors and ceilings through which fireplaces pass shall be fireblocked with noncombustible material securely fastened in place. The fireblocking of spaces between wood joists, beams or headers shall be to a depth of 1 inch (25 mm) and shall only be placed on strips of metal or metal lath laid across the spaces between combustible material and the chimney.

2111A.13 Exterior air. Factory-built or masonry fireplaces covered in this section shall be equipped with an exterior air supply to ensure proper fuel combustion unless the room is mechanically ventilated and controlled so that the indoor pressure is neutral or positive.

2111A.13.1 Factory-built fireplaces. Exterior combustion air ducts for factory-built fireplaces shall be listed components of the fireplace, and installed according to the fireplace manufacturer's instructions.

2111A.13.2 Masonry fireplaces. Listed combustion air ducts for masonry fireplaces shall be installed according to the terms of their listing and manufacturer's instructions.

2111A.13.3 Exterior air intake. The exterior air intake shall be capable of providing all combustion air from the exterior of the dwelling. The exterior air intake shall not be located within a garage, attic, basement or crawl space of the dwelling nor shall the air intake be located at an elevation higher than the fireplace. The exterior air intake shall be covered with a corrosion-resistant screen of 1/8-inch (6.4 mm) mesh.

2111A.13.4 Clearance. Unlisted combustion air ducts shall be installed with a minimum 1-inch (25 mm) clearance to combustibles for all parts of the duct within 5 feet (1524 mm) of the duct outlet.

2111A.13.5 Passageway. The combustion air passageway shall be a minimum of 6 square inches (3870 mm²) and not more than 55 square inches (0.335 m²), except that combustion air systems for listed fireplaces or for fireplaces tested for emissions shall be constructed according to the fireplace manufacturer's instructions.

2111A.13.6 Outlet. The exterior air outlet is permitted to be located in the back or sides of the firebox chamber or within 24 inches (610 mm) of the firebox opening on or near the floor. The outlet shall be closable and designed to prevent burning material from dropping into concealed combustible spaces.

SECTION 2112A
MASONRY HEATERS

2112A.1 Definition. A masonry heater is a heating appliance constructed of concrete or solid masonry, hereinafter referred to as "masonry," which is designed to absorb and store heat from a solid fuel fire built in the firebox by routing the exhaust gases through internal heat exchange channels in which the flow path downstream of the firebox may include flow in a horizontal or downward direction before entering the chimney and which delivers heat by radiation from the masonry surface of the heater.

2112A.2 Installation. Masonry heaters shall be installed in accordance with this section and comply with one of the following:

1. Masonry heaters shall comply with the requirements of ASTM E 1602; or
2. Masonry heaters shall be listed and labeled in accordance with UL 1482 and installed in accordance with the manufacturer's installation instructions.

2112A.3 Footings and foundation. The firebox floor of a masonry heater shall be a minimum thickness of 4 inches (102 mm) of noncombustible material and be supported on a noncombustible footing and foundation in accordance with Section 2113A.

2112A.4 Seismic reinforcing. In Seismic Design Category D, E and F, masonry heaters shall be anchored to the masonry foundation in accordance with Section 2113A.3. Seismic reinforcing shall not be required within the body of a masonry heater with a height that is equal to or less than 3.5 times its body width and where the masonry chimney serving the heater is not supported by the body of the heater. Where the masonry chimney shares a common wall with the facing of the masonry heater, the chimney portion of the structure shall be reinforced in accordance with Section 2113A.

2112A.5 Masonry heater clearance. Combustible materials shall not be placed within 36 inches (765 mm) of the outside surface of a masonry heater in accordance with NFPA 211, Section 8-7 (clearances for solid fuel-burning appliances), and the required space between the heater and combustible material shall be fully vented to permit the free flow of air around all heater surfaces.

Exceptions:

1. When the masonry heater wall thickness is at least 8 inches (203 mm) thick of solid masonry and the wall thickness of the heat exchange channels is at least 5 inches (127 mm) thick of solid masonry, combustible materials shall not be placed within 4 inches (102 mm) of the outside surface of a masonry heater. A clearance of at least 8 inches (203 mm) shall be pro-
312

ANCHORED AT EACH FLOOR, CEILING OR ROOF LINE MORE THAN 6 FEET LOWING REQUIREMENTS.

2113A.4 Seismic anchorage. Masonry and concrete chimneys within the and foundations in required in this chapter. In accordance with the requirements of Sections 2113A.1, 2113A.3.1, 2113A.3.2 and 2113A.4. In Seismic Design Category A or B, reinforcement and seismic anchorage is not required. In Seismic Design Category C or D, masonry and concrete chimneys shall be reinforced and anchored as detailed in Sections 2113A.3.1, 2113A.3.2 and 2113A.4.

2113A.5 Corbeling. Masonry chimneys shall not be corbeled more than half of the chimney's wall thickness from a wall or foundation, nor shall a chimney be corbeled from a wall or foundation that is less than 12 inches (305 mm) in thickness unless it projects equally on each side of the wall, except that on the second story of a two-story dwelling, corbeling of chimneys on the exterior of the enclosing walls is permitted to equal the wall thickness. The projection of a single course shall not exceed one-half the unit height or one-third of the unit bed depth, whichever is less.

2113A.6 Changes in dimension. The chimney wall or chimney flue lining shall not change in size or shape within 6 inches (152 mm) above or below where the chimney passes through floor components, ceiling components or roof components.

2113A.7 Offsets. Where a masonry chimney is constructed with a fireclay flue liner surrounded by one wythe of masonry, the maximum offset shall be such that the centerline of the flue above the offset does not extend beyond the center of the chimney wall below the offset. Where the chimney offset is supported by masonry below the offset in an approved manner, the maximum offset limitations shall not apply. Each individual corbeled masonry course of the offset shall not exceed the projection limitations specified in Section 2113A.5.

2113A.8 Additional load. Masonry chimneys shall not support loads other than their own weight unless they are designed and constructed to support the additional load. Masonry chimneys are permitted to be constructed as part of the masonry walls or concrete walls of the building.

2113A.9 Termination. Masonry chimneys shall extend at least 2 feet (610 mm) above any portion of the building within 10 feet (3048 mm), but shall not be less than 3 feet (914 mm) above the highest point where the chimney passes through the roof.

2113A.9.1 Spark arrestors. [SFM] All chimneys attached to any appliance or fireplace that burns solid fuel shall be equipped with an approved spark arrester. The spark arrester shall meet all of the following requirements:

1. The net free area of the spark arrester shall not be less than four times the net free area of the outlet of the chimney.
2. The spark arrester screen shall have heat and corrosion resistance equivalent to 12-gage wire, 19-gage galvanized wire or 24-gage stainless steel.
3. Openings shall not permit the passage of spheres having a diameter larger than \(\frac{1}{4}\) inch (12.7 mm) and shall not block the passage of spheres having a diameter of less than \(\frac{1}{8}\) inch (9.5 mm).
4. The spark arrester shall be accessible for cleaning and the screen or chimney cap shall be removable to allow for cleaning of the chimney flue.

2113A.10 Wall thickness. Masonry chimney walls shall be constructed of concrete, solid masonry units or hollow
masonry units grouted solid with not less than 4 inches (102 mm) nominal thickness.

2113A.10.1 Masonry veneer chimneys. Where masonry is used as veneer for a framed chimney, through flashing and weep holes shall be provided as required by Chapter 14.

2113A.11 Flue lining (material). Masonry chimneys shall be lined. The lining material shall be appropriate for the type of appliance connected, according to the terms of the appliance listing and the manufacturer’s instructions.

2113A.11.1 Residential-type appliances (general). Flue lining systems shall comply with one of the following:

1. Clay flue lining complying with the requirements of ASTM C 315.
2. Listed chimney lining systems complying with UL 1777.
3. Factory-built chimneys or chimney units listed for installation within masonry chimneys.
4. Other approved materials that will resist corrosion, erosion, softening or cracking from flue gases and condensate at temperatures up to 1,800°F (982°C).

2113A.11.1.1 Flue linings for specific appliances. Flue linings other than those covered in Section 2113A.11.1 intended for use with specific appliances shall comply with Sections 2113A.11.1.2 through 2113A.11.1.4 and Sections 2113A.11.2 and 2113A.11.3.

2113A.11.1.2 Gas appliances. Flue lining systems for gas appliances shall be in accordance with the International Fuel Gas Code.

2113A.11.1.3 Pellet fuel-burning appliances. Flue lining and vent systems for use in masonry chimneys with pellet-fuel-burning appliances shall be limited to flue lining systems complying with Section 2113A.11.1 and pellet vents listed for installation within masonry chimneys (see Section 2113A.11.1.5 for marking).

2113A.11.1.4 Oil-fired appliances approved for use with L-vent. Flue lining and vent systems for use in masonry chimneys with oil-fired appliances approved for use with Type L vent shall be limited to flue lining systems complying with Section 2113A.11.1 and listed chimney liners complying with UL 641 (see Section 2113A.11.1.5 for marking).

2113A.11.1.5 Notice of usage. When a flue is relined with a material not complying with Section 2113A.11.1, the chimney shall be plainly and permanently identified by a label attached to a wall, ceiling or other conspicuous location adjacent to where the connector enters the chimney. The label shall include the following message or equivalent language: “This chimney is for use only with (type or category of appliance) that burns (type of fuel). Do not connect other types of appliances.”

2113A.11.2 Concrete and masonry chimneys for medium-heat appliances.

2113A.11.2.1 General. Concrete and masonry chimneys for medium-heat appliances shall comply with Sections 2113A.1 through 2113A.5.

2113A.11.2.2 Construction. Chimneys for medium-heat appliances shall be constructed of solid masonry units or of concrete with walls a minimum of 8 inches (203 mm) thick, or with stone masonry a minimum of 12 inches (305 mm) thick.

2113A.11.2.3 Lining. Concrete and masonry chimneys shall be lined with an approved medium-duty refractory brick a minimum of 4 1/2 inches (114 mm) thick laid on the 4 1/2-inch bed (114 mm) in an approved medium-duty refractory mortar. The lining shall start 2 feet (610 mm) or more below the lowest chimney connector entrance. Chimneys terminating 25 feet (7620 mm) or less above a chimney connector entrance shall be lined to the top.

2113A.11.2.4 Multiple passageway. Concrete and masonry chimneys containing more than one passageway shall have the liners separated by a minimum 4-inch-thick (102 mm) concrete or solid masonry wall.

2113A.11.2.5 Termination height. Concrete and masonry chimneys for medium-heat appliances shall extend a minimum of 10 feet (3048 mm) higher than any portion of any building within 25 feet (7620 mm).

2113A.11.2.6 Clearance. A minimum clearance of 4 inches (102 mm) shall be provided between the exterior surfaces of a concrete or masonry chimney for medium-heat appliances and combustible material.

2113A.11.3 Concrete and masonry chimneys for high-heat appliances.

2113A.11.3.1 General. Concrete and masonry chimneys for high-heat appliances shall comply with Sections 2113A.1 through 2113A.5.

2113A.11.3.2 Construction. Chimneys for high-heat appliances shall be constructed with double walls of solid masonry units or of concrete, each wall to be a minimum of 8 inches (203 mm) thick with a minimum airspace of 2 inches (51 mm) between the walls.

2113A.11.3.3 Lining. The inside of the interior wall shall be lined with an approved high-duty refractory brick, a minimum of 4 1/2 inches (114 mm) thick laid on the 4 1/2-inch bed (114 mm) in an approved high-duty refractory mortar. The lining shall start at the base of the chimney and extend continuously to the top.

2113A.11.3.4 Termination height. Concrete and masonry chimneys for high-heat appliances shall extend a minimum of 20 feet (6096 mm) higher than any portion of any building within 50 feet (15 240 mm).

2113A.11.3.5 Clearance. Concrete and masonry chimneys for high-heat appliances shall have approved clearance from buildings and structures to prevent overheating combustible materials, permit inspection and maintenance operations on the chimney and prevent danger of burns to persons.

2113A.12 Clay flue lining (installation). Clay flue liners shall be installed in accordance with ASTM C 1283 and extend from a point not less than 8 inches (203 mm) below the lowest inlet or, in the case of fireplaces, from the top of the smoke chamber.
to a point above the enclosing walls. The lining shall be carried up vertically, with a maximum slope no greater than 30 degrees (0.52 rad) from the vertical.

Clay flue liners shall be laid in medium-duty refractory mortar conforming to ASTM C 199 with tight mortar joints left smooth on the inside and installed to maintain an air space or insulation not to exceed the thickness of the flue liner separating the flue liners from the interior face of the chimney masonry walls. Flue lining shall be supported on all sides. Only enough mortar shall be placed to make the joint and hold the liners in position.

2113A.13 Additional requirements.

2113A.13.1 Listed materials

Listed materials used as flue linings shall be installed in accordance with the terms of their listings and the manufacturer's instructions.

2113A.13.2 Space around lining

The space surrounding a chimney lining system or vent installed within a masonry chimney shall not be used to vent any other appliance.

Exception: This shall not prevent the installation of a separate flue lining in accordance with the manufacturer's instructions.

2113A.14 Multiple flues

When two or more flues are located in the same chimney, masonry wythes shall be built between adjacent flue linings. The masonry wythes shall be at least 4 inches (102 mm) thick and bonded into the walls of the chimney.

Exception: When venting only one appliance, two flues are permitted to adjoin each other in the same chimney with only the flue lining separation between them. The joints of the adjacent flue linings shall be staggered at least 4 inches (102 mm).

2113A.15 Flue area (appliance)

Chimney flues shall not be smaller in area than the area of the connector from the appliance. Chimney flues connected to more than one appliance shall not be less than the area of the largest connector plus 50 percent of the areas of additional chimney connectors.

Exceptions:

1. Chimney flues serving oil-fired appliances sized in accordance with NFPA 31.
2. Chimney flues serving gas-fired appliances sized in accordance with the *International Fuel Gas Code*.

2113A.16 Flue area (masonry fireplace)

Flue sizing for chimneys serving fireplaces shall be in accordance with Section 2113A.16.1 or 2113A.16.2.

2113A.16.1 Minimum area

Round chimney flues shall have a minimum net cross-sectional area of at least 1/6 of the fireplace opening. Square chimney flues shall have a minimum net cross-sectional area of at least 1/10 of the fireplace opening. Rectangular chimney flues with an aspect ratio less than 2 to 1 shall have a minimum net cross-sectional area of at least 1/18 of the fireplace opening. Rectangular chimney flues with an aspect ratio of 2 to 1 or more shall have a minimum net cross-sectional area of at least 1/8 of the fireplace opening.

2113A.16.2 Determination of minimum area

The minimum net cross-sectional area of the flue shall be determined in accordance with Figure 2113A.16. A flue size providing at least the equivalent net cross-sectional area shall be used. Cross-sectional areas of clay flue linings are as provided in Tables 2113A.16(1) and 2113A.16(2) or as provided by the manufacturer or as measured in the field. The height of the chimney shall be measured from the firebox floor to the top of the chimney flue.

TABLE 2113A.16(1)

<table>
<thead>
<tr>
<th>FLUE SIZE, INSIDE DIAMETER (inches)</th>
<th>CROSS-SECTIONAL AREA (square inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
</tr>
<tr>
<td>10(\frac{3}{4})</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>113</td>
</tr>
<tr>
<td>15</td>
<td>176</td>
</tr>
<tr>
<td>18</td>
<td>254</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm².

a. Flue sizes are based on ASTM C 315.

TABLE 2113A.16(2)

<table>
<thead>
<tr>
<th>FLUE SIZE, OUTSIDE NOMINAL DIMENSIONS (inches)</th>
<th>CROSS-SECTIONAL AREA (square inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 (\times) 8.5</td>
<td>23</td>
</tr>
<tr>
<td>4.5 (\times) 13</td>
<td>34</td>
</tr>
<tr>
<td>8 (\times) 8</td>
<td>42</td>
</tr>
<tr>
<td>8.5 (\times) 8.5</td>
<td>49</td>
</tr>
<tr>
<td>8 (\times) 12</td>
<td>67</td>
</tr>
<tr>
<td>8.5 (\times) 13</td>
<td>76</td>
</tr>
<tr>
<td>12 (\times) 12</td>
<td>102</td>
</tr>
<tr>
<td>8.5 (\times) 18</td>
<td>101</td>
</tr>
<tr>
<td>13 (\times) 13</td>
<td>127</td>
</tr>
<tr>
<td>12 (\times) 16</td>
<td>131</td>
</tr>
<tr>
<td>13 (\times) 18</td>
<td>173</td>
</tr>
<tr>
<td>16 (\times) 16</td>
<td>181</td>
</tr>
<tr>
<td>16 (\times) 20</td>
<td>222</td>
</tr>
<tr>
<td>18 (\times) 18</td>
<td>233</td>
</tr>
<tr>
<td>20 (\times) 20</td>
<td>298</td>
</tr>
<tr>
<td>20 (\times) 24</td>
<td>335</td>
</tr>
<tr>
<td>24 (\times) 24</td>
<td>431</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm².
2113A.18 Masonry chimney cleanout openings. Cleanout openings shall be provided within 6 inches (152 mm) of the base of each flue within every masonry chimney. The upper edge of the cleanout shall be located at least 6 inches (152 mm) below the lowest chimney inlet opening. The height of the opening shall be at least 6 inches (152 mm). The cleanout shall be provided with a noncombustible cover.

Exception: Chimney flues serving masonry fireplaces, where cleaning is possible through the fireplace opening.

2113A.19 Chimney clearances. Any portion of a masonry chimney located in the interior of the building or within the exterior wall of the building shall have a minimum airspace clearance to combustibles of 2 inches (51 mm). Chimneys located entirely outside the exterior walls of the building, including chimneys that pass through the soffit or cornice, shall have a minimum airspace clearance of 1 inch (25 mm). The airspace shall not be filled, except to provide fireblocking in accordance with Section 2113A.20.

Exceptions:

1. Masonry chimneys equipped with a chimney lining system listed and labeled for use in chimneys in contact with combustibles in accordance with UL 1777, and installed in accordance with the manufacturer's instructions, are permitted to have combustible material in contact with their exterior surfaces.

2. Where masonry chimneys are constructed as part of masonry or concrete walls, combustible materials shall not be in contact with the masonry or concrete wall less than 12 inches (305 mm) from the inside surface of the nearest flue lining.

3. Exposed combustible trim and the edges of sheathing materials, such as wood siding, are permitted to abut the masonry chimney sidewalls, in accordance with Figure 2113A.19, provided such combustible trim or sheathing is a minimum of 12 inches (305 mm) from the inside surface of the nearest flue lining. Combustible material and trim shall not overlap the corners of the chimney by more than 1 inch (25 mm).

2113A.20 Chimney fireblocking. All spaces between chimneys and floors and ceilings through which chimneys pass shall be fireblocked with noncombustible material securely fastened in place. The fireblocking of spaces between wood joists, beams or headers shall be to a depth of 1 inch (25 mm) and shall only be placed on strips of metal or metal lath laid across the spaces between combustible material and the chimney.
MASONRY

MASONRY ABUTTING COMBUSTIBLE SHEATHING 12" FROM FLUE LINING

1" CLEARANCE (AIRSPACE) TO COMBUSTIBLE SHEATHING

For SI: 1 inch = 25.4 mm.

FIGURE 2113A.19 ILLUSTRATION OF EXCEPTION THREE CHIMNEY CLEARANCE PROVISION

SECTION 2114A NONBEARING WALLS

2114A.1 General. All nonbearing masonry walls shall be reinforced as specified in Section 2106A.1.1. Fences and interior nonbearing nonshear walls may be of hollow-unit masonry construction grouted in cells containing vertical and horizontal reinforcement. Nonbearing walls may be used to carry a superimposed load of not more than 200 pounds per linear foot (2.92 kN/m).

1. Thickness. Every nonbearing masonry wall shall be constructed and have a sufficient thickness to withstand all vertical loads and horizontal loads, but in no case shall the thickness of such walls be less than the values set forth in Table 2107A.8.

Plaster shall not be considered as contributing to the thickness of a wall in computing the height-to-thickness ratio.

2. Anchorage. All nonbearing walls shall be anchored as required by Section 1604A.8.2 and ASCE 7 Chapter 13. Suspended ceilings or other nonstructural elements shall not be used to provide anchorage for masonry walls.

SECTION 2115A MASONRY SCREEN WALLS

2115A.1 General. Masonry units may be used in nonbearing decorative screen walls. Units may be laid up in panels with units on edge with the open pattern of the unit exposed in the completed wall.

1. Horizontal Forces. The panels shall be capable of spanning between supports to resist the horizontal forces specified in Chapter 16A. Wind loads shall be based on the gross projected area of the block.

2. Mortar Joints. Horizontal and vertical joints shall not be less than 1/2 inch (6 mm) thick. All joints shall be completely filled with mortar and shall be “shoved joint” work. The units of a panel shall be so arranged that either the horizontal or the vertical joint containing rein-

forcing is continuous without offset. This continuous joint shall be reinforced with a minimum of 0.03 square inch (19 mm²) of reinforcing steel. Reinforcement may be embedded in mortar.

3. Reinforcing. Joint reinforcing may be composed of two wires made with welded ladder or trussed wire cross ties. In calculating the resisting capacity of the system, compression and tension in the spaced wires may be utilized. Ladder wire reinforcing shall not be spliced and shall be the widest that the mortar joint will accommodate, allowing 1/2 inch (13 mm) of mortar cover.

4. Size of Panels. The maximum size of panels shall be 144 square feet (13.4 m²), with the maximum dimension in either direction of 15 feet (4572 mm).

5. Panel Support. Each panel shall be supported on all edges by a structural member of concrete, masonry or steel. Supports at the top and ends of the panel shall be by means of confinement of the masonry by at least 1/2 inch (13 mm) into and between the flanges of a steel channel. The space between the end of the panel and the web of the channel shall be filled with resilient material. The use of an equivalent configuration in other steel sections or in masonry or concrete is acceptable.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 22 - STEEL

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD BSC</th>
<th>SFM</th>
<th>1</th>
<th>2</th>
<th>1-AC</th>
<th>AC</th>
<th>SS</th>
<th>SS/CC</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td>2201.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2201.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2201.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2201.1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.4.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.4.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2211.5.2</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 22

STEEL

SECTION 2201
GENERAL

2201.1 Scope. The provisions of this chapter govern the quality, design, fabrication and erection of steel used structurally in buildings or structures.

2201.1.1 Application. [DSA-SS/CC] The scope of application of Chapter 22 is as follows:

Community college buildings regulated by the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC), as listed in Section 1.9.2.2.

2201.1.2 Identification of amendments. [DSA-SS/CC]

Division of the State Architect-Structural Safety/Community Colleges amendments appear in this chapter preceded with the appropriate acronym, as follows:

[DSA-SS/CC] - For community college buildings listed in Section 1.9.2.2.

2201.1.3 Reference to other chapters. [DSA-SS/CC]

Where reference within this chapter is made to sections in Chapter 17 the provisions in Chapter 17A shall apply instead.

2201.1.4 Amendments. [DSA-SS/CC] See Section 2211 for additional requirements.

SECTION 2202
DEFINITIONS

2202.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meaning shown herein.

STEEL CONSTRUCTION, COLD-FORMED. That type of construction made up entirely or in part of steel structural members cold formed to shape from sheet or strip steel such as roof deck, floor and wall panels, studs, floor joists, roof joists and other structural elements.

STEEL JOIST. Any steel structural member of a building or structure made of hot-rolled or cold-formed solid or open-web sections, or riveted or welded bars, strip or sheet steel members, or slotted and expanded, or otherwise deformed rolled sections.

STEEL MEMBER, STRUCTURAL. Any steel structural member of a building or structure consisting of a rolled steel structural shape other than cold-formed steel, or steel joist members.

SECTION 2203
IDENTIFICATION AND PROTECTION OF STEEL FOR STRUCTURAL PURPOSES

2203.1 Identification. Identification of structural steel members shall comply with the requirements contained in AISC 360. Identification of cold-formed steel members shall comply with the requirements contained in AISI S100. Identification of cold-formed steel light-frame construction shall also comply with the requirements contained in AISI S200. Other steel furnished for structural load-carrying purposes shall be properly identified for conformity to the ordered grade in accordance with the specified ASTM standard or other specification and the provisions of this chapter. Steel that is not readily identifiable as to grade from marking and test records shall be tested to determine conformity to such standards.

2203.2 Protection. Painting of structural steel members shall comply with the requirements contained in AISC 360. Painting of open-web steel joists and joist girders shall comply with the requirements of SJI CJ-1.0, SJI JG-1.1, SJI K-1.1 and SJI LH/DLH-1.1. Individual structural members and assembled panels of cold-formed steel construction shall be protected against corrosion in accordance with the requirements contained in AISI S100. Protection of cold-formed steel light-frame construction shall also comply with the requirements contained in AISI S200.

SECTION 2204
CONNECTIONS

2204.1 Welding. The details of design, workmanship and technique for welding, inspection of welding and qualification of welding operators shall conform to the requirements of the specifications listed in Sections 2205, 2206, 2207, 2209 and 2210. Special inspection of welding shall be provided where required by Section 1704.

2204.2 Bolting. The design, installation and inspection of bolts shall be in accordance with the requirements of the specifications listed in Sections 2205, 2206, 2209 and 2210. Special inspection of the installation of high-strength bolts shall be provided where required by Section 1704.

2204.2.1 Anchor rods. Anchor rods shall be set accurately to the pattern and dimensions called for on the plans. The protrusion of the threaded ends through the connected material shall be sufficient to fully engage the threads of the nuts, but shall not be greater than the length of the threads on the bolts.

2010 CALIFORNIA BUILDING CODE
SECTION 2205
STRUCTURAL STEEL

2205.1 General. The design, fabrication and erection of structural steel for buildings and structures shall be in accordance with AISC 360. Where required, the seismic design of steel structures shall be in accordance with the additional provisions of Section 2205.2.

2205.2 Seismic requirements for steel structures. The design of structural steel structures to resist seismic forces shall be in accordance with the provisions of Section 2205.2.1 or 2205.2.2 for the appropriate seismic design category.

2205.2.1 Seismic Design Category A, B or C. Structural steel structures assigned to Seismic Design Category A, B or C shall be of any construction permitted in Section 2205. An R factor as set forth in Section 12.2.1 of ASCE 7 for the appropriate steel system is permitted where the structure is designed and detailed in accordance with the provisions of AISC 341, Part I. Systems not detailed in accordance with the above shall use the R factor in Section 12.2.1 of ASCE 7 designated for “structural steel systems not specifically detailed for seismic resistance.”

2205.2.2 Seismic Design Category D, E or F. Structural steel structures assigned to Seismic Design Category D, E or F shall be designed and detailed in accordance with AISC 341, Part I.

2205.3 Seismic requirements for composite construction. The design, construction and quality of composite steel and concrete components that resist seismic forces shall conform to the requirements of the AISC 360 and ACI 318. An R factor as set forth in Section 12.2.1 of ASCE 7 for the appropriate composite steel and concrete system is permitted where the structure is designed and detailed in accordance with the provisions of AISC 341, Part II. In Seismic Design Category B or above, the design of such systems shall conform to the requirements of AISC 341, Part II.

2205.3.1 Seismic Design Categories D, E and F. Composite structures are permitted in Seismic Design Categories D, E and F, subject to the limitations in Section 12.2.1 of ASCE 7, where substantiating evidence is provided to demonstrate that the proposed system will perform as intended by AISC 341, Part II. The substantiating evidence shall be subject to building official approval. Where composite elements or connections are required to sustain inelastic deformations, the substantiating evidence shall be based on cyclic testing.

Where required, the seismic design of buildings shall be in accordance with the additional provisions of Section 2205.2 or 2210.5.

2206.2 Design. The registered design professional shall indicate on the construction documents the steel joist and/or steel joist girder designations and connectors from the specifications listed in Section 2206.1 and shall indicate the requirements for joist and joist girder design, layout, end supports, anchorage, non-SJI standard bridging, bridging termination connections and bearing connection design to resist uplift and lateral loads. These documents shall indicate special requirements as follows:

1. Special loads including:
 1.1. Concentrated loads;
 1.2. Nonuniform loads;
 1.3. Net uplift loads;
 1.4. Axial loads;
 1.5. End moments; and
 1.6. Connection forces.

2. Special considerations including:
 2.1. Profiles for nonstandard joist and joist girder configurations (standard joist and joist girder configurations are as indicated in the SJI catalog);
 2.2. Oversized or other nonstandard web openings;
 2.3. Extended ends.

3. Deflection criteria for live and total loads for non-SJI standard joists.

2206.3 Calculations. The steel joist and joist girder manufacturer shall design the steel joists and/or steel joist girders in accordance with the current SJI specifications and load tables to support the load requirements of Section 2206.2. The registered design professional may require submission of the steel joist and joist girder calculations as prepared by a registered design professional responsible for the product design. If requested by the registered design professional, the steel joist manufacturer shall submit design calculations with a cover letter bearing the seal and signature of the joist manufacturer’s registered design professional. In addition to standard calculations under this seal and signature, submittal of the following shall be included:

1. Non-SJI standard bridging details (e.g. for cantilevered conditions, net uplift, etc.).
2. Connection details for:
 2.1. Non-SJI standard connections (e.g. flush-framed or framed connections);
 2.2. Field splices; and
 2.3. Joist headers.

2206.4 Steel joist drawings. Steel joist placement plans shall be provided to show the steel joist products as specified on the construction documents and are to be utilized for field installation in accordance with specific project requirements as stated...
in Section 2206.2. Steel placement plans shall include, at a minimum, the following:

1. Listing of all applicable loads as stated in Section 2206.2 and used in the design of the steel joists and joist girders as specified in the construction documents.

2. Profiles for nonstandard joist and joist girder configurations (standard joist and joist girder configurations are as indicated in the SIJI catalog).

3. Connection requirements for:
 - 3.1. Joist supports;
 - 3.2. Joist girder supports;
 - 3.3. Field splices; and
 - 3.4. Bridging attachments.

4. Deflection criteria for live and total loads for non-SJI standard joists.

5. Size, location and connections for all bridging.

Steel joist placement plans do not require the seal and signature of the joist manufacturer’s registered design professional.

2206.5 Certification. At completion of manufacture, the steel joist manufacturer shall submit a certificate of compliance in accordance with Section 1704.2.2 stating that work was performed in accordance with approved construction documents and with SJI standard specifications.

SECTION 2207 STEEL CABLE STRUCTURES

2207.1 General. The design, fabrication and erection including related connections, and protective coatings of steel cables for buildings shall be in accordance with ASCE 19.

2207.2 Seismic requirements for steel cable. The design strength of steel cables shall be determined by the provisions of ASCE 19 except as modified by these provisions.

1. A load factor of 1.1 shall be applied to the prestress force included in T_3 and T_4 as defined in Section 3.12.

2. In Section 3.2.1, Item (c) shall be replaced with “1.5 T_3” and Item (d) shall be replaced with “1.5 T_4.”

SECTION 2208 STEEL STORAGE RACKS

2208.1 Storage racks. The design, testing and utilization of industrial steel storage racks made of cold-formed or hot-rolled steel structural members, shall be in accordance with the RMI/ANSI MH 16.1. Where required by ASCE 7, the seismic design of storage racks shall be in accordance with the provisions of Section 15.5.3 of ASCE 7, except that items (1), (2) and (3) of Section 15.5.3 of ASCE 7 do not apply when the rack design satisfies RMI/ANSI MH 16.1.

SECTION 2209 COLD-FORMED STEEL

2209.1 General. The design of cold-formed carbon and low-alloy steel structural members shall be in accordance with AISI S100. The design of cold-formed stainless-steel structural members shall be in accordance with ASCE 8. Cold-formed steel light-frame construction shall also comply with Section 2210.

2209.2 Steel decks. The design and construction of cold-formed steel decks shall be in accordance with this section.

2209.2.1 Composite slabs on steel decks. Composite slabs of concrete and steel deck shall be designed and constructed in accordance with ASCE 3.

2209.2.2 Noncomposite steel floor decks. Noncomposite steel floor decks shall be permitted to be designed and constructed in accordance with ANSI/SDI-NC1.0, as modified in Section 2209.2.2.1.

2209.2.2.1 ANSI/SDI-NC1.0 Section 2.4Bl. Replace Section 2.4Bl of ANSI/SDI-NC1.0 with the following:

1. General: The design of the concrete slabs shall be done in accordance with the ACI Building Code Requirements for Reinforced Concrete. The minimum concrete thickness above the top of the deck shall be 1 1/2 inches (38 mm).

2209.2.3 Steel roof deck. Steel roof decks shall be permitted to be designed and constructed in accordance with ANSI/SDI-RD1.0.

SECTION 2210 COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION

2210.1 General. The design and installation of structural members and nonstructural members utilized in cold-formed steel light-frame construction where the specified minimum base steel thickness is between 0.0179 inches (0.455 mm) and 0.1180 inches (2.997 mm) shall be in accordance with AISI S200 and Sections 2210.2 through 2210.7, as applicable.

2210.2 Header design. Headers, including box and back-to-back headers, and double and single L-headers shall be designed in accordance with AISI S212 or AISI S100.

2210.3 Trusses.

2210.3.1 Design. Cold-formed steel trusses shall be designed in accordance with AISI S214, Sections 2210.3.1 through 2210.3.5 and accepted engineering practice.

2210.3.2 Truss design drawings. The truss design drawings shall conform to the requirements of Section B2.3 of AISI S214 and shall be provided with the shipment of trusses delivered to the job site. The truss design drawings shall include the details of permanent individual truss members, restraint/bracing in accordance with Section B6(a) or B6(c) of AISI S214 where these methods are utilized to provide restraint/bracing.
2210.3.3 Deferred submittals. AISI Section B4.2 shall be deleted.

2210.3.4 Trusses spanning 60 feet or greater. The owner shall contract with a registered design professional for the design of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing for trusses with clear spans 60 feet (18288 mm) or greater. Special inspection of trusses over 60 feet (18288 mm) in length shall conform to Section 1704.

2210.3.5 Truss quality assurance. Trusses not part of a manufacturing process that provides requirements for quality control done under the supervision of a third-party quality control agency, shall be manufactured in compliance with Sections 1704.2 and 1704.3, as applicable.

2210.4 Wall stud design. Wall studs shall be designed in accordance with either AISI S211 or AISI S100.

2210.5 Floor and roof system design. Framing for floor and roof systems in buildings shall be designed in accordance with either AISI S210 or AISI S100.

2210.6 Lateral design. Light-frame shear walls, diagonal strap bracing that is part of a structural wall and diaphragms used to resist wind, seismic and other in-plane lateral loads shall be designed in accordance with AISI S213.

2210.7 Prescriptive framing. Detached one- and two-family dwellings and townhouses, less than or equal to three stories above grade plane, shall be permitted to be constructed in accordance with AISI S230 subject to the limitations therein.

SECTION 2211
ADDITIONAL REQUIREMENTS [DSA-SS/CC]

2211.1 Connections.

2211.1.1 Welded splice. No welded splices shall be made except those shown on approved plans. Welded butt splices subject to tension greater than 33 percent of the expected yield strength under the load combinations with overstrength factors, shall have tapered transitions as required per AWS D1.8 Clause 4.2.

2211.1.2 Consumables for welding.

2211.1.2.1 Seismic Force Resisting System (SFRS) welds. All welds used in members and connections in the SFRS shall be made with filler metals meeting the requirements specified in AWS D1.8 Clause 6.3. AWS D1.8 Clauses 6.3.5, 6.3.6, 6.3.7 and 6.3.8 shall apply only to demand critical welds.

2211.1.2.2 Demand critical welds. Where welds are designated as demand critical, they shall be made with filler metals meeting the requirements specified in AWS D1.8 Clause 6.3.

2211.1.3 Welded shear connectors. Where welded shear connectors are used as part of the seismic force resisting system their shear and tensile strength shall be reduced by 25 percent from the specified strengths given in AISC 360 Chapter I.

Exception: The 25 percent reduction is not necessary for collector components in structures designed for load combinations with overstrength factor.

2211.1.4 Column base plate. When shear and/or tensile forces are intended to be transferred between column base plates and anchor bolts, provision shall be made in the design to eliminate the effects of oversized holes permitted in base plates by AISC 360 by use of shear lugs and/or welded shear transfer plates or other means acceptable to the enforcement agency, when the oversized holes are larger than the anchor bolt by more than 1/8 inch (3.2 mm). When welded shear transfer plates and shear lugs or other means acceptable to the enforcement agency are not used, the anchor bolts shall be checked for the induced bending stresses in combination with the shear stresses.

2211.2 Steel joists.

2211.2.1 Design approval. Joist and joist girder design calculations and profiles with member sizes and connection details, and joist placement plans shall be provided to the enforcement agency when load testing is required, the test report shall be submitted with the truss design drawings to the enforcement agency.

2211.2.2 Joist chord bracing. The chords of all joists shall be laterally supported at all points where the chords change direction.

2211.3 Cold-formed steel.

2211.3.1 Steel deck diaphragms. Diaphragm chord compression and tension forces resulting from in-plane shear shall be resisted by flange members and not by the steel deck diaphragm. Reinforced structural concrete on steel deck fill may be used to resist chord forces.

2211.4 Cold-formed steel light-frame construction.

2211.4.1 Trusses.

2211.4.1.1 Analysis submittals. Complete engineering analysis and truss design drawings shall accompany the construction documents submitted to the enforcement agency for approval. When load testing is required, the test report shall be submitted with the truss design drawings and engineering analysis to the enforcement agency.

2211.4.1.2 Deferred submittals. AISI Section B4.2 shall not be deleted.
2211.4.2 Anchorage for shear. Cold formed steel stud foundation plates or sills shall be bolted or fastened to the foundation or foundation wall in accordance with Section 2304.3.4, Item 2.

2211.4.3 Limitations on shear wall assemblies. Shear wall assemblies per Section C2.2.3 of AISI-S213 are not permitted within the seismic force-resisting system of buildings or structures assigned to Occupancy Category II, III, IV or buildings designed to be relocatable.

2211.5 Testing.

2211.5.1 Tests of high-strength bolts, nuts and washers. High-strength bolts, nuts and washers shall be sampled and tested by an approved independent testing laboratory for conformance with the requirements of Section 2205.

2211.5.2 Tests of end-welded studs. End-welded studs shall be sampled and tested per the requirements of the AWS D1.1.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 22A – STEEL

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 22A
STEEL

SECTION 2201A
GENERAL

2201A.1 Scope. The provisions of this chapter govern the quality, design, fabrication and erection of steel used structurally in buildings or structures.

2201A.1.1 Application. The scope of application of Chapter 22A is as follows:

1. Structures regulated by the Division of the State Architect-Structural Safety (DSA-SS), which include those applications listed in Section 1.9.2.1. These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Structures regulated by the Office of Statewide Health Planning and Development (OSHPD), which include those applications listed in Sections 1.10.1 and 1.10.4. These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 22 and any applicable amendments therein.

2201A.1.2 Identification of amendments. DSA-SS and OSHPD adopt this chapter and all amendments.

Exception: Amendments adopted by only one agency appear in this chapter preceded with the appropriate acronym of the adopting agency, as follows:

1. Division of the State Architect-Structural Safety: [DSA-SS] For applications listed in Section 1.9.2.1.

2. Office of Statewide Health Planning and Development:

[OSHPD 1] - For applications listed in Section 1.10.1.

[OSHPD 4] - For applications listed in Section 1.10.4.

SECTION 2202A
DEFINITIONS

2202A.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meaning shown herein.

STEEL CONSTRUCTION, COLD-FORMED. That type of construction made up entirely or in part of steel structural members cold formed to shape from sheet or strip steel such as roof deck, floor and wall panels, studs, floor joists, roof joists and other structural elements.

STEEL JOIST. Any steel structural member of a building or structure made of hot-rolled or cold-formed solid or open-web sections, or riveted or welded bars, strip or sheet steel members, or slotted and expanded, or otherwise deformed rolled sections.

STEEL MEMBER, STRUCTURAL. Any steel structural member of a building or structure consisting of a rolled steel structural shape other than cold-formed steel, or steel joist members.

SECTION 2203A
IDENTIFICATION AND PROTECTION
OF STEEL FOR STRUCTURAL PURPOSES

2203A.1 Identification. Identification of structural steel members shall comply with the requirements contained in AISC 360. Identification of cold-formed steel members shall comply with the requirements contained in AISI S100. Identification of cold-formed steel light-frame construction shall also comply with the requirements contained in AISI S200. Other steel furnished for structural load-carrying purposes shall be properly identified for conformity to the ordered grade in accordance with the specified ASTM standard or other specification and the provisions of this chapter. Steel that is not readily identifiable as to grade from marking and test records shall be tested to determine conformity to such standards.

2203A.2 Protection. Painting of structural steel members shall comply with the requirements contained in AISC 360. Painting of open-web steel joists and joist girders shall comply with the requirements of SJI CJ-1.0, SJI JG-1.1, SJI K-1.1 and SJI LH/DLH-1.1. Individual structural members and assembled panels of cold-formed steel construction shall be protected against corrosion in accordance with the requirements contained in AISI S100. Protection of cold-formed steel light-frame construction shall also comply with the requirements contained in AISI S200.

SECTION 2204A
CONNECTIONS

2204A.1 Welding. The details of design, workmanship and technique for welding, inspection of welding and qualification of welding operators shall conform to the requirements of the specifications listed in Sections 2205A, 2206A, 2207A, 2209A and 2210A. Special inspection of welding shall be provided where required by Section 1704.

2204A.1.1 Welded splice. No welded splices shall be made except those shown on approved plans. Welded butt splices subject to tension greater than 33 percent of the expected yield strength under the load combinations with overstrengh factors, shall have tapered transitions as required per AWS D1.8 Clause 4.2.
2204A.1.2 Consumables for welding.

2204A.1.2.1 Seismic Force Resisting System (SFRS) Welds.

All welds used in members and connections in the SFRS shall be made with filler metals meeting the requirements specified in AWS D1.8 Clause 6.3. AWS D1.8 Clauses 6.3.5, 6.3.6, 6.3.7 and 6.3.8 shall apply only to demand critical welds.

2204A.1.2.2 Demand critical welds.

Where welds are designated as demand critical, they shall be made with filler metals meeting the requirements specified in AWS D1.8 Clause 6.3.

2204A.1.3 Welded shear connectors. Where welded shear connectors in composite members are used as part of the seismic force resisting system, their shear and tensile strength shall be reduced by 25 percent from the specified strengths given in AISC 360 Chapter I.

Exception: The 25 percent reduction is not necessary for collector components designed for load combinations that include the overstrength factor.

2204A.2 Bolting. The design, installation and inspection of bolts shall be in accordance with the requirements of the specifications listed in Sections 2205A, 2206A, 2209A and 2210A. Special inspection of the installation of high-strength bolts shall be provided where required by Section 1704.

2204A.2.1 Anchor rods. Anchor rods shall be set accurately to the pattern and dimensions called for on the plans. The protrusion of the threaded ends through the connected material shall be sufficient to fully engage the threads of the nuts, but shall not be greater than the length of the threads on the bolts.

2204A.2.2 Column base plate. When shear and/or tensile forces are intended to be transferred between column base plates and anchor bolts, provisions shall be made in the design to eliminate the effects of oversized holes permitted in base plates by AISC 360 by use of shear lugs and/or welded shear transfer plates or other means acceptable to the enforcement agency, when the oversized holes are larger than the anchor bolt by more than ⅛ inch (3.2 mm). When welded shear transfer plates and shear lugs or other means acceptable to the enforcement agency are not used, the anchor bolts shall be checked for the induced bending stresses in combination with the shear stresses.

SECTION 2205A
STRUCTURAL STEEL

2205A.1 General. The design, fabrication and erection of structural steel for buildings and structures shall be in accordance with AISC 360. Where required, the seismic design of steel structures shall be in accordance with the additional provisions of Section 2205A.2.

2205A.2 Seismic requirements for steel structures. The design of structural steel structures to resist seismic forces shall be in accordance with the provisions of Section 2205A.2.2 for the appropriate seismic design category.

2205A.2.1 Seismic Design Category A, B or C. Not permitted by DSA-SS or OSHPD.

2205A.2.2 Seismic Design Category D, E or F. Structural steel structures assigned to Seismic Design Category D, E or F shall be designed and detailed in accordance with AISC 341, Part I irrespective of R values, unless approved otherwise by the enforcement agency.

2205A.3 Seismic requirements for composite construction. The design, construction and quality of composite steel and concrete components that resist seismic forces shall conform to the requirements of the AISC 360 and ACI 318. An R factor as set forth in Section 12.2.1 of ASCE 7 for the appropriate composite steel and concrete system is permitted where the structure is designed and detailed in accordance with the provisions of AISC 341, Part II. In Seismic Design Category B or above, the design of such systems shall conform to the requirements of AISC 341, Part II.

2205A.3.1 Seismic Design Categories D, E and F. Composite structures are permitted in Seismic Design Categories D, E and F, subject to the limitations in Section 12.2.1 of ASCE 7, and shall be considered on an alternative system, where substantiating evidence is provided to demonstrate that the proposed system will perform as intended by AISC 341, Part II. The substantiating evidence shall be subject to building official approval. Where composite elements or connections are required to sustain inelastic deformations, the substantiating evidence shall be based on cyclic testing.

2205A.4 Modifications to AISC 341. [OSHPD 1 and 4]

2205A.4.1.1 Part I, Section 9, Special Moment Frame (SMF) Modifications.

2205A.4.1.1.1 AISC 341, Part I, Section 9.2A, Requirements for Beam-to-Column Connections. Replace Item (1) as follows:

The connection shall be capable of sustaining an interstory drift angle of at least 0.04 radians and an inelastic rotation of 0.03 radians.

2205A.4.1.1.2 AISC 341, Part I, Section 9.2b(a). Use of SMF connections designed in accordance with ANSI/AISC 358 shall be as modified in Section 2205A.5

2205A.4.1.2 Part I, Section 10, Intermediate Moment Frame (IMF). Not permitted by OSHPD.

2205A.4.1.3 Part I, Section 11, Ordinary Moment Frame (OMF). Not permitted by OSHPD.

2205A.4.1.4 Part I, Section 12, Special Truss Moment Frame (STMF). Not permitted by OSHPD.

2205A.4.1.5 Part I, Section 13, Special Concentrically Braced Frames (SCBF) Modifications.
2205A.4.1.5.1 AISC 341, Part I, Section 13, Members. Add a new section as follows:

AISC 341, 13.2f—Member Types

The use of rectangular HSS are not permitted for bracing members, unless filled solid with cement grout having a minimum compressive strength of 3000 psi (20.7 MPa) at 28 days. The effects of composite action in the filled composite brace shall be considered in the sectional properties of the system where it results in the more severe loading condition or detailing.

2205A.4.1.5.2 Part I, Section 13: Add Section 13.7 as follows.

13.7 Beam to Column Connections.

SCBF frames shall have moment-resisting beam-column connections that can resist a moment equal to the lesser of the available flexural strength of the beam or the column in the SCBF bays. The connection shall include CJP welds from the beam flanges to the column flange, or to a plate in the case of column weak axis connections.

2205A.4.1.6 Part I, Section 14, Ordinary Concentrarily Braced Frames (OCBF). Not permitted by OSHPD.

2205A.4.1.7 Part I, Section 15, Eccentrically Braced Frames (EBF) Modifications.

Part I, 15.4 Link-to-Column Connections.

Exception: Not permitted by OSHPD.

2205A.4.2 Appendix S, Qualifying Cyclic Tests of Beam-to-Column and Link-to-Column Connections Modifications.

2205A.4.2.1 Appendix S, S3, Definitions. Replace the definition of "Inelastic rotation" with the following:

INELASTIC ROTATION. The permanent or plastic portion of the rotation angle between a beam and the column, or between a link and the column of the test specimen, measured in radians. The inelastic rotation shall be computed based upon an analysis of the test specimen deformations. Sources of inelastic rotation include yielding of members and connectors, yielding of connection elements and slip between members and connection elements. For beam-to-column moment connections in special moment frames, the inelastic rotation is represented by the plastic chord rotation angle calculated as the plastic deflection of the beam or girder, at the center of its span divided by the distance between the center of the beam span and the centerline of the panel zone of the beam-column connection. For link-to-column connections in eccentrically braced frames, inelastic rotation shall be computed based upon the assumption that inelastic action is concentrated at a single point located at the intersection of the centerline of the link with the face of the column.

2205A.4.2.2 Appendix S, S3, Definitions. Add the following:

RAPID STRENGTH DETERIORATION. A mode of behavior characterized by a sudden loss of strength. In a cyclic test with constant or increasing deformation amplitude, a loss of strength of more than 50 percent of the strength attained in the previous excursion in the same loading direction.

2205A.4.2.3 Appendix S, Section S5.2, Size of Members. Replace as follows:

The size of the beam or link used in the test specimen shall be within the following limits:

1. At least one of the test beams or links shall be no less than 100 percent of the depth of the prototype beam or link. For the remaining specimens, the depth of the test beam or link shall be no less than 90 percent of the depth of the prototype beam or link.

2. At least one of the test beams or links shall be no less than 100 percent of the weight per foot of the prototype beam or link. For the remaining specimens, the weight per foot of the test beam or link shall be no less than 75 percent of the weight per foot of the prototype beam or link.

The size of the column used in the test specimen shall properly represent the inelastic action in the column, as per the requirements in Section S5.1. In addition, the depth of the test column shall be no less than 90 percent of the depth of the prototype column.

Extrapolation beyond the limitations stated in this section shall be permitted subject to peer review and approval by the enforcement agency.

2205A.4.2.4 Appendix S, Section S10, Acceptance Criteria. Replace as follows:

The test specimens must satisfy the strength, interstory drift angle, or link rotation angle, and inelastic rotation requirements of these provisions for the special moment frame and eccentrically braced frame connection as applicable. The test specimen must sustain the required interstory drift angle, or link rotation angle, and inelastic rotation for at least two complete loading cycles without exhibiting rapid strength deterioration.

2205A.4.3 Appendix T, Qualifying Cyclic Tests of Buckling-Restrained Braces Modification.

AISC 341, T5.3. Similarity of Brace Test Specimen and Prototype, replace Item 2 with the following:

The axial yield strength of the steel core Pysc of the brace test specimen shall not be more than 20 percent above nor 50 percent less than that of the test specimen where both strengths are based on the core area, Asc, multiplied by the yield strength as determined from a coupon test. In addition, the material of the test specimen shall be the same ASTM classification and grade as the prototype.
2205A.5 MODIFICATIONS TO AISC 358. [OSHPD 1 & 4]

2205A.5.1 2. Design Requirements, 2.1 Special and Intermediate Moment Frame Connection Types, Table 2-1 Prequalified Moment Connections modifications

The prequalified bolted moment connections, with bolts (except erection bolts), are not permitted in buildings.

The prequalification of moment connections at orthogonal moment frames sharing common columns or moment connections attached to other than one side or two opposite sides of a column is not permitted by OSHPD.

SECTION 2206A
STEEL JOISTS

2206A.1 General. The design, manufacture and use of open web steel joists and joist girders shall be in accordance with one of the following Steel Joist Institute (SJI) specifications:

1. SJI CJ-1.0
2. SJI K-1.1
3. SJI LH/DLH-1.1
4. SJI JG-1.1

Where required, the seismic design of buildings shall be in accordance with the additional provisions of Section 2205A.2 or 2210A.5.

2206A.2 Design. The registered design professional shall indicate on the construction documents the steel joist and/or steel joist girder designations from the specifications listed in Section 2206A.1 and shall indicate the requirements for joist and joist girder design, layout, end supports, anchorage, non-SJI standard bridging, bridging termination connections and bearing connection design to resist uplift and lateral loads. These documents shall indicate special requirements as follows:

1. Special loads including:
 1.1. Concentrated loads;
 1.2. Nonuniform loads;
 1.3. Net uplift loads;
 1.4. Axial loads;
 1.5. End moments; and
 1.6. Connection forces.

2. Special considerations including:
 2.1. Profiles for nonstandard joist and joist girder configurations (standard joist and joist girder configurations are as indicated in the SJI catalog);
 2.2. Oversized or other nonstandard web openings; and
 2.3. Extended ends.

3. Deflection criteria for live and total loads for non-SJI standard joists.

2206A.3 Calculations. The steel joist and joist girder manufacturer shall design the steel joists and/or steel joist girders in accordance with the current SJI specifications and load tables to support the load requirements of Section 2206A.2. The registered design professional may require submission of the steel joist and joist girder calculations as prepared by a registered design professional responsible for the product design. If requested by the registered design professional, the steel joist manufacturer shall submit design calculations with a cover letter bearing the seal and signature of the joist manufacturer's registered design professional. In addition to standard calculations under this seal and signature, submittal of the following shall be included:

1. Non-SJI standard bridging details (e.g. for cantilevered conditions, net uplift, etc.).
2. Connection details for:
 2.1. Non-SJI standard connections (e.g. flush-framed or framed connections);
 2.2. Field splices; and
 2.3. Joist headers.

2206A.4 Steel joist drawings. Steel joist placement plans shall be provided to show the steel joist products as specified on the construction documents and are to be utilized for field installation in accordance with specific project requirements as stated in Section 2206A.2. Steel placement plans shall include, at a minimum, the following:

1. Listing of all applicable loads as stated in Section 2206A.2 and used in the design of the steel joists and joist girders as specified in the construction documents.
2. Profiles for nonstandard joist and joist girder configurations (standard joist and joist girder configurations are as indicated in the SJI catalog).
3. Connection requirements for:
 3.1. Joist supports;
 3.2. Joist girder supports;
 3.3. Field splices; and
 3.4. Bridging attachments.
4. Deflection criteria for live and total loads for non-SJI standard joists.
5. Size, location and connections for all bridging.

2206A.4.1 Design approval. [DSA-SSJ] Joist and joist girder design calculations and profiles with member sizes and connection details, and joist placement plans shall be provided to the enforcement agency and approved prior to joist fabrication, in accordance with Title 24, Part 1. Joist and joist girder design calculations and profiles with member sizes and connection details shall bear the signature and stamp or seal of the registered engineer or licensed architect responsible for the joist design. Alterations to the approved joist and joist girder design calculations and profiles with member sizes and connection details, or to fabricated joists are subject to the approval of the enforcement agency.

2206A.5 Certification. At completion of manufacture, the steel joist manufacturer shall submit a certificate of compliance in accordance with Section 1704.2.2 stating that work was per-
formed in accordance with approved construction documents and with SJI standard specifications.

2206A.6 Joist chord bracing. The chords of all joists shall be laterally supported at all points where the chords change direction.

SECTION 2207A
STEEL CABLE STRUCTURES

2207A.1 General. The design, fabrication and erection including related connections, and protective coatings of steel cables for buildings shall be in accordance with ASCE 19.

2207A.2 Seismic requirements for steel cable. The design strength of steel cables shall be determined by the provisions of ASCE 19 except as modified by these provisions.

1. A load factor of 1.1 shall be applied to the prestress force included in T_i and T_s as defined in Section 3.12.

2. In Section 3.2.1, Item (c) shall be replaced with "1.5 T_i" and Item (d) shall be replaced with "1.5 T_s".

SECTION 2208A
STEEL STORAGE RACKS

2208A.1 Storage racks. The design, testing and utilization of industrial steel storage racks made of cold-formed or hot-rolled steel structural members, shall be in accordance with the RMI/ANSI MH 16.1. Where required by ASCE 7, the seismic design of storage racks shall be in accordance with the provisions of Section 15.5.3 of ASCE 7, except that Items (1), (2) and (3) of Section 15.5.3 of ASCE 7 do not apply when the rack design satisfies RMI/ANSI MH 16.1.

SECTION 2209A
COLD-FORMED STEEL

2209A.1 General. The design of cold-formed carbon and low-alloy steel structural members shall be in accordance with AISI S100. The design of cold-formed stainless-steel structural members shall be in accordance with ASCE 8. Cold-formed steel light-frame construction shall also comply with Section 2210A.

2209A.2 Steel decks. The design and construction of cold-formed steel decks shall be in accordance with this section.

2209A.2.1 Composite slabs on steel decks. Composite slabs of concrete and steel deck shall be designed and constructed in accordance with ASCE 3.

2209A.2.2 Noncomposite steel floor decks. Noncomposite steel floor decks shall be permitted to be designed and constructed in accordance with ANSI/SDI-NC1.0, as modified in Section 2209A.2.2.1.

2209A.9.2.2.1 ANSI/SDI-NC1.0 Section 2.4B1. Replace Section 2.4B1 of ANSI/SDI-NC1.0 with the following:

1. General: The design of the concrete slabs shall be done in accordance with the ACI Building Code Requirements for Reinforced Concrete. The minimum concrete thickness above the top of the deck shall be 1½ inches (38 mm).

2209A.2.3 Steel roof deck. Steel roof decks shall be permitted to be designed and constructed in accordance with ANSI/SDI-RD1.0.

2209A.3 Steel deck diaphragms. Steel deck diaphragms shall comply with the requirements of this section. The design of the diaphragm as well as the construction details may be based on test information acceptable to the enforcement agency. Steel deck and concrete-filled steel deck diaphragms that are tested per ICC-ES AC 43 shall be considered to meet the requirements of this section.

Diaphragm chord forces both compression and tension forces resulting from in-plane shear shall be resisted by flange members and not by the steel deck diaphragm.

The base material thickness of steel deck for diaphragms shall not be less than 0.0359 inch (0.9 mm) (20 gage), unless tests acceptable to the enforcement agency have been performed.

SECTION 2210A
COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION

2210A.1 General. The design and installation of structural members and nonstructural members utilized in cold-formed steel light-frame construction where the specified minimum base steel thickness is between 0.0179 inches (0.455 mm) and 0.1180 inches (2.997 mm) shall be in accordance with AISI S200 and Sections 2210A.2 through 2210A.7, as applicable.

2210A.2 Header design. Headers, including box and back-to-back headers, and double and single L-headers shall be designed in accordance with AISI S212 or AISI S100.

2210A.3 Trusses.

2210A.3.1 Design. Cold-formed steel trusses shall be designed in accordance with AISI S214, Sections 2210A.3.1 through 2210A.3.5 and accepted engineering practice.

Complete engineering analysis and truss design drawings shall accompany the construction documents submitted to the enforcement agency for approval. When load testing is required, the test report shall be submitted with the truss design drawings and engineering analysis to the enforcement agency.

2210A.3.2 Truss design drawings. The truss design drawings shall conform to the requirements of Section B2.3 of AISI S214 and shall be provided with the shipment of trusses delivered to the job site. The truss design drawings shall include the details of permanent individual truss member restraint/bracing in accordance with Section B of AISI S214 where these methods are utilized to provide restraint/bracing.

2210A.3.3 Deferred submittals. Not permitted by DSA-SS or OSHPD.
2210A.3.4 Trusses spanning 60 feet or greater. The owner shall contract with a registered design professional for the design of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing for trusses with clear spans 60 feet (18 288 mm) or greater. Special inspection of trusses over 60 feet (18 288 mm) in length shall conform to Section 1704.

2210A.3.5 Truss quality assurance. Trusses not part of a manufacturing process that provides requirements for quality control done under the supervision of a third-party quality control agency, shall be manufactured in compliance with Sections 1704.2 and 1704.3, as applicable.

2210A.4 Wall stud design. Wall studs shall be designed in accordance with either AISI S210 or AISI S100. Cold formed steel stud foundation plates or sills shall be bolted or fastened to the foundation or foundation wall in accordance with Section 2304.3.4, Item 2.

2210A.5 Floor and roof system design. Framing for floor and roof systems in buildings shall be designed in accordance with either AISI S210 or AISI S100.

2210A.6 Lateral design. Light-frame shear walls, diagonal strap bracing that is part of a structural wall and diaphragms used to resist wind, seismic and other in-plane lateral loads shall be designed in accordance with AISI S213.

Shear wall assemblies per Section C2.2.3 of AISI-S213 are not permitted within the seismic force-resisting system of buildings.

2210A.7 Prescriptive framing. Not permitted by DSA-SS and OSHPD.

SECTION 2211A [DSA-SS]
LIGHT MODULAR STEEL MOMENT FRAMES FOR PUBLIC ELEMENTARY AND SECONDARY SCHOOLS; AND COMMUNITY COLLEGES

2211A.1 General.

2211A.1.1 Configuration. Light modular steel moment frame buildings shall be constructed of factory-assembled modules comprising a single-story moment-resisting space frame supporting a floor and roof. Individual modules shall not exceed a width of 14 feet (4.25 m) nor a length of 72 feet (22 m). All connections of beams to corner columns shall be designed as moment-resisting in accordance with the criteria of Section 2211A.2. Modules may be stacked to form multistory structures not exceeding 35 feet or two stories in height. When stacked modules are evaluated separately, seismic forces on each module shall be distributed in accordance with Section 12.8.3 of ASCE 7, considering the modules in the stacked condition. See Section 2211A.2.5 of this code.

2211A.1.2 Design, fabrication and erection. The design, fabrication and erection of light modular steel moment-frame buildings shall be in accordance with the AISC Specification for Structural Steel Buildings (ANSI/AISC 360) and the AISI North American Specification for the Design of Cold Formed Structural Members (AISI/COS/NASPEC), as applicable, and the requirements of this section. The maximum dead load of the roof and elevated floor shall not exceed 25 psf and 50 psf (1197 Pa and 2394 Pa), respectively. The maximum dead load of the exterior walls shall not exceed 45 psf (2155 Pa).

2211A.2 Seismic requirements. In addition to the other requirements of this code, the design, materials and workmanship of light modular steel moment frames shall comply with the requirements of this section. The response modification coefficient R shall be equal to 3/2/5. Cd and W0 shall be equal to 3.0.

2211A.2.1 Base materials. Beams, columns and connection materials shall be limited to those materials permitted under the AISC Specification for Structural Members (ANSI/AISC 360) and the AISI North American Specification for the Design of Cold Formed Structural Members (AISI/COS/NASPEC).

2211A.2.2 Beam-to-column strength ratio. At each moment-resisting connection the following shall apply:

\[
\frac{\sum S_{bi}F_{yi}}{\sum S_{cj}F_{ycj}} \geq 1.4 \quad \text{(Equation 22A-1)}
\]

where:

- \(F_{yi}\) = The specified yield stress of beam "i."
- \(F_{ycj}\) = The specified yield stress of column "j."
- \(S_{bi}\) = The flexural section modulus of each beam "i" that is moment connected to the column "j" at the connection.
- \(S_{cj}\) = The flexural section modulus of each column "j" that is moment connected to the beam "i" at the connection.

Exceptions:

1. Beam-to-column connections at the floor level beams of first or second-story modules need not comply with this requirement.

2. Beam-to-column strength ratios less than 1.4 are allowed if proven to be acceptable by analysis or testing.

2211A.2.3 Welding. Weld filler metals shall be capable of producing weld metal with a minimum Charpy V-Notch toughness of 20 ft-lb at 0°F. Where beam bottom flanges attach to columns with complete joint penetration groove welds and weld backing is used at the bottom surface of the beam flange, such backing shall be removed and the root pass back-gouged, repaired and reinforced with a minimum 3/16 inch (5 mm) fillet weld.

2211A.2.4 Connection design. Connections of beams to columns shall have the design strength to resist the maximum seismic load effect, \(E_m\), calculated in accordance with Section 12.4.3 of ASCE 7.

2211A.2.5 Multistory assemblies. Analysis of multistory assemblies shall be permitted to consider the stacked mod-
ules as a single assembly, with restraint conditions between the stacked units that represent the actual method of attachment. Alternatively, it shall be permitted to analyze the individual modules of stacked assemblies independently, with lateral and vertical reactions from modules above applied as concentrated loads at the top of the supporting module.

SECTION 2212A
TESTING

2212A.1 Tests of high-strength bolts, nuts and washers. High-strength bolts, nuts and washers shall be sampled and tested by an approved independent testing laboratory for conformance with the requirements of Section 2205A.

2212A.2 Tests of end-welded studs. End-welded studs shall be sampled and tested per the requirements of the AWS D1.1.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 23 – WOOD

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD 1 2 1-AC</th>
<th>DSA AC SS SS/CC</th>
<th>OSHPD 1 2 3 4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X X X</td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>2301.1</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2301.1.1</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2301.1.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2301.1.3</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2301.1.3.1</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2301.1.3.2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2301.2</td>
<td></td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2301.2, Item 4, Exception</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2303.1.3.1</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2303.2 – 2303.2.9</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2303.4.1.2, Exception 3</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2303.4.1.4.1</td>
<td></td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2303.4.3.1</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2304.3.4</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2304.4.1</td>
<td></td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2304.4.4.1</td>
<td></td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2304.5</td>
<td></td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2304.6.1, Exception</td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2304.9.1.1</td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2304.11.2.1.1</td>
<td></td>
</tr>
<tr>
<td>2304.11.2.2, w/Exception</td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2304.11.2.4.1</td>
<td></td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2304.11.2.8</td>
<td></td>
</tr>
<tr>
<td>2305.1.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2305.1.3</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2305.1.4</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2305.1.7</td>
<td></td>
</tr>
<tr>
<td>2305.2, Exception</td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2305.3, Exception</td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>Table 2306.3, Footnote m</td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2306.3.1</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2306.4</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2306.7, Exception</td>
<td></td>
<td>X X X X X</td>
<td></td>
</tr>
<tr>
<td>2308.1</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2308.2, Item 8</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 23
WOOD

SECTION 2301
GENERAL

2301.1 Scope. The provisions of this chapter shall govern the materials, design, construction and quality of wood members and their fasteners.

[HCD 1] For limited-density owner-built rural dwellings, owner-produced or used materials and appliances may be utilized unless found not to be of sufficient strength or durability to perform the intended function; owner-produced or used lumber, or shakes and shingles may be utilized unless found to contain dry rot, excessive splitting or other defects obviously rendering the material unfit in strength or durability for the intended purpose.

2301.1.1 Application. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] The scope of application of Chapter 23 is as follows:

1. Applications listed in Sections 1.9.2.1 and 1.9.2.2, regulated by the Division of the State Architect-Structural Safety (DSA-SS, and DSA-SS/CC). These applications include public elementary and secondary schools, community colleges and state-owned or state-leased essential services buildings.

2. Applications listed in Section 1.10, regulated by the Office of Statewide Health Planning and Development (OSHPD). These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: For applications listed in Section 1.10.3 (Licensed Clinics), the provisions of this chapter without OSHPD amendments identified in accordance with Section 2301.1.2 shall apply.

2301.1.2 Identification of amendments. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] Amendments appear in this chapter preceded with the appropriate acronym, as follows:

1. Division of the State Architect-Structural Safety:
 [DSA-SS] - For applications listed in Section 1.9.2.1.
 [DSA-SS/CC] - For applications listed in Section 1.9.2.2.

2. Office of Statewide Health Planning and Development:
 [OSHPD 1] - For applications listed in Section 1.10.1.
 [OSHPD 2] - For applications listed in Section 1.10.2.
 [OSHPD 4] - For applications listed in Section 1.10.4.

2301.1.3 Reference to other chapters.

2301.1.3.1 [DSA-SS and OSHPD 1 & 4] Where reference within this chapter is made to sections in Chapters 16, 17, 18, 19, 21, 22 and 34, the provisions in Chapters 16A, 17A, 18A, 19A, 21A, 22A and 34A respectively shall apply instead.

Exception: For DSA-SS, the requirements of Chapter 34 shall apply instead of Chapter 34A.

2301.1.3.2 [DSA-SS/CC] Where reference within this chapter is made to sections in Chapters 17 and 18, the provisions in Chapters 17A and 18A respectively shall apply instead.

2301.2 General design requirements. The design of structural elements or systems, constructed partially or wholly of wood or wood-based products, shall be in accordance with one of the following methods:

1. Allowable stress design in accordance with Sections 2304, 2305 and 2306.

2. Load and resistance factor design in accordance with Sections 2304, 2305 and 2307.

3. Conventional light-frame construction in accordance with Sections 2304 and 2308.

Exception: Buildings designed in accordance with the provisions of the AF&PA WFCM shall be deemed to meet the requirements of the provisions of Section 2308.

4. The design and construction of log structures shall be in accordance with the provisions of ICC 400.

Exception: [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] Log structures are not permitted.

2301.3 Nominal sizes. For the purposes of this chapter, where dimensions of lumber are specified, they shall be deemed to be nominal dimensions unless specifically designated as actual dimensions (see Section 2304.2).

SECTION 2302
DEFINITIONS

2302.1 Definitions. The following words and terms shall, for the purposes of this chapter, have the meanings shown herein.

ACCREDITATION BODY. An approved, third-party organization that is independent of the grading and inspection agencies, and the lumber mills, and that initially accredits and subsequently monitors, on a continuing basis, the competency and performance of a grading or inspection agency related to carrying out specific tasks.

BRACED WALL LINE. A series of braced wall panels in a single story that meets the requirements of Section 2308.3 or 2308.12.4.

BRACED WALL PANEL. A section of wall braced in accordance with Section 2308.9.3 or 2308.12.4.
COLLECTOR. A horizontal diaphragm element parallel and in line with the applied force that collects and transfers diaphragm shear forces to the vertical elements of the lateral-force-resisting system and/or distributes forces within the diaphragm.

CONVENTIONAL LIGHT-FRAME CONSTRUCTION. A type of construction whose primary structural elements are formed by a system of repetitive wood-framing members. See Section 2308 for conventional light-frame construction provisions.

CRIPPLE WALL. A framed stud wall extending from the top of the foundation to the underside of floor framing for the lowest occupied floor level.

DIAPHRAGM, UNBLOCKED. A diaphragm that has edge nailing at supporting members only. Blocking between supporting structural members at panel edges is not included. Diaphragm panels are field nailed to supporting members.

DRAG STRUT. See “Collector.”

FIBERBOARD. A fibrous, homogeneous panel made from lignocellulosic fibers (usually wood or cane) and having a density of less than 31 pounds per cubic foot (pcf) (497 kg/m³) but more than 10 pcf (160 kg/m³).

GLUED BUILT-UP MEMBER. A structural element, the section of which is composed of built-up lumber, wood structural panels or wood structural panels in combination with lumber, all parts bonded together with structural adhesives.

GRADE (LUMBER). The classification of lumber in regard to strength and utility in accordance with American Softwood Lumber Standard DOC PS 20 and the grading rules of an approved lumber rules-writing agency.

HARDBOARD. A fibrous-felted, homogeneous panel made from lignocellulosic fibers consolidated under heat and pressure in a hot press to a density not less than 31 pcf (497 kg/m³).

NAILING, BOUNDARY. A special nailing pattern required by design at the boundaries of diaphragms.

NAILING, EDGE. A special nailing pattern required by design at the edges of each panel within the assembly of a diaphragm or shear wall.

NAILING, FIELD. Nailing required between the sheathing panels and framing members at locations other than boundary nailing and edge nailing.

NATURALLY DURABLE WOOD. The heartwood of the following species with the exception that an occasional piece with corner sapwood is permitted if 90 percent or more of the width of each side on which it occurs is heartwood.

Decay resistant. Redwood, cedar, black locust and black walnut.

Termite resistant. Redwood, Alaska yellow-cedar, Eastern redcedar and both heartwood and all sapwood of Western redcedar.

Nominal Size (Lumber). The commercial size designation of width and depth, in standard sawn lumber and glued-laminated lumber grades; somewhat larger than the standard net size of dressed lumber, in accordance with DOC PS 20 for sawn lumber and with the AF&PA NDS for glued-laminated lumber.

PARTICLEBOARD. A generic term for a panel primarily composed of cellulosic materials (usually wood), generally in the form of discrete pieces or particles, as distinguished from fibers. The cellulosic material is combined with synthetic resin or other suitable bonding system by a process in which the interparticle bond is created by the bonding system under heat and pressure.

PREFABRICATED WOOD I-JOIST. Structural member manufactured using sawn or structural composite lumber flanges and wood structural panel webs bonded together with exterior exposure adhesives, which forms an "I" cross-sectional shape.

SHEAR WALL. A wall designed to resist lateral forces parallel to the plane of a wall.

Shear wall, perforated. A wood structural panel sheathed wall with openings, that has not been specifically designed and detailed for force transfer around openings.

Shear wall segment, perforated. A section of shear wall with full-height sheathing that meets the height-to-width ratio limits of Section 4.3.4 of AF&PA SDPWS.

STRUCTURAL COMPOSITE LUMBER. Structural member manufactured using wood elements bonded together with exterior adhesives. Examples of structural composite lumber are:

Laminated veneer lumber (LVL). A composite of wood veneer sheet elements with wood fibers primarily oriented along the length of the member.

Parallel strand lumber (PSL). A composite of wood strand elements with wood fibers primarily oriented along the length of the member.

STRUCTURAL GLUED-LAMINATED TIMBER. An engineered, stress-rated product of a timber laminating plant, comprised of assemblies of specially selected and prepared wood laminations in which the grain of all laminations is approximately parallel longitudinally and the laminations are bonded with adhesives.

SUBDIAPHRAGM. A portion of a larger wood diaphragm designed to anchor and transfer local forces to primary diaphragm struts and the main diaphragm.

TIE-DOWN (HOLD-DOWN). A device used to resist uplift of the chords of shear walls.

TREATED WOOD. Wood and wood-based materials that use vacuum-pressure impregnation processes to enhance fire retardant or preservative properties.

Fire-retardant-treated wood. Pressure-treated lumber and plywood that exhibit reduced surface-burning characteristics and resist propagation of fire.

Preservative-treated wood. Pressure-treated wood products that exhibit reduced susceptibility to damage by fungi, insects or marine borers.

WOOD SHEAR PANEL. A wood floor, roof or wall component sheathed to act as a shear wall or diaphragm.
WOOD STRUCTURAL PANEL. A panel manufactured from veneers, wood strands or wafers or a combination of veneer and wood strands or wafers bonded together with waterproof synthetic resins or other suitable bonding systems. Examples of wood structural panels are:

- Composite panels. A wood structural panel that is comprised of wood veneer and reconstituted wood-based material and bonded together with waterproof adhesive;
- Oriented strand board (OSB). A mat-formed wood structural panel comprised of thin rectangular wood strands arranged in cross-aligned layers with surface layers normally arranged in the long panel direction and bonded with waterproof adhesive; or
- Plywood. A wood structural panel comprised of plies of wood veneer arranged in cross-aligned layers. The plies are bonded with waterproof adhesive that cures on application of heat and pressure.

SECTION 2303

MINIMUM STANDARDS AND QUALITY

2303.1 General. Structural sawn lumber; end-jointed lumber; prefabricated wood I-joists; structural glued-laminated timber; wood structural panels, fiberboard sheathing (when used structurally); hardboard siding (when used structurally); particleboard; preservative-treated wood; structural log members; structural composite lumber; round timber poles and piles; fire-retardant-treated wood; hardwood plywood; wood trusses; joist hangers; nails; and staples shall conform to the applicable provisions of this section.

2303.1.1 Sawn lumber. Sawn lumber used for load-supporting purposes, including end-jointed or edge-glued lumber, machine stress-rated or machine-evaluated lumber, shall be identified by the grade mark of a lumber grading or inspection agency that has been approved by an accreditation body that complies with DOC PS 20 or equivalent. Grading practices and identification shall comply with rules published by an agency approved in accordance with the procedures of DOC PS 20 or equivalent procedures. In lieu of a grade mark on the material, a certificate of inspection as to species and grade issued by a lumber grading or inspection agency meeting the requirements of this section is permitted to be accepted for precut, remanufactured or rough-sawn lumber and for sizes larger than 3 inches (76 mm) nominal thickness.

Approved end-jointed lumber is permitted to be used interchangeably with solid-sawn members of the same species and grade.

2303.1.2 Prefabricated wood I-joists. Structural capacities and design provisions for prefabricated wood I-joists shall be established and monitored in accordance with ASTM D 5055.

2303.1.3 Structural glued-laminated timber. Glued-laminated timbers shall be manufactured and identified as required in ANSI/AITC A 190.1 and ASTM D 3737.

2303.1.3.1 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] The construction documents shall indicate the following:

1. Dry or wet service conditions.
2. Laminating combinations and stress requirements.
3. Species group.
4. Preservative material and retention, when preservative treatment is required.
5. Provisions for protection during shipping and field handling, such as sealing and wrapping in accordance with AITC 111.

When mechanical reinforcement such as radial tension reinforcement is required, such reinforcement shall comply with AITC 404 and shall be detailed accordingly in the construction documents. Construction documents shall specify that the moisture content of laminations at the time of manufacture shall not exceed 12 percent for dry conditions of use.

The design of fasteners and connections shall comply with AITC 117, Section I, Item 6 (Connection Design), and NDS Appendix E.

Refer to Section 1704A.6.3 for special inspection requirements during fabrication of structural glued laminated timbers.

Exception: [OSHPD 2] Special inspection shall be per Chapter 17 instead of 17A.

2303.1.4 Wood structural panels. Wood structural panels, when used structurally (including those used for siding, roof and wall sheathing, subflooring, diaphragms and built-up members), shall conform to the requirements for their type in DOC PS 1 or PS 2. Each panel or member shall be identified for grade and glue type by the trademarks of an approved testing and grading agency. Wood structural panel components shall be designed and fabricated in accordance with the applicable standards listed in Section 2306.1 and identified by the trademarks of an approved testing and inspection agency indicating conformance with the applicable standard. In addition, wood structural panels when permanently exposed in outdoor applications shall be of exterior type, except that wood structural panel roof sheathing exposed to the outdoors on the underside is permitted to be interior type bonded with exterior glue, Exposure 1.

2303.1.5 Fiberboard. Fiberboard for its various uses shall conform to ASTM C 208. Fiberboard sheathing, when used structurally, shall be identified by an approved agency as conforming to ASTM C 208.
2303.1.5.1 Jointing. To ensure tight-fitting assemblies, edges shall be manufactured with square, shiplapped, beveled, tongue-and-groove or U-shaped joints.

2303.1.5.2 Roof insulation. Where used as roof insulation in all types of construction, fiberboard shall be protected with an approved roof covering.

2303.1.5.3 Wall insulation. Where installed and fireblocked to comply with Chapter 7, fiberboards are permitted as wall insulation in all types of construction. In fire walls and fire barriers, unless treated to comply with Section 803.1 for Class A materials, the boards shall be cemented directly to the concrete, masonry or other noncombustible base and shall be protected with an approved noncombustible veneer anchored to the base without intervening airspaces.

2303.1.5.3.1 Protection. Fiberboard wall insulation applied on the exterior of foundation walls shall be protected below ground level with a bituminous coating.

2303.1.6 Hardboard. Hardboard siding used structurally shall be identified by an approved agency conforming to CPA/ANSI A135.6. Hardboard underlayment shall meet the strength requirements of \(\frac{1}{16} \)-inch (5.6 mm) or \(\frac{1}{8} \)-inch (6.4 mm) service class hardboard planed or sanded on one side to a uniform thickness of not less than 0.200 inch (5.1 mm). Prefinished hardboard paneling shall meet the requirements of CPA/ANSI A135.5. Other basic hardboard products shall meet the requirements of CPA/ANSI A135.4. Hardboard products shall be installed in accordance with manufacturer’s recommendations.

2303.1.7 Particleboard. Particleboard shall conform to ANSI A208.1. Particleboard shall be identified by the grade mark or certificate of inspection issued by an approved agency. Particleboard shall not be utilized for applications other than indicated in this section unless the particleboard complies with the provisions of Section 2306.5.

2303.1.7.1 Floor underlayment. Particleboard floor underlayment shall conform to Type PBU of ANSI A208.1. Type PBU underlayment shall not be less than \(\frac{1}{4} \)-inch (6.4 mm) thick and shall be installed in accordance with the instructions of the Composite Panel Association.

2303.1.8 Preservative-treated wood. Lumber, timber, plywood, and poles supporting permanent structures required by Section 2304.11 to be preservative treated shall conform to the requirements of the applicable AWPA Standard U1 and M4 for the species, product, preservative and end use. Preservatives shall be listed in Section 4 of AWPA U1. Lumber and plywood used in wood foundation systems shall conform to Chapter 18.

2303.1.8.1 Identification. Wood required by Section 2304.11 to be preservative treated shall bear the quality mark of an inspection agency that maintains continuing supervision, testing and inspection over the quality of the preservative-treated wood. Inspection agencies for preservative-treated wood shall be listed by an accreditation body that complies with the requirements of the American Lumber Standards Treated Wood Program, or equivalent. The quality mark shall be on a stamp or label affixed to the preservative-treated wood, and shall include the following information:

1. Identification of treating manufacturer.
2. Type of preservative used.
3. Minimum preservative retention (pcf).
4. End use for which the product is treated.
5. AWPA standard to which the product was treated.
6. Identity of the accredited inspection agency.

2303.1.8.2 Moisture content. Where preservative-treated wood is used in enclosed locations where drying in service cannot readily occur, such wood shall be at a moisture content of 19 percent or less before being covered with insulation, interior wall finish, floor covering or other materials.

2303.1.9 Structural composite lumber. Structural capacities for structural composite lumber shall be established and monitored in accordance with ASTM D 5456.

2303.1.10 Structural log members. Stress grading of structural log members of nonrectangular shape, as typically used in log buildings, shall be in accordance with ASTM D 3957. Such structural log members shall be identified by the grade mark of an approved lumber grading or inspection agency. In lieu of a grade mark on the material, a certificate of inspection as to species and grade issued by a lumber grading or inspection agency meeting the requirements of this section shall be permitted.

2303.1.11 Round timber poles and piles. Round timber poles and piles shall comply with ASTM D 3200 and ASTM D 25, respectively.

2303.2 Fire-retardant-treated wood. Fire-retardant-treated wood is any wood product which, when impregnated with chemicals by a pressure process or other means during manufacture, shall have, when tested in accordance with ASTM E 84 or UL 723, a listed flame spread index of 25 or less and show no evidence of significant progressive combustion when the test is continued for an additional 20-minute period. Additionally, the flame front shall not progress more than \(10^{\frac{2}{5}} \) feet (3200 mm) beyond the centerline of the burners at any time during the test.

2303.2.1 Pressure process. For wood products impregnated with chemicals by a pressure process, the process shall be performed in closed vessels under pressures not less than 50 pounds per square inch gauge (psig) (345 kPa).

2303.2.2 Other means during manufacture. For wood products produced by other means during manufacture, the treatment shall be an integral part of the manufacturing process of the wood product. The treatment shall provide permanent protection to all surfaces of the wood product.

2303.2.3 Testing. For wood products produced by other means during manufacture, other than a pressure process, all sides of the wood product shall be tested in accordance with and produce the results required in Section 2303.2. Wood structural panels shall be permitted to test only the front and back faces.
2303.2.4 Labeling. Fire-retardant-treated lumber and wood structural panels shall be labeled. The label shall contain the following items:

1. The identification mark of an approved agency in accordance with Section 1703.5.
2. Identification of the treating manufacturer.
3. The name of the fire-retardant treatment.
4. The species of wood treated.
5. Flame spread and smoke-developed index.
7. Conformance with appropriate standards in accordance with Sections 2303.2.2 through 2303.2.5.
8. For fire-retardant-treated wood exposed to weather, damp or wet locations, include the words “No increase in the listed classification when subjected to the Standard Rain Test” (ASTM D 2898).

2303.2.5 Strength adjustments. Design values for untreated lumber and wood structural panels, as specified in Section 2303.1, shall be adjusted for fire-retardant-treated wood. Adjustments to design values shall be based on an approved method of investigation that takes into consideration the effects of the anticipated temperature and humidity to which the fire-retardant-treated wood will be subjected, the type of treatment and redrying procedures.

2303.2.5.1 Wood structural panels. The effect of treatment and the method of redrying after treatment, and exposure to high temperatures and high humidities on the flexure properties of fire-retardant-treated softwood plywood shall be determined in accordance with ASTM D 5516. The test data developed by ASTM D 5516 shall be used to develop adjustment factors, maximum loads and spans, or both, for untreated plywood design values in accordance with ASTM D 6305. Each manufacturer shall publish the allowable maximum loads and spans for service as floor and roof sheathing for its treatment.

2303.2.5.2 Lumber. For each species of wood that is treated, the effects of the treatment, the method of redrying after treatment and exposure to high temperatures and high humidities on the allowable design properties of fire-retardant-treated lumber shall be determined in accordance with ASTM D 5664. The test data developed by ASTM D 5664 shall be used to develop modification factors for use at or near room temperature and at elevated temperatures and humidity in accordance with ASTM D 6841. Each manufacturer shall publish the modification factors for service at temperatures of not less than 80°F (27°C) and for roof framing. The roof framing modification factors shall take into consideration the climatological location.

2303.2.6 Exposure to weather, damp or wet locations. Where fire-retardant-treated wood is exposed to weather, or damp or wet locations, it shall be identified as “Exterior” to indicate there is no increase in the listed flame spread index as defined in Section 2303.2 when subjected to ASTM D 2898.

2303.2.7 Interior applications. Interior fire-retardant-treated wood shall have moisture content of not over 28 percent when tested in accordance with ASTM D 3201 procedures at 92-percent relative humidity. Interior fire-retardant-treated wood shall be tested in accordance with Section 2303.2.5.1 or 2303.2.5.2. Interior fire-retardant-treated wood designated as Type A shall be tested in accordance with the provisions of this section.

2303.2.8 Moisture content. Fire-retardant-treated wood shall be dried to a moisture content of 19 percent or less for lumber and 15 percent or less for wood structural panels before use. For wood kiln dried after treatment (KDAT), the kiln temperatures shall not exceed those used in kiln drying the lumber and plywood submitted for the tests described in Section 2303.2.5.1 for plywood and 2303.2.5.2 for lumber.

2303.2.9 Type I and II construction applications. See Section 603.1 for limitations on the use of fire-retardant-treated wood in buildings of Type I or II construction.

2303.3 Hardwood and plywood. Hardwood and decorative plywood shall be manufactured and identified as required in HPVA HP-1.

2303.4 Trusses.

2303.4.1 Design. Wood trusses shall be designed in accordance with the provisions of this code and accepted engineering practice. Members are permitted to be joined by nails, glue, bolts, timber connectors, metal connector plates or other approved framing devices.

2303.4.1.1 Truss design drawings. The written, graphic and pictorial depiction of each individual truss shall be provided to the building official for approval prior to installation. Truss design drawings shall also be provided with the shipment of trusses delivered to the job site. Truss design drawings shall include, at a minimum, the information specified below:

1. Slope or depth, span and spacing;
2. Location of all joints and support locations;
3. Number of plies if greater than one;
4. Required bearing widths;
5. Design loads as applicable, including:
 5.1. Top chord live load;
 5.2. Top chord dead load;
 5.3. Bottom chord live load;
 5.4. Bottom chord dead load;
 5.5. Additional loads and locations; and
 5.6. Environmental design criteria and loads (wind, rain, snow, seismic, etc.).
6. Other lateral loads, including drag strut loads;
7. Adjustments to wood member and metal connector plate design value for conditions of use;
8. Maximum reaction force and direction, including maximum uplift reaction forces where applicable;
9. Metal-connector-plate type, size and thickness or gage, and the dimensioned location of each metal connector plate except where symmetrically located relative to the joint interface;
10. Size, species and grade for each wood member;
11. Truss-to-truss connections and truss field assembly requirements;
12. Calculated span-to-deflection ratio and maximum vertical and horizontal deflection for live and total load as applicable;
13. Maximum axial tension and compression forces in the truss members; and
14. Required permanent individual truss member restraint location and the method and details of restraint/bracing to be used in accordance with Section 2303.4.1.2.

2303.4.1.2 Permanent individual truss member restraint. Where permanent restraint of truss members is required on the truss design drawings, it shall be accomplished by one of the following methods:

1. Permanent individual truss member restraint/bracing shall be installed using standard industry lateral restraint/bracing details in accordance with generally accepted engineering practice. Locations for lateral restraint shall be identified on the truss design drawing.
2. The trusses shall be designed so that the buckling of any individual truss member is resisted internally by the individual truss through suitable means (i.e., buckling reinforcement by T-reinforcement or L-reinforcement, proprietary reinforcement, etc.). The buckling reinforcement of individual members of the trusses shall be installed as shown on the truss design drawing or on supplemental truss member buckling reinforcement details provided by the truss designer.
3. A project-specific permanent individual truss member restraint/bracing design shall be permitted to be specified by any registered design professional.

2303.4.1.3 Trusses spanning 60 feet or greater. The owner shall contract with any qualified registered design professional for the design of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing for all trusses with clear spans 60 feet (18 288 mm) or greater.

2303.4.1.4 Truss designer. The individual or organization responsible for the design of trusses.

2303.4.1.4.1 Truss design drawings. Where required by the registered design professional, the building official or the statutes of the jurisdiction in which the project is to be constructed, each individual truss design drawing shall bear the seal and signature of the truss designer.

Exceptions:

1. Where a cover sheet and truss index sheet are combined into a single sheet and attached to the set of truss design drawings, the single cover/truss index sheet is the only document required to be signed and sealed by the truss designer.
2. When a cover sheet and a truss index sheet are separately provided and attached to the set of truss design drawings, the cover sheet and the truss index sheet are the only documents required to be signed and sealed by the truss designer.
3. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] Exceptions 1 and 2 are not permitted by DSA or OSHPD.

2303.4.2 Truss placement diagram. The truss manufacturer shall provide a truss placement diagram that identifies the proposed location for each individually designated truss and references the corresponding truss design drawing. The truss placement diagram shall be provided as part of the truss submittal package, and with the shipment of trusses delivered to the job site. Truss placement diagrams that serve only as a guide for installation and do not deviate from the permit submittal drawings shall not be required to bear the seal or signature of the truss designer.

2303.4.3 Truss submittal package. The truss submittal package provided by the truss manufacturer shall consist of each individual truss design drawing, the truss placement diagram, the permanent individual truss member restraint/bracing method and details and any other structural details germane to the trusses; and, as applicable, the cover/truss index sheet.

2303.4.3.1 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] In addition to Sections 2304.1 and 2304.2, the following requirements apply:

1. Construction documents. The construction documents prepared by the registered engineer or licensed architect for the project shall indicate all requirements for the truss design, including:
 1.1. Deflection criteria.
 1.2. Connection details to structural and non-structural elements (e.g. nonbearing partitions).
2. Requirements for approval. The truss design drawings and engineering analysis shall be provided to the enforcement agency and approved prior to truss fabrication, in accordance with C.C.R. Title 24, Part 1. Alterations to the approved truss design drawings or manufactured trusses are subject to the approval of the enforcement agency.
3. Special inspection during truss manufacture. Refer to Section 1704A.6.2 for special inspection
2303.4.4 Anchorage. The design for the transfer of loads and anchorage of each truss to the supporting structure is the responsibility of the registered design professional.

2303.4.5 Alterations to trusses. Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in any way without written concurrence and approval of a registered design professional. Alterations resulting in the addition of loads to any member (e.g., HVAC equipment, piping, additional roofing or insulation, etc.) shall not be permitted without verification that the truss is capable of supporting such additional loading.

2303.4.6 TPI 1 specifications. In addition to Sections 2303.4.1 through 2303.4.5, the design, manufacture and quality assurance of metal-plate-connected wood trusses shall be in accordance with TPI 1. Job-site inspections shall be in compliance with Section 110.4, as applicable.

2303.4.7 Truss quality assurance. Trusses not part of a manufacturing process in accordance with either Section 2303.4.6 or a standard listed in Chapter 35, which provides requirements for quality control done under the supervision of a third-party quality control agency, shall be manufactured in compliance with Sections 1704.2 and 1704.6, as applicable.

2303.5 Test standard for joist hangers and connectors. For the required test standards for joist hangers and connectors, see Section 1716.1.

2303.6 Nails and staples. Nails and staples shall conform to requirements of ASTM F 1667. Nails used for framing and sheathing connections shall have minimum average bending yield strengths as follows: 80 kips per square inch (ksi) (551 MPa) for shank diameters larger than 0.177 inch (4.50 mm) but not larger than 0.254 inch (6.45 mm), 90 ksi (620 MPa) for shank diameters larger than 0.142 inch (3.61 mm) but not larger than 0.177 inch (4.50 mm) and 100 ksi (689 MPa) for shank diameters of at least 0.099 inch (2.51 mm) but not larger than 0.142 inch (3.61 mm).

2303.7 Shrinkage. Consideration shall be given in design to the possible effect of cross-grain dimensional changes considered vertically which may occur in lumber fabricated in a green condition.

SECTION 2304
GENERAL CONSTRUCTION REQUIREMENTS

2304.1 General. The provisions of this section apply to design methods specified in Section 2301.2.

2304.2 Size of structural members. Computations to determine the required sizes of members shall be based on the net dimensions (actual sizes) and not nominal sizes.

2304.3 Wall framing. The framing of exterior and interior walls shall be in accordance with the provisions specified in Section 2308 unless a specific design is furnished.

2304.4 Floor and roof framing. The framing of wood-joisted floors and wood framed roofs shall be in accordance with the provisions specified in Section 2308 unless a specific design is furnished.

2304.3.1 Bottom plates. Studs shall have full bearing on a 2-inch-thick (actual 1 1/2-inch, 38 mm) or larger plate or sill having a width at least equal to the width of the studs.

2304.3.2 Framing over openings. Headers, double joists, trusses or other approved assemblies that are of adequate size to transfer loads to the vertical members shall be provided over window and door openings in load-bearing walls and partitions.

2304.3.3 Shrinkage. Wood walls and bearing partitions shall not support more than two floors and a roof unless an analysis satisfactory to the building official shows that shrinkage of the wood framing will not have adverse effects on the structure or any plumbing, electrical or mechanical systems, or other equipment installed therein due to excessive shrinkage or differential movements caused by shrinkage. The analysis shall also show that the roof drainage system and the foregoing systems or equipment will not be adversely affected or, as an alternate, such systems shall be designed to accommodate the differential shrinkage or movements.

2304.3.4 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] The following additional requirements apply:

1. Engineering analysis shall be furnished that demonstrates compliance of wall framing elements and connections with Section 2301.2, Item 1 or 2.

2. Construction documents shall include detailing of sill plate anchorage to supporting masonry or concrete for all exterior and interior bearing, nonbearing and shear walls. Unless specifically designed in accordance with item 1 above, sills under exterior walls, bearing walls and shear walls shall be bolted to masonry or concrete with 1/4-inch diameter by 12 inch (16 mm by 305 mm) bolts spaced not more than four (4) feet (1219 mm) on center, with a minimum of two (2) bolts for each piece of sill plate. Anchor bolts shall have a 4 inch (1016 mm) minimum and a 12 inch (304.8 mm) maximum embedment into concrete or masonry.

Unless specifically designed in accordance with Item 1 above, sills plates under nonbearing interior partitions on concrete floor slabs shall be anchored at not more than four (4) feet (1219 mm) on center to resist a minimum allowable stress shear of 100 pounds per linear foot (1.4 kN/m) acting either parallel or perpendicular to the wall.

3. Construction documents shall include detailing and limitations for notches and bored holes in wall studs, plates and sills.

2304.4 Floor and roof framing. The framing of wood-joisted floors and wood framed roofs shall be in accordance with the provisions specified in Section 2308 unless a specific design is furnished.
2304.4.1 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] The following additional requirements apply:

1. Engineering analysis shall be furnished that demonstrates compliance of floor, roof and ceiling framing elements and connections with Section 2301.2, Items 1 or 2.

2. Construction documents shall include detailing and limitations for notches and bored holes in floor and roof framing members.

2304.5 Framing around flues and chimneys. Combustible framing shall be a minimum of 2 inches (51 mm), but shall not be less than the distance specified in Sections 2111 and 2113 and the California Mechanical Code, from flues, chimneys and fireplaces, and 6 inches (152 mm) away from flue openings.

2304.6 Wall sheathing. Except as provided for in Section 1405 for weatherboarding or where stucco construction that complies with Section 2510 is installed, enclosed buildings shall be sheathed with one of the materials of the nominal thickness specified in Table 2304.6 or any other approved material of equivalent strength or durability.

2304.6.1 Wood structural panel sheathing. Where wood structural panel sheathing is used as the exposed finish on the exterior of outside walls, it shall have an exterior exposure durability classification. Where wood structural panel sheathing is used elsewhere, but not as the exposed finish, it shall be of a type manufactured with exterior glue (Exposure 1 or Exterior). Wood structural panel wall sheathing or siding used as structural sheathing shall be capable of resisting wind pressures in accordance with Section 1609. Maximum wind speeds for wood structural panel sheathing used to resist wind pressures shall be in accordance with Table 2304.6.1 for enclosed buildings with a mean roof height not greater than 30 feet (9144 mm), an importance factor (I) of 1.0 and a topographic factor (K_T) of 1.0.

Exception: [DSA-SS and OSHPD 1 & 4] Wind pressure shall be calculated in accordance with Section 1609A.

2304.6.2 Interior paneling. Softwood wood structural panels used for interior paneling shall conform to the provisions of Chapter 8 and shall be installed in accordance with Table 2304.9.1. Panels shall comply with DOC PS 1 or PS 2. Prefinished hardboard paneling shall meet the requirements of CPA/ANSI A135.5. Hardwood plywood shall conform to HPVA HP-1.

2304.7 Floor and roof sheathing.

2304.7.1 Structural floor sheathing. Structural floor sheathing shall be designed in accordance with the general provisions of this code and the special provisions in this section.

Floor sheathing conforming to the provisions of Table 2304.7(1), 2304.7(2), 2304.7(3) or 2304.7(4) shall be deemed to meet the requirements of this section.

2304.7.2 Structural roof sheathing. Structural roof sheathing shall be designed in accordance with the general provisions of this code and the special provisions in this section.

Roof sheathing conforming to the provisions of Table 2304.7(1), 2304.7(2), 2304.7(3) or 2304.7(5) shall be deemed to meet the requirements of this section. Wood structural panel roof sheathing shall be bonded by exterior glue.

2304.8 Lumber decking.

2304.8.1 General. Lumber decking shall be designed and installed in accordance with the general provisions of this code and Section 2304.8. Each piece shall be square end trimmed. When random lengths are furnished, each piece shall be square end trimmed across the face so that at least 90 percent of the pieces are within 0.5 degrees (0.00873 rad) of square. The ends of the pieces shall be permitted to be beveled up to 2 degrees (0.0349 rad) from the vertical with the exposed face of the piece slightly longer than the opposite face of the piece. Tongue-and-groove decking shall be installed with the tongues up on sloped or pitched roofs with pattern faces down.

2304.8.2 Layup patterns. Lumber decking is permitted to be laid up following one of five standard patterns as defined in Sections 2304.8.2.1 through 2304.8.2.5. Other patterns are permitted to be used provided they are substantiated through engineering analysis.

TABLE 2304.6
MINIMUM THICKNESS OF WALL SHEATHING

<table>
<thead>
<tr>
<th>SHEATHING TYPE</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM WALL STUD SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood boards</td>
<td>3/8 inch</td>
<td>24 inches on center</td>
</tr>
<tr>
<td>Fiberboard</td>
<td>1/2 inch</td>
<td>16 inches on center</td>
</tr>
<tr>
<td>Wood structural panel</td>
<td>In accordance with Tables 2308.9.3(2) and 2308.9.3(3)</td>
<td>—</td>
</tr>
<tr>
<td>M-S "Exterior Glue" and M-2 Exterior Glue" Particleboard</td>
<td>In accordance with Tables 2306.5 and 2308.9.3(4)</td>
<td>—</td>
</tr>
<tr>
<td>Gypsum sheathing</td>
<td>1/2 inch</td>
<td>16 inches on center</td>
</tr>
<tr>
<td>Gypsum wallboard</td>
<td>3/4 inch</td>
<td>24 inches on center</td>
</tr>
<tr>
<td>Reinforced cement mortar</td>
<td>1 inch</td>
<td>24 inches on center</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
TABLE 2304.6.1
MAXIMUM BASIC WIND SPEED (mph) (3-SECOND GUST) PERMITTED FOR WOOD STRUCTURAL PANEL WALL SHEATHING USED TO RESIST WIND PRESSURES\(^{a,b,c}\)

<table>
<thead>
<tr>
<th>MINIMUM NAIL</th>
<th>MINIMUM WOOD STRUCTURAL PANEL SPAN RATING</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inches)</th>
<th>MAXIMUM WALL STUD SPACING (inches)</th>
<th>PANEL NAIL SPACING</th>
<th>MAXIMUM WIND SPEED (MPH)</th>
<th>Wind exposure category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Penetration (inches)</td>
<td></td>
<td></td>
<td>Edges (inches o.c.)</td>
<td>Field (inches o.c.)</td>
<td>B</td>
</tr>
<tr>
<td>6d common</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>110</td>
</tr>
<tr>
<td>(2.0" × 0.113")</td>
<td>1.5</td>
<td>24/0</td>
<td>(\frac{3}{8})</td>
<td>16</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{7}{16})</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8d common</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>(2.5" × 0.131")</td>
<td>1.75</td>
<td>24/16</td>
<td>(\frac{7}{16})</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>90</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 mile per hour = 0.447 m/s.

a. Panel strength axis shall be parallel or perpendicular to supports. Three-ply plywood sheathing with studs spaced more than 16 inches on center shall be applied with panel strength axis perpendicular to supports.

b. The table is based on wind pressures acting toward and away from building surfaces in accordance with Section 6.4.2.2 of ASCE 7. Lateral requirements shall be in accordance with Section 2305 or 2308.

c. Wood structural panels with span ratings of wall-16 or wall-24 shall be permitted as an alternative to panels with a 24/0 span rating. Plywood siding rated 16 o.c. or 24 o.c. shall be permitted as an alternative to panels with a 24/16 span rating. Wall-16 and plywood siding 16 o.c. shall be used with studs spaced a maximum of 16 inches o.c.

TABLE 2304.7(1)
ALLOWABLE SPANS FOR LUMBER FLOOR AND ROOF SHEATHING\(^{a,b}\)

<table>
<thead>
<tr>
<th>SPAN (inches)</th>
<th>MINIMUM NET THICKNESS (inches) OF LUMBER PLACED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perpendicular to supports</td>
</tr>
<tr>
<td></td>
<td>Surfaced dry(^c)</td>
</tr>
<tr>
<td></td>
<td>Surfaced dry(^c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Floors</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>(\frac{3}{4})</td>
<td>(\frac{25}{32})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{25}{32})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(\frac{5}{8})</td>
<td>(\frac{11}{16})</td>
<td>(\frac{5}{8})</td>
<td>(\frac{11}{16})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Roofs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>(\frac{5}{8})</td>
<td>(\frac{11}{16})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{25}{32})</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Installation details shall conform to Sections 2304.7.1 and 2304.7.2 for floor and roof sheathing, respectively.

b. Floor or roof sheathing conforming with this table shall be deemed to meet the design criteria of Section 2304.7.

c. Maximum 19-percent moisture content.
Table 2304.7(2)
Sheathing lumber, minimum grade requirements: Board grade

<table>
<thead>
<tr>
<th>SOLID FLOOR OR ROOF SHEATHING</th>
<th>SPACED ROOF SHEATHING</th>
<th>GRADING RULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
<td>Standard</td>
<td>NLGA, WCLIB, WWPA</td>
</tr>
<tr>
<td>4 common or utility</td>
<td>3 common or standard</td>
<td>NLGA, WCLIB, WWPA, NSLB or NELMA</td>
</tr>
<tr>
<td>No. 3</td>
<td>No. 2</td>
<td>SPIB</td>
</tr>
<tr>
<td>Merchantable</td>
<td>Construction common</td>
<td>RIS</td>
</tr>
</tbody>
</table>

Table 2304.7(3)
Allowable spans and loads for wood structural panel sheathing and single-floor grades continuous over two or more spans with strength axis perpendicular to supports

<table>
<thead>
<tr>
<th>SHEATHING GRADES</th>
<th>ROOF²</th>
<th>FLOOR²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel span rating</td>
<td>Panel thickness (inches)</td>
<td>Maximum span (inches)</td>
</tr>
<tr>
<td>16/0</td>
<td>3/8</td>
<td>16</td>
</tr>
<tr>
<td>20/0</td>
<td>3/8</td>
<td>20</td>
</tr>
<tr>
<td>24/0</td>
<td>3/8, 7/16, 1/2</td>
<td>24</td>
</tr>
<tr>
<td>24/16</td>
<td>7/16, 1/2</td>
<td>24</td>
</tr>
<tr>
<td>32/16</td>
<td>15/32, 1/2, 3/8</td>
<td>32</td>
</tr>
<tr>
<td>40/20</td>
<td>19/32, 5/8, 3/4, 7/8</td>
<td>40</td>
</tr>
<tr>
<td>48/24</td>
<td>23/32, 3/4, 7/8</td>
<td>48</td>
</tr>
<tr>
<td>54/32</td>
<td>7/8, 1</td>
<td>54</td>
</tr>
<tr>
<td>60/32</td>
<td>7/8, 1</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SINGLE FLOOR GRADES</th>
<th>ROOF²</th>
<th>FLOOR²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel span rating</td>
<td>Panel thickness (inches)</td>
<td>Maximum span (inches)</td>
</tr>
<tr>
<td>16 o.c.</td>
<td>1/2, 19/32, 7/8</td>
<td>24</td>
</tr>
<tr>
<td>20 o.c.</td>
<td>19/32, 5/8, 3/4</td>
<td>32</td>
</tr>
<tr>
<td>24 o.c.</td>
<td>21/32, 3/4</td>
<td>48</td>
</tr>
<tr>
<td>32 o.c.</td>
<td>7/8, 1</td>
<td>48</td>
</tr>
<tr>
<td>48 o.c.</td>
<td>13/32, 1 7/8</td>
<td>60</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kN/m².

a. Applies to panels 24 inches or wider.

b. Floor and roof sheathing conforming with this table shall be deemed to meet the design criteria of Section 2304.7.

c. Uniform load deflection limitations 1/180 of span under live load plus dead load, 1/240 under live load only.

d. Panel edges shall have approved tongue-and-groove joints or shall be supported with blocking unless 1/16-inch minimum thickness underlayment or 1/16 inches of approved cellular or lightweight concrete is placed over the subfloor, or finish floor is 3/4-inch wood strip. Allowable uniform load based on deflection of 1/360 of span is 100 pounds per square foot except the span rating of 48 inches on center is based on a total load of 65 pounds per square foot.

e. Allowable load at maximum span.

f. Tongue-and-groove edges, panel edge clips (one midway between each support, except two equally spaced between supports 48 inches on center), lumber blocking or other. Only lumber blocking shall satisfy blocked diaphragm requirements.

g. For 1/4-inch panel, maximum span shall be 24 inches.

h. Span is permitted to be 24 inches on center where 7/8-inch wood strip flooring is installed at right angles to joist.

i. Span is permitted to be 24 inches on center for floors where 1 1/2 inches of cellular or lightweight concrete is applied over the panels.
TABLE 2304.7(4)
ALLOWABLE SPAN FOR WOOD STRUCTURAL PANEL COMBINATION SUBFLOOR-UNDERLAYMENT (SINGLE FLOOR)a,b
(Panels Continuous Over Two or More Spans and Strength Axis Perpendicular to Supports)

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>MAXIMUM SPACING OF JOISTS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Species groupc</td>
<td>Thickness (inches)</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>2, 3</td>
<td>5/8</td>
</tr>
<tr>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td>Single floor span ratingd</td>
<td>16 o.c.</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kN/m².

a. Spans limited to value shown because of possible effects of concentrated loads. Allowable uniform loads based on deflection of 1/160 of span is 100 pounds per square foot except allowable total uniform load for 1/8-inch wood structural panels over joists spaced 48 inches on center is 65 pounds per square foot. Panel edges shall have approved tongue-and-groove joints or shall be supported with blocking, unless 1/8-inch minimum thickness underlayment or 1/12 inches of approved cellular or lightweight concrete is placed over the subfloor, or finish floor is 3/4-inch wood strip.
b. Floor panels conforming with this table shall be deemed to meet the design criteria of Section 2304.7.
c. Applicable to all grades of sanded exterior-type plywood. See DOC PS 1 for plywood species groups.
d. Applicable to Underlayment grade, C-C (Plugged) plywood, and Single Floor grade wood structural panels.

TABLE 2304.7(5)
ALLOWABLE LOAD (PSF) FOR WOOD STRUCTURAL PANEL ROOF SHEATHING CONTINUOUS OVER TWO OR MORE SPANS AND STRENGTH AXIS PARALLEL TO SUPPORTS
(Plywood Structural Panels Are Five-Ply, Five-Layer Unless Otherwise Noted)a,b

<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>THICKNESS (inch)</th>
<th>MAXIMUM SPAN (inches)</th>
<th>LOAD AT MAXIMUM SPAN (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Live</td>
</tr>
<tr>
<td>Structural I sheathing</td>
<td>7/16</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>15/32</td>
<td>24</td>
<td>35c</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>24</td>
<td>40c</td>
</tr>
<tr>
<td></td>
<td>19/32, 5/8</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>23/32, 3/4</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>Sheathing, other grades covered in DOC PS 1 or DOC PS 2</td>
<td>7/16</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>15/32</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>19/32</td>
<td>24</td>
<td>40c</td>
</tr>
<tr>
<td></td>
<td>5/8</td>
<td>24</td>
<td>45c</td>
</tr>
<tr>
<td></td>
<td>23/32, 3/4</td>
<td>24</td>
<td>60c</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kN/m².

a. Roof sheathing conforming with this table shall be deemed to meet the design criteria of Section 2304.7.
b. Uniform load deflection limitations 1/180 of span under live load plus dead load, 1/240 under live load only. Edges shall be blocked with lumber or other approved type of edge supports.
c. For composite and four-ply plywood structural panel, load shall be reduced by 15 pounds per square foot.
2304.8.2.1 Simple span pattern. All pieces shall be supported on their ends (i.e., by two supports).

2304.8.2.2 Two-span continuous pattern. All pieces shall be supported by three supports, and all end joints shall occur in line on alternating supports. Supporting members shall be designed to accommodate the load redistribution caused by this pattern.

2304.8.2.3 Combination simple and two-span continuous pattern. Courses in end spans shall be alternating simple-span pattern and two-span continuous pattern. End joints shall be staggered in adjacent courses and shall bear on supports.

2304.8.2.4 Cantilevered pieces intermixed pattern. The decking shall extend across a minimum of three spans. Pieces in each starter course and every third course shall be simple span pattern. Pieces in other courses shall be cantilevered over the supports with end joints at alternating quarter or third points of the spans. Each piece shall bear on at least one support.

2304.8.2.5 Controlled random pattern. The decking shall extend across a minimum of three spans. End joints of pieces within 6 inches (152 mm) of the end joints of the adjacent pieces in either direction shall be separated by at least two intervening courses. In the end bays, each piece shall bear on at least one support. Where an end joint occurs in an end bay, the next piece in the same course shall continue over the first inner support for at least 24 inches (610 mm). The details of the controlled random pattern shall be as specified for each decking material in Section 2304.8.3.3, 2304.8.4.3 or 2304.8.5.3.

Decking that cantilevers beyond a support for a horizontal distance greater than 18 inches (457 mm), 24 inches (610 mm) or 36 inches (914 mm) for 2-inch (51 mm), 3-inch (76 mm) and 4-inch (102 mm) nominal thickness decking, respectively, shall comply with the following:

1. The maximum cantilevered length shall be 30 percent of the length of the first adjacent interior span.
2. A structural fascia shall be fastened to each decking piece to maintain a continuous, straight line.
3. There shall be no end joints in the decking between the cantilevered end of the decking and the center-line of the first adjacent interior span.

2304.8.3 Mechanically laminated decking.

2304.8.3.1 General. Mechanically laminated decking consists of square-edged dimension lumber laminations set on edge and nailed to the adjacent pieces and to the supports.

2304.8.3.2 Nailing. The length of nails connecting laminations shall not be less than two and one-half times the net thickness of each lamination. Where decking supports are 48 inches (1219 mm) on center (o.c.) or less, side nails shall be installed not more than 30 inches (762 mm) o.c. alternating between top and bottom edges, and staggered one-third of the spacing in adjacent laminations. Where supports are spaced more than 48 inches (1219 mm) o.c., side nails shall be installed not more than 18 inches (457 mm) o.c. alternating between top and bottom edges and staggered one-third of the spacing in adjacent laminations. Two side nails shall be installed at each end of butt-jointed pieces.

Laminations shall be toenailed to supports with 20d or larger common nails. Where the supports are 48 inches (1219 mm) o.c. or less, alternate laminations shall be toenailed to alternate supports; where supports are spaced more than 48 inches (1219 mm) o.c., alternate laminations shall be toenailed to every support.

2304.8.3.3 Controlled random pattern. There shall be a minimum distance of 24 inches (610 mm) between end joints in adjacent courses. The pieces in the first and second courses shall bear on at least two supports with end joints in these two courses occurring on alternate supports. A maximum of seven intervening courses shall be permitted before this pattern is repeated.

2304.8.4 Two-inch sawn tongue-and-groove decking.

2304.8.4.1 General. Two-inch (51 mm) decking shall have a maximum moisture content of 15 percent. Decking shall be machined with a single tongue-and-groove pattern. Each decking piece shall be nailed to each support.

2304.8.4.2 Nailing. Each piece of decking shall be toenailed at each support with one 16d common nail through the tongue and face-nailed with one 16d common nail.

2304.8.4.3 Controlled random pattern. There shall be a minimum distance of 24 inches (610 mm) between end joints in adjacent courses. The pieces in the first and second courses shall bear on at least two supports with end joints in these two courses occurring on alternate supports. A maximum of seven intervening courses shall be permitted before this pattern is repeated.

2304.8.5 Three- and 4-inch sawn tongue-and-groove decking.

2304.8.5.1 General. Three-inch (76 mm) and 4-inch (102 mm) decking shall have a maximum moisture content of 19 percent. Decking shall be machined with a double tongue-and-groove pattern. Decking pieces shall be interconnected and nailed to the supports.

2304.8.5.2 Nailing. Each piece shall be toenailed at each support with one 40d common nail and face-nailed with one 60d common nail. Courses shall be spiked to each other with 8-inch (203 mm) spikes at maximum intervals of 30 inches (762 mm) through predrilled edge holes penetrating to a depth of approximately 4 inches (102 mm). One spike shall be installed at a distance not exceeding 10 inches (254 mm) from the end of each piece.

2304.8.5.3 Controlled random pattern. There shall be a minimum distance of 48 inches (1219 mm) between end joints in adjacent courses. Pieces not bearing on a support are permitted to be located in interior bays provided the adjacent pieces in the same course continue over the support for at least 24 inches (610 mm). This condition shall not occur more than once in every six courses in each interior bay.
2304.9 Connections and fasteners.

2304.9.1 Fastener requirements. Connections for wood members shall be designed in accordance with the appropriate methodology in Section 2301.2. The number and size of fasteners connecting wood members shall not be less than that set forth in Table 2304.9.1.

2304.9.1.1 Additional requirements. [DSA-SS and OSHPD 1, 2 & 4] Fasteners used for the attachment of exterior wall coverings shall be of hot-dipped zinc-coated galvanized steel, mechanically deposited zinc-coated steel, stainless steel, silicon bronze or copper. The coating weights for hot-dipped zinc-coated fasteners shall be in accordance with ASTM A 153. The coating weights for mechanically deposited zinc-coated fasteners shall be in accordance with ASTM B 695, Class 55 minimum.

2304.9.2 Sheathing fasteners. Sheathing nails or other approved sheathing connectors shall be driven so that their head or crown is flush with the surface of the sheathing.

2304.9.3 Joist hangers and framing anchors. Connections depending on joist hangers or framing anchors, ties and other mechanical fastenings not otherwise covered are permitted where approved. The vertical load-bearing capacity, torsional moment capacity and deflection characteristics of joist hangers shall be determined in accordance with Section 1716.1.

2304.9.4 Other fasteners. Clips, staples, glues and other approved methods of fastening are permitted where approved.

2304.9.5 Fasteners and connectors in contact with preservative-treated and fire-retardant-treated wood. Fasteners and connectors in contact with preservative-treated and fire-retardant-treated wood shall be in accordance with Sections 2304.9.5.1 through 2304.9.5.4. The coating weights for zinc-coated fasteners shall be in accordance with ASTM A 153.

2304.9.5.1 Fasteners and connectors for preservative-treated wood. Fasteners in contact with preservative-treated wood shall be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. Fasteners other than nails, timber rivets, wood screws and lag screws shall be permitted to be of mechanically deposited zinc-coated steel with coating weights in accordance with ASTM B 695, Class 55 minimum. Connectors that are used in exterior applications and in contact with preservative-treated wood shall have coating types and weights in accordance with the treated wood or connector manufacturer's recommendations. In the absence of manufacturer's recommendations, a minimum of ASTM A 653, type G185 zinc-coated galvanized steel, or equivalent, shall be used.

Exception: Plain carbon steel fasteners in SBX/DOT and zinc borate preservative-treated wood in an interior, dry environment shall be permitted.

2304.9.5.2 Fastenings for wood foundations. Fastenings for wood foundations shall be as required in AF&PA PWF.

2304.9.5.3 Fasteners for fire-retardant-treated wood used in exterior applications or wet or damp locations. Fasteners for fire-retardant-treated wood used in exterior applications or wet or damp locations shall be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. Fasteners other than nails, timber rivets, wood screws and lag screws shall be permitted to be of mechanically deposited zinc-coated steel with coating weights in accordance with ASTM B 695, Class 55 minimum.

2304.9.5.4 Fasteners for fire-retardant-treated wood used in interior applications. Fasteners for fire-retardant-treated wood used in interior locations shall be in accordance with the manufacturer's recommendations. In the absence of manufacturer's recommendations, Section 2304.9.5.3 shall apply.

2304.9.6 Load path. Where wall framing members are not continuous from foundation sill to roof, the members shall be secured to ensure a continuous load path. Where required, sheet metal clamps, ties or clips shall be formed of galvanized steel or other approved corrosion-resistant material not less than 0.040 inch (1.01 mm) nominal thickness.

2304.9.7 Framing requirements. Wood columns and posts shall be framed to provide full end bearing. Alternatively, column-and-post end connections shall be designed to resist the full compressive loads, neglecting end-bearing capacity. Column-and-post end connections shall be fastened to resist lateral and net induced uplift forces.

2304.10 Heavy timber construction.

2304.10.1 Columns. Columns shall be continuous or superimposed throughout all stories by means of reinforced concrete or metal caps with brackets, or shall be connected by properly designed steel or iron caps, with pintles and base plates, or by timber splice plates affixed to the columns by metal connectors housed within the contact faces, or by other approved methods.

2304.10.1.1 Column connections. Girders and beams shall be closely fitted around columns and adjoining ends shall be cross tied to each other, or intertied by caps or ties, to transfer horizontal loads across joints. Wood bolsters shall not be placed on tops of columns unless the columns support roof loads only.

2304.10.2 Floor framing. Approved wall plate boxes or hangers shall be provided where wood beams, girders or trusses rest on masonry or concrete walls. Where intermediate beams are used to support a floor, they shall rest on top of girders, or shall be supported by ledgers or blocks securely fastened to the sides of the girders, or they shall be supported by an approved metal hanger into which the ends of the beams shall be closely fitted.
<table>
<thead>
<tr>
<th>CONNECTION</th>
<th>FASTENING* m</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Joist to sill or girder</td>
<td>3 - 8d common (2 1/2" x 0.131") 3 - 3" x 0.131" nails 3 - 3" 14 gage staples</td>
<td>toenail</td>
</tr>
<tr>
<td>2. Bridging to joist</td>
<td>2 - 8d common (2 1/2" x 0.131") 2 - 3" x 0.131" nails 2 - 3" 14 gage staples</td>
<td>toenail each end</td>
</tr>
<tr>
<td>3. 1" x 6" subfloor or less to each joist</td>
<td>2 - 8d common (2 1/2" x 0.131")</td>
<td>face nail</td>
</tr>
<tr>
<td>4. Wider than 1" x 6" subfloor to each joist</td>
<td>3 - 8d common (2 1/2" x 0.131")</td>
<td>face nail</td>
</tr>
<tr>
<td>5. 2" subfloor to joist or girder</td>
<td>2 - 16d common (3 1/2" x 0.162")</td>
<td>blind and face nail</td>
</tr>
<tr>
<td>6. Sole plate to joist or blocking</td>
<td>16d (3 1/2" x 0.135") at 16" o.c. 3" x 0.131" nails at 8" o.c. 3" 14 gage staples at 12" o.c.</td>
<td>typical face nail</td>
</tr>
<tr>
<td>Sole plate to joist or blocking at braced wall panel</td>
<td>3 - 16d (3 1/2" x 0.135") at 16" o.c. 4 - 3" x 0.131" nails at 16" o.c. 4 - 3" 14 gage staples at 16" o.c.</td>
<td>braced wall panels</td>
</tr>
<tr>
<td>7. Top plate to stud</td>
<td>2 - 16d common (3 1/2" x 0.162") 3 - 3" x 0.131" nails 3 - 3" 14 gage staples</td>
<td>end nail</td>
</tr>
<tr>
<td>8. Stud to sole plate</td>
<td>4 - 8d common (2 1/2" x 0.131") 4 - 3" x 0.131" nails 3 - 3" 14 gage staples</td>
<td>toenail</td>
</tr>
<tr>
<td></td>
<td>2 - 16d common (3 1/2" x 0.162") 3 - 3" x 0.131" nails 3 - 3" 14 gage staples</td>
<td>end nail</td>
</tr>
<tr>
<td>9. Double studs</td>
<td>16d (3 1/2" x 0.135") at 24" o.c. 3" x 0.131" nail at 8" o.c. 3" 14 gage staple at 8" o.c.</td>
<td>face nail</td>
</tr>
<tr>
<td>10. Double top plates</td>
<td>16d (3 1/2" x 0.135") at 16" o.c. 3" x 0.131" nail at 12" o.c. 3" 14 gage staple at 12" o.c.</td>
<td>typical face nail</td>
</tr>
<tr>
<td>Double top plates</td>
<td>8 - 16d common (3 1/2" x 0.162") 12 - 3" x 0.131" nails 12 - 3" 14 gage staples</td>
<td>lap splice</td>
</tr>
<tr>
<td>11. Blocking between joists or rafters to top plate</td>
<td>3 - 8d common (2 1/2" x 0.131") 3 - 3" x 0.131" nails 3 - 3" 14 gage staples</td>
<td>toenail</td>
</tr>
<tr>
<td>12. Rim joist to top plate</td>
<td>8d (2 1/2" x 0.131") at 6" o.c. 3" x 0.131" nail at 6" o.c. 3" 14 gage staple at 6" o.c.</td>
<td>toenail</td>
</tr>
<tr>
<td>13. Top plates, laps and intersections</td>
<td>2 - 16d common (3 1/2" x 0.162") 3 - 3" x 0.131" nails 3 - 3" 14 gage staples</td>
<td>face nail</td>
</tr>
<tr>
<td>14. Continuous header, two pieces</td>
<td>16d common (3 1/2" x 0.162")</td>
<td>16" o.c. along edge</td>
</tr>
<tr>
<td>15. Ceiling joists to plate</td>
<td>3 - 8d common (2 1/2" x 0.131") 5 - 3" x 0.131" nails 5 - 3" 14 gage staples</td>
<td>toenail</td>
</tr>
<tr>
<td>16. Continuous header to stud</td>
<td>4 - 8d common (2 1/2" x 0.131")</td>
<td>toenail</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONNECTION</th>
<th>FASTENING</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Ceiling joists, laps over partitions</td>
<td>3 - 16d common (3 1/2" x 0.162") minimum, Table 2308.10.4.1</td>
<td>face nail</td>
</tr>
<tr>
<td>(see Section 2308.10.4.1, Table 2308.10.4.1)</td>
<td>4 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>18. Ceiling joists to parallel rafters</td>
<td>3 - 16d common (3 1/2" x 0.162") minimum, Table 2308.10.4.1</td>
<td>face nail</td>
</tr>
<tr>
<td>(see Section 2308.10.4.1, Table 2308.10.4.1)</td>
<td>4 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>19. Rafter to plate</td>
<td>3 - 8d common (2 1/2" x 0.131")</td>
<td>toenail</td>
</tr>
<tr>
<td>(see Section 2308.10.1, Table 2308.10.1)</td>
<td>3 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>20. 1" diagonal brace to each stud and plate</td>
<td>2 - 8d common (2 1/2" x 0.131")</td>
<td>face nail</td>
</tr>
<tr>
<td></td>
<td>2 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>21. 1" x 8" sheathing to each bearing</td>
<td>3 - 8d common (2 1/2" x 0.131")</td>
<td>face nail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Wider than 1" x 8" sheathing to each bearing</td>
<td>3 - 8d common (2 1/2" x 0.131")</td>
<td>face nail</td>
</tr>
<tr>
<td>23. Built-up corner studs</td>
<td>16d common (3 1/2" x 0.162")</td>
<td>24" o.c.</td>
</tr>
<tr>
<td></td>
<td>3" x 0.131" nails</td>
<td>16" o.c.</td>
</tr>
<tr>
<td></td>
<td>3" 14 gage staples</td>
<td>16" o.c.</td>
</tr>
<tr>
<td>24. Built-up girder and beams</td>
<td>20d common (4" x 0.192") 32" o.c.</td>
<td>face nail at top and bottom staggered on opposite sides</td>
</tr>
<tr>
<td></td>
<td>3" x 0.131" nail at 24" o.c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3" 14 gage staple at 24" o.c.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - 20d common (4" x 0.192")</td>
<td>face nail at ends and at each splice</td>
</tr>
<tr>
<td></td>
<td>3 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>25. 2" planks</td>
<td>16d common (3 1/2" x 0.162")</td>
<td>at each bearing</td>
</tr>
<tr>
<td>26. Collar tie to rafter</td>
<td>3 - 10d common (3" x 0.148")</td>
<td>face nail</td>
</tr>
<tr>
<td></td>
<td>4 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>27. Jack rafter to hip</td>
<td>3 - 10d common (3" x 0.148")</td>
<td>toenail</td>
</tr>
<tr>
<td></td>
<td>4 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - 16d common (3 1/2" x 0.162")</td>
<td>face nail</td>
</tr>
<tr>
<td></td>
<td>3 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>28. Roof rafter to 2-by ridge beam</td>
<td>2 - 16d common (3 1/2" x 0.162")</td>
<td>toenail</td>
</tr>
<tr>
<td></td>
<td>3 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - 16d common (3 1/2" x 0.162")</td>
<td>face nail</td>
</tr>
<tr>
<td></td>
<td>3 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - 3" 14 gage staples</td>
<td></td>
</tr>
<tr>
<td>29. Joist to band joist</td>
<td>3 - 16d common (3 1/2" x 0.162")</td>
<td>face nail</td>
</tr>
<tr>
<td></td>
<td>4 - 3" x 0.131" nails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - 3" 14 gage staples</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONNECTION</th>
<th>FASTENINGS</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. Ledger strip</td>
<td>3 - 16d common (3(1/2) x 0.162") 4 - 3" x 0.131" nails 4 - 3" 14 gage staples</td>
<td>face nail at each joist</td>
</tr>
<tr>
<td>31. Wood structural panels and particleboard Subfloor, roof and wall sheathing (to framing)</td>
<td>1/4" and less 6d(^a) 2 3/8" x 0.113" nail(^a) 1 3/16" 16 gage(^a) 19/32" to 3/4" 8d(^f) or 6d(^f) 2 1/16" x 0.113" nail(^p) 2" 16 gage(^p) 7/8" to 1" 8d(^f) 1 3/8" to 1 1/4" 10d(^d) or 8d(^d)</td>
<td></td>
</tr>
<tr>
<td>Single floor (combination subfloor-underlayment to framing)</td>
<td>1/4" and less 6d(^f) 7/8" to 1" 8d(^f) 1 3/8" to 1 1/4" 10d(^d) or 8d(^d)</td>
<td></td>
</tr>
<tr>
<td>32. Panel siding (to framing)</td>
<td>1/2" or less 6d(^f) 5/8" 8d(^f)</td>
<td></td>
</tr>
<tr>
<td>33. Fiberboard sheathing</td>
<td>1/2" No. 11 gage roofing nail(^b) 6d common nail (2" x 0.113") No. 16 gage staple(^d) 25/32" No. 11 gage roofing nail(^b) 8d common nail (2 1/2" x 0.131") No. 16 gage staple(^d)</td>
<td></td>
</tr>
<tr>
<td>34. Interior paneling</td>
<td>1/4" 4d(^f) 5/8" 6d(^e)</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Common or box nails are permitted to be used except where otherwise stated.

b. Nails spaced at 6 inches on center at edges, 12 inches at intermediate supports except 6 inches at supports where spans are 48 inches or more. For nailing of wood structural panel and particleboard diaphragms and shear walls, refer to Section 2305. Nails for wall sheathing are permitted to be common, box or casing.

c. Common or deformed shank (6d - 2" x 0.113"; 8d - 2 1/8" x 0.131"; 10d - 3" x 0.148").

d. Common (6d - 2" x 0.113"; 8d - 2 1/8" x 0.131"; 10d - 3" x 0.148").

e. Deformed shank (6d - 2" x 0.113"; 8d - 2 1/8" x 0.131"; 10d - 3" x 0.148").

f. Corrosion-resistant siding (6d - 1 3/8" x 0.106"; 8d - 2 1/8" x 0.128") or casing (6d - 2" x 0.099"; 8d - 2 1/8" x 0.113") nail.

g. Fasteners spaced 3 inches on center at exterior edges and 6 inches on center at intermediate supports, when used as structural sheathing. Spacing shall be 6 inches on center on the edges and 12 inches on center at intermediate supports for nonstructural applications.

h. Corrosion-resistant roofing nails with 7/16-inch-diameter head and 1 1/2-inch length for 1/2-inch sheathing and 1 3/4-inch length for 3/4-inch sheathing.

i. Corrosion-resistant staples with nominal 7/16-inch crown or 1-inch crown and 1 1/2-inch length for 1 1/2-inch sheathing and 1 3/4-inch length for 3/4-inch sheathing.

Panel supports at 16 inches (20 inches if strength axis in the long direction of the panel, unless otherwise marked).

j. Casing (1 1/2" x 0.080") or finish (1 1/2" x 0.072") nails spaced 6 inches on panel edges, 12 inches at intermediate supports.

k. Panel supports at 24 inches. Casing or finish nails spaced 6 inches on panel edges, 12 inches at intermediate supports.

l. For roof sheathing applications, 8d nails (2 1/2" x 0.113") are the minimum required for wood structural panels.

m. Staples shall have a minimum crown width of 7/16 inch.

n. For roof sheathing applications, fasteners spaced 4 inches on center at edges, 8 inches at intermediate supports.

o. Fasteners spaced 4 inches on center at edges, 8 inches at intermediate supports for subfloor and wall sheathing and 3 inches on center at edges, 6 inches at intermediate supports for roof sheathing.

p. Fasteners spaced 4 inches on center at edges, 8 inches at intermediate supports.
2304.10.3 Roof framing. Every roof girder and at least every alternate roof beam shall be anchored to its supporting member; and every monitor and every sawtooth construction shall be anchored to the main roof construction. Such anchors shall consist of steel or iron bolts of sufficient strength to resist vertical uplift of the roof.

2304.10.4 Floor decks. Floor decks and covering shall not extend closer than 1/2 inch (12.7 mm) to walls. Such 1/2-inch (12.7 mm) spaces shall be covered by a molding fastened to the wall either above or below the floor and arranged such that the molding will not obstruct the expansion or contraction movements of the floor. Corbeling of masonry walls under floors is permitted in place of such molding.

2304.10.5 Roof decks. Where supported by a wall, roof decks shall be anchored to walls to resist uplift forces determined in accordance with Chapter 16. Such anchors shall consist of steel or iron bolts of sufficient strength to resist vertical uplift of the roof.

2304.11 Protection against decay and termites.

2304.11.1 General. Where required by this section, protection from decay and termites shall be provided by the use of naturally durable or preservative-treated wood.

2304.11.2 Wood used above ground. Wood used above ground in the locations specified in Sections 2304.11.2.1 through 2304.11.2.7, 2304.11.3 and 2304.11.5 shall be naturally durable or preservative-treated wood using water-borne preservatives, in accordance with AWPA U1 (Commodity Specifications A or F) for above-ground use.

2304.11.2.1 Joists, girders and subfloor. Where wood joists or the bottom of a wood structural floor without joists are closer than 18 inches (457 mm), or wood girders are closer than 12 inches (305 mm) to the exposed ground in crawl spaces or unexcavated areas located within the perimeter of the building foundation, the floor construction (including posts, girders, joists and subfloor) shall be of naturally durable or preservative-treated wood.

2304.11.2.1.1 [SPCB] There shall be a clearance of at least 18 inches (457 mm) between the underside of wood floor joists and the finished surface of the ground, and at least 12 inches (305 mm) between the underside of any other wood horizontal framing member and the finished surface of the ground. The ground underneath floor joists shall be leveled or smoothed off so as to maintain a reasonably even surface.

Exception: For purposes of structural pest control inspection, a minimum of 12 inches (305 mm) of clearance under-floor joists shall be considered adequate except that such clearance shall not be necessary where the subarea soil is of such nature as to prevent excavation or where excavation would create a hazard from shifting soil or other causes.

2304.11.2.2 Wood supported by exterior foundation walls. Wood framing members, including wood sheathing, that rest on exterior foundation walls and are less than 8 inches (203 mm) from exposed earth shall be of naturally durable or preservative-treated wood.

Exception: [DSA-SS and OSHPD 1, 2 & 4] At exterior walls where the earth is paved with an asphalt or concrete slab at least 18 inches (457 mm) wide and draining away from the building, the bottom of sills are permitted to be 6 inches (152 mm) above the top of such slab. Other equivalent means of termite and decay protection may be accepted by the enforcement agency.

2304.11.2.3 Exterior walls below grade. Wood framing members and furring strips attached directly to the interior of exterior masonry or concrete walls below grade shall be of approved naturally durable or preservative-treated wood.

2304.11.2.4 Sleepers and sills. Sleepers and sills on a concrete or masonry slab that is in direct contact with earth shall be of naturally durable or preservative-treated wood.

2304.11.2.5 Girder ends. The ends of wood girders entering exterior masonry or concrete walls shall be provided with a 1/2-inch (12.7 mm) air space on top, sides and end, unless naturally durable or preservative-treated wood is used.

2304.11.2.6 Wood siding. Clearance between wood siding and earth on the exterior of a building shall not be less than 6 inches (152 mm) or less than 2 inches (51 mm) vertical from concrete steps, porch slabs, patio slabs and similar horizontal surfaces exposed to the weather except where siding, sheathing and wall framing are of naturally durable or preservative-treated wood.

2304.11.2.7 Posts or columns. Posts or columns supporting permanent structures and supported by a concrete or masonry slab or footing that is in direct contact with the earth shall be of naturally durable or preservative-treated wood.

Exceptions:

1. Posts or columns that are either exposed to the weather or located in basements or cellars, supported by concrete piers or metal pedestals projected at least 1 inch (25 mm) above the slab or deck and 6 inches (152 mm) above exposed earth, and are separated therefrom by an impervious moisture barrier.

2. Posts or columns in enclosed crawl spaces or unexcavated areas located within the periphery of the building, supported by a concrete pier or metal pedestal at a height greater than 8 inches (203 mm) from exposed ground, and are separated therefrom by an impervious moisture barrier.
2304.11.2.8 Separate wood framing. [SPCB] Correct the conditions in frame and stucco walls and similar appurtenant construction so that the wood framing is separate from the main structure by a complete concrete or masonry plug with no voids that will allow infestations to enter the structure from the wall. If there is no plug, the foundation shall be 2 inches (51 mm) or more above the grade levels and at least as high as the adjoining slabs or 4-inch (102 mm) concrete barrier seat off installed.

2304.11.3 Laminated timbers. The portions of glued-laminated timbers that form the structural supports of a building or other structure and are exposed to the weather and not fully protected from moisture by a roof, eave or similar covering shall be pressure treated with preservative or be manufactured from naturally durable or preservative-treated wood.

2304.11.4 Wood in contact with the ground or fresh water. Wood used in contact with the ground (exposed earth) in the locations specified in Sections 2304.11.4.1 and 2304.11.4.2 shall be naturally durable (species for both decay and termite resistance) or preservative treated using water-borne preservatives in accordance with AWPA U1 (Commodity Specifications A or F) for soil or fresh water use.

Exception: Untreated wood is permitted where such wood is continuously and entirely below the ground-water level or submerged in fresh water.

2304.11.4.1 Posts or columns. Posts and columns supporting permanent structures that are embedded in concrete that is in direct contact with the earth, embedded in concrete that is exposed to the weather or in direct contact with the earth shall be of preservative-treated wood.

2304.11.4.2 Wood structural members. Wood structural members that support moisture-permeable floors or roofs that are exposed to the weather, such as concrete or masonry slabs, shall be of naturally durable or preservative-treated wood unless separated from such floors or roofs by an impervious moisture barrier.

2304.11.5 Supporting member for permanent appurtenances. Naturally durable or preservative-treated wood shall be utilized for those portions of wood members that form the structural supports of buildings, balconies, porches or similar permanent building appurtenances where such members are exposed to the weather without adequate protection from a roof, eave, overhang or other covering to prevent moisture or water accumulation on the surface or at joints between members.

Exception: When a building is located in a geographical region where experience has demonstrated that climatic conditions preclude the need to use durable materials where the structure is exposed to the weather.

2304.11.6 Termite protection. In geographical areas where hazard of termite damage is known to be very heavy, wood floor framing shall be of naturally durable species (termite resistant) or preservative treated in accordance with AWPA U1 for the species, product preservative and end use or provided with approved methods of termite protection.

2304.11.7 Wood used in retaining walls and cribs. Wood installed in retaining or crib walls shall be preservative treated in accordance with AWPA U1 (Commodity Specifications A or F) for soil and fresh water use.

2304.11.8 Attic ventilation. For attic ventilation, see Section 1203.2.

2304.11.9 Under-floor ventilation (crawl space). For under-floor ventilation (crawl space), see Section 1203.3.

2304.11.10 Earth fills. [SPCB] Separate the earth fills such as under porches or paving from all woodwork by concrete, masonry, good quality cement plaster or other material approved by local building codes. Chemical treatment of earth fills is considered adequate if the foundation adjoining the fill meets standards of the current building codes.

2304.12 Long-term loading. Wood members supporting concrete, masonry or similar materials shall be checked for the effects of long-term loading using the provisions of the AF&PA NDS. The total deflection, including the effects of long-term loading, shall be limited in accordance with Section 1604.3.1 for these supported materials.

Exception: Horizontal wood members supporting masonry or concrete nonstructural floor or roof surfacing not more than 4 inches (102 mm) thick need not be checked for long-term loading.

SECTION 2305
GENERAL DESIGN REQUIREMENTS FOR LATERAL-FORCE-RESISTING SYSTEMS

2305.1 General. Structures using wood shear walls and diaphragms to resist wind, seismic and other lateral loads shall be designed and constructed in accordance with AF&PA SDPWS and the provisions of Sections 2305, 2306 and 2307.

2305.1.1 Openings in shear panels. Openings in shear panels that materially affect their strength shall be detailed on the plans, and shall have their edges adequately reinforced to transfer all shearing stresses.

2305.1.2 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] The following limitations shall apply:

1. Straight-sheathed horizontal lumber diaphragms are not permitted.
2. Gypsum-based sheathing shear walls and portland cement plaster shear walls are not permitted.
3. Shear wall foundation anchor bolt washers shall be provided in accordance with AF&PA SDPWS Section 4.3.6.4.3. The exception to AF&PA SDPWS Section 4.3.6.4.3 shall not apply.
4. Wood structural panel shear walls and diaphragms using staples as fasteners are not permitted.
5. Unblocked shear walls are not permitted.

2305.1.3 Diaphragms and shear walls. [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] Any wood structural panel sheathing used for diaphragms and shear walls that
are part of the seismic force-resisting system shall be applied directly to framing members.

Exception: Wood structural panel sheathing in a diaphragm is permitted to be fastened over solid lumber planking or laminated wood, provided the panel joints and lumber planks or laminated wood joints do not coincide.

2305.1.4 Sill plate anchor bolts. [BSC, DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4]

As specified in Section 1908.1.31 modifications to ACI 318, the allowable lateral design strength for sill plate anchor bolts in shear parallel to grain is permitted to be determined using the lateral design value for a bolt attaching a wood sill plate to concrete, as specified in AF&PA NDS Table 11E, provided the anchor bolts comply with all of the following:

1. The maximum anchor bolt diameter is 5/8 inches (16 mm).
2. The anchor bolt is embedded at least 7 inches (178 mm) into concrete.
3. The anchor bolt is located a minimum of 2 1/2 anchor diameters from any concrete edge that is parallel to the sill plate; and
4. The anchor bolt is located a minimum of 15 anchor diameters from any concrete end that is perpendicular to the sill plate.

2305.2 Diaphragm deflection.

The deflection (Δ) of a blocked wood structural panel diaphragm uniformly fastened throughout with staples is permitted to be calculated by using the following equation. If not uniformly fastened, the constant 0.188 (For SI: 1/1627) in the third term shall be modified accordingly.

\[
\Delta = \frac{5vL^3}{8EAb} + \frac{vL}{4Gt} + 0.188Le_n + \frac{\sum(\Delta_X)}{2b} \quad (\text{Equation 23-1})
\]

For SI:
\[
\Delta = \frac{0.052vL^3}{EAb} + \frac{vL}{4Gt} + \frac{Le_n + \sum(\Delta_X)}{1627} \quad (\text{Equation 23-1})
\]

where:
- \(A\) = Area of chord cross section, in square inches (mm²).
- \(B\) = Diaphragm width, in feet (mm).
- \(E\) = Elastic modulus of chords, in pounds per square inch (N/mm²).
- \(e_n\) = Staple deformation, in inches (mm) [see Table 2305.2(1)].
- \(Gt\) = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
- \(L\) = Diaphragm length, in feet (mm).
- \(v\) = Maximum shear due to design loads in the direction under consideration, in pounds per linear foot (plf) (N/mm).
- \(\Delta\) = The calculated deflection, in inches (mm).

\(\Sigma(\Delta_X)\) = Sum of individual chord-splice slip values on both sides of the diaphragm, each multiplied by its distance to the nearest support.

Exception: [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4]. Section 2305.2 is not permitted.

TABLE 2305.2(1)

<table>
<thead>
<tr>
<th>LOAD PER FASTENER (pounds)</th>
<th>FASTENER DESIGNATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.011</td>
</tr>
<tr>
<td>80</td>
<td>0.018</td>
</tr>
<tr>
<td>100</td>
<td>0.028</td>
</tr>
<tr>
<td>120</td>
<td>0.04</td>
</tr>
<tr>
<td>140</td>
<td>0.053</td>
</tr>
<tr>
<td>160</td>
<td>0.068</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N.

a. Increase \(e_n\) values 20 percent for plywood grades other than Structural I.

b. Load per fastener = maximum shear per foot divided by the number of fasteners per foot at interior panel edges.

c. Decrease \(e_n\) values 50 percent for seasoned lumber (moisture content < 19 percent).

2305.3 Shear wall deflection.

The deflection (Δ) of a blocked wood structural panel shear wall uniformly fastened throughout with staples is permitted to be calculated by the use of the following equation:

\[
\Delta = \frac{8vh^3}{EAb} + \frac{vh}{Gt} + \frac{0.75he_n + d_a}{b} \quad (\text{Equation 23-2})
\]

For SI:
\[
\Delta = \frac{vh^3}{3EAb} + \frac{vh}{Gt} + \frac{he_n + d_a}{407.6} \quad (\text{Equation 23-2})
\]

where:
- \(A\) = Area of boundary element cross section in square inches (mm²) (vertical member at shear wall boundary).
- \(b\) = Wall width, in feet (mm).
- \(d_a\) = Vertical elongation of overturning anchorage (including fastener slip, device elongation, anchor rod elongation, etc.) at the design shear load (v).
- \(E\) = Elastic modulus of boundary element (vertical member at shear wall boundary), in pounds per square inch (N/mm²).
- \(e_n\) = Staple deformation, in inches (mm) [see Table 2305.2(1)].
- \(Gt\) = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
- \(h\) = Wall height, in feet (mm).
- \(v\) = Maximum shear due to design loads at the top of the wall, in pounds per linear foot (N/mm).
- \(\Delta\) = The calculated deflection, in inches (mm).

Exception: [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4]. Section 2305.3 is not permitted.
TABLE 2305.2(2)
VALUES OF G_t FOR USE IN CALCULATING DEFLECTION OF WOOD STRUCTURAL PANEL SHEAR WALLS AND DIAPHRAGMS

<table>
<thead>
<tr>
<th>PANEL TYPE</th>
<th>SPAN RATING</th>
<th>3-ply Plywood</th>
<th>4-ply Plywood</th>
<th>5-ply Plywood*</th>
<th>OSB</th>
<th>3-ply Plywood</th>
<th>4-ply Plywood</th>
<th>5-ply Plywood*</th>
<th>OSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheathing</td>
<td>24/0</td>
<td>25,000</td>
<td>32,500</td>
<td>37,500</td>
<td>77,500</td>
<td>32,500</td>
<td>42,500</td>
<td>41,500</td>
<td>77,500</td>
</tr>
<tr>
<td></td>
<td>24/16</td>
<td>27,000</td>
<td>35,000</td>
<td>40,500</td>
<td>83,500</td>
<td>35,000</td>
<td>45,500</td>
<td>44,500</td>
<td>83,500</td>
</tr>
<tr>
<td></td>
<td>32/16</td>
<td>27,000</td>
<td>35,000</td>
<td>40,500</td>
<td>83,500</td>
<td>35,000</td>
<td>45,500</td>
<td>44,500</td>
<td>83,500</td>
</tr>
<tr>
<td></td>
<td>40/20</td>
<td>28,500</td>
<td>37,000</td>
<td>43,000</td>
<td>88,500</td>
<td>37,000</td>
<td>48,000</td>
<td>47,500</td>
<td>88,500</td>
</tr>
<tr>
<td></td>
<td>48/24</td>
<td>31,000</td>
<td>40,500</td>
<td>46,500</td>
<td>96,000</td>
<td>40,500</td>
<td>52,500</td>
<td>51,000</td>
<td>96,000</td>
</tr>
<tr>
<td>Single Floor</td>
<td>16 o.c.</td>
<td>27,000</td>
<td>35,000</td>
<td>40,500</td>
<td>83,500</td>
<td>35,000</td>
<td>45,500</td>
<td>44,500</td>
<td>83,500</td>
</tr>
<tr>
<td></td>
<td>20 o.c.</td>
<td>28,000</td>
<td>36,500</td>
<td>42,000</td>
<td>87,000</td>
<td>36,500</td>
<td>47,500</td>
<td>46,000</td>
<td>87,000</td>
</tr>
<tr>
<td></td>
<td>24 o.c.</td>
<td>30,000</td>
<td>39,000</td>
<td>45,000</td>
<td>93,000</td>
<td>39,000</td>
<td>50,500</td>
<td>49,500</td>
<td>93,000</td>
</tr>
<tr>
<td></td>
<td>32 o.c.</td>
<td>36,000</td>
<td>47,000</td>
<td>54,000</td>
<td>110,000</td>
<td>47,000</td>
<td>61,000</td>
<td>59,500</td>
<td>110,000</td>
</tr>
<tr>
<td></td>
<td>48 o.c.</td>
<td>50,500</td>
<td>65,500</td>
<td>76,000</td>
<td>155,000</td>
<td>65,500</td>
<td>85,000</td>
<td>83,500</td>
<td>155,000</td>
</tr>
</tbody>
</table>

SANDED PLYWOOD

<table>
<thead>
<tr>
<th>Thickness (in.)</th>
<th>OTHER</th>
<th>A-A, A-C</th>
<th>Marine</th>
<th>All Other Grades</th>
<th>A-A, A-C</th>
<th>Marine</th>
<th>All Other Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>24,000</td>
<td>31,000</td>
<td>24,000</td>
<td>24,000</td>
<td>31,000</td>
<td>31,000</td>
<td>31,000</td>
</tr>
<tr>
<td>11/32</td>
<td>25,500</td>
<td>33,000</td>
<td>25,500</td>
<td>25,500</td>
<td>33,000</td>
<td>33,000</td>
<td>33,000</td>
</tr>
<tr>
<td>3/8</td>
<td>26,000</td>
<td>34,000</td>
<td>26,000</td>
<td>26,000</td>
<td>34,000</td>
<td>34,000</td>
<td>34,000</td>
</tr>
<tr>
<td>15/32</td>
<td>38,000</td>
<td>49,500</td>
<td>38,000</td>
<td>38,000</td>
<td>49,500</td>
<td>49,500</td>
<td>49,500</td>
</tr>
<tr>
<td>1/2</td>
<td>38,500</td>
<td>50,000</td>
<td>38,500</td>
<td>38,500</td>
<td>50,000</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>19/32</td>
<td>49,000</td>
<td>63,500</td>
<td>49,000</td>
<td>49,000</td>
<td>63,500</td>
<td>63,500</td>
<td>63,500</td>
</tr>
<tr>
<td>5/8</td>
<td>49,500</td>
<td>64,500</td>
<td>49,500</td>
<td>49,500</td>
<td>64,500</td>
<td>64,500</td>
<td>64,500</td>
</tr>
<tr>
<td>23/32</td>
<td>50,500</td>
<td>65,500</td>
<td>50,500</td>
<td>50,500</td>
<td>65,500</td>
<td>65,500</td>
<td>65,500</td>
</tr>
<tr>
<td>7/4</td>
<td>51,000</td>
<td>66,500</td>
<td>51,000</td>
<td>51,000</td>
<td>66,500</td>
<td>66,500</td>
<td>66,500</td>
</tr>
<tr>
<td>7/8</td>
<td>52,500</td>
<td>68,500</td>
<td>52,500</td>
<td>52,500</td>
<td>68,500</td>
<td>68,500</td>
<td>68,500</td>
</tr>
<tr>
<td>1</td>
<td>73,500</td>
<td>95,500</td>
<td>73,500</td>
<td>73,500</td>
<td>95,500</td>
<td>95,500</td>
<td>95,500</td>
</tr>
<tr>
<td>11/8</td>
<td>75,000</td>
<td>97,500</td>
<td>75,000</td>
<td>75,000</td>
<td>97,500</td>
<td>97,500</td>
<td>97,500</td>
</tr>
</tbody>
</table>

* For SI: 1 inch = 25.4 mm, 1 pound/inch = 0.1751 N/mm.
* Applies to plywood with five or more layers; for five-ply/three-layer plywood, use values for four ply.
SECTION 2306
ALLOWABLE STRESS DESIGN

2306.1 Allowable stress design. The structural analysis and construction of wood elements in structures using allowable stress design shall be in accordance with the following applicable standards:

American Forest & Paper Association.
NDS National Design Specification for Wood Construction
SDPWS Special Design Provisions for Wind and Seismic

American Institute of Timber Construction.
AITC 104 Typical Construction Details
AITC 110 Standard Appearance Grades for Structural Glued Laminated Timber
AITC 113 Standard for Dimensions of Structural Glued Laminated Timber
AITC 117 Standard Specifications for Structural Glued Laminated Timber of Softwood Species
AITC 119 Standard Specifications for Structural Glued Laminated Timber of Hardwood Species

ANSI/
AITC A190.1 Structural Glued Laminated Timber
AITC 200 Inspection Manual

American Society of Agricultural Engineers.
ASAE EP 484.2 Diaphragm Design of Metal-clad, Post-Frame Rectangular Buildings
ASAE EP 486.1 Shallow Post Foundation Design
ASAE 559 Design Requirements and Bending Properties for Mechanically Laminated Columns

APA—The Engineered Wood Association.
Panel Design Specification
Plywood Design Specification Supplement 1 - Design & Fabrication of Plywood Curved Panel
Plywood Design Specification Supplement 2 - Design & Fabrication of Glued Plywood-lumber Beams
Plywood Design Specification Supplement 3 - Design & Fabrication of Plywood Stressed-skin Panels
Plywood Design Specification Supplement 4 - Design & Fabrication of Plywood Sandwich Panels
Plywood Design Specification Supplement 5 - Design & Fabrication of All-plywood Beams

EWS T300 Glulam Connection Details
EWS S560 Field Notching and Drilling of Glued Laminated Timber Beams
EWS S475 Glued Laminated Beam Design Tables
EWS X450 Glulam in Residential Construction
EWS X440 Product and Application Guide: Glulam
EWS R540 Builders Tips: Proper Storage and Handling of Glulam Beams

Truss Plate Institute, Inc.
TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction

2306.1.1 Joists and rafters. The design of rafter spans is permitted to be in accordance with the AF&PA Span Tables for Joists and Rafters.

2306.1.2 Plank and beam flooring. The design of plank and beam flooring is permitted to be in accordance with the AF&PA Wood Construction Data No. 4.

2306.1.3 Treated wood stress adjustments. The allowable unit stresses for preservative-treated wood need no adjustment for treatment, but are subject to other adjustments.

The allowable unit stresses for fire-retardant-treated wood, including fastener values, shall be developed from an approved method of investigation that considers the effects of anticipated temperature and humidity to which the fire-retardant-treated wood will be subjected, the type of treatment and the redrying process. Other adjustments are applicable except that the impact load duration shall not apply.

2306.1.4 Lumber decking. The capacity of lumber decking arranged according to the patterns described in Section 2030.8.2 shall be the lesser of the capacities determined for flexure and deflection according to the formulas in Table 2306.1.4.

TABLE 2306.1.4
ALLOWABLE LOADS FOR LUMBER DECKING

<table>
<thead>
<tr>
<th>PATTERN</th>
<th>ALLOWABLE AREA LOAD a,b</th>
<th>Flexure</th>
<th>Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple span</td>
<td>$\sigma_b = \frac{8F'd^2}{l^2} \frac{d}{6}$</td>
<td>$\sigma_a = \frac{384AE'd^3}{5t^4}$</td>
<td>12</td>
</tr>
<tr>
<td>Two-span continuous</td>
<td>$\sigma_b = \frac{8F'd^2}{l^2} \frac{d}{6}$</td>
<td>$\sigma_a = \frac{185AE'd^3}{t^4}$</td>
<td>12</td>
</tr>
<tr>
<td>Combination simple- and two-span continuous</td>
<td>$\sigma_b = \frac{8F'd^2}{l^2} \frac{d}{6}$</td>
<td>$\sigma_a = \frac{131AE'd^3}{t^4}$</td>
<td>12</td>
</tr>
<tr>
<td>Cantilevered pieces intermixed</td>
<td>$\sigma_b = \frac{20F'd^2}{3t^2} \frac{d}{6}$</td>
<td>$\sigma_a = \frac{105AE'd^3}{t^4}$</td>
<td>12</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. σ_b = Allowable total uniform load limited by bending.
 σ_a = Allowable total uniform load limited by deflection.
b. d = Actual decking thickness.
 l = Span of decking.
$F'd$ = Allowable bending stress adjusted by applicable factors.
$E'd$ = Modulus of elasticity adjusted by applicable factors.
2306.2 Wood diaphragms.

2306.2.1 Wood structural panel diaphragms. Wood structural panel diaphragms shall be designed and constructed in accordance with AF&PA SDPWS. Wood structural panel diaphragms are permitted to resist horizontal forces using the allowable shear capacities set forth in Table 2306.2.1(1) or 2306.2.1(2). The allowable shear capacities in Tables 2306.2.1(1) and 2306.2.1(2) are permitted to be increased 40 percent for wind design.

2306.2.2 Single diagonally sheathed lumber diaphragms. Single diagonally sheathed lumber diaphragms shall be designed and constructed in accordance with AF&PA SDPWS.

2306.2.3 Double diagonally sheathed lumber diaphragms. Double diagonally sheathed lumber diaphragms shall be designed and constructed in accordance with AF&PA SDPWS.

2306.2.4 Gypsum board diaphragm ceilings. Gypsum board diaphragm ceilings shall be in accordance with Section 2508.5.

2306.3 Wood structural panel shear walls. Wood structural panel shear walls shall be designed and constructed in accordance with AF&PA SDPWS. Wood structural panel shear walls are permitted to resist horizontal forces using the allowable capacities set forth in Table 2306.3. Allowable capacities in Table 2306.3 are permitted to be increased 40 percent for wind design.

2306.3.1 Additional requirements. [DSA-SS and DSA-SS/CC and OSHPD 1, 2 & 3] Any wood structural panel sheathing used for diaphragms and shear walls that are part of the seismic force-resisting system shall be applied directly to framing members, unless installed in accordance with Section 2305.1.3.

2306.4 Lumber sheathed shear walls. Single and double diagonally sheathed lumber shear walls shall be designed and constructed in accordance with AF&PA SDPWS. Single and double diagonally sheathed lumber shear walls shall not be used to resist seismic forces in structures assigned to Seismic Design Category E or F.

Additional Requirements: [DSA-SS, DSA-SS-CC and OSHPD 1, 2 & 4] Single and double diagonally sheathed lumber walls shall not be used to resist seismic forces in structures assigned to Seismic Design Category D.

2306.5 Particleboard shear walls. Particleboard shear walls shall be designed and constructed in accordance with AF&PA SDPWS. Particleboard shear walls shall be permitted to resist horizontal forces using the allowable shear capacities set forth in Table 2306.5. Allowable capacities in Table 2306.5 are permitted to be increased 40 percent for wind design. Particleboard shall not be used to resist seismic forces in structures assigned to Seismic Design Category D, E or F.

2306.6 Fiberboard shear walls. Fiberboard shear walls shall be designed and constructed in accordance with AF&PA SDPWS. Fiberboard shear walls are permitted to resist horizontal forces using the allowable shear capacities set forth in Table 2306.6. Allowable capacities in Table 2306.6 are permitted to be increased 40 percent for wind design. Fiberboard shall not be used to resist seismic forces in structures assigned to Seismic Design Category D, E or F.

2306.7 Shear walls sheathed with other materials. Shear walls sheathed with portland cement plaster, gypsum lath, gypsum sheathing or gypsum board shall be designed and constructed in accordance with AF&PA SDPWS. Shear walls sheathed with these materials are permitted to resist horizontal forces using the allowable shear capacities set forth in Table 2306.7. Shear walls sheathed with portland cement plaster, gypsum lath, gypsum sheathing or gypsum board shall not be used to resist seismic forces in structures assigned to Seismic Design Category E or F.

Exception: [DSA-SS, DSA-SS-CC and OSHPD 1, 2 & 4] Shear walls sheathed with portland cement plaster, gypsum lath, gypsum sheathing or gypsum board shall not be used to resist seismic forces in structures assigned to Seismic Design Category D.

SECTION 2307
LOAD AND RESISTANCE FACTOR DESIGN

2307.1 Load and resistance factor design. The structural analysis and construction of wood elements and structures using load and resistance factor design shall be in accordance with AF&PA NDS and AF&PA SDPWS.

2307.1.1 Wood structural panel shear walls. In Seismic Design Category D, E or F, where shear design values exceed 490 pounds per foot (7154 N/m), all framing members receiving edge nailing from abutting panels shall not be less than a single 3-inch (76 mm) nominal member or two 2-inch (51 mm) nominal members fastened together in accordance with AF&PA NDS to transfer the design shear value between framing members. Wood structural panel joint and sill plate nailing shall be staggered at all panel edges. See Sections 4.3.6.1 and 4.3.6.4.3 of AF&PA SDPWS for sill plate size and anchorage requirements.

SECTION 2308
CONVENTIONAL LIGHT-FRAME CONSTRUCTION

2308.1 General. The requirements of this section are intended for conventional light-frame construction. Other methods are permitted to be used, provided a satisfactory design is submitted showing compliance with other provisions of this code. Interior nonload-bearing partitions, ceilings and curtain walls of conventional light-frame construction are not subject to the limitations of this section. Alternatively, compliance with AF&PA WFCM shall be permitted subject to the limitations therein and the limitations of this code. Detached one- and two-family dwellings and multiple single-family dwellings (townhouses) not more than three stories above grade plane in height with a separate means of egress and their accessory structures shall comply with the California Residential Code.

2308.1.1 Portions exceeding limitations of conventional construction. When portions of a building of otherwise conventional construction exceed the limits of Section 2308.2, these portions and the supporting load path shall be designed in accordance with accepted engineering practice and the provisions of this code. For the purposes of this section, the term "portions" shall mean parts of buildings containing volume and area such as a room or a series of rooms.
<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>COMMON NAIL SIZE OR STAPLE LENGTH AND GAGE</th>
<th>MINIMUM FASTENER PENETRATION IN FRAMING (INCHES)</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (INCH)</th>
<th>MINIMUM NOMINAL WIDTH OF FRAMING MEMBERS AT ADJOINING PANEL EDGES AND BOUNDARIES (INCHES)</th>
<th>BLOCKED DIAPHRAGMS</th>
<th>UNBLOCKED DIAPHRAGMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fastener spacing (inches) at diaphragm boundaries (all cases) at continuous panel edges parallel to load (Cases 3, 4), and at all panel edges (Cases 5, 6)</td>
<td>Fasteners spaced 6" max. at supported edges^b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Structural I grades</td>
<td>8d (2 1/2" × 0.131")</td>
<td>1 3/8</td>
<td>1 3/8</td>
<td>11/2 16 Gage</td>
<td>3</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>10d (3" × 0.148")</td>
<td>1 1/2</td>
<td>15/32</td>
<td>7/16</td>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>6d (2" × 0.113")</td>
<td>1 1/4</td>
<td>3/8</td>
<td>11/2 16 Gage</td>
<td>3</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>8d (2 1/2" × 0.131")</td>
<td>1 3/8</td>
<td>3/8</td>
<td>11/2</td>
<td>3</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>8d (2 1/2" × 0.131")</td>
<td>1 3/8</td>
<td>3/8</td>
<td>11/2</td>
<td>3</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>8d (2 1/2" × 0.131")</td>
<td>1 3/8</td>
<td>3/8</td>
<td>11/2</td>
<td>3</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>270</td>
</tr>
<tr>
<td>Sheathing, single floor and other grades covered in DOC PS 1 and PS 2</td>
<td>8d (2 1/2" × 0.131")</td>
<td>1 3/8</td>
<td>3/8</td>
<td>11/2 16 Gage</td>
<td>3</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>8d (2 1/2" × 0.131")</td>
<td>1 3/8</td>
<td>3/8</td>
<td>11/2</td>
<td>3</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>10d (3" × 0.148")</td>
<td>1 1/2</td>
<td>15/32</td>
<td>7/16</td>
<td>3</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>10d (3" × 0.148")</td>
<td>1 1/2</td>
<td>15/32</td>
<td>7/16</td>
<td>3</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>10d (3" × 0.148")</td>
<td>1 1/2</td>
<td>15/32</td>
<td>7/16</td>
<td>3</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>1 1/2 16 Gage</td>
<td>1</td>
<td>1 3/8</td>
<td>11/2</td>
<td>3</td>
<td>180</td>
</tr>
</tbody>
</table>

continued
TABLE 2306.2.1(1)—continued
ALLOWABLE SHEAR (POUNDS PER FOOT) FOR WOOD STRUCTURAL
PANEL DIAPHRAGMS WITH FRAMING OF DOUGLAS FIR-LARCH,
OR SOUTHERN PINE* FOR WIND OR SEISMIC LOADING*

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

a. For framing of other species: (1) Find specific gravity for species of lumber in AF&PA NDS. (2) For staples find shear value from table above for Structural I panels (regardless of actual grade) and multiply value by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species. (3) For nails find shear value from table above for nail size for actual grade and multiply value by the following adjustment factor: Specific Gravity Adjustment Factor = [1-(0.5 - SG)], where SG = Specific Gravity of the framing lumber. This adjustment factor shall not be greater than 1.

b. Space fasteners maximum 12 inches o.c. along intermediate framing members (6 inches o.c. where supports are spaced 48 inches o.c.).

c. Framing at adjoining panel edges shall be 3 inches nominal or wider, and nails at all panel edges shall be staggered where panel edge nailing is specified at 2'/2 inches o.c. or less.

d. Framing at adjoining panel edges shall be 3 inches nominal or wider, and nails at all panel edges shall be staggered where both of the following conditions are met: (1) 10d nails having penetration into framing of more than 1'/2 inches and (2) panel edge nailing is specified at 3 inches o.c. or less.

e. 8d is recommended minimum for roofs due to negative pressures of high winds.

f. Staples shall have a minimum crown width of 7'/6 inch and shall be installed with their crowns parallel to the long dimension of the framing members.

g. The minimum nominal width of framing members not located at boundaries or adjoining panel edges shall be 2 inches.

h. For shear loads of normal or permanent load duration as defined by the AF&PA NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.
Table 2306.2.1(2)

ALLOWABLE SHEAR (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL BLOCKED DIAPHRAGMS UTILIZING MULTIPLE ROWS OF FASTENERS (HIGH LOAD DIAPHRAGMS) WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE⁸ FOR WIND OR SEISMIC LOADING^{6, 9, h}

<table>
<thead>
<tr>
<th>PANEL GRADE<sup>e</sup></th>
<th>COMMON NAIL SIZE OR STAPLE<sup>f</sup> GAGE</th>
<th>MINIMUM FASTENER PENETRATION IN FRAMING (inches)</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inch)</th>
<th>MINIMUM NOMINAL WIDTH OF FRAMING MEMBER AT ADJOINING PANEL EDGES AND BOUNDARIES<sup>d</sup></th>
<th>LINES OF FASTENERS</th>
<th>BLOCKED DIAPHRAGMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cases 1 and 2<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fastener Spacing Per Line at Boundaries (inches)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Structural I grades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fastener Spacing Per Line at Other Panel Edges (inches)</td>
</tr>
<tr>
<td>10d common nails</td>
<td>1<sup>1/2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>14 gage staples</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheathing single floor and other grades covered in DOC PS 1 and PS 2</td>
<td>1<sup>1/2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10d common nails</td>
<td>1<sup>1/2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 gage staples</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

a. For framing of other species: (1) Find specific gravity for species of framing lumber in AF&PA NDS. (2) For staples, find shear value from table above for Structural I panels (regardless of actual grade) and multiply value by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species. (3) For nails, find shear value from table above for nail size of actual grade and multiply value by the following adjustment factor: Specific Gravity Adjustment Factor = 1 - (0.5 - SG), where SG = Specific gravity of the framing lumber. This adjustment factor shall not be greater than 1.

b. Fastening along intermediate framing members: Space fasteners a maximum of 12 inches on center, except 6 inches on center for spans greater than 32 inches.

c. Panels conforming to PS 1 or PS 2.

d. This table gives shear values for Cases 1 and 2 as shown in Table 2306.2.1(1). The values shown are applicable to Cases 3, 4, 5 and 6 as shown in Table 2306.2.1(1), providing fasteners at all continuous panel edges are spaced in accordance with the boundary fastener spacing.

e. The minimum nominal depth of framing members shall be 3 inches nominal. The minimum nominal width of framing members not located at boundaries or adjoining panel edges shall be 2 inches.

f. Staples shall have a minimum crown width of 7/16 inch, and shall be installed with their crowns parallel to the long dimension of the framing members.

g. High load diaphragms shall be subject to special inspection in accordance with Section 1704.6.1.

h. For shear loads of normal or permanent load duration as defined by the AF&PA NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.

2010 CALIFORNIA BUILDING CODE 361
TABLE 2306.2.1(2)—continued
ALLOWABLE SHEAR (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL BLOCKED DIAPHRAGMS UTILIZING MULTIPLE ROWS OF FASTENERS (HIGH LOAD DIAPHRAGMS) WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE FOR WIND OR SEISMIC LOADING

3\textquoteleft\textquoteright NOMINAL—TWO LINES

4\textquoteleft\textquoteright NOMINAL—THREE LINES

4\textquoteleft\textquoteright NOMINAL—TWO LINES

TYPICAL BOUNDARY FASTENING
(Shown is two lines staggered.)

Table 2306.3

ALLOWABLE SHEAR (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL SHEAR WALLS WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE

For WIND OR SEISMIC LOADINGS, or SI:

<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inch)</th>
<th>MINIMUM FASTENER PENETRATION IN FRAMING (inches)</th>
<th>PANELS APPLIED DIRECT TO FRAMING</th>
<th>PANELS APPLIED OVER 1/8" OR 1/16" GYPSUM SHEATHING*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fastener spacing at panel edges (inches)</td>
<td>Fastener spacing at panel edges (inches)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Structural I sheathing</td>
<td>3/16</td>
<td>1/2 16 Gage</td>
<td>155</td>
<td>235</td>
</tr>
<tr>
<td>Sheathing, plywood siding except Group A species</td>
<td>3/16</td>
<td>1/2 16 Gage</td>
<td>170</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>1/2 16 Gage</td>
<td>185</td>
<td>280</td>
</tr>
</tbody>
</table>

*For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

a. For framing of other species: (1) Find specific gravity for species of lumber in AF&PA NDS. (2) For staples find shear value from table above for Structural I panels (regardless of actual grade) and multiply value by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species. (3) For nails find shear value from table above for nail size for actual grade and multiply value by the following adjustment factor: Specific Gravity Adjustment Factor = [1 - (0.5 - SG)], where SG = Specific Gravity of the framing lumber. This adjustment factor shall not be greater than 1.

b. Panel edges backed by 2-inch nominal or wider framing. Install panel fasteners horizontally or vertically. Space fasteners maximum 6 inches on center along intermediate framing members for 1/4-inch and 1/8-inch panels installed on studs spaced 24 inches on center. For other conditions and panel thickness, space fasteners maximum 12 inches on center on intermediate supports.

c. 1/8-inch panel thickness or siding with a span rating of 16 inches on center is the minimum recommended where applied directly to framing as exterior siding. For grooved panel siding, the nominal panel thickness is the thickness of the panel measured at the point of nailing.

d. Allowable shear values are permitted to be increased to values shown for 1/8-inch sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long dimension across studs.

e. Framing at adjoining panel edges shall be 3 inches nominal or wider, and nails at all panel edges shall be staggered where panel edge nailing is specified at 2 inches on center or less.

f. Framing at adjoining panel edges shall be 3 inches nominal or wider, and nails at all panel edges shall be staggered where both of the following conditions are met: (1) 10d (3" x 0.148") nails having penetration into framing of more than 1 1/2 inches and (2) panel edge nailing is specified at 3 inches on center or less.

g. Values apply to all-veneer plywood. Thickness at point of fastening on panel edges governs shear values.

h. Where panels are applied on both faces of a wall and nail spacing is less than 6 inches o.c. on either side, panel joints shall be offset to fall on different framing members. Or framing shall be 3-inch nominal or thicker at adjoining panel edges and nails at all panel edges shall be staggered.

i. In Seismic Design Category D, E or F, where shear design values exceed 350 pounds per linear foot, all framing members receiving edge nailing from abutting panels shall not be less than a single 3-inch nominal member, or two 2-inch nominal members fastened together in accordance with Section 2306.1 to transfer the design shear value between framing members. Wood structural panel joint and sill plate nailing shall be staggered at all panel edges. See Sections 4.3.6.1 and 4.3.6.4.3 of AF&PA SDPWS for sill plate size and anchorage requirements.

j. Galvanized nails shall be hot dipped or tumbled.

k. Staples shall have a minimum crown width of 3/16 inch and shall be installed with their crowns parallel to the long dimension of the framing members.

l. For shear loads of normal or permanent load duration as defined by the AF&PA NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.

m. [OSHPD, DSA/SS-CC] Refer to Section 2305.1.3, which requires any wood structural panel sheathing used for diaphragms and shear walls that are part of the seismic force-resisting system to be applied directly to framing members.
Table 2306.5

ALLOWABLE SHEAR FOR PARTICLEBOARD SHEAR WALL SHEATHING

<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inch)</th>
<th>MINIMUM NAIL PENETRATION IN FRAMING (inches)</th>
<th>PANELS APPLIED DIRECT TO FRAMING</th>
<th>Allowable shear (pounds per foot) nail spacing at panel edges (inches)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nail size (common or galvanized box)</td>
<td>6</td>
</tr>
<tr>
<td>M-S “Exterior Glue” and M-2 “Exterior Glue”</td>
<td>3/8</td>
<td>1 1/2</td>
<td>6d</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>1 1/2</td>
<td>8d</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1 1/8</td>
<td>10d</td>
<td>140</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

- Values are not permitted in Seismic Design Category D, E or F.
- Galvanized nails shall be hot-dipped or tumbled.

Table 2306.6

ALLOWABLE SHEAR VALUES (plf) FOR WIND OR SEISMIC LOADING ON SHEAR WALLS OF FIBERBOARD SHEATHING BOARD CONSTRUCTION FOR TYPE V CONSTRUCTION ONLY

<table>
<thead>
<tr>
<th>THICKNESS AND GRADE</th>
<th>FASTENER SIZE</th>
<th>ALLOWABLE SHEAR VALUE (pounds per linear foot)</th>
<th>NAIL SPACING AT PANEL EDGES (inches)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" or 25/32"</td>
<td>No. 11 gage galvanized roofing nail 1 1/2" long for 25/32" with 3/8" head</td>
<td>170</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>No. 11 gage galvanized staple, 7/16" crown</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Structural</td>
<td>No. 11 gage galvanized staple, 1" crown</td>
<td>220</td>
<td>290</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

- Fiberboard sheathing shall not be used to brace concrete or masonry walls.
- Panel edges shall be backed with 2-inch or wider framing of Douglas fir-larch or Southern pine. For framing of other species: (1) Find specific gravity for species of framing lumber in AF&PA NDS. (2) For staples, multiply the shear value from the table above by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species. (3) For nails, multiply the shear value from the table above by the following adjustment factor: specific gravity adjustment factor = [1-(0.5-SG)], where SG = Specific gravity of the framing lumber.
- Values shown are for fiberboard sheathing on one side only with long panel dimension either parallel or perpendicular to studs.
- Fastener shall be spaced 6 inches on center along intermediate framing members.
- Values are not permitted in Seismic Design Category D, E or F.
- Staple length shall not be less than 1 1/2 inches for 25/32-inch sheathing or 1 1/4 inches for 1/2-inch sheathing.
<table>
<thead>
<tr>
<th>TYPE OF MATERIAL</th>
<th>THICKNESS OF MATERIAL</th>
<th>WALL CONSTRUCTION</th>
<th>FASTENER SPACINGb MAXIMUM (inches)</th>
<th>SHEAR VALUEc (plf)</th>
<th>MINIMUM FASTENER SIZEc,d,k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Expanded metal or woven wire lath and portland cement plaster</td>
<td>7/8"</td>
<td>Unblocked</td>
<td>6</td>
<td>180</td>
<td>No. 11 gage 11/4" long, 1/8" head No. 16 gage galv. staple, 1/4" legs</td>
</tr>
<tr>
<td>2. Gypsum lath, plain or perforated with vertical joints staggered</td>
<td>3/8" lath and 1/2" plaster</td>
<td>Unblocked</td>
<td>5</td>
<td>180</td>
<td>No. 13 gage galv. 11/4" long, 9/64" head, plasterboard nail</td>
</tr>
<tr>
<td>3. Gypsum lath, plain or perforated</td>
<td>3/8" lath and 1/2" plaster</td>
<td>Unblocked</td>
<td>5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4. Gypsum board, gypsum veneer base or water-resistant gypsum backing board</td>
<td>1/2"</td>
<td>Unblocked</td>
<td>7</td>
<td>75</td>
<td>5d cooler (11/4" x 0.086") or wallboard 0.120" nail, min. 3/4" head, 11/2" long No. 16 gage galv. staple, 11/2" long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>4</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>7</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>4</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>8/12h</td>
<td>60</td>
<td>No. 6—11/4" screws³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>4/16³</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³ , ³</td>
<td>4/12³</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>8/12³</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>6/12³</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>7</td>
<td>115</td>
<td>6d cooler (11/4" x 0.092") or wallboard 0.120" nail, min. 3/4" head, 11/2" long No. 16 gage galv. staple, 11/2" legs, 11/2" long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>4</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>7</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>4</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³ Two-ply Base ply: 9 Face ply: 7</td>
<td>250</td>
<td></td>
<td>Base ply-6d cooler (11/4" x 0.092") or wallboard 11/2" x 0.120" nail, min. 3/4" head 11/2" 16 gage galv. staple Face ply-8d cooler (21/2" x 0.113") or wallboard 0.120" nail, min. 3/4" head, 21/2" long No. 15 gage galv. staple, 21/2" long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unblocked</td>
<td>8/12h</td>
<td>70</td>
<td>No. 6—11/4" screws³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked³</td>
<td>8/12³</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per foot = 14.5939 N/m.

a. These shear walls shall not be used to resist loads imposed by masonry or concrete walls (see Section 4.1.5 of AF & PA SDPWS). Values shown are for short-term loading due to wind or seismic loading. Walls resisting seismic loads shall be subject to the limitations in Section 12.2.1 of ASCE 7. Values shown shall be reduced 25 percent for normal loading.
b. Applies to fastening at studs, top and bottom plates and blocking.
c. Alternate fasteners are permitted to be used if their dimensions are not less than the specified dimensions. Drywall screws are permitted to substitute for the 5d (11/4" x 0.086") and 6d (11/4" x 0.092") (cooler) nails listed above, and No. 6 11/4 inch Type S or W screws for 6d (11/4" x 0.092) (cooler) nails.
d. For properties of cooler nails, see ASTM C 514.
e. Except as noted, shear values are based on a maximum framing spacing of 16 inches on center.
f. Maximum framing spacing of 24 inches on center.
g. All edges are blocked, and edge fastening is provided at all supports and all panel edges.
h. First number denotes fastener spacing at the edges; second number denotes fastener spacing at intermediate framing members.
i. Screws are Type W or S.
j. Staples shall have a minimum crown width of 3/16 inch, measured outside the legs, and shall be installed with their crowns parallel to the long dimension of the framing members.
k. Staples for the attachment of gypsum lath and woven-wire lath shall have a minimum crown width of 3/16 inch, measured outside the legs.
2308.2 Limitations. Buildings are permitted to be constructed in accordance with the provisions of conventional light-frame construction, subject to the following limitations, and to further limitations of Sections 2308.11 and 2308.12.

1. Buildings shall be limited to a maximum of three stories above grade plane. For the purposes of this section, for buildings in Seismic Design Category D or E as determined in Section 1613, cripple stud walls shall be considered to be a story.

 Exception: Solid blocked cripple walls not exceeding 14 inches (356 mm) in height need not be considered a story.

2. Maximum floor-to-floor height shall not exceed 11 feet, 7 inches (3531 mm). Bearing wall height shall not exceed a stud height of 10 feet (3048 mm).

3. Loads as determined in Chapter 16 shall not exceed the following:

 3.1. Average dead loads shall not exceed 15 psf (718 N/m²) for combined roof and ceiling, exterior walls, floors and partitions.

 Exceptions:

 1. Subject to the limitations of Sections 2308.11.2 and 2308.12.2, stone or masonry veneer up to the lesser of 5 inches (127 mm) thick or 50 psf (2395 N/m²) and installed in accordance with Chapter 14 is permitted to a height of 30 feet (9144 mm) above a noncombustible foundation, with an additional 8 feet (2438 mm) permitted for gable ends.

 2. Concrete or masonry fireplaces, heaters and chimneys shall be permitted in accordance with the provisions of this code.

 3.2. Live loads shall not exceed 40 psf (1916 N/m²) for floors.

 3.3. Ground snow loads shall not exceed 50 psf (2395 N/m²).

4. Wind speeds shall not exceed 100 mph (3-second gust).

 Exception: Wind speeds shall not exceed 110 mph (48.4 m/s) (3-second gust) for buildings in Exposure Category B that are not located in a hurricane-prone region.

5. Roof trusses and rafters shall not span more than 40 feet (12 192 mm) between points of vertical support.

6. The use of the provisions for conventional light-frame construction in this section shall not be permitted for Occupancy Category IV buildings assigned to Seismic Design Category B, C, D, E or F, as determined in Section 1613.

7. Conventional light-frame construction is limited in irregular structures in Seismic Design Category D or E, as specified in Section 2308.12.6.

8. [DSA-SS, DSA-SS/CC and OSHPD] The use of conventional light-frame construction provisions in this section is permitted, subject to the following conditions:

 8.1. The design and construction shall also comply with Sections 2304 and 2305.

 8.2. In conjunction with the use of provisions in Section 2308.3 (Braced Wall Lines), engineering analysis shall be furnished that demonstrates compliance of lateral-force-resisting systems with Section 2305.

 8.3. In addition to the use of provisions in Section 2308.8 (Floor Joists), engineering analysis shall be furnished that demonstrates compliance of floor framing elements and connections with Section 2301.2, Item 1 or 2.

 8.4. In addition to the use of provisions in Section 2308.9 (Wall Framing), engineering analysis shall be furnished that demonstrates compliance of wall framing elements and connections with Section 2301.2, Item 1 or 2.

 8.5. In addition to the use of provisions in Section 2308.10 (Roof and Ceiling Framing), engineering analysis shall be furnished demonstrating compliance of roof and ceiling framing elements and connections with Section 2301.2, Item 1 or 2.

2308.2.1 Basic wind speed greater than 100 mph (3-second gust). Where the basic wind speed exceeds 100 mph (3-second gust), the provisions of either AF&PA WFCM or ICC 600 are permitted to be used.

2308.2.2 Buildings in Seismic Design Category B, C, D or E. Buildings of conventional light-frame construction in Seismic Design Category B or C, as determined in Section 1613, shall comply with the additional requirements in Section 2308.11.

Buildings of conventional light-frame construction in Seismic Design Category D or E, as determined in Section 1613, shall comply with the additional requirements in Section 2308.12.

2308.3 Braced wall lines. Buildings shall be provided with exterior and interior braced wall lines as described in Section 2308.9.3 and installed in accordance with Sections 2308.3.1 through 2308.3.4.

2308.3.1 Spacing. Spacing of braced wall lines shall not exceed 35 feet (10 668 mm) o.c. in both the longitudinal and transverse directions in each story.

2308.3.2 Braced wall line connections. Wind and seismic lateral forces shall be transferred from the roofs and floors to braced wall lines and from the braced wall lines in upper stories to the braced wall lines in the story below in accordance with this section.
2308.4.2 Structural elements or systems not described herein. When a building of otherwise conventional construction contains structural elements or systems not described in Section 2308, these elements or systems shall be designed in accordance with accepted engineering practice and the provisions of this code. The extent of such design need only demonstrate compliance of the nonconventional elements with other applicable provisions of this code and shall be compatible with the performance of the conventionally framed system.

2308.5 Connections and fasteners. Connections and fasteners used in conventional construction shall comply with the requirements of Section 2304.9.

2308.6 Foundation plates or sills. Foundations and footings shall be as specified in Chapter 18. Foundation plates or sills resting on concrete or masonry foundations shall comply with Section 2304.3.1. Foundation plates or sills shall be bolted or anchored to the foundation with not less than \(\frac{1}{2} \)-inch-diameter (12.7 mm) steel bolts or approved anchors spaced to provide equivalent anchorage as the steel bolts. Bolts shall be embeded at least 7 inches (178 mm) into concrete or masonry, and spaced not more than 6 feet (1829 mm) apart. There shall be a minimum of two bolts or anchor strips per piece with one bolt or anchor strap located not more than 12 inches (305 mm) or less than 4 inches (102 mm) from each end of each piece. A properly sized nut and washer shall be tightened on each bolt to the plate.

2308.7 Girders. Girders for single-story construction or girders supporting loads from a single floor shall not be less than 4 inches by 6 inches (102 mm by 152 mm) for spans 6 feet (1829 mm) or less, provided that girders are spaced not more than 8 feet (2438 mm) o.c. Spans for built-up 2-inch (51 mm) girders shall be in accordance with Table 2308.9.5 or 2308.9.6. Other girders shall be designed to support the loads specified in this code. Girder end joints shall occur over supports.

Where a girder is spliced over a support, an adequate tie shall be provided. The ends of beams or girders supported on masonry or concrete shall not have less than 3 inches (76 mm) of bearing.

2308.8 Floor joists. Spans for floor joists shall be in accordance with Table 2308.8(1) or 2308.8(2). For other grades and or species, refer to the AF&PA Span Tables for Joists and Rafter.

2308.8.1 Bearing. Except where supported on a 1-inch by 4-inch (25.4 mm by 102 mm) ribbon strip and nailed to the adjoining stud, the ends of each joist shall not have less than \(\frac{1}{2} \) inches (38 mm) of bearing on wood or metal, or less than 3 inches (76 mm) on masonry.
TABLE 2308.8(1)
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential Sleeping Areas, Live Load = .30 psf, U,d = 360)

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th></th>
<th></th>
<th>DEAD LOAD = 20 psf</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2x6 (ft. - in.)</td>
<td>2x8 (ft. - in.)</td>
<td>2x10 (ft. - in.)</td>
<td>2x12 (ft. - in.)</td>
<td>2x6 (ft. - in.)</td>
<td>2x8 (ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td></td>
<td>12-6</td>
<td>16-6</td>
<td>21-0</td>
<td>25-7</td>
<td>12-6</td>
<td>16-6</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>12-0</td>
<td>15-10</td>
<td>20-3</td>
<td>24-8</td>
<td>12-0</td>
<td>15-7</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>11-10</td>
<td>15-7</td>
<td>19-10</td>
<td>23-0</td>
<td>11-6</td>
<td>14-7</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
<td>17-5</td>
<td>8-8</td>
<td>11-0</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td></td>
<td>11-10</td>
<td>15-7</td>
<td>19-10</td>
<td>24-2</td>
<td>11-10</td>
<td>15-7</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>11-7</td>
<td>15-3</td>
<td>19-5</td>
<td>23-7</td>
<td>11-7</td>
<td>15-2</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>11-0</td>
<td>14-6</td>
<td>18-6</td>
<td>22-6</td>
<td>11-0</td>
<td>14-4</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
<td>17-5</td>
<td>8-8</td>
<td>11-0</td>
</tr>
<tr>
<td>Southern Pine</td>
<td></td>
<td>12-3</td>
<td>16-2</td>
<td>20-8</td>
<td>25-1</td>
<td>12-3</td>
<td>16-2</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>12-0</td>
<td>15-10</td>
<td>20-3</td>
<td>24-8</td>
<td>12-0</td>
<td>15-10</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>11-10</td>
<td>15-7</td>
<td>19-10</td>
<td>24-2</td>
<td>11-10</td>
<td>15-7</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>10-5</td>
<td>13-3</td>
<td>15-8</td>
<td>18-8</td>
<td>9-4</td>
<td>11-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td></td>
<td>11-7</td>
<td>15-3</td>
<td>19-5</td>
<td>23-7</td>
<td>11-7</td>
<td>15-3</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>11-3</td>
<td>14-11</td>
<td>19-0</td>
<td>23-0</td>
<td>11-3</td>
<td>14-7</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>11-3</td>
<td>14-11</td>
<td>19-0</td>
<td>23-0</td>
<td>11-3</td>
<td>14-7</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
<td>17-5</td>
<td>8-8</td>
<td>11-0</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td></td>
<td>11-4</td>
<td>15-0</td>
<td>19-1</td>
<td>23-3</td>
<td>11-4</td>
<td>15-0</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>10-11</td>
<td>14-5</td>
<td>18-5</td>
<td>21-4</td>
<td>10-8</td>
<td>13-6</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>10-9</td>
<td>14-1</td>
<td>17-2</td>
<td>19-11</td>
<td>9-11</td>
<td>12-7</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>8-5</td>
<td>10-8</td>
<td>13-0</td>
<td>15-1</td>
<td>7-6</td>
<td>9-6</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td></td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-11</td>
<td>10-9</td>
<td>14-2</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>10-6</td>
<td>13-10</td>
<td>17-8</td>
<td>20-9</td>
<td>10-4</td>
<td>13-1</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>10-0</td>
<td>13-2</td>
<td>16-10</td>
<td>19-8</td>
<td>9-10</td>
<td>12-5</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>8-5</td>
<td>10-8</td>
<td>13-0</td>
<td>15-1</td>
<td>7-6</td>
<td>9-6</td>
</tr>
<tr>
<td>Southern Pine</td>
<td></td>
<td>11-2</td>
<td>14-8</td>
<td>18-9</td>
<td>22-10</td>
<td>11-2</td>
<td>14-8</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>10-11</td>
<td>14-5</td>
<td>18-5</td>
<td>22-5</td>
<td>10-11</td>
<td>14-5</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-1</td>
<td>10-5</td>
<td>13-6</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>9-0</td>
<td>11-6</td>
<td>13-7</td>
<td>16-2</td>
<td>8-1</td>
<td>10-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td></td>
<td>10-6</td>
<td>13-10</td>
<td>17-8</td>
<td>21-6</td>
<td>10-6</td>
<td>13-10</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>10-3</td>
<td>13-6</td>
<td>17-2</td>
<td>19-11</td>
<td>9-11</td>
<td>12-7</td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>10-3</td>
<td>13-6</td>
<td>17-2</td>
<td>19-11</td>
<td>9-11</td>
<td>12-7</td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td>8-5</td>
<td>10-8</td>
<td>13-0</td>
<td>15-1</td>
<td>7-6</td>
<td>9-6</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.8(1)—continued

FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential Sleeping Areas, Live Load = 30 psf, L/\(\lambda\) = 360)

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2x6</td>
<td>2x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>10-8</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-4</td>
<td>13-7</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>10-1</td>
<td>12-10</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-8</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>10-1</td>
<td>13-4</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-10</td>
<td>13-0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-5</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-8</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>10-6</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-4</td>
<td>13-7</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>10-1</td>
<td>13-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>8-3</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>9-10</td>
<td>13-0</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-8</td>
<td>12-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-8</td>
<td>12-9</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>7-8</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>9-11</td>
<td>13-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-7</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-1</td>
<td>11-6</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-10</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-2</td>
<td>12-0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-9</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-10</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>9-9</td>
<td>12-10</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-7</td>
<td>12-7</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-4</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>7-4</td>
<td>9-5</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>9-2</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-11</td>
<td>11-6</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-11</td>
<td>11-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>6-10</td>
<td>8-8</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².
TABLE 2308.8(2)

FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential Living Areas, Live Load = 40 psf, U.L. = 360)

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2x6</th>
<th>2x8</th>
<th>2x10</th>
<th>2x12</th>
<th>2x6</th>
<th>2x8</th>
<th>2x10</th>
<th>2x12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>11-4</td>
<td>15-0</td>
<td>19-1</td>
<td>23-3</td>
<td>11-4</td>
<td>15-0</td>
<td>19-1</td>
<td>23-3</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-11</td>
<td>14-5</td>
<td>18-5</td>
<td>22-0</td>
<td>10-11</td>
<td>14-2</td>
<td>17-4</td>
<td>20-1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>10-9</td>
<td>14-2</td>
<td>17-9</td>
<td>20-7</td>
<td>10-6</td>
<td>13-3</td>
<td>16-3</td>
<td>18-10</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>8-8</td>
<td>11-0</td>
<td>13-5</td>
<td>15-7</td>
<td>7-11</td>
<td>10-0</td>
<td>12-3</td>
<td>14-3</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-11</td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-11</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-6</td>
<td>13-10</td>
<td>17-8</td>
<td>21-6</td>
<td>10-6</td>
<td>13-10</td>
<td>16-11</td>
<td>19-7</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>10-0</td>
<td>13-2</td>
<td>16-10</td>
<td>20-4</td>
<td>10-0</td>
<td>13-1</td>
<td>16-0</td>
<td>18-6</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>8-8</td>
<td>11-0</td>
<td>13-5</td>
<td>15-7</td>
<td>7-11</td>
<td>10-0</td>
<td>12-3</td>
<td>14-3</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>11-2</td>
<td>14-8</td>
<td>18-9</td>
<td>22-10</td>
<td>11-2</td>
<td>14-8</td>
<td>18-9</td>
<td>22-10</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-11</td>
<td>14-5</td>
<td>18-5</td>
<td>22-5</td>
<td>10-11</td>
<td>14-5</td>
<td>18-5</td>
<td>22-5</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-9</td>
<td>10-9</td>
<td>14-2</td>
<td>16-11</td>
<td>19-10</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>9-4</td>
<td>11-11</td>
<td>14-0</td>
<td>16-8</td>
<td>8-6</td>
<td>10-10</td>
<td>12-10</td>
<td>15-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>10-6</td>
<td>13-10</td>
<td>17-8</td>
<td>21-6</td>
<td>10-6</td>
<td>13-10</td>
<td>17-8</td>
<td>21-6</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-3</td>
<td>13-6</td>
<td>17-3</td>
<td>20-7</td>
<td>10-3</td>
<td>13-3</td>
<td>16-3</td>
<td>18-10</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>10-3</td>
<td>13-6</td>
<td>17-3</td>
<td>20-7</td>
<td>10-3</td>
<td>13-3</td>
<td>16-3</td>
<td>18-10</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>8-8</td>
<td>11-0</td>
<td>13-5</td>
<td>15-7</td>
<td>7-11</td>
<td>10-0</td>
<td>12-3</td>
<td>14-3</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.8(2)—continued
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential Living Areas, Live Load = 40 psf, L/360)

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2x6</td>
<td>2x8</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-8</td>
<td>12-10</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-4</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-1</td>
<td>11-6</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-10</td>
<td>8-8</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-2</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-0</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-7</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-10</td>
<td>8-8</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>9-6</td>
<td>12-7</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-4</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-2</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-4</td>
<td>9-5</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>9-0</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-9</td>
<td>11-6</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-9</td>
<td>11-6</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>6-10</td>
<td>8-8</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-0</td>
<td>11-11</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-8</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-1</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-2</td>
<td>7-9</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>8-6</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-4</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>7-11</td>
<td>10-2</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-2</td>
<td>7-9</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>8-10</td>
<td>11-8</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-8</td>
<td>11-5</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-6</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-7</td>
<td>8-5</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>8-4</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-1</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-1</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-2</td>
<td>7-9</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².
a. End bearing length shall be increased to 2 inches.
2308.2 Framing details. Joists shall be supported laterally at the ends and at each support by solid blocking except where the ends of the joists are nailed to a header, band or rim joist or to an adjoining stud or by other means. Solid blocking shall not be less than 2 inches (51 mm) in thickness and the full depth of the joist. Notches on the ends of joists shall not exceed one-fourth the joist depth. Holes bored in joists shall not be within 2 inches (51 mm) of the top or bottom of the joist, and the diameter of any such hole shall not exceed one-third the depth of the joist. Notches in the top or bottom of joists shall not exceed one-sixth the depth and shall not be located in the middle third of the span.

Joist framing from opposite sides of a beam, girder or partition shall be lapped at least 3 inches (76 mm) or the opposing joists shall be tied together in an approved manner.

Joists framing into the side of a wood girder shall be supported by framing anchors or on ledger strips not less than 2 inches by 2 inches (51 mm by 51 mm).

2308.2.1 Engineered wood products. Cuts, notches and holes bored in trusses, structural composite lumber, structural glue-laminated members or I-joists are not permitted except where permitted by the manufacturer’s recommendations or where the effects of such alterations are specifically considered in the design of the member by a registered design professional.

2308.3 Framing around openings. Trimmer and header joists shall be doubled, or of lumber of equivalent cross section, where the span of the header exceeds 4 feet (1219 mm). The ends of header joists more than 6 feet (1829 mm) long shall be supported by framing anchors or joist hangers unless bearing on a beam, partition or wall. Tail joists over 12 feet (3658 mm) long shall be supported at the header by framing anchors or on ledger strips not less than 2 inches by 2 inches (51 mm by 51 mm).

2308.4 Supporting bearing partitions. Bearing partitions parallel to joists shall be supported on beams, girders, doubled joists, walls or other bearing partitions. Bearing partitions perpendicular to joists shall not be offset from supporting girders, walls or partitions more than the joist depth unless such joists are of sufficient size to carry the additional load.

2308.5 Lateral support. Floor, attic and roof framing with a nominal depth-to-thickness ratio greater than or equal to 5:1 shall have one edge held in line for the entire span. Where the nominal depth-to-thickness ratio of the framing member exceeds 6:1, there shall be one line of bridging for each 8 feet (2438 mm) of span, unless both edges of the member are held in line. The bridging shall consist of not less than 1-inch by 3-inch (25 mm by 76 mm) lumber, double nailed at each end, of equivalent metal bracing of equal rigidity, full-depth solid blocking or other approved means. A line of bridging shall also be required at supports where equivalent lateral support is not otherwise provided.

2308.6 Structural floor sheathing. Structural floor sheathing shall comply with the provisions of Section 2304.7.1.

2308.7 Under-floor ventilation. For under-floor ventilation, see Section 1203.3.

2308.9 Wall framing.

2308.9.1 Size, height and spacing. The size, height and spacing of studs shall be in accordance with Table 2308.9.1 except that utility-grade studs shall not be spaced more than 16 inches (406 mm) o.c., or support more than a roof and ceiling, or exceed 8 feet (2438 mm) in height for exterior walls and load-bearing walls or 10 feet (3048 mm) for interior nonload-bearing walls. Studs shall be continuous from a support at the sole plate to a support at the top plate to resist loads perpendicular to the wall. The support shall be a foundation or floor, ceiling or roof diaphragm or shall be designed in accordance with accepted engineering practice.

Exception: Jack studs, trimmer studs and cripple studs at openings in walls that comply with Table 2308.9.5.

TABLE 2308.9.1 SIZE, HEIGHT AND SPACING OF WOOD STUDS

<table>
<thead>
<tr>
<th>STUD SIZE (inches)</th>
<th>BEARING WALLS</th>
<th>NONBEARING WALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LATERALLY UNSUPPORTED</td>
<td>SUPPORTING ROOF AND CEILING</td>
</tr>
<tr>
<td></td>
<td>STUD HEIGHT (feet)</td>
<td>(inches)</td>
</tr>
<tr>
<td>2 x 3^b</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 x 4</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>3 x 4</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2 x 5</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2 x 6</td>
<td>10</td>
<td>24</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

a. Listed heights are distances between points of lateral support placed perpendicular to the plane of the wall. Increases in unsupported height are permitted where justified by an analysis.

b. Shall not be used in exterior walls.
2308.9.2 Framing details. Studs shall be placed with their wide dimension perpendicular to the wall. Not less than three studs shall be installed at each corner of an exterior wall.

Exception: At corners, two studs are permitted, provided wood spacers or backup cleats of 1/4-inch-thick (9.5 mm) wood structural panel, 1/4-inch (9.5 mm) Type M “Exterior Glue” particleboard, 1-inch-thick (25 mm) lumber or other approved devices that will serve as an adequate backing for the attachment of facing materials are used. Where fire-resistance ratings or shear values are involved, wood spacers, backup cleats or other devices shall not be used unless specifically approved for such use.

2308.9.2.1 Top plates. Bearing and exterior wall studs shall be capped with double top plates installed to provide overlapping at corners and at intersections with other partitions. End joints in double top plates shall be offset at least 48 inches (1219 mm), and shall be nailed with not less than eight 16d face nails on each side of the joint. Plates shall be a nominal 2 inches (51 mm) in depth and have a width at least equal to the width of the studs.

Exception: A single top plate is permitted, provided the plate is adequately tied at joints, corners and intersecting walls by at least the equivalent of 3-inch by 6-inch (76 mm by 152 mm) by 0.036-inch-thick (0.914 mm) galvanized steel that is nailed to each wall or segment of wall by six 8d nails or equivalent, provided the rafters, joists or trusses are centered over the studs and a tolerance of no more than 1 inch (25 mm).

2308.9.2.2 Top plates for studs spaced at 24 inches (610 mm). Where bearing studs are spaced at 24-inch (610 mm) intervals and top plates are less than two 2-inch by 6-inch (51 mm by 152 mm) or two 3-inch by 4-inch (76 mm by 102 mm) members and where the floor joists, floor trusses or roof trusses that they support are spaced at more than 16-inch (406 mm) intervals, such joists or trusses shall bear within 5 inches (127 mm) of the studs beneath or a third plate shall be installed.

2308.9.2.3 Nonbearing walls and partitions. In nonbearing walls and partitions, studs shall be spaced not more than 28 inches (711 mm) o.c. and are permitted to be set with the long dimension parallel to the wall. Interior nonbearing partitions shall be capped with no less than a single top plate installed to provide overlapping at corners and at intersections with other walls and partitions. The plate shall be continuously tied at joints by solid blocking at least 16 inches (406 mm) in length and equal in size to the plate or by 1/2-inch by 1 1/2-inch (12.7 mm by 38 mm) metal ties with spliced sections fastened with two 16d nails on each side of the joint.

2308.9.2.4 Plates or sills. Studs shall have full bearing on a plate or sill not less than 2 inches (51 mm) in thickness having a width not less than that of the wall studs.

2308.9.3 Bracing. Braced wall lines shall consist of braced wall panels that meet the requirements for location, type and amount of bracing as shown in Figure 2308.9.3, specified in Table 2308.9.3(1) and are in line or offset from each other by not more than 4 feet (1219 mm). Braced wall panels shall start not more than 121/2 feet (3810 mm) from each end of a braced wall line. Braced wall panels shall be clearly indicated on the plans. Construction of braced wall panels shall be by one of the following methods:

1. Nominal 1-inch by 4-inch (25 mm by 102 mm) continuous diagonal braces let into top and bottom plates and intervening studs, placed at an angle not more than 60 degrees (1.0 rad) or less than 45 degrees (0.79 rad) from the horizontal and attached to the framing in conformance with Table 2304.9.1.

2. Wood boards of 1/8 inch (15.9 mm) net minimum thickness applied over studs spaced not over 24 inches (610 mm) o.c.

3. Wood structural panel sheathing with a thickness not less than 1/4 inch (9.5 mm) for 16-inch (406 mm) or 24-inch (610 mm) stud spacing in accordance with Tables 2308.9.3(2) and 2308.9.3(3).

4. Fiberboard sheathing panels not less than 1/2 inch (12.7 mm) thick applied vertically or horizontally on studs spaced not over 16 inches (406 mm) o.c. where installed with fasteners in accordance with Section 2306.6 and Table 2306.6.

5. Gypsum board [sheathing 1/2-inch-thick (12.7 mm) by 4-feet-wide (1219 mm) wallboard or veneer base] on studs spaced not over 24 inches (610 mm) o.c. and nailed at 7 inches (178 mm) o.c. with nails as required by Table 2306.7.

6. Particleboard wall sheathing panels where installed in accordance with Table 2308.9.3(4).

7. Portland cement plaster on studs spaced 16 inches (406 mm) o.c. installed in accordance with Section 2510.

8. Hardboard panel siding where installed in accordance with Section 2303.1.6 and Table 2308.9.3(5).

For cripple wall bracing, see Section 2308.9.4.1. For Methods 2, 3, 4, 6, 7 and 8, each panel must be at least 48 inches (1219 mm) in length, covering three stud spaces where studs are spaced 16 inches (406 mm) apart and covering two stud spaces where studs are spaced 24 inches (610 mm) apart.

For Method 5, each panel must be at least 96 inches (2438 mm) in length where applied to one face of a panel and 48 inches (1219 mm) where applied to both faces. All vertical joints of panel sheathing shall occur over studs and adjacent panel joints shall be nailed to common framing members. Horizontal joints shall occur over blocking or other framing equal in size to the studding except where waived by the installation requirements for the specific sheathing materials. Sole plates shall be nailed to the floor framing and top plates shall be connected to the framing above in accordance with Section 2308.3.2. Where joists are perpendicular to braced wall lines above, blocking shall be provided under and in line with the braced wall panels.
<table>
<thead>
<tr>
<th>SEISMIC DESIGN CATEGORY</th>
<th>MAXIMUM WALL SPACING (feet)</th>
<th>REQUIRED BRACING LENGTH, b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B and C</td>
<td>35'-0"</td>
<td>Table 2308.9.3(1) and Section 2308.9.3</td>
</tr>
<tr>
<td>D and E</td>
<td>25'-0"</td>
<td>Table 2308.12.4</td>
</tr>
</tbody>
</table>

Notes:

(1) Sum of braced wall panel lengths for braced wall line No. 1 = "A" + "B" + "C"

For SI: 1 foot = 304.8 mm.

Figure 2308.9.3

Basic components of the lateral bracing system.
TABLE 2308.9.3(1)
BRACED WALL PANELS

<table>
<thead>
<tr>
<th>SEISMIC DESIGN CATEGORY</th>
<th>CONDITION</th>
<th>CONSTRUCTION METHODS</th>
<th>BRACED PANEL LOCATION AND LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
<td>Located in accordance with Section 2308.9.3 and not more than 25 feet on center.</td>
</tr>
<tr>
<td>A and B</td>
<td>One story, top of two or three story</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>First story of two story or second story of three story</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>First story of three story</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>One story or top of two story</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>First story of two story</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

a. This table specifies minimum requirements for braced panels that form interior or exterior braced wall lines.
b. See Section 2308.9.3 for full description.
c. See Sections 2308.9.3.1 and 2308.9.3.2 for alternative braced panel requirements.
d. Building length is the dimension parallel to the braced wall length.
e. Gypsum wallboard applied to framing supports that are spaced at 16 inches on center.
f. The required lengths shall be doubled for gypsum board applied to only one face of a braced wall panel.

TABLE 2308.9.3(2)
EXPOSED PLYWOOD PANEL SIDING

<table>
<thead>
<tr>
<th>MINIMUM THICKNESS (inch)</th>
<th>MINIMUM NUMBER OF PLYS</th>
<th>STUD SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>3</td>
<td>Plywood siding applied directly to studs or over sheathing</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>16²</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Thickness of grooved panels is measured at bottom of grooves.
b. Spans are permitted to be 24 inches if plywood siding applied with face grain perpendicular to studs or over one of the following: (1) 1-inch board sheathing, (2) 7/16-inch wood structural panel sheathing or (3) 7/8-inch wood structural panel sheathing with strength axis (which is the long direction of the panel unless otherwise marked) of sheathing perpendicular to studs.

TABLE 2308.9.3(3)
WOOD STRUCTURAL PANEL WALL SHEATHING

<table>
<thead>
<tr>
<th>MINIMUM THICKNESS (inch)</th>
<th>PANEL SPAN RATING</th>
<th>STUD SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8, 15/32, 1/2</td>
<td>16/0, 20/0, 24/0, 32/16 Wall-24" o.c.</td>
<td>Siding nailed to studs</td>
</tr>
<tr>
<td>7/16, 15/32, 1/2</td>
<td>24/0, 24/16, 32/16 Wall-24" o.c.</td>
<td>24</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Plywood shall consist of four or more plies.
b. Blocking of horizontal joints shall not be required except as specified in Sections 2306.3 and 2308.12.4.
TABLE 2308.9.3(4)

ALLOWABLE SPANS FOR PARTICLEBOARD WALL SHEATHING

(Not Exposed to the Weather, Long Dimension of the Panel Parallel or Perpendicular to Studs)

<table>
<thead>
<tr>
<th>GRADE</th>
<th>THICKNESS (inch)</th>
<th>STUD SPACING (inches)</th>
<th>Siding nailed to studs</th>
<th>Sheathing under coverings specified in Section 2308.9.3 parallel or perpendicular to studs</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-S “Exterior Glue” and M-2 “Exterior Glue”</td>
<td>3/8</td>
<td>16</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

TABLE 2308.9.3(5)

HARDBOARD SIDING

<table>
<thead>
<tr>
<th>SIDING</th>
<th>MINIMUM NOMINAL THICKNESS (inch)</th>
<th>2 x 4 FRAMING MAXIMUM SPACING</th>
<th>NAIL SIZEa, b, d</th>
<th>NAIL SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lap siding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct to studs</td>
<td>3/8</td>
<td>16" o.c.</td>
<td>6d</td>
<td>16" o.c.</td>
</tr>
<tr>
<td>Over sheathing</td>
<td>3/8</td>
<td>16" o.c.</td>
<td>10d</td>
<td>16" o.c.</td>
</tr>
<tr>
<td>2. Square edge panel siding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Direct to studs | 3/8 | 24" o.c. | 6d | 6" o.c. edges;
| | | | | 12" o.c. at intermediate supports | 4" o.c. edges;
| | | | | | 8" o.c. at intermediate supports |
| Over sheathing | 3/8 | 24" o.c. | 8d | 6" o.c. edges;
| | | | | 12" o.c. at intermediate supports | 4" o.c. edges;
| | | | | | 8" o.c. at intermediate supports |
| 3. Shiplap edge panel siding | | | | |
| Direct to studs | 3/8 | 16" o.c. | 6d | 6" o.c. edges;
| | | | | 12" o.c. at intermediate supports | 4" o.c. edges;
| | | | | | 8" o.c. at intermediate supports |
| Over sheathing | 3/8 | 16" o.c. | 8d | 6" o.c. edges;
| | | | | 12" o.c. at intermediate supports | 4" o.c. edges;
| | | | | | 8" o.c. at intermediate supports |

For SI: 1 inch = 25.4 mm.

a. Nails shall be corrosion resistant.

b. Minimum acceptable nail dimensions:

<table>
<thead>
<tr>
<th>Panel Siding (inch)</th>
<th>Lap Siding (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shank diameter</td>
<td>0.092</td>
</tr>
<tr>
<td>Head diameter</td>
<td>0.225</td>
</tr>
</tbody>
</table>

c. Where used to comply with Section 2308.9.3.

d. Nail length must accommodate the sheathing and penetrate framing 1 1/2 inches.
2308.9.3.1 Alternative bracing. Any bracing required by Section 2308.9.3 is permitted to be replaced by the following:

1. In one-story buildings, each panel shall have a length of not less than 2 feet 8 inches (813 mm) and a height of not more than 10 feet (3048 mm). Each panel shall be sheathed on one face with \(\frac{3}{4} \) inch-minimum-thickness (9.5 mm) wood structural panel sheathing nailed with 8d common or galvanized box nails in accordance with Table 2304.9.1 and blocked at wood structural panel edges. Two anchor bolts installed in accordance with Section 2308.6 shall be provided in each panel. Anchor bolts shall be placed at each panel outside quarter points. Each panel end stud shall have a tie-down device fastened to the foundation, capable of providing an approved uplift capacity of not less than 1,800 pounds (8006 N). The tie-down device shall be installed in accordance with the manufacturer's recommendations. The panels shall be supported directly on a foundation or on floor framing supported directly on a foundation that is continuous across the entire length of the braced wall line. This foundation shall be reinforced with not less than one No. 4 bar top and bottom.

Where the continuous foundation is required to have a depth greater than 12 inches (305 mm), a minimum 12-inch by 12-inch (305 mm by 305 mm) continuous footing or turned down slab edge is permitted at door openings in the braced wall line. This continuous footing or turned down slab edge shall be reinforced with not less than one No. 4 bar top and bottom. This reinforcement shall be lapped 15 inches (381 mm) with the reinforcement required in the continuous foundation located directly under the braced wall line.

2. In the first story of two-story buildings, each wall panel shall be braced in accordance with Section 2308.9.3.1, Item 1, except that the wood structural panel sheathing shall be provided on both faces, three anchor bolts shall be placed at one-quarter points, and tie-down device uplift capacity shall not be less than 3,000 pounds (13 344 N).

2308.9.3.2 Alternate bracing wall panel adjacent to a door or window opening. Any bracing required by Section 2308.9.3 is permitted to be replaced by the following when used adjacent to a door or window opening with a full-length header:

1. In one-story buildings, each panel shall have a length of not less than 16 inches (406 mm) and a height of not more than 10 feet (3048 mm). Each panel shall be sheathed on one face with a single layer of \(\frac{3}{4} \) inch (9.5 mm) minimum thickness wood structural panel sheathing nailed with 8d common or galvanized box nails in accordance with Figure 2308.9.3.2. The wood structural panel sheathing shall extend up over the solid sawn or glued-laminated header and shall be nailed in accordance with Figure 2308.9.3.2. A built-up header consisting of at least two 2 x 12s and fastened in accordance with Item 24 of Table 2304.9.1 shall be permitted to be used. A spacer, if used, shall be placed on the side of the built-up beam opposite the wood structural panel sheathing. The header shall extend between the inside faces of the first full-length outer studs of each panel. The clear span of the header between the inner studs of each panel shall be not less than 6 feet (1829 mm) and not more than 18 feet (5486 mm) in length. A strap with an uplift capacity of not less than 1,000 pounds (4,400 N) shall fasten the header to the inner studs opposite the sheathing. One anchor bolt not less than \(\frac{3}{4} \) inch (15.9 mm) diameter and installed in accordance with Section 2308.6 shall be provided in the center of each sill plate. The studs at each end of the panel shall have a tie-down device fastened to the foundation with an uplift capacity of not less than 4,200 pounds (18 480 N).

Where a panel is located on one side of the opening, the header shall extend between the inside face of the first full-length stud of the panel and the bearing studs at the other end of the opening. A strap with an uplift capacity of not less than 1,000 pounds (4,400 N) shall fasten the header to the bearing studs. The bearing studs shall also have a tie-down device fastened to the foundation with an uplift capacity of not less than 1,000 pounds (4,400 N).

The tie-down devices shall be an embedded strap type, installed in accordance with the manufacturer's recommendations. The panels shall be supported directly on a foundation that is continuous across the entire length of the braced wall line. This foundation shall be reinforced with not less than one No. 4 bar top and bottom.

2. In the first story of two-story buildings, each wall panel shall be braced in accordance with Item 1 above, except that each panel shall have a length of not less than 24 inches (610 mm).

2308.9.4 Cripple walls. Foundation cripple walls shall be framed of studs not less in size than the studding above with a minimum length of 14 inches (356 mm), or shall be framed of solid blocking. Where exceeding 4 feet (1219 mm) in height, such walls shall be framed of studs having the size required for an additional story.
2308.9.4.1 Bracing. For the purposes of this section, cripple walls having a stud height exceeding 14 inches (356 mm) shall be considered a story and shall be braced in accordance with Table 2308.9.3(1) for Seismic Design Category A, B or C. See Section 2308.12.4 for Seismic Design Category D or E.

2308.9.4.2 Nailing of bracing. Spacing of edge nailing for required wall bracing shall not exceed 6 inches (152 mm) o.c. along the foundation plate and the top plate of the cripple wall. Nail size, nail spacing for field nailing and more restrictive boundary nailing requirements shall be as required elsewhere in the code for the specific bracing material used.

2308.9.5 Openings in exterior walls.

2308.9.5.1 Headers. Headers shall be provided over each opening in exterior-bearing walls. The spans in Table 2308.9.5 are permitted to be used for one- and two-family dwellings. Headers for other buildings shall be designed in accordance with Section 2301.2, Item 1 or 2. Headers shall be of two pieces of nominal 2-inch (51 mm) framing lumber set on edge as permitted by Table 2308.9.5 and nailed together in accordance with Table 2304.9.1 or of solid lumber of equivalent size.

2308.9.5.2 Header support. Wall studs shall support the ends of the header in accordance with Table 2308.9.5. Each end of a lintel or header shall have a length of bearing of not less than 1½ inches (38 mm) for the full width of the lintel.

2308.9.6 Openings in interior bearing partitions. Headers shall be provided over each opening in interior bearing partitions as required in Section 2308.9.5. The spans in Table 2308.9.6 are permitted to be used. Wall studs shall support the ends of the header in accordance with Table 2308.9.5 or 2308.9.6, as appropriate.

2308.9.7 Openings in interior nonbearing partitions. Openings in nonbearing partitions are permitted to be framed with single studs and headers. Each end of a lintel or header shall have a length of bearing of not less than 1½ inches (38 mm) for the full width of the lintel.

2308.9.8 Pipes in walls. Stud partitions containing plumbing, heating or other pipes shall be so framed and the joists underneath so spaced as to give proper clearance for the piping. Where a partition containing such piping runs parallel to the floor joists, the joists underneath such partitions shall be doubled and spaced to permit the passage of such pipes and shall be bridged. Where plumbing, heating or other pipes are placed in or partly in a partition, necessitating the cutting of the soles or plates, a metal tie not less than 0.058 inch (1.47 mm) (16 galvanized gage) and 1½ inches (38 mm) wide shall be fastened to each plate across and to each side of the opening with not less than six 16d nails.
<table>
<thead>
<tr>
<th>HEADERS SUPPORTING</th>
<th>SIZE</th>
<th>20</th>
<th>28</th>
<th>36</th>
<th>20</th>
<th>28</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof & Ceiling</td>
<td></td>
<td>3-6</td>
<td>1</td>
<td>3-2</td>
<td>1</td>
<td>2-10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2-2×4</td>
<td>5-5</td>
<td>1</td>
<td>4-8</td>
<td>1</td>
<td>4-2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2-2×8</td>
<td>6-10</td>
<td>1</td>
<td>5-11</td>
<td>2</td>
<td>5-4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×10</td>
<td>8-5</td>
<td>2</td>
<td>7-3</td>
<td>2</td>
<td>6-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×12</td>
<td>9-9</td>
<td>2</td>
<td>8-5</td>
<td>2</td>
<td>7-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×8</td>
<td>8-4</td>
<td>1</td>
<td>7-5</td>
<td>1</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3-2×10</td>
<td>10-6</td>
<td>1</td>
<td>9-1</td>
<td>2</td>
<td>8-2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×12</td>
<td>12-2</td>
<td>2</td>
<td>10-7</td>
<td>2</td>
<td>9-5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×8</td>
<td>9-2</td>
<td>1</td>
<td>8-4</td>
<td>1</td>
<td>7-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4-2×10</td>
<td>11-8</td>
<td>1</td>
<td>10-6</td>
<td>1</td>
<td>9-5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×12</td>
<td>14-1</td>
<td>1</td>
<td>12-2</td>
<td>2</td>
<td>10-11</td>
<td>2</td>
</tr>
<tr>
<td>Roof, Ceiling & 1 Center-Bearing Floor</td>
<td></td>
<td>2-2×4</td>
<td>3-1</td>
<td>1</td>
<td>2-9</td>
<td>1</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>2-2×6</td>
<td>4-6</td>
<td>1</td>
<td>4-0</td>
<td>1</td>
<td>3-7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×8</td>
<td>5-9</td>
<td>2</td>
<td>5-0</td>
<td>2</td>
<td>4-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×10</td>
<td>7-0</td>
<td>2</td>
<td>6-2</td>
<td>2</td>
<td>5-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×12</td>
<td>8-1</td>
<td>2</td>
<td>7-1</td>
<td>2</td>
<td>6-5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×8</td>
<td>7-2</td>
<td>1</td>
<td>6-3</td>
<td>2</td>
<td>5-8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×10</td>
<td>8-9</td>
<td>2</td>
<td>7-8</td>
<td>2</td>
<td>6-11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×12</td>
<td>10-2</td>
<td>2</td>
<td>8-11</td>
<td>2</td>
<td>8-0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×8</td>
<td>8-1</td>
<td>1</td>
<td>7-3</td>
<td>1</td>
<td>6-7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4-2×10</td>
<td>10-1</td>
<td>1</td>
<td>8-10</td>
<td>2</td>
<td>8-0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×12</td>
<td>11-9</td>
<td>2</td>
<td>10-3</td>
<td>2</td>
<td>9-3</td>
<td>2</td>
</tr>
<tr>
<td>Roof, Ceiling & 1 Clear Span Floor</td>
<td></td>
<td>2-2×4</td>
<td>2-8</td>
<td>1</td>
<td>2-4</td>
<td>1</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>2-2×6</td>
<td>3-11</td>
<td>1</td>
<td>3-5</td>
<td>2</td>
<td>3-4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×8</td>
<td>5-0</td>
<td>2</td>
<td>4-4</td>
<td>2</td>
<td>3-10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×10</td>
<td>6-1</td>
<td>2</td>
<td>5-3</td>
<td>2</td>
<td>4-8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2×12</td>
<td>7-1</td>
<td>2</td>
<td>6-1</td>
<td>3</td>
<td>5-5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3-2×8</td>
<td>6-3</td>
<td>2</td>
<td>5-5</td>
<td>2</td>
<td>4-10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×10</td>
<td>7-7</td>
<td>2</td>
<td>6-7</td>
<td>2</td>
<td>5-11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2×12</td>
<td>8-10</td>
<td>2</td>
<td>7-8</td>
<td>2</td>
<td>6-10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×8</td>
<td>7-2</td>
<td>1</td>
<td>6-3</td>
<td>2</td>
<td>5-7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×10</td>
<td>8-9</td>
<td>2</td>
<td>7-7</td>
<td>2</td>
<td>6-10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2×12</td>
<td>10-2</td>
<td>2</td>
<td>8-10</td>
<td>2</td>
<td>7-11</td>
<td>2</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.9.5—continued
HEADER AND GIRDER SPANS
FOR EXTERIOR BEARING WALLS
(Maximum Spans for Douglas Fir-Larch, Hem-Fir, Southern Pine and Spruce-Pine-Fir* and Required Number of Jack Studs)

<table>
<thead>
<tr>
<th>HEADERS SUPPORTING</th>
<th>SIZE</th>
<th>20</th>
<th>28</th>
<th>36</th>
<th>30</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Span</td>
<td>Span</td>
<td>Span</td>
<td>Span</td>
<td>Span</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NJ°a</td>
<td>NJ°a</td>
<td>NJ°a</td>
<td>NJ°a</td>
<td>NJ°a</td>
</tr>
<tr>
<td>Roof, Ceiling & 2</td>
<td>2-2 x 4</td>
<td>2-7</td>
<td>1</td>
<td>2-3</td>
<td>1</td>
<td>2-0</td>
</tr>
<tr>
<td>Center-Bearing</td>
<td>2-2 x 6</td>
<td>3-9</td>
<td>2</td>
<td>3-3</td>
<td>2</td>
<td>2-11</td>
</tr>
<tr>
<td>Floors</td>
<td>2-2 x 8</td>
<td>4-9</td>
<td>2</td>
<td>4-2</td>
<td>2</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>2-2 x 10</td>
<td>5-9</td>
<td>2</td>
<td>5-1</td>
<td>2</td>
<td>4-7</td>
</tr>
<tr>
<td></td>
<td>2-2 x 12</td>
<td>6-8</td>
<td>2</td>
<td>5-10</td>
<td>3</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>3-2 x 8</td>
<td>5-11</td>
<td>2</td>
<td>5-2</td>
<td>2</td>
<td>4-8</td>
</tr>
<tr>
<td></td>
<td>3-2 x 10</td>
<td>7-5</td>
<td>2</td>
<td>6-4</td>
<td>2</td>
<td>5-8</td>
</tr>
<tr>
<td>Roof, Ceiling & 2</td>
<td>3-2 x 12</td>
<td>8-5</td>
<td>2</td>
<td>7-4</td>
<td>2</td>
<td>6-7</td>
</tr>
<tr>
<td>Center-Bearing</td>
<td>4-2 x 8</td>
<td>6-0</td>
<td>2</td>
<td>6-0</td>
<td>2</td>
<td>5-5</td>
</tr>
<tr>
<td>Floors</td>
<td>4-2 x 10</td>
<td>8-4</td>
<td>2</td>
<td>7-4</td>
<td>2</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>4-2 x 12</td>
<td>9-8</td>
<td>2</td>
<td>8-6</td>
<td>2</td>
<td>7-8</td>
</tr>
<tr>
<td>Roof, Ceiling & 2</td>
<td>2-2 x 4</td>
<td>2-1</td>
<td>1</td>
<td>1-8</td>
<td>1</td>
<td>1-6</td>
</tr>
<tr>
<td>Clear Span Floors</td>
<td>2-2 x 6</td>
<td>3-1</td>
<td>2</td>
<td>2-8</td>
<td>2</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>2-2 x 8</td>
<td>3-10</td>
<td>2</td>
<td>3-4</td>
<td>2</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>2-2 x 10</td>
<td>4-9</td>
<td>2</td>
<td>4-1</td>
<td>3</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>2-2 x 12</td>
<td>5-6</td>
<td>3</td>
<td>4-9</td>
<td>3</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td>3-2 x 8</td>
<td>4-10</td>
<td>2</td>
<td>4-2</td>
<td>2</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>3-2 x 10</td>
<td>5-11</td>
<td>2</td>
<td>5-1</td>
<td>2</td>
<td>4-7</td>
</tr>
<tr>
<td></td>
<td>3-2 x 12</td>
<td>6-10</td>
<td>2</td>
<td>5-11</td>
<td>3</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>4-2 x 8</td>
<td>5-7</td>
<td>2</td>
<td>4-10</td>
<td>2</td>
<td>4-4</td>
</tr>
<tr>
<td></td>
<td>4-2 x 10</td>
<td>6-10</td>
<td>2</td>
<td>5-11</td>
<td>2</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>4-2 x 12</td>
<td>7-11</td>
<td>2</td>
<td>6-10</td>
<td>2</td>
<td>6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof, Ceiling & 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center-Bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².

a. Spans are given in feet and inches (ft-in).
b. Tabulated values are for No. 2 grade lumber.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. NJ - Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.
e. Use 30 pounds per square foot ground snow load for cases in which ground snow load is less than 30 pounds per square foot and the roof live load is equal to or less than 20 pounds per square foot.
TABLE 2308.9.6
HEADER AND GIRDER SPANS\(^a\) FOR INTERIOR BEARING WALLS
(Maximum Spans for Douglas Fir-Larch, Hem-Fir, Southern Pine and Spruce-Pine-Fir\(^b\) and Required Number of Jack Studs)

<table>
<thead>
<tr>
<th>BUILDING WIDTH(^c) (feet)</th>
<th>HEADERS AND GIRDERS SUPPORTING</th>
<th>20</th>
<th>28</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIZE</td>
<td>Span</td>
<td>NJ(^d)</td>
<td>Span</td>
</tr>
<tr>
<td></td>
<td>2-2 x 4</td>
<td>3-1</td>
<td>1</td>
<td>2-8</td>
</tr>
<tr>
<td>One Floor Only</td>
<td>2-2 x 6</td>
<td>4-6</td>
<td>1</td>
<td>3-11</td>
</tr>
<tr>
<td></td>
<td>2-2 x 8</td>
<td>5-9</td>
<td>1</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>2-2 x10</td>
<td>7-0</td>
<td>2</td>
<td>6-1</td>
</tr>
<tr>
<td></td>
<td>2-2 x12</td>
<td>8-1</td>
<td>2</td>
<td>7-0</td>
</tr>
<tr>
<td></td>
<td>3-2 x 8</td>
<td>7-2</td>
<td>1</td>
<td>6-3</td>
</tr>
<tr>
<td></td>
<td>3-2 x10</td>
<td>8-9</td>
<td>1</td>
<td>7-7</td>
</tr>
<tr>
<td></td>
<td>3-2 x12</td>
<td>10-2</td>
<td>2</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td>4-2 x 8</td>
<td>9-0</td>
<td>1</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>4-2 x10</td>
<td>10-1</td>
<td>1</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>4-2 x12</td>
<td>11-9</td>
<td>1</td>
<td>10-2</td>
</tr>
<tr>
<td>Two Floors</td>
<td>2-2 x 4</td>
<td>2-2</td>
<td>1</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>2-2 x 6</td>
<td>3-2</td>
<td>2</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>2-2 x 8</td>
<td>4-1</td>
<td>2</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>2-2 x10</td>
<td>4-11</td>
<td>2</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td>2-2 x12</td>
<td>5-9</td>
<td>2</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>3-2 x 8</td>
<td>5-1</td>
<td>2</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>3-2 x10</td>
<td>6-2</td>
<td>2</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>3-2 x12</td>
<td>7-2</td>
<td>2</td>
<td>6-3</td>
</tr>
<tr>
<td></td>
<td>4-2 x 8</td>
<td>6-1</td>
<td>1</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>4-2 x10</td>
<td>7-2</td>
<td>2</td>
<td>6-2</td>
</tr>
<tr>
<td></td>
<td>4-2 x12</td>
<td>8-4</td>
<td>2</td>
<td>7-2</td>
</tr>
</tbody>
</table>

For SI:
- 1 inch = 25.4 mm, 1 foot = 304.8 mm.
- a. Spans are given in feet and inches (ft-in).
- b. Tabulated values are for No. 2 grade lumber.
- c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
- d. NJ - Number of jack studs required to support each end. Where the number of required jack studs equals one, the headers are permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.
TABLE 2308.10.1
REQUED RATING OF APPROVED UPLIFT CONNECTORS (pounds)*, b, c, e, f, g, h

<table>
<thead>
<tr>
<th>BASIC WIND SPEED</th>
<th>12</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>36</th>
<th>40</th>
<th>OVERHANGS (pounds/feet)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>-91</td>
<td>-151</td>
<td>-181</td>
<td>-212</td>
<td>-242</td>
<td>-272</td>
<td>-302</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-131</td>
<td>-281</td>
<td>-262</td>
<td>-305</td>
<td>-349</td>
<td>-393</td>
<td>-436</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>-175</td>
<td>-292</td>
<td>-351</td>
<td>-409</td>
<td>-467</td>
<td>-526</td>
<td>-584</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 mile per hour = 1.61 km/hr 1 pound = 0.454 Kg, 1 pound/foot = 14.5939 N/m.
a. The uplift connection requirements are based on a 30-foot mean roof height located in Exposure B. For Exposure C or D and for other mean roof heights, multiply the above loads by the adjustment coefficients below.

b. The uplift connection requirements are based on the framing being spaced 24 inches on center. Multiply by 0.67 for framing spaced 16 inches on center and multiply by 0.5 for framing spaced 12 inches on center.
c. The uplift connection requirements include an allowance for 10 pounds of dead load.
d. The uplift connection requirements do not account for the effects of overhangs. The magnitude of the above loads shall be increased by adding the overhang loads found in the table. The overhang loads are also based on framing spaced 24 inches on center. The overhang loads given shall be multiplied by the overhang projection and added to the roof uplift value in the table.
e. The uplift connection requirements are based upon wind loading on end zones as defined in Figure 6-2 of ASCE 7. Connection loads for connections located a distance of 20 percent of the least horizontal dimension of the building from the corner of the building are permitted to be reduced by multiplying the table connection value by 0.7 and multiplying the overhang load by 0.8.
f. For wall-to-wall and wall-to-foundation connections, the capacity of the uplift connector is permitted to be reduced by 100 pounds for each full wall above. (For example, if a 500-pound rated connector is used on the roof framing, a 400-pound rated connector is permitted at the next floor level down).
g. Interpolation is permitted for intermediate values of basic wind speeds and roof spans.
h. The rated capacity of approved tie-down devices is permitted to include up to a 60-percent increase for wind effects where allowed by material specifications.

2308.9.9 Bridging. Unless covered by interior or exterior wall coverings or sheathing meeting the minimum requirements of this code, stud partitions or walls with studs having a height-to-least-thickness ratio exceeding 50 shall have bridging not less than 2 inches (51 mm) in thickness and of the same width as the studs fitted snugly and nailed thereto to provide adequate lateral support. Bridging shall be placed in every stud cavity and at a frequency such that no stud so braced shall have a height-to-least-thickness ratio exceeding 50 with the height of the stud measured between horizontal framing and bridging or between bridging, whichever is greater.

2308.9.10 Cutting and notching. In exterior walls and bearing partitions, any wood stud is permitted to be cut or notched to a depth not exceeding 25 percent of its width. Cutting or notching of studs to a depth not greater than 40 percent of the width of the stud is permitted in nonbearing partitions supporting no loads other than the weight of the partition.

2308.9.11 Bored holes. A hole not greater in diameter than 40 percent of the stud width is permitted to be bored in any wood stud. Bored holes not greater than 60 percent of the width of the stud are permitted in nonbearing partitions or in any wall where each bored stud is doubled, provided not more than two such successive doubled studs are so bored.

In no case shall the edge of the bored hole be nearer than \(\frac{3}{4} \) inch (15.9 mm) to the edge of the stud.

Bored holes shall not be located at the same section of stud as a cut or notch.

2308.10 Roof and ceiling framing. The framing details required in this section apply to roofs having a minimum slope of three units vertical in 12 units horizontal (25-percent slope) or greater. Where the roof slope is less than three units vertical in 12 units horizontal (25-percent slope), members supporting rafters and ceiling joists such as ridge board, hips and valleys shall be designed as beams.

2308.10.1 Wind uplift. The roof construction shall have rafter and truss ties to the wall below. Resultant uplift loads shall be transferred to the foundation using a continuous load path. The rafter or truss to wall connection shall comply with Tables 2304.9.1 and 2308.10.1.

2308.10.2 Ceiling joist spans. Allowable spans for ceiling joists shall be in accordance with Table 2308.10.2(1) or 2308.10.2(2). For other grades and species, refer to the AF&PA Span Tables for Joists and Rafters.

2308.10.3 Rafter spans. Allowable spans for rafters shall be in accordance with Table 2308.10.3(1), 2308.10.3(2), 2308.10.3(3), 2308.10.3(4), 2308.10.3(5) or 2308.10.3(6). For other grades and species, refer to the AF&PA Span Tables for Joists and Rafters.
<table>
<thead>
<tr>
<th>Ceiling Joist Spacing (Inches)</th>
<th>Species and Grade</th>
<th>(2 \times 4)</th>
<th>(2 \times 6)</th>
<th>(2 \times 8)</th>
<th>(2 \times 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch SS #1</td>
<td>12-8</td>
<td>19-11</td>
<td>Note a</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td>12-5</td>
<td>19-6</td>
<td>25-8</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td>10-10</td>
<td>15-10</td>
<td>20-1</td>
<td>24-6</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir SS #1</td>
<td>12-2</td>
<td>19-1</td>
<td>25-2</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>11-7</td>
<td>18-2</td>
<td>24-0</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>10-10</td>
<td>15-10</td>
<td>20-1</td>
<td>24-6</td>
<td></td>
</tr>
<tr>
<td>Southern Pine SS #1</td>
<td>12-11</td>
<td>20-3</td>
<td>Note a</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>12-8</td>
<td>19-11</td>
<td>Note a</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>11-6</td>
<td>17-0</td>
<td>21-8</td>
<td>25-7</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS #1</td>
<td>12-2</td>
<td>19-1</td>
<td>25-2</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>11-10</td>
<td>18-8</td>
<td>24-7</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>10-10</td>
<td>15-10</td>
<td>20-1</td>
<td>24-6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch SS #1</td>
<td>11-11</td>
<td>18-9</td>
<td>24-8</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td>11-6</td>
<td>18-1</td>
<td>23-10</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td>9-5</td>
<td>13-9</td>
<td>17-5</td>
<td>21-3</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir SS #1</td>
<td>11-3</td>
<td>17-8</td>
<td>22-4</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>10-6</td>
<td>16-6</td>
<td>21-9</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>9-5</td>
<td>13-9</td>
<td>17-5</td>
<td>21-3</td>
<td></td>
</tr>
<tr>
<td>Southern Pine SS #1</td>
<td>11-9</td>
<td>18-5</td>
<td>24-3</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>11-6</td>
<td>18-1</td>
<td>23-1</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>11-3</td>
<td>17-8</td>
<td>23-4</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>10-0</td>
<td>14-9</td>
<td>18-9</td>
<td>22-2</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS #1</td>
<td>11-0</td>
<td>17-4</td>
<td>22-10</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>10-9</td>
<td>16-11</td>
<td>22-4</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>9-5</td>
<td>13-9</td>
<td>17-5</td>
<td>21-3</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
| CEILING JOIST SPACING (inches) | SPECIES AND GRADE | 2 x 4 | | 2 x 6 | | 2 x 8 | | 2 x 10 |
|------------------------------|------------------|-------|---|-------|---|-------|---|
| | | Maximum ceiling joint spans | ft. - in. | ft. - in. | ft. - in. | ft. - in. |
| Douglas Fir-Larch SS #1 | 11-3 | 17-8 | 23-3 | Note a |
| Douglas Fir-Larch #2 | 10-10 | 17-8 | 23-3 | Note a |
| Douglas Fir-Larch #3 | 10-7 | 17-8 | 23-3 | Note a |
| Hem-Fir SS #1 | 10-7 | 17-8 | 23-3 | Note a |
| Hem-Fir #2 | 10-7 | 17-8 | 23-3 | Note a |
| Hem-Fir #3 | 10-7 | 17-8 | 23-3 | Note a |
| Southern Pine SS #1 | 10-7 | 17-8 | 23-3 | Note a |
| Southern Pine #2 | 10-7 | 17-8 | 23-3 | Note a |
| Southern Pine #3 | 10-7 | 17-8 | 23-3 | Note a |
| Spruce-Pine-Fir SS #1 | 10-7 | 17-8 | 23-3 | Note a |
| Spruce-Pine-Fir #2 | 10-7 | 17-8 | 23-3 | Note a |
| Spruce-Pine-Fir #3 | 10-7 | 17-8 | 23-3 | Note a |

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².

a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
Table 2308.10.2(2)

Ceiling Joist Spans for Common Lumber Species

(Uninhabitable Attics With Limited Storage, Live Load = 20 pounds per square foot, \(L/A = 240 \))

<table>
<thead>
<tr>
<th>Ceiling Joist Spacing (inches)</th>
<th>Species and Grade</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>Maximum Ceiling Joist Spans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>12</td>
<td>Douglas Fir-Larch SS</td>
<td>10-5</td>
<td>16-4</td>
<td>21-7</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #1</td>
<td>10-0</td>
<td>15-9</td>
<td>20-1</td>
<td>24-6</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #2</td>
<td>9-10</td>
<td>14-10</td>
<td>18-9</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #3</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir SS</td>
<td>9-10</td>
<td>15-6</td>
<td>20-5</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #1</td>
<td>9-8</td>
<td>15-2</td>
<td>19-7</td>
<td>23-11</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #2</td>
<td>9-2</td>
<td>14-5</td>
<td>18-6</td>
<td>22-7</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #3</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine SS</td>
<td>10-3</td>
<td>16-1</td>
<td>21-2</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #1</td>
<td>10-0</td>
<td>15-9</td>
<td>20-10</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>9-10</td>
<td>15-6</td>
<td>20-1</td>
<td>23-11</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #3</td>
<td>8-2</td>
<td>12-0</td>
<td>15-4</td>
<td>18-1</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #1</td>
<td>9-5</td>
<td>14-9</td>
<td>18-9</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #2</td>
<td>9-5</td>
<td>14-9</td>
<td>18-9</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #3</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
</tbody>
</table>

16	Douglas Fir-Larch SS	9-6	14-11	19-7	25-0
	Douglas Fir-Larch #1	9-1	13-9	17-5	21-3
	Douglas Fir-Larch #2	8-9	12-10	16-3	19-10
	Douglas Fir-Larch #3	8-8	9-8	12-4	15-0
	Hem-Fir SS	8-11	14-1	18-6	23-8
	Hem-Fir #1	8-9	13-5	16-10	20-8
	Hem-Fir #2	8-4	12-8	16-0	19-7
	Hem-Fir #3	6-8	9-8	12-4	15-0
	Southern Pine SS	9-4	14-7	19-3	24-7
	Southern Pine #1	9-1	14-4	18-11	23-1
	Southern Pine #2	8-11	13-6	17-5	20-9
	Southern Pine #3	7-1	10-5	13-3	15-8
	Spruce-Pine-Fir SS	8-9	13-9	18-1	23-1
	Spruce-Pine-Fir #1	8-7	12-10	16-3	19-10
	Spruce-Pine-Fir #2	8-7	12-10	16-3	19-10
	Spruce-Pine-Fir #3	6-8	9-8	12-4	15-0

(continued)
TABLE 2308.10.2(2)—continued
CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable Attics With Limited Storage, Live Load = 20 pounds per square foot, L/Δ = 240)

<table>
<thead>
<tr>
<th>CEILING JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4 Maximum ceiling joist spans</th>
<th>2 x 6 Maximum ceiling joist spans</th>
<th>2 x 10 Maximum ceiling joist spans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4 (ft. - in.)</td>
<td>2 x 6 (ft. - in.)</td>
<td>2 x 10 (ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td>19.2</td>
<td>8-11</td>
<td>14-0</td>
<td>18-5</td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td></td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td></td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td></td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td></td>
<td>8-5</td>
<td>13-3</td>
<td>17-5</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
<td>8-3</td>
<td>12-3</td>
<td>15-6</td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
<td>7-10</td>
<td>11-7</td>
<td>14-8</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
<td>8-9</td>
<td>13-9</td>
<td>18-1</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
<td>8-7</td>
<td>13-6</td>
<td>17-9</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
<td>8-5</td>
<td>12-3</td>
<td>15-10</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td></td>
<td>6-5</td>
<td>9-6</td>
<td>12-1</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>19.2</td>
<td>8-3</td>
<td>12-11</td>
<td>17-1</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td>24</td>
<td>8-3</td>
<td>13-0</td>
<td>17-1</td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td></td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td></td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td></td>
<td>5-5</td>
<td>7-11</td>
<td>10-0</td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td></td>
<td>7-10</td>
<td>12-3</td>
<td>16-2</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
<td>7-6</td>
<td>10-11</td>
<td>13-10</td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
<td>7-1</td>
<td>10-4</td>
<td>13-1</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
<td>5-5</td>
<td>7-11</td>
<td>10-0</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
<td>8-1</td>
<td>12-9</td>
<td>16-10</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
<td>8-0</td>
<td>12-6</td>
<td>15-10</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
<td>7-8</td>
<td>11-0</td>
<td>14-2</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td></td>
<td>5-9</td>
<td>8-6</td>
<td>10-10</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td></td>
<td>7-8</td>
<td>12-0</td>
<td>15-10</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
<td>5-5</td>
<td>7-11</td>
<td>10-0</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².
a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 pounds per square foot</th>
<th>DEAD LOAD = 20 pounds per square foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>11-6</td>
<td>18-0</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>11-1</td>
<td>17-4</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>10-10</td>
<td>16-7</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>10-10</td>
<td>17-0</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1</td>
<td>10-7</td>
<td>16-8</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>10-1</td>
<td>15-11</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>11-3</td>
<td>17-8</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#1</td>
<td>11-1</td>
<td>17-4</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2</td>
<td>10-10</td>
<td>17-0</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>9-1</td>
<td>13-6</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>10-7</td>
<td>16-8</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>10-4</td>
<td>16-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>10-4</td>
<td>16-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>10-5</td>
<td>16-4</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>10-0</td>
<td>15-4</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>9-10</td>
<td>14-4</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>7-5</td>
<td>10-10</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-10</td>
<td>15-6</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1</td>
<td>9-8</td>
<td>14-11</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>9-2</td>
<td>14-2</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>7-5</td>
<td>10-10</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>10-3</td>
<td>16-1</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#1</td>
<td>10-0</td>
<td>15-9</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2</td>
<td>9-10</td>
<td>15-1</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>7-11</td>
<td>11-8</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>9-8</td>
<td>15-2</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>9-5</td>
<td>14-4</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>9-5</td>
<td>14-4</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>7-5</td>
<td>10-10</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
<td>2 x 8</td>
<td>2 x 10</td>
<td>2 x 12</td>
<td>2 x 4</td>
<td>2 x 6</td>
<td>2 x 8</td>
<td>2 x 10</td>
<td>2 x 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>19.2</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-10</td>
<td>15-5</td>
<td>20-4</td>
<td>25-11</td>
<td>Note a</td>
<td>9-10</td>
<td>14-7</td>
<td>18-6</td>
<td>22-7</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>9-5</td>
<td>14-0</td>
<td>17-9</td>
<td>21-8</td>
<td>25-2</td>
<td>8-4</td>
<td>12-2</td>
<td>15-4</td>
<td>18-9</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>8-11</td>
<td>13-1</td>
<td>16-7</td>
<td>20-3</td>
<td>23-6</td>
<td>7-9</td>
<td>11-4</td>
<td>14-4</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>8-9</td>
<td>9-11</td>
<td>12-7</td>
<td>15-4</td>
<td>17-9</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-3</td>
<td>14-7</td>
<td>19-2</td>
<td>24-6</td>
<td>Note a</td>
<td>9-3</td>
<td>14-4</td>
<td>18-2</td>
<td>22-3</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#1</td>
<td>9-1</td>
<td>13-8</td>
<td>17-4</td>
<td>21-1</td>
<td>24-6</td>
<td>8-1</td>
<td>11-10</td>
<td>15-0</td>
<td>18-4</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>8-8</td>
<td>12-11</td>
<td>16-4</td>
<td>20-0</td>
<td>23-2</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#3</td>
<td>6-9</td>
<td>9-11</td>
<td>12-7</td>
<td>15-4</td>
<td>17-9</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#1</td>
<td>9-5</td>
<td>14-10</td>
<td>19-7</td>
<td>23-7</td>
<td>Note a</td>
<td>9-3</td>
<td>13-8</td>
<td>17-2</td>
<td>20-5</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>9-3</td>
<td>13-9</td>
<td>17-9</td>
<td>21-2</td>
<td>24-10</td>
<td>8-4</td>
<td>11-11</td>
<td>15-4</td>
<td>18-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#3</td>
<td>7-3</td>
<td>10-8</td>
<td>13-7</td>
<td>16-0</td>
<td>19-1</td>
<td>6-3</td>
<td>9-3</td>
<td>11-9</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>9-1</td>
<td>14-3</td>
<td>18-9</td>
<td>23-11</td>
<td>Note a</td>
<td>9-1</td>
<td>13-7</td>
<td>17-2</td>
<td>21-0</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>8-10</td>
<td>13-1</td>
<td>16-7</td>
<td>20-3</td>
<td>23-6</td>
<td>7-9</td>
<td>11-4</td>
<td>14-4</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>8-10</td>
<td>13-1</td>
<td>16-7</td>
<td>20-3</td>
<td>23-6</td>
<td>7-9</td>
<td>11-4</td>
<td>14-4</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>6-9</td>
<td>9-11</td>
<td>12-7</td>
<td>15-4</td>
<td>17-9</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
</tr>
<tr>
<td>24</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-1</td>
<td>14-4</td>
<td>18-10</td>
<td>23-4</td>
<td>Note a</td>
<td>8-11</td>
<td>13-1</td>
<td>16-7</td>
<td>20-3</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
<td>22-6</td>
<td>7-5</td>
<td>10-10</td>
<td>13-9</td>
<td>16-9</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td>21-0</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td>15-11</td>
<td>5-3</td>
<td>7-8</td>
<td>9-9</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>8-7</td>
<td>13-6</td>
<td>17-10</td>
<td>22-9</td>
<td>Note a</td>
<td>8-7</td>
<td>12-10</td>
<td>16-3</td>
<td>19-10</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#1</td>
<td>8-4</td>
<td>12-3</td>
<td>15-6</td>
<td>18-11</td>
<td>21-11</td>
<td>7-3</td>
<td>10-7</td>
<td>13-5</td>
<td>16-4</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>7-11</td>
<td>11-7</td>
<td>14-8</td>
<td>17-10</td>
<td>20-9</td>
<td>6-10</td>
<td>10-0</td>
<td>12-8</td>
<td>15-6</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#3</td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td>15-11</td>
<td>5-3</td>
<td>7-8</td>
<td>9-9</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>8-11</td>
<td>14-1</td>
<td>18-6</td>
<td>23-8</td>
<td>Note a</td>
<td>8-11</td>
<td>14-1</td>
<td>18-6</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#1</td>
<td>8-9</td>
<td>13-9</td>
<td>17-9</td>
<td>21-1</td>
<td>25-2</td>
<td>8-3</td>
<td>12-3</td>
<td>15-4</td>
<td>18-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>8-7</td>
<td>12-3</td>
<td>15-10</td>
<td>18-11</td>
<td>22-2</td>
<td>7-5</td>
<td>10-8</td>
<td>13-9</td>
<td>16-5</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#3</td>
<td>6-5</td>
<td>9-6</td>
<td>12-1</td>
<td>14-4</td>
<td>17-1</td>
<td>5-7</td>
<td>8-3</td>
<td>10-6</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>8-5</td>
<td>13-3</td>
<td>17-5</td>
<td>21-8</td>
<td>25-2</td>
<td>8-4</td>
<td>12-2</td>
<td>15-4</td>
<td>18-9</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td>21-0</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td>21-0</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td>15-11</td>
<td>5-3</td>
<td>7-8</td>
<td>9-9</td>
<td>11-10</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.9 N/m².
a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 pounds per square foot</th>
<th>DEAD LOAD = 20 pounds per square foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>10-5</td>
<td>16-4</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-0</td>
<td>15-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-10</td>
<td>15-6</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-10</td>
<td>15-6</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-8</td>
<td>15-2</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-2</td>
<td>14-5</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>10-3</td>
<td>16-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-0</td>
<td>15-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-10</td>
<td>15-6</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-5</td>
<td>14-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-5</td>
<td>14-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-6</td>
<td>14-11</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-9</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-11</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-5</td>
<td>10-10</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>8-11</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-9</td>
<td>13-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-4</td>
<td>13-1</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-5</td>
<td>10-10</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>9-4</td>
<td>14-7</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-1</td>
<td>14-4</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-11</td>
<td>14-1</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>7-11</td>
<td>11-8</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>8-9</td>
<td>13-9</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-7</td>
<td>13-5</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-7</td>
<td>13-5</td>
</tr>
</tbody>
</table>
| Spruce-Pine-Fir | #3 | 7-5 | 10-10 | 13-9 | 16-9 | 19-6 | 6-5 | 9-5 | 11-11 | 14-6 | 16-10 | (continued)
<table>
<thead>
<tr>
<th>SPECIES AND GRADE</th>
<th>RAFTER SPACING (inches)</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS 8-11</td>
<td>14-0</td>
<td>18-5</td>
<td>23-7</td>
<td>Note a</td>
<td>8-11</td>
<td>14-0</td>
<td>18-5</td>
<td>22-7</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1 8-7</td>
<td>13-6</td>
<td>17-9</td>
<td>21-8</td>
<td>25-2</td>
<td>8-4</td>
<td>12-2</td>
<td>15-4</td>
<td>18-9</td>
<td>21-9</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2 8-5</td>
<td>13-1</td>
<td>16-7</td>
<td>20-3</td>
<td>23-6</td>
<td>7-9</td>
<td>11-4</td>
<td>14-4</td>
<td>17-7</td>
<td>20-4</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3 6-9</td>
<td>9-11</td>
<td>12-7</td>
<td>15-4</td>
<td>17-9</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
<td>15-5</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS 8-5</td>
<td>13-3</td>
<td>17-5</td>
<td>22-3</td>
<td>Note a</td>
<td>8-5</td>
<td>13-3</td>
<td>17-5</td>
<td>22-3</td>
<td>25-9</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1 8-3</td>
<td>12-11</td>
<td>17-1</td>
<td>21-1</td>
<td>24-6</td>
<td>8-1</td>
<td>11-10</td>
<td>15-0</td>
<td>18-4</td>
<td>21-3</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2 7-10</td>
<td>12-4</td>
<td>16-3</td>
<td>20-0</td>
<td>23-2</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
<td>20-1</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3 6-9</td>
<td>9-11</td>
<td>12-7</td>
<td>15-4</td>
<td>17-9</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
<td>15-5</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS 8-9</td>
<td>13-9</td>
<td>18-1</td>
<td>23-1</td>
<td>Note a</td>
<td>8-9</td>
<td>13-9</td>
<td>18-1</td>
<td>23-1</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#1 8-7</td>
<td>13-6</td>
<td>17-9</td>
<td>22-8</td>
<td>Note a</td>
<td>8-7</td>
<td>13-6</td>
<td>17-9</td>
<td>20-5</td>
<td>24-4</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2 8-5</td>
<td>13-3</td>
<td>17-5</td>
<td>21-2</td>
<td>24-10</td>
<td>8-4</td>
<td>11-11</td>
<td>15-4</td>
<td>18-4</td>
<td>21-6</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3 7-3</td>
<td>10-8</td>
<td>13-7</td>
<td>16-0</td>
<td>19-1</td>
<td>6-3</td>
<td>9-3</td>
<td>11-9</td>
<td>13-10</td>
<td>16-6</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS 8-3</td>
<td>12-11</td>
<td>17-1</td>
<td>21-9</td>
<td>Note a</td>
<td>8-3</td>
<td>12-11</td>
<td>17-1</td>
<td>21-0</td>
<td>24-4</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1 8-1</td>
<td>12-8</td>
<td>16-7</td>
<td>20-3</td>
<td>23-6</td>
<td>7-9</td>
<td>11-4</td>
<td>14-4</td>
<td>17-7</td>
<td>20-4</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2 8-1</td>
<td>12-8</td>
<td>16-7</td>
<td>20-3</td>
<td>23-6</td>
<td>7-9</td>
<td>11-4</td>
<td>14-4</td>
<td>17-7</td>
<td>20-4</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3 6-9</td>
<td>9-11</td>
<td>12-7</td>
<td>15-4</td>
<td>17-9</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
<td>15-5</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS 8-3</td>
<td>13-0</td>
<td>17-2</td>
<td>21-10</td>
<td>Note a</td>
<td>8-3</td>
<td>13-0</td>
<td>16-7</td>
<td>20-3</td>
<td>23-5</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1 8-0</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
<td>22-6</td>
<td>7-5</td>
<td>10-10</td>
<td>13-9</td>
<td>16-9</td>
<td>19-6</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2 7-10</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td>21-0</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
<td>18-3</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3 6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td>15-11</td>
<td>5-3</td>
<td>7-8</td>
<td>9-9</td>
<td>11-10</td>
<td>13-9</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS 7-10</td>
<td>12-3</td>
<td>16-2</td>
<td>20-8</td>
<td>25-1</td>
<td>7-10</td>
<td>12-3</td>
<td>16-2</td>
<td>19-10</td>
<td>23-0</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1 7-8</td>
<td>12-0</td>
<td>15-6</td>
<td>18-11</td>
<td>21-11</td>
<td>7-3</td>
<td>10-7</td>
<td>13-5</td>
<td>16-4</td>
<td>19-0</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2 7-3</td>
<td>11-5</td>
<td>14-8</td>
<td>17-10</td>
<td>20-9</td>
<td>6-10</td>
<td>10-0</td>
<td>12-8</td>
<td>15-6</td>
<td>17-11</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3 6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td>15-11</td>
<td>5-3</td>
<td>7-8</td>
<td>9-9</td>
<td>11-10</td>
<td>13-9</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS 8-1</td>
<td>12-9</td>
<td>16-10</td>
<td>21-6</td>
<td>Note a</td>
<td>8-1</td>
<td>12-9</td>
<td>16-10</td>
<td>21-6</td>
<td>Note a</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#1 8-0</td>
<td>12-6</td>
<td>16-6</td>
<td>21-1</td>
<td>25-2</td>
<td>8-0</td>
<td>12-3</td>
<td>15-4</td>
<td>18-3</td>
<td>21-9</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2 7-10</td>
<td>12-3</td>
<td>15-10</td>
<td>18-11</td>
<td>22-2</td>
<td>7-5</td>
<td>10-8</td>
<td>13-9</td>
<td>16-5</td>
<td>19-3</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3 6-5</td>
<td>9-6</td>
<td>12-1</td>
<td>14-4</td>
<td>17-1</td>
<td>5-7</td>
<td>8-3</td>
<td>10-6</td>
<td>12-5</td>
<td>14-9</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS 7-8</td>
<td>12-0</td>
<td>15-10</td>
<td>20-2</td>
<td>24-7</td>
<td>7-8</td>
<td>12-0</td>
<td>15-4</td>
<td>18-9</td>
<td>21-9</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1 7-6</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td>21-0</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
<td>18-3</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2 7-6</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td>21-0</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
<td>18-3</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3 6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td>15-11</td>
<td>5-3</td>
<td>7-8</td>
<td>9-9</td>
<td>11-10</td>
<td>13-9</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.9 N/m².

a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 pounds per square foot</th>
<th>DEAD LOAD = 20 pounds per square foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4 (ft. - in.)</td>
<td>2 x 6 (ft. - in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x 4 (ft. - in.)</td>
<td>2 x 6 (ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>10-0</td>
<td>15-9</td>
</tr>
<tr>
<td>#1</td>
<td>9-8</td>
<td>14-9</td>
<td>18-8</td>
</tr>
<tr>
<td>#2</td>
<td>9-5</td>
<td>13-9</td>
<td>17-5</td>
</tr>
<tr>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
<td>13-2</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-6</td>
<td>14-10</td>
</tr>
<tr>
<td>#1</td>
<td>9-3</td>
<td>14-4</td>
<td>18-2</td>
</tr>
<tr>
<td>#2</td>
<td>8-10</td>
<td>13-7</td>
<td>17-2</td>
</tr>
<tr>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
<td>13-2</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>9-10</td>
<td>15-6</td>
</tr>
<tr>
<td>#1</td>
<td>9-8</td>
<td>15-2</td>
<td>20-0</td>
</tr>
<tr>
<td>#2</td>
<td>9-6</td>
<td>14-5</td>
<td>18-8</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>7-7</td>
<td>11-2</td>
</tr>
<tr>
<td>#1</td>
<td>9-3</td>
<td>14-7</td>
<td>19-2</td>
</tr>
<tr>
<td>#1</td>
<td>9-1</td>
<td>13-9</td>
<td>17-5</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>9-1</td>
<td>13-9</td>
</tr>
<tr>
<td>#1</td>
<td>9-1</td>
<td>13-9</td>
<td>17-5</td>
</tr>
<tr>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
<td>13-2</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-1</td>
<td>14-4</td>
</tr>
<tr>
<td>#1</td>
<td>8-9</td>
<td>12-9</td>
<td>16-2</td>
</tr>
<tr>
<td>#2</td>
<td>8-2</td>
<td>11-11</td>
<td>15-1</td>
</tr>
<tr>
<td>#3</td>
<td>6-2</td>
<td>9-0</td>
<td>11-5</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>8-7</td>
<td>13-6</td>
</tr>
<tr>
<td>#1</td>
<td>8-5</td>
<td>12-5</td>
<td>15-9</td>
</tr>
<tr>
<td>#2</td>
<td>8-0</td>
<td>11-9</td>
<td>14-11</td>
</tr>
<tr>
<td>#3</td>
<td>6-2</td>
<td>9-0</td>
<td>11-5</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>8-11</td>
<td>14-1</td>
</tr>
<tr>
<td>#1</td>
<td>8-9</td>
<td>13-9</td>
<td>18-1</td>
</tr>
<tr>
<td>#2</td>
<td>8-7</td>
<td>12-6</td>
<td>16-2</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>6-7</td>
<td>9-8</td>
</tr>
<tr>
<td>#1</td>
<td>8-2</td>
<td>11-11</td>
<td>15-1</td>
</tr>
<tr>
<td>#2</td>
<td>8-2</td>
<td>11-11</td>
<td>15-1</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>8-5</td>
<td>13-3</td>
</tr>
<tr>
<td>#1</td>
<td>8-2</td>
<td>11-11</td>
<td>15-1</td>
</tr>
<tr>
<td>#3</td>
<td>6-2</td>
<td>9-0</td>
<td>11-5</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td>7-11</td>
<td>22-2</td>
<td>26-2</td>
<td>30-2</td>
<td>34-2</td>
<td>20-1</td>
<td>25-7</td>
<td>30-2</td>
<td>34-2</td>
<td>22-1</td>
<td>26-11</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>7-11</td>
<td>26-2</td>
<td>30-2</td>
<td>34-2</td>
<td>38-2</td>
<td>24-1</td>
<td>29-7</td>
<td>34-2</td>
<td>38-2</td>
<td>26-1</td>
<td>30-11</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>7-11</td>
<td>32-2</td>
<td>36-2</td>
<td>40-2</td>
<td>44-2</td>
<td>30-1</td>
<td>35-7</td>
<td>40-2</td>
<td>44-2</td>
<td>32-1</td>
<td>36-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>7-11</td>
<td>36-2</td>
<td>40-2</td>
<td>44-2</td>
<td>48-2</td>
<td>34-1</td>
<td>39-7</td>
<td>44-2</td>
<td>48-2</td>
<td>36-2</td>
<td>40-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>7-11</td>
<td>40-2</td>
<td>44-2</td>
<td>48-2</td>
<td>52-2</td>
<td>38-2</td>
<td>43-7</td>
<td>48-2</td>
<td>52-2</td>
<td>40-2</td>
<td>44-11</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.9 N/m².

a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
<table>
<thead>
<tr>
<th>Rafter Spans (inches)</th>
<th>Species and Grade</th>
<th>Dead Load = 10 pounds per square foot</th>
<th>Dead Load = 20 pounds per square foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>8-5</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-2</td>
<td>12-0</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>7-8</td>
<td>11-3</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>5-10</td>
<td>8-6</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>8-0</td>
<td>12-6</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1</td>
<td>7-10</td>
<td>11-9</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>7-5</td>
<td>11-1</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>5-10</td>
<td>8-6</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>8-4</td>
<td>13-0</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#1</td>
<td>8-2</td>
<td>12-10</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2</td>
<td>8-0</td>
<td>11-9</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>6-2</td>
<td>9-2</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>7-10</td>
<td>12-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>7-8</td>
<td>11-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>7-8</td>
<td>11-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>5-10</td>
<td>8-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>7-8</td>
<td>12-1</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>7-1</td>
<td>10-5</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>6-8</td>
<td>9-9</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>7-3</td>
<td>11-5</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1</td>
<td>6-11</td>
<td>10-2</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>6-7</td>
<td>9-7</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>7-6</td>
<td>11-10</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#1</td>
<td>7-5</td>
<td>11-7</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2</td>
<td>7-1</td>
<td>10-9</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>5-4</td>
<td>7-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>7-1</td>
<td>11-2</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>6-8</td>
<td>9-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>6-8</td>
<td>9-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.10.3(4)—continued

RAFTER SPANS FOR COMMON LUMBER SPECIES

(Ground Snow Load = 50 pounds per square foot, Ceiling Not Attached to Rafters, L/Δ = 180)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
<td>2 x 8</td>
<td>2 x 10</td>
<td>2 x 12</td>
<td>2 x 4</td>
<td>2 x 6</td>
<td>2 x 8</td>
<td>2 x 10</td>
<td>2 x 12</td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.9 N/m².

a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 pounds per square foot</th>
<th>DEAD LOAD = 20 pounds per square foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-1</td>
<td>14-4</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-9</td>
<td>13-9</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>8-7</td>
<td>13-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>8-7</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-5</td>
<td>13-3</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>8-0</td>
<td>12-7</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>8-11</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-9</td>
<td>13-9</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2</td>
<td>8-7</td>
<td>13-6</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>7-7</td>
<td>11-2</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>8-5</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-3</td>
<td>12-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>8-3</td>
<td>12-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
</tr>
</tbody>
</table>

Douglas Fir-Larch	SS	8-3	13-0	17-2	21-0	Note a	8-3	13-0	17-2	21-3	24-8
	#1	8-0	12-6	16-2	19-9	22-10	7-10	11-5	14-5	17-8	20-5
Douglas Fir-Larch	#2	7-10	11-11	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
Douglas Fir-Larch	#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6
Hem-Fir	SS	7-10	12-3	16-2	20-8	25-1	7-10	12-3	16-2	20-8	24-2
	#1	7-8	12-0	15-9	19-3	22-3	7-7	11-1	14-1	17-2	19-11
Hem-Fir	#2	7-3	11-5	14-11	18-2	21-1	7-2	10-6	13-4	16-3	18-10
Hem-Fir	#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6
Southern Pine	SS	8-1	12-9	16-10	21-6	Note a	8-1	12-9	16-10	21-6	Note a
	#1	8-0	12-6	16-6	21-1	25-7	8-0	12-6	16-2	19-2	22-10
Southern Pine	#2	7-10	12-3	16-2	19-3	22-7	7-10	11-2	14-5	17-3	20-2
Southern Pine	#3	6-7	9-8	12-4	14-7	17-4	5-10	8-8	11-0	13-0	15-6
Spruce-Pine-Fir	SS	7-8	12-0	15-10	20-2	24-7	7-8	12-0	15-10	19-9	22-10
	#1	7-6	11-9	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
Spruce-Pine-Fir	#2	7-6	11-9	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
Spruce-Pine-Fir	#3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6

(continued)
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>7-6</td>
<td>11-8</td>
<td>14-9</td>
<td>18-0</td>
<td>20-11</td>
<td>20-7</td>
<td>25-0</td>
<td>7-9</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>7-4</td>
<td>10-11</td>
<td>13-9</td>
<td>16-10</td>
<td>19-6</td>
<td>6-8</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
<td>14-9</td>
<td>5-0</td>
<td>9-4</td>
<td>5-0</td>
<td>11-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>7-4</td>
<td>11-7</td>
<td>15-3</td>
<td>19-5</td>
<td>23-7</td>
<td>7-4</td>
<td>11-7</td>
<td>15-3</td>
<td>19-1</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>7-2</td>
<td>11-4</td>
<td>14-4</td>
<td>17-1</td>
<td>20-4</td>
<td>6-11</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#3</td>
<td>6-10</td>
<td>10-9</td>
<td>13-7</td>
<td>16-7</td>
<td>19-3</td>
<td>6-7</td>
<td>9-7</td>
<td>12-2</td>
<td>14-10</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>7-8</td>
<td>12-0</td>
<td>15-10</td>
<td>20-2</td>
<td>24-7</td>
<td>7-8</td>
<td>12-0</td>
<td>15-10</td>
<td>20-2</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#1</td>
<td>7-6</td>
<td>11-9</td>
<td>15-6</td>
<td>19-7</td>
<td>23-4</td>
<td>7-6</td>
<td>11-9</td>
<td>14-9</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>7-4</td>
<td>11-5</td>
<td>14-9</td>
<td>17-7</td>
<td>20-7</td>
<td>7-1</td>
<td>10-2</td>
<td>13-2</td>
<td>15-9</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#3</td>
<td>6-0</td>
<td>8-10</td>
<td>11-3</td>
<td>13-4</td>
<td>15-10</td>
<td>5-4</td>
<td>7-11</td>
<td>10-1</td>
<td>11-11</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>7-2</td>
<td>11-4</td>
<td>14-11</td>
<td>19-0</td>
<td>23-1</td>
<td>7-2</td>
<td>11-4</td>
<td>14-9</td>
<td>18-0</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>7-0</td>
<td>10-11</td>
<td>13-9</td>
<td>16-10</td>
<td>19-6</td>
<td>6-8</td>
<td>9-9</td>
<td>12-4</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>7-0</td>
<td>10-11</td>
<td>13-9</td>
<td>16-10</td>
<td>19-6</td>
<td>6-8</td>
<td>9-9</td>
<td>12-4</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
<td>14-9</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>7-3</td>
<td>11-4</td>
<td>15-0</td>
<td>19-1</td>
<td>22-6</td>
<td>7-3</td>
<td>11-3</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>7-0</td>
<td>10-5</td>
<td>13-2</td>
<td>16-1</td>
<td>18-8</td>
<td>6-4</td>
<td>9-4</td>
<td>11-9</td>
<td>14-5</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>6-8</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
<td>5-11</td>
<td>8-8</td>
<td>11-0</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
<td>4-6</td>
<td>6-7</td>
<td>8-4</td>
<td>10-2</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>6-10</td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-11</td>
<td>6-10</td>
<td>10-9</td>
<td>13-11</td>
<td>17-0</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#1</td>
<td>6-8</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
<td>18-2</td>
<td>6-2</td>
<td>9-1</td>
<td>11-6</td>
<td>14-0</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>6-4</td>
<td>9-7</td>
<td>12-2</td>
<td>14-10</td>
<td>17-3</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
<td>4-6</td>
<td>6-7</td>
<td>8-4</td>
<td>10-2</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>7-1</td>
<td>11-2</td>
<td>14-8</td>
<td>18-9</td>
<td>22-10</td>
<td>7-1</td>
<td>11-2</td>
<td>14-8</td>
<td>18-9</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#1</td>
<td>7-0</td>
<td>10-11</td>
<td>14-5</td>
<td>17-6</td>
<td>20-11</td>
<td>7-0</td>
<td>10-6</td>
<td>13-2</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>6-10</td>
<td>10-2</td>
<td>13-2</td>
<td>15-9</td>
<td>18-5</td>
<td>6-4</td>
<td>9-2</td>
<td>11-9</td>
<td>14-1</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#3</td>
<td>5-4</td>
<td>7-11</td>
<td>10-1</td>
<td>11-11</td>
<td>14-2</td>
<td>4-9</td>
<td>7-1</td>
<td>9-0</td>
<td>10-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>6-8</td>
<td>10-6</td>
<td>13-10</td>
<td>17-8</td>
<td>20-11</td>
<td>6-8</td>
<td>10-5</td>
<td>13-2</td>
<td>16-1</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>6-6</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
<td>5-11</td>
<td>8-8</td>
<td>11-0</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>6-6</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
<td>5-11</td>
<td>8-8</td>
<td>11-0</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
<td>4-6</td>
<td>6-7</td>
<td>8-4</td>
<td>10-2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.9 N/m².

a. Span exceeds 26 feet in length. Check sources for availability of lumber in lengths greater than 20 feet.
TABLE 2308.10.3(6)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Ground Snow Load = 50 pounds per square foot, Ceiling Attached to Rafters, L/Δ = 240)

<table>
<thead>
<tr>
<th>RAFTER SPACING</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4 (ft. - in.)</th>
<th>2 x 6 (ft. - in.)</th>
<th>2 x 8 (ft. - in.)</th>
<th>2 x 10 (ft. - in.)</th>
<th>2 x 12 (ft. - in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>7-8</td>
<td>12-1</td>
<td>15-11</td>
<td>20-3</td>
<td>24-8</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>7-5</td>
<td>11-7</td>
<td>15-3</td>
<td>18-7</td>
<td>21-7</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>7-3</td>
<td>11-3</td>
<td>14-3</td>
<td>17-5</td>
<td>20-2</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-10</td>
<td>8-6</td>
<td>10-9</td>
<td>13-2</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>7-3</td>
<td>11-5</td>
<td>15-0</td>
<td>19-2</td>
<td>23-4</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>7-1</td>
<td>11-2</td>
<td>14-8</td>
<td>18-1</td>
<td>21-0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-9</td>
<td>10-8</td>
<td>14-0</td>
<td>17-2</td>
<td>19-11</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-10</td>
<td>8-6</td>
<td>10-9</td>
<td>13-2</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>7-6</td>
<td>11-0</td>
<td>15-7</td>
<td>19-11</td>
<td>24-3</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>7-5</td>
<td>11-7</td>
<td>15-4</td>
<td>19-7</td>
<td>23-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>7-3</td>
<td>11-5</td>
<td>15-0</td>
<td>18-2</td>
<td>21-3</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-2</td>
<td>9-2</td>
<td>11-8</td>
<td>13-9</td>
<td>16-4</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>7-1</td>
<td>11-2</td>
<td>14-8</td>
<td>18-9</td>
<td>22-10</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-11</td>
<td>10-11</td>
<td>14-3</td>
<td>17-5</td>
<td>20-2</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-11</td>
<td>10-11</td>
<td>14-3</td>
<td>17-5</td>
<td>20-2</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-10</td>
<td>8-6</td>
<td>10-9</td>
<td>13-2</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>7-0</td>
<td>11-0</td>
<td>14-5</td>
<td>18-5</td>
<td>22-5</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-9</td>
<td>10-5</td>
<td>13-2</td>
<td>16-1</td>
<td>18-8</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-7</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>6-7</td>
<td>10-4</td>
<td>13-8</td>
<td>17-5</td>
<td>21-2</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-5</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
<td>18-2</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-2</td>
<td>9-7</td>
<td>12-2</td>
<td>14-10</td>
<td>17-3</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>6-10</td>
<td>10-9</td>
<td>14-2</td>
<td>18-1</td>
<td>22-0</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-9</td>
<td>10-7</td>
<td>13-11</td>
<td>17-6</td>
<td>20-11</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-7</td>
<td>10-2</td>
<td>13-2</td>
<td>15-9</td>
<td>18-5</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-4</td>
<td>7-11</td>
<td>10-1</td>
<td>11-11</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>6-5</td>
<td>10-2</td>
<td>13-4</td>
<td>17-0</td>
<td>20-9</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-4</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-4</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.10.3(6)—continued

RAFTER SPANS FOR COMMON LUMBER SPECIES

(For Ground Snow Load = 50 pounds per square foot, Ceiling Attached to Rafters, L/Δ = 240)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
<th>2 x 4</th>
<th>2 x 6</th>
<th>2 x 8</th>
<th>2 x 10</th>
<th>2 x 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>6-7</td>
<td>10-4</td>
<td>13-7</td>
<td>17-4</td>
<td>20-6</td>
<td>6-7</td>
<td>10-4</td>
<td>13-5</td>
<td>16-5</td>
<td>19-0</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-4</td>
<td>9-6</td>
<td>12-0</td>
<td>14-8</td>
<td>17-1</td>
<td>6-0</td>
<td>8-10</td>
<td>11-2</td>
<td>13-7</td>
<td>15-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-1</td>
<td>8-11</td>
<td>11-3</td>
<td>13-9</td>
<td>15-11</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
<td>14-9</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>4-7</td>
<td>6-9</td>
<td>8-6</td>
<td>10-5</td>
<td>12-1</td>
<td>4-3</td>
<td>6-3</td>
<td>7-11</td>
<td>9-7</td>
<td>11-2</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>6-2</td>
<td>9-9</td>
<td>12-10</td>
<td>16-5</td>
<td>19-11</td>
<td>6-2</td>
<td>9-9</td>
<td>12-10</td>
<td>16-1</td>
<td>18-8</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-1</td>
<td>9-3</td>
<td>11-9</td>
<td>14-4</td>
<td>16-7</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
<td>15-5</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>5-9</td>
<td>8-9</td>
<td>11-1</td>
<td>13-7</td>
<td>15-9</td>
<td>5-7</td>
<td>8-1</td>
<td>10-3</td>
<td>12-7</td>
<td>14-7</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>4-7</td>
<td>6-9</td>
<td>8-6</td>
<td>10-5</td>
<td>12-1</td>
<td>4-3</td>
<td>6-3</td>
<td>7-11</td>
<td>9-7</td>
<td>11-2</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>6-5</td>
<td>10-2</td>
<td>13-4</td>
<td>17-0</td>
<td>20-9</td>
<td>6-5</td>
<td>10-2</td>
<td>13-4</td>
<td>17-0</td>
<td>20-9</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>6-4</td>
<td>9-11</td>
<td>13-1</td>
<td>16-0</td>
<td>19-1</td>
<td>6-4</td>
<td>9-11</td>
<td>12-5</td>
<td>14-10</td>
<td>17-8</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>6-2</td>
<td>9-4</td>
<td>12-0</td>
<td>14-4</td>
<td>16-10</td>
<td>6-0</td>
<td>8-8</td>
<td>11-2</td>
<td>13-4</td>
<td>15-7</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>4-11</td>
<td>7-3</td>
<td>9-2</td>
<td>10-10</td>
<td>12-11</td>
<td>4-6</td>
<td>6-8</td>
<td>8-6</td>
<td>10-1</td>
<td>12-0</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>6-1</td>
<td>9-6</td>
<td>12-7</td>
<td>16-0</td>
<td>19-1</td>
<td>6-1</td>
<td>9-6</td>
<td>12-5</td>
<td>15-3</td>
<td>17-8</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>5-11</td>
<td>8-11</td>
<td>11-3</td>
<td>13-9</td>
<td>15-11</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
<td>14-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>5-11</td>
<td>8-11</td>
<td>11-3</td>
<td>13-9</td>
<td>15-11</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
<td>14-9</td>
</tr>
</tbody>
</table>

Note:

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.9 N/m².
TABLE 2308.10.4.1
RAFTER TIE CONNECTIONS

<table>
<thead>
<tr>
<th>RAFTER SLOPE</th>
<th>TIE SPACING (inches)</th>
<th>NO SNOW LOAD</th>
<th>GROUND SNOW LOAD (pound per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 20 28 36</td>
<td>12 20 28 36</td>
<td>12 20 28 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 pounds per square foot</td>
<td>50 pounds per square foot</td>
</tr>
<tr>
<td>3:12</td>
<td>12</td>
<td>4 6 8 10</td>
<td>4 6 8 11</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5 7 10 13</td>
<td>5 8 11 14</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7 11 15 19</td>
<td>7 11 16 21</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>10 14 19 25</td>
<td>10 16 22 28</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>14 21 29 37</td>
<td>14 32 36 42</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3 4 5 6</td>
<td>3 5 6 8</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3 5 7 8</td>
<td>4 6 8 11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4 7 10 12</td>
<td>5 9 12 16</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6 9 13 16</td>
<td>8 12 16 22</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>8 14 19 24</td>
<td>10 18 24 32</td>
</tr>
<tr>
<td>4:12</td>
<td>12</td>
<td>3 4 5 7</td>
<td>3 5 7 9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3 4 5 7</td>
<td>4 6 8 11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4 7 10 12</td>
<td>5 9 12 16</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6 9 13 16</td>
<td>8 12 16 22</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>8 14 19 24</td>
<td>10 18 24 32</td>
</tr>
<tr>
<td>5:12</td>
<td>12</td>
<td>3 4 5 7</td>
<td>3 5 7 9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3 4 5 7</td>
<td>4 6 8 11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4 6 8 10</td>
<td>4 7 10 13</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5 8 10 13</td>
<td>6 10 14 18</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>7 11 15 20</td>
<td>8 14 20 26</td>
</tr>
<tr>
<td>7:12</td>
<td>12</td>
<td>3 3 3 4</td>
<td>3 3 4 5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3 3 3 4</td>
<td>3 3 4 5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3 4 6 7</td>
<td>3 5 7 9</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4 6 8 10</td>
<td>4 8 10 12</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>5 8 11 14</td>
<td>6 10 14 18</td>
</tr>
<tr>
<td>9:12</td>
<td>12</td>
<td>3 3 3 4</td>
<td>3 3 4 5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3 3 3 4</td>
<td>3 3 4 5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3 3 5 6</td>
<td>3 4 6 7</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3 4 6 8</td>
<td>4 6 8 10</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>4 6 9 11</td>
<td>5 8 12 14</td>
</tr>
<tr>
<td>12:12</td>
<td>12</td>
<td>3 3 3 3</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3 3 3 3</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3 3 3 4</td>
<td>3 3 4 6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3 3 4 5</td>
<td>3 3 5 6</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>3 4 6 7</td>
<td>4 7 8 12</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².

a. 40d box (5" x 0.162") or 16d sinker (3½" x 0.148") nails are permitted to be substituted for 16d common (3½" x 0.16") nails.

b. Nailing requirements are permitted to be reduced 25 percent if nails are clinched.

c. Rafter tie heel joint connections are not required where the ridge is supported by a load-bearing wall, header or ridge beam.

d. When intermediate support of the rafter is provided by vertical struts or purlins to a load-bearing wall, the tabulated heel joint connection requirements are permitted to be reduced proportionally to the reduction in span.

e. Equivalent nailing patterns are required for ceiling joist to ceiling joist lap splices.

f. Connected members shall be of sufficient size to prevent splitting due to nailing.

g. For snow loads less than 30 pounds per square foot, the required number of nails is permitted to be reduced by multiplying by the ratio of actual snow load plus 10 divided by 40, but not less than the number required for no snow load.
2308.10.4 Ceiling joist and rafter framing. Rafters shall be framed directly opposite each other at the ridge. There shall be a ridge board at least 1-inch (25 mm) nominal thickness at ridges and not less in depth than the cut end of the rafter. At valleys and hips, there shall be a single valley or hip rafter not less than 2-inch (51 mm) nominal thickness and not less in depth than the cut end of the rafter.

2308.10.4.1 Ceiling joist and rafter connections. Ceiling joists and rafters shall be nailed to each other and the assembly shall be nailed to the top wall plate in accordance with Tables 2304.9.1 and 2308.10.1. Ceiling joists shall be continuous or securely joined where they meet over interior partitions and fastened to adjacent rafters in accordance with Tables 2308.10.4.1 and 2304.9.1 to provide a continuous rafter tie across the building where such joists are parallel to the rafters. Ceiling joists shall have a bearing surface of not less than 11/2 inches (38 mm) on the top plate at each end.

Where ceiling joists are not parallel to rafters, an equivalent rafter tie shall be installed in a manner to provide a continuous tie across the building, at a spacing of not more than 4 feet (1219 mm) o.c. The connections shall be in accordance with Tables 2308.10.4.1 and 2304.9.1, or connections of equivalent capacities shall be provided. Where ceiling joists or rafter ties are not provided at the top of the rafter support walls, the ridge formed by these rafters shall also be supported by a girder conforming to Section 2308.4.

Rafter ties shall be spaced not more than 4 feet (1219 mm) o.c. Rafter tie connections shall be based on the equivalent rafter spacing in Table 2308.10.4.1. Where rafter ties are spaced at 32 inches (813 mm) o.c., the number of 16d common nails shall be two times the number specified for rafters spaced 16 inches (406 mm) o.c., with a minimum of four 16d common nails where no snow loads are indicated. Where rafter ties are spaced at 48 inches (1219 mm) o.c., the number of 16d common nails shall be two times the number specified for rafters spaced 24 inches (610 mm) o.c., with a minimum of six 16d common nails where no snow loads are indicated. Rafter/ceiling joist connections and rafter/tie connections shall be of sufficient size and number to prevent splitting from nailing.

2308.10.4.2 Notches and holes. Notching at the ends of rafters or ceiling joists shall not exceed one-fourth the depth. Notches in the top or bottom of the rafter or ceiling joist shall not exceed one-sixth the depth and shall not be located in the middle one-third of the span, except that a notch not exceeding one-third of the depth is permitted in the top of the rafter or ceiling joist not further from the face of the support than the depth of the member.

Holes bored in rafters or ceiling joists shall not be within 2 inches (51 mm) of the top and bottom and their diameter shall not exceed one-third the depth of the member.

2308.10.4.3 Framing around openings. Trimmer and header rafters shall be doubled, or of lumber of equivalent cross section, where the span of the header exceeds 4 feet (1219 mm). The ends of header rafters more than 6 feet (1829 mm) long shall be supported by framing anchors or rafter hangers unless bearing on a beam, partition or wall.

2308.10.5 Purlins. Purlins to support roof loads are permitted to be installed to reduce the span of rafters within allowable limits and shall be supported by struts to bearing walls. The maximum span of 2-inch by 4-inch (51 mm by 102 mm) purlins shall be 4 feet (1219 mm). The maximum span of the 2-inch by 6-inch (51 mm by 152 mm) purlins shall be 6 feet (1829 mm), but in no case shall the purlin be smaller than the supported rafter. Struts shall not be smaller than 2-inch by 4-inch (51 mm by 102 mm) members. The unbraced length of struts shall not exceed 8 feet (2438 mm) and the minimum slope of the struts shall not be less than 45 degrees (0.79 rad) from the horizontal.

2308.10.6 Blocking. Roof rafters and ceiling joists shall be supported laterally to prevent rotation and lateral displacement in accordance with the provisions of Section 2308.8.5.

2308.10.7 Engineered wood products. Prefabricated wood I-joists, structural glued-laminated timber and structural composite lumber shall not be notched or drilled except where permitted by the manufacturer’s recommendations or where the effects of such alterations are specifically considered in the design of the member by a registered design professional.

2308.10.8 Roof sheathing. Roof sheathing shall be in accordance with Tables 2304.7(3) and 2304.7(5) for wood structural panels, and Tables 2304.7(1) and 2304.7(2) for lumber and shall comply with Section 2304.7.2.

2308.10.8.1 Joints. Joints in lumber sheathing shall occur over supports unless approved end-matched lumber is used, in which case each piece shall bear on at least two supports.

2308.10.9 Roof planking. Planking shall be designed in accordance with the general provisions of this code.

In lieu of such design, 2-inch (51 mm) tongue-and-groove planking is permitted in accordance with Table 2308.10.9. Joints in such planking are permitted to be randomly spaced, provided the system is applied to not less than three continuous spans, planks are center matched and end matched or spliced, each plank bears on at least one support, and joints are separated by at least 24 inches (610 mm) in adjacent pieces.

2308.10.10 Wood trusses. Wood trusses shall be designed in accordance with Section 2303.4.

2308.10.11 Attic ventilation. For attic ventilation, see Section 1203.2.

2308.11 Additional requirements for conventional construction in Seismic Design Category B or C. Structures of conventional light-frame construction in Seismic Design Category B or C, as determined in Section 1613, shall comply with Sections 2308.11.1 through 2308.11.3, in addition to the provisions of Sections 2308.1 through 2308.10.
Table 2308.10.9

Allowable Spans for 2-Inch Tongue-and-Groove Decking

<table>
<thead>
<tr>
<th>Span (feet)</th>
<th>Live Load (pound per square foot)</th>
<th>Deflection Limit</th>
<th>Bending Stress ((f)) (pound per square inch)</th>
<th>Modulus of Elasticity ((E)) (pound per square inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roots</td>
<td>Roots</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>1/240</td>
<td>160</td>
<td>170,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>256,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240</td>
<td>210</td>
<td>256,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>384,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240</td>
<td>270</td>
<td>340,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>512,000</td>
</tr>
<tr>
<td>4.5</td>
<td>20</td>
<td>1/240</td>
<td>200</td>
<td>242,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>305,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240</td>
<td>270</td>
<td>363,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>405,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240</td>
<td>350</td>
<td>484,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>725,000</td>
</tr>
<tr>
<td>5.0</td>
<td>20</td>
<td>1/240</td>
<td>250</td>
<td>332,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240</td>
<td>330</td>
<td>495,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>742,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240</td>
<td>420</td>
<td>660,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>1,000,000</td>
</tr>
<tr>
<td>5.5</td>
<td>20</td>
<td>1/240</td>
<td>300</td>
<td>442,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>660,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240</td>
<td>400</td>
<td>662,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>998,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240</td>
<td>500</td>
<td>884,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>1,330,000</td>
</tr>
<tr>
<td>6.0</td>
<td>20</td>
<td>1/240</td>
<td>360</td>
<td>575,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>862,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240</td>
<td>480</td>
<td>862,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>1,295,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240</td>
<td>600</td>
<td>1,150,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>1,730,000</td>
</tr>
<tr>
<td>6.5</td>
<td>20</td>
<td>1/240</td>
<td>420</td>
<td>595,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>892,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240</td>
<td>560</td>
<td>892,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>1,340,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240</td>
<td>700</td>
<td>1,190,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/360</td>
<td></td>
<td>1,730,000</td>
</tr>
</tbody>
</table>
Table 2308.10.9—continued

ALLOWABLE SPANS FOR 2-INCH TONGUE-AND-GROOVE DECKING

<table>
<thead>
<tr>
<th>SPAN (feet)</th>
<th>LIVE LOAD (pound per square foot)</th>
<th>DEFLECTION LIMIT</th>
<th>BENDING STRESS (f) (pound per square inch)</th>
<th>MODULUS OF ELASTICITY (E) (pound per square inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Roofs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1/240 1/360</td>
<td>490</td>
<td>910,000 1,360,000</td>
</tr>
<tr>
<td>7.0</td>
<td>30</td>
<td>1/240 1/360</td>
<td>650</td>
<td>1,370,000 2,000,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>810</td>
<td>1,820,000 2,725,000</td>
</tr>
<tr>
<td>8.0</td>
<td>20</td>
<td>1/240 1/360</td>
<td>560</td>
<td>1,125,000 1,685,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240 1/360</td>
<td>750</td>
<td>1,685,000 2,530,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>930</td>
<td>2,250,000 3,380,000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1/360</td>
<td>840</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td></td>
<td>950</td>
<td>1,300,000</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td></td>
<td>1,060</td>
<td>1,600,000</td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1/360</td>
<td>840</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td></td>
<td>950</td>
<td>1,300,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kN/m², 1 pound per square inch = 0.00689 N/mm².

a. Spans are based on simple beam action with 10 pounds per square foot dead load and provisions for a 300-pound concentrated load on a 12-inch width of decking. Random layup is permitted in accordance with the provisions of Section 2308.10.9. Lumber thickness is 1 1/2 inches nominal.

2308.11.1 Number of stories

Structures of conventional light-frame construction shall not exceed two stories above grade plane in Seismic Design Category C.

2308.11.2 Concrete or masonry

Concrete or masonry walls and stone or masonry veneer shall not extend above a basement.

Exceptions:

1. Stone and masonry veneer is permitted to be used in the first two stories above grade plane or the first three stories above grade plane where the lowest story has concrete or masonry walls in Seismic Design Category B, provided that structural use panel wall bracing is used and the length of bracing provided is one- and one-half times the required length as determined in Table 2308.9.3(1).

2. Stone and masonry veneer is permitted to be used in the first story above grade plane or the first two stories above grade plane where the lowest story has concrete or masonry walls in Seismic Design Category B or C.

3. Stone and masonry veneer is permitted to be used in both stories of buildings with two stories above grade plane in Seismic Design Categories B and C, provided the following criteria are met:

 3.1. Type of brace per Section 2308.9.3 shall be Method 3 and the allowable shear capacity in accordance with Table 2306.3 shall be a minimum of 350 plf (5108 N/m).

 3.2. Braced wall panels in the second story shall be located in accordance with Section 2308.9.3 and not more than 25 feet (7620 mm) on center, and the total length of braced wall panels shall be not less than 25 percent of the braced wall line length. Braced wall panels in the first story shall be located in accordance with Section 2308.9.3 and not more than 25 feet (7620 mm) on center, and the total length of braced wall panels shall be not less than 45 percent of the braced wall line length.

 3.3. Hold-down connectors shall be provided at the ends of each braced wall panel for the second story to first story connection with an allowable design of 2,000 pounds (8896 N). Hold-down connectors shall be provided at the ends of each braced wall panel for the first story to foundation connection with an
allowable capacity of 3,900 pounds (17347 N). In all cases, the hold-down connector force shall be transferred to the foundation.

34. Cripple walls shall not be permitted.

2008.11.3 Framing and connection details. Framing and connection details shall conform to Sections 2008.11.3.1 through 2008.11.3.3.

2008.11.3.1 Anchorage. Braced wall lines shall be anchored in accordance with Section 2008.6 at foundations.

2008.11.3.2 Stepped footings. Where the height of a required braced wall panel extending from foundation to floor above varies more than 4 feet (1219 mm), the following construction shall be used:

1. Where the bottom of the footing is stepped and the lowest floor framing rests directly on a sill bolted to the footings, the sill shall be anchored as required in Section 2008.3.3.

2. Where the lowest floor framing rests directly on a sill bolted to a footing not less than 8 feet (2438 mm) in length along a line of bracing, the line shall be considered to be braced. The double plate of the cripple stud wall beyond the segment of footing extending to the lowest framed floor shall be spliced to the sill plate with metal ties, one on each side of the sill and plate. The metal ties shall not be less than 0.058 inch [1.47 mm (16 galvanized gage)] by 11/2 inches (38 mm) wide by 48 inches (1219 mm) with eight 16d common nails on each side of the splice location (see Figure 2308.11.3.2). The metal tie shall have a minimum yield of 33,000 pounds per square inch (psi) (227 MPa).

3. Where cripple walls occur between the top of the footing and the lowest floor framing, the bracing requirements for a story shall apply.

2008.11.3.3 Openings in horizontal diaphragms. Openings in horizontal diaphragms with a dimension perpendicular to the joist that is greater than 4 feet (1219 mm) shall be constructed in accordance with the following:

1. Blocking shall be provided beyond headers.

2. Metal ties not less than 0.058 inch [1.47 mm (16 galvanized gage)] by 11/2 inches (38 mm) wide with eight 16d common nails on each side of the header-joist intersection shall be provided (see Figure 2308.11.3.3). The metal ties shall have a minimum yield of 33,000 psi (227 MPa).

2008.12 Additional requirements for conventional construction in Seismic Design Category D or E. Structures of conventional light-frame construction in Seismic Design Category D or E, as determined in Section 1613, shall conform to Sections 2008.12.1 through 2008.12.9, in addition to the requirements for Seismic Design Category B or C in Section 2008.11.

2008.12.1 Number of stories. Structures of conventional light-frame construction shall not exceed one story above grade plane in Seismic Design Category D or E.

2008.12.2 Concrete or masonry. Concrete or masonry walls and stone or masonry veneer shall not extend above a basement.

Exception: Stone and masonry veneer is permitted to be used in the first story above grade plane in Seismic Design Category D, provided the following criteria are met:

1. Type of brace in accordance with Section 2008.9.3 shall be Method 3 and the allowable shear capacity in accordance with Table 2006.3 shall be a minimum of 350 plf (5108 N/m).

2. The bracing of the first story shall be located at each end and at least every 25 feet (7620 mm) o.c. but not less than 45 percent of the braced wall line.

3. Hold-down connectors shall be provided at the ends of braced walls for the first floor to foundation with an allowable capacity of 2,100 pounds (9341 N).

4. Cripple walls shall not be permitted.

2008.12.3 Braced wall line spacing. Spacing between interior and exterior braced wall lines shall not exceed 25 feet (7620 mm).

2008.12.4 Braced wall line sheathing. Braced wall lines shall be braced by one of the types of sheathing prescribed by Table 2008.12.4 as shown in Figure 2308.9.3. The sum of lengths of braced wall panels at each braced wall line shall conform to Table 2008.12.4. Braced wall panels shall be distributed along the length of the braced wall line and start at not more than 8 feet (2438 mm) from each end of the braced wall line. Panel sheathing joints shall occur over studs or blocking. Sheathing shall be fastened to studs, top and bottom plates and at panel edges occurring over blocking. Wall framing to which sheathing used for bracing is applied shall be nominal 2 inch wide [actual 1 1/2 inch (38 mm)] or larger members.

Cripple walls having a stud height exceeding 14 inches (356 mm) shall be considered a story for the purpose of this section and shall be braced as required for braced wall lines in accordance with Table 2008.12.4. Where interior braced wall lines occur without a continuous foundation below, the length of parallel exterior cripple wall bracing shall be one and one-half times the lengths required by Table 2008.12.4. Where the cripple wall sheathing type used is Type S-W and this additional length of bracing cannot be provided, the capacity of Type S-W sheathing shall be increased by reducing the spacing of fasteners along the perimeter of each piece of sheathing to 4 inches (102 mm) o.c.
WHERE FOOTING SECTION "A" IS MORE THAN 8'-0", PROVIDE METAL TIE 16GA x 1 1/2" x 4'-0" MIN., EACH SIDE W/ 8-16d COMMON NAILS EACH SIDE OF SPLICE

NOTE: WHERE FOOTING SECTION "A" IS LESS THAN 8'-0" LONG IN A 25'-0" TOTAL LENGTH WALL, PROVIDE BRACING AT CRIPPLE STUD WALL

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

FIGURE 2308.11.3.2
STEPPED FOOTING CONNECTION DETAILS

PLYWOOD SHEATHING

DIAPHRAGM OPENING

METAL TIE 16GA. x 1 1/2" x 4'-0" MIN., (4 TOTAL)
W/ 16-16d COMMON NAILS AS SHOWN

-OR-

METAL TIE 16GA. x 1 1/2" x (OPENING WIDTH + 4'-0") MIN.,
(2 TOTAL) W/ 24-16d COMMON NAILS

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

FIGURE 2308.11.3.3
OPENINGS IN HORIZONTAL DIAPHRAGMS
2308.12.5 Attachment of sheathing. Fastening of braced wall panel sheathing shall not be less than that prescribed in Table 2308.12.4 or 2304.9.1. Wall sheathing shall not be attached to framing members by adhesives.

2308.12.6 Irregular structures. Conventional light-frame construction shall not be used in irregular portions of structures in Seismic Design Category D or E. Such irregular portions of structures shall be designed to resist the forces specified in Chapter 16 to the extent such irregular features affect the performance of the conventional framing system. A portion of a structure shall be considered to be irregular where one or more of the conditions described in Items 1 through 6 below are present.

1. Where exterior braced wall panels are not in one plane vertically from the foundation to the uppermost story in which they are required, the structure shall be considered to be irregular [see Figure 2308.12.6(1)].

Exception: Floors with cantilevers or setbacks not exceeding four times the nominal depth of the floor joists [see Figure 2308.12.6(2)] are permitted to support braced wall panels provided:

1. Floor joists are 2 inches by 10 inches (51 mm by 254 mm) or larger and spaced not more than 16 inches (406 mm) o.c.

2. The ratio of the back span to the cantilever is at least 2:1.

3. Floor joists at ends of braced wall panels are doubled.

4. A continuous rim joist is connected to the ends of cantilevered joists. The rim joist is permitted to be spliced using a metal tie not less than 0.058 inch (1.47 mm) (16 galvanized gage) and 1/4 inches (38 mm) wide fastened with six 16d common nails on each side. The metal tie shall have a minimum yield of 33,000 psi (227 MPa).

5. Joists at setbacks or the end of cantilevered joists shall not carry gravity loads from more than a single story having uniform wall and roof loads, nor carry the reactions from headers having a span of 8 feet (2438 mm) or more.

2. Where a section of floor or roof is not laterally supported by braced wall lines on all edges, the structure shall be considered to be irregular [see Figure 2308.12.6(3)].

Exception: Portions of roofs or floors that do not support braced wall panels above are permitted to extend up to 6 feet (1829 mm) beyond a braced wall line [see Figure 2308.12.6(4)].

3. Where the end of a required braced wall panel extends more than 1 foot (305 mm) over an opening in the wall below, the structure shall be considered to be irregular. This requirement is applicable to braced wall panels offset in plane and to braced wall panels offset out of plane at permitted by the exception to Item 1 above in this section [see Figure 2308.12.6(5)].

Exception: Braced wall panels are permitted to extend over an opening not more than 8 feet (2438 mm) in width where the header is a 4-inch by 12-inch (102 mm by 305 mm) or larger member.

4. Where portions of a floor level are vertically offset such that the framing members on either side of the offset cannot be lapped or tied together in an approved manner, the structure shall be considered to be irregular [see Figure 2308.12.6(6)].

Exception: Framing supported directly by foundations need not be lapped or tied directly together.

5. Where braced wall lines are not perpendicular to each other, the structure shall be considered to be irregular [see Figure 2308.12.6(7)].

6. Where openings in floor and roof diaphragms having a maximum dimension greater than 50 percent of the
distance between lines of bracing or an area greater than 25 percent of the area between orthogonal pairs of braced wall lines are present, the structure shall be considered to be irregular [see Figure 2308.12.6(8)].

2308.12.7 Anchorage of exterior means of egress components. Exterior egress balconies, exterior exit stairways and similar means of egress components shall be positively anchored to the primary structure at not over 8 feet (2438 mm) o.c. or shall be designed for lateral forces. Such attachment shall not be accomplished by use of toenails or nails subject to withdrawal.

2308.12.8 Sill plate anchorage. Sill plates shall be anchored with anchor bolts with steel plate washers between the foundation sill plate and the nut, or approved anchor straps load rated in accordance with Section 1716.1. Such washers shall be a minimum of 0.229 inch by 3 inches by 3 inches (5.82 mm by 76 mm by 76 mm) in size. The hole in the plate washer is permitted to be diagonally slotted with a width of up to 3/16 inch (4.76 mm) larger than the bolt diameter and a slot length not to exceed 1 3/4 inches (44 mm), provided a standard cut washer is placed between the plate washer and the nut.

2308.12.9 Sill plate anchorage in Seismic Design Category E. Steel bolts with a minimum nominal diameter of 1 3/8 inch (15.9 mm) or approved foundation anchor straps load rated in accordance with Section 1716.1 and spaced to provide equivalent anchorage shall be used in Seismic Design Category E.

For SI: 1 foot = 304.8 mm.
FIGURE 2308.12.6(3)
FLOOR OR ROOF NOT SUPPORTED ON ALL EDGES

FIGURE 2308.12.6(4)
ROOF OR FLOOR EXTENSION BEYOND BRACED WALL LINE

FIGURE 2308.12.6(5)
BRACED WALL PANEL EXTENSION OVER OPENING
FLOOR JOISTS CANNOT BE TIED DIRECTLY TOGETHER

PORTIONS OF FLOOR LEVEL OFFSET VERTICALLY

BRACED WALL LINES ARE NOT PERPENDICULAR

MORE THAN b1/2 IS IRREGULAR

MORE THAN b2/2 IS IRREGULAR

OPENING LIMITATIONS FOR FLOOR AND ROOF DIAPHRAGMS
Califonia Building Code-Matrix Adoption Table

Chapter 24 - Glass and Glazing

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD 1</th>
<th>2</th>
<th>1-AC</th>
<th>DSA 1</th>
<th>2</th>
<th>SS</th>
<th>SS/CC</th>
<th>OSHPD 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>2403.2.1</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Table 2403.2.1</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal’s adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 24
GLASS AND GLAZING

SECTION 2401
GENERAL

2401.1 Scope. The provisions of this chapter shall govern the materials, design, construction and quality of glass, light-transmitting ceramic and light-transmitting plastic panels for exterior and interior use in both vertical and sloped applications in buildings and structures.

2401.2 Glazing replacement. The installation of replacement glass shall be as required for new installations.

SECTION 2402
DEFINITIONS

2402.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

DALLE GLASS. A decorative composite glazing material made of individual pieces of glass that are embedded in a cast matrix of concrete or epoxy.

DECORATIVE GLASS. A carved, leaded or Dalle glass or glazing material whose purpose is decorative or artistic, not functional; whose coloring, texture or other design qualities or components cannot be removed without destroying the glazing material and whose surface, or assembly into which it is incorporated, is divided into segments.

SECTION 2403
GENERAL REQUIREMENTS FOR GLASS

2403.1 Identification. Each pane shall bear the manufacturer’s mark designating the type and thickness of the glass or glazing material. The identification shall not be omitted unless approved and an affidavit is furnished by the glazing contractor certifying that each light is glazed in accordance with approved construction documents that comply with the provisions of this chapter. Safety glazing shall be identified in accordance with Section 2406.2.

Each pane of tempered glass, except tempered spandrel glass, shall be permanently identified by the manufacturer. The identification mark shall be acid etched, sand blasted, ceramic fired, laser etched, embossed or of a type that, once applied, cannot be removed without being destroyed.

Tempered spandrel glass shall be provided with a removable paper marking by the manufacturer.

2403.2 Glass supports. Where one or more sides of any pane of glass are not firmly supported, or are subjected to unusual load conditions, detailed construction documents, detailed shop drawings and analysis or test data assuring safe performance for the specific installation shall be prepared by a registered design professional.

2403.2.1 Additional Requirements. [DSA-SS, DSA-SS/CC and OSHPD 1 & 4] In addition to the requirements of Section 2403.2, glass supports shall comply with the following:

1. The construction documents and analysis or test data required per Section 2403.2 shall be submitted to the enforcement agency for approval.

2. Glass firmly supported on all four edges shall be glazed with minimum laps and edge clearances set forth in Table 2403.2.1.

2403.3 Framing. To be considered firmly supported, the framing members for each individual pane of glass shall be designed so the deflection of the edge of the glass perpendicular to the glass plane shall not exceed \(\frac{1}{175} \) of the glass edge length or \(\frac{1}{8} \) inch (19.1 mm), whichever is less, when subjected to the larger of the positive or negative load where loads are combined as specified in Section 1605.

2403.4 Interior glazed areas. Where interior glazing is installed adjacent to a walking surface, the differential deflection of two adjacent unsupported edges shall not be greater than the thickness of the panels when a force of 50 pounds per linear foot (plf) (730 N/m) is applied horizontally to one panel at any point up to 42 inches (1067 mm) above the walking surface.

2403.5 Louvered windows or jalousies. Float, wired and patterned glass in louvered windows and jalousies shall be no thinner than nominal \(\frac{3}{16} \) inch (4.8 mm) and no longer than 48 inches (1219 mm). Exposed glass edges shall be smooth.

Wired glass with wire exposed on longitudinal edges shall not be used in louvered windows or jalousies.

Where other glass types are used, the design shall be submitted to the building official for approval.

SECTION 2404
WIND, SNOW, SEISMIC AND DEAD LOADS ON GLASS

2404.1 Vertical glass. Glass sloped 15 degrees (0.26 rad) or less from vertical in windows, curtain and window walls, doors and other exterior applications shall be designed to resist the wind loads in Section 1609 for components and cladding. Glass in glazed curtain walls, glazed storefronts and glazed partitions shall meet the seismic requirements of ASCE 7, Section 13.5.9. The load resistance of glass under uniform load shall be determined in accordance with ASTM E 1300.

The design of vertical glazing shall be based on the following equation:

\[
F_{gw} \leq F_{ga}
\]

(Equation 24-1)

where:

\[
F_{gw} = \text{Wind load on the glass computed in accordance with Section 1609.}
\]

\[
F_{ga} = \text{Short duration load on the glass as determined in accordance with ASTM E 1300.}
\]
Table 2403.2.1 [DSA-SS, DSA-SSCC and OSHPD 1 & 4]
Minimum Glazing Requirements

<table>
<thead>
<tr>
<th>GLASS AREA</th>
<th>Fixed Windows and Openable Windows Other Than Horizontal Siding</th>
<th>Sliding Doors and Horizontal Sliding Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UP TO 6 SO. FT.</td>
<td>6 TO 14 SO. FT.</td>
</tr>
<tr>
<td>UPTO6 6TO14</td>
<td>1/4"</td>
<td>1/4"</td>
</tr>
<tr>
<td>1. Minimum Frame Lap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Minimum Glass Edge Clearance</td>
<td>1/8" a, b</td>
<td>1/8" a, b</td>
</tr>
<tr>
<td>3. Continuous Glazing Rabbet and Glass Retainer c</td>
<td>Required above third story</td>
<td>Required</td>
</tr>
<tr>
<td>4. Resilient Setting Material d</td>
<td>Not Required</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>UP TO 14 SO. FT.</td>
<td>14 TO 32 SO. FT.</td>
</tr>
<tr>
<td>UPTO14</td>
<td>1/4"</td>
<td>5/16"</td>
</tr>
<tr>
<td>5. Minimum Glass Frame Lap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimum Glass Edge Clearance</td>
<td>1/8" b</td>
<td>3/16"</td>
</tr>
<tr>
<td>7. Continuous Glazing Rabbet and Glass Retainer c</td>
<td>Required above third story</td>
<td>Required</td>
</tr>
<tr>
<td>8. Resilient Setting Material d</td>
<td>Not Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

* a. Glass edge clearance in fixed openings shall not be less than required to provide for wind and earthquake drift.
* b. Glass edge clearance at all sides of pane shall be a minimum of 1/16 inch (4.8 mm) where height of glass exceeds 3 feet (914 mm).
* c. Glass retainers such as metal, wood or vinyl face stops, glazing beads, gaskets, glazing clips and glazing channels shall be of sufficient strength and fixation to serve this purpose.
* d. Resilient setting material shall include preformed rubber or vinyl plastic gaskets or other materials which are proved to the satisfaction of the building official to remain resilient.

2404.2 Sloped glass
Glass sloped more than 15 degrees (0.26 rad) from vertical in skylights, sunrooms, sloped roofs and other exterior applications shall be designed to resist the most critical of the following combinations of loads.

\[
F_g = W_o - D \quad \text{(Equation 24-2)}
\]

\[
F_g = W_i + D + 0.5 S \quad \text{(Equation 24-3)}
\]

\[
F_g = 0.5 W_i + D + S \quad \text{(Equation 24-4)}
\]

where:

- \(D \) = Glass dead load psf (kN/m²).
- For glass sloped 30 degrees (0.52 rad) or less from horizontal,
 - \(= 13 t_g \) (For SI: 0.0245 \(t_g \)).
 - For glass sloped more than 30 degrees (0.52 rad) from horizontal,
 - \(= 13 t_g \cos \theta \) (For SI: 0.0245 \(t_g \cos \theta \)).

- \(F_g \) = Total load, psf (kN/m²) on glass.
- \(S \) = Snow load, psf (kN/m²) as determined in Section 1608.
- \(t_g \) = Total glass thickness, inches (mm) of glass panes and plies.

\(W_i \) = Inward wind force, psf (kN/m²) as calculated in Section 1609.

\(W_o \) = Outward wind force, psf (kN/m²) as calculated in Section 1609.

\(\theta \) = Angle of slope from horizontal.

Exception: Unit skylights shall be designed in accordance with Section 2405.5.

The design of sloped glazing shall be based on the following equation:

\[
F_g \leq F_{ga} \quad \text{(Equation 24-5)}
\]

where:

- \(F_g \) = Total load on the glass determined from the load combinations above.
- \(F_{ga} \) = Short duration load resistance of the glass as determined according to ASTM E 1300 for Equations 24-2 and 24-3; or the long duration load resistance of the glass as determined according to ASTM E 1300 for Equation 24-4.

2404.3 Wired, patterned and sandblasted glass

2404.3.1 Vertical wired glass
Wired glass sloped 15 degrees (0.26 rad) or less from vertical in windows, curtain
and window walls, doors and other exterior applications shall be designed to resist the wind loads in Section 1609 for components and cladding according to the following equation:

\[F_{gw} < 0.5 F_{ge} \]
\[\text{(Equation 24-6)} \]

where:

- \(F_{gw} \) = Is the wind load on the glass computed per Section 1609.
- \(F_{ge} \) = Nonfactored load from ASTM E 1300 using a thickness designation for monolithic glass that is not greater than the thickness of wired glass.

2404.3.2 Sloped wired glass. Wired glass sloped more than 15 degrees (0.26 rad) from vertical in skylights, sunspaces, sloped roofs and other exterior applications shall be designed to resist the most critical of the combinations of loads from Section 2404.2.

For Equations 24-2 and 24-3:

\[F_g < 0.5 F_{ge} \]
\[\text{(Equation 24-7)} \]

For Equation 24-4:

\[F_g < 0.3 F_{ge} \]
\[\text{(Equation 24-8)} \]

where:

- \(F_g \) = Total load on the glass.
- \(F_{ge} \) = Nonfactored load from ASTM E 1300.

2404.3.3 Vertical patterned glass. Patterned glass sloped 15 degrees (0.26 rad) or less from vertical in windows, curtain and window walls, doors and other exterior applications shall be designed to resist the wind loads in Section 1609 for components and cladding according to the following equation:

\[F_{gw} < 1.0 F_{ge} \]
\[\text{(Equation 24-9)} \]

where:

- \(F_{gw} \) = Wind load on the glass computed per Section 1609.
- \(F_{ge} \) = Nonfactored load from ASTM E 1300. The value for patterned glass shall be based on the thinnest part of the glass. Interpolation between the nonfactored load charts in ASTM E 1300 shall be permitted.

2404.3.4 Sloped patterned glass. Patterned glass sloped more than 15 degrees (0.26 rad) from vertical in skylights, sunspaces, sloped roofs and other exterior applications shall be designed to resist the most critical of the combinations of loads from Section 2404.2.

For Equations 24-2 and 24-3:

\[F_g < 1.0 F_{ge} \]
\[\text{(Equation 24-10)} \]

For Equation 24-4:

\[F_g < 0.6 F_{ge} \]
\[\text{(Equation 24-11)} \]

where

- \(F_g \) = Total load on the glass.
- \(F_{ge} \) = Nonfactored load from ASTM E 1300. The value for patterned glass shall be based on the thinnest part of the glass. Interpolation between the nonfactored load charts in ASTM E 1300 shall be permitted.

2404.3.5 Vertical sandblasted glass. Sandblasted glass sloped 15 degrees (0.26 rad) or less from vertical in windows, curtain and window walls, doors, and other exterior applications shall be designed to resist the wind loads in Section 1609 for components and cladding according to the following equation:

\[F_g < 0.5 F_{ge} \]
\[\text{(Equation 24-12)} \]

where:

- \(F_g \) = Total load on the glass.
- \(F_{ge} \) = Nonfactored load from ASTM E 1300. The value for sandblasted glass is for moderate levels of sandblasting.

2404.4 Other designs. For designs outside the scope of this section, an analysis or test data for the specific installation shall be prepared by a registered design professional.

SECTION 2405 SLOped GLAZING AND SKYLIGHTS

2405.1 Scope. This section applies to the installation of glass and other transparent, translucent or opaque glazing material installed at a slope more than 15 degrees (0.26 rad) from the vertical plane, including glazing materials in skylights, roofs and sloped walls.

2405.2 Allowable glazing materials and limitations. Sloped glazing shall be any of the following materials, subject to the listed limitations.

1. For monolithic glazing systems, the glazing material of the single light or layer shall be laminated glass with a minimum 30-mil (0.76 mm) polycarbonate interlayer, wired glass, light-transmitting plastic materials meeting the requirements of Section 2607, heat-strengthened glass or fully tempered glass.

2. For multiple-layer glazing systems, each light or layer shall consist of any of the glazing materials specified in Item 1 above.

Annealed glass is permitted to be used as specified within Exceptions 2 and 3 of Section 2405.3.

For additional requirements for plastic skylights, see Section 2610. Glass-block construction shall conform to the requirements of Sections 2101.2.5.

2405.3 Screening. Where used in monolithic glazing systems, heat-strengthened glass and fully tempered glass shall have screens installed below the glazing material. The screens and their fastenings shall: (1) be capable of supporting twice the weight of the glazing; (2) be firmly and substantially fastened to the framing members and (3) be installed within 4 inches (102 mm) of the glass. The screens shall be constructed of a noncombustible material not thinner than No. 12 B&S gage (0.0808 inch) with mesh not larger than 1 inch by 1 inch (25 mm by 25 mm). In a corrosive atmosphere, structurally equivalent
noncorrosive screen materials shall be used. Heat-strengthened glass, fully tempered glass and wired glass, when used in multiple-layer glazing systems as the bottom glass layer over the walking surface, shall be equipped with screening that conforms to the requirements for monolithic glazing systems.

Exception: In monolithic and multiple-layer sloped glazing systems, the following applies:

1. Fully tempered glass installed without protective screens where glazed between intervening floors at a slope of 30 degrees (0.52 rad) or less from the vertical plane shall have the highest point of the glass 10 feet (3048 mm) or less above the walking surface.

2. Screens are not required below any glazing material, including annealed glass, where the walking surface below the glazing material is permanently protected from the risk of falling glass or the area below the glazing material is not a walking surface.

3. Any glazing material, including annealed glass, is permitted to be installed without screens in the sloped glazing systems of commercial or detached noncombustible greenhouses used exclusively for growing plants and not open to the public, provided that the height of the greenhouse at the ridge does not exceed 30 feet (9144 mm) above grade.

4. Screens shall not be required within individual dwelling units in Groups R-2, R-3 and R-4 where fully tempered glass is used as single glazing or as both panes in an insulating glass unit, and the following conditions are met:

 a. Each pane of the glass is 16 square feet (1.5 m²) or less in area.

 b. The highest point of the glass is 12 feet (3658 mm) or less above any walking surface or other accessible area.

 c. The glass thickness is 1/16 inch (4.8 mm) or less.

5. Screens shall not be required for laminated glass with a 15-mil (0.38 mm) polystyrene or equivalent interlayer used within individual dwelling units in Groups R-2, R-3 and R-4 within the following limits:

 a. Each pane of glass is 16 square feet (1.5 m²) or less in area.

 b. The highest point of the glass is 12 feet (3658 mm) or less above a walking surface or other accessible area.

2405.4 Framing. In Type I and II construction, sloped glazing and skylight frames shall be constructed of noncombustible materials. In structures where acid fumes deleterious to metal are incidental to the use of the buildings, approved pressure-treated wood or other approved noncorrosive materials are permitted to be used for sash and frames. Framing supporting sloped glazing and skylights shall be designed to resist the tributary roof loads in Chapter 16. Skylights set at an angle of less than 45 degrees (0.79 rad) from the horizontal plane shall be mounted at least 4 inches (102 mm) above the plane of the roof on a curb constructed as required for the frame. Skylights shall not be installed in the plane of the roof where the roof pitch is less than 45 degrees (0.79 rad) from the horizontal.

Exception: Installation of a skylight without a curb shall be permitted on roofs with a minimum slope of 14 degrees (three units vertical in 12 units horizontal) in Group R-3 occupancies. All unit skylights installed in a roof with a pitch flatter than 14 degrees (0.25 rad) shall be mounted at least 4 inches (102 mm) above the plane of the roof on a curb constructed as required for the frame unless otherwise specified in the manufacturer's installation instructions.

2405.5 Unit skylights. Unit skylights shall be tested and labeled as complying with AAMA/WDMA/CSA 101/1.5.2/A440. The label shall state the name of the manufacturer, the approved labeling agency, the product designation and the performance grade rating as specified in AAMA/WDMA/CSA 101/1.5.2/A440. If the product manufacturer has chosen to have the performance grade of the skylight rated separately for positive and negative design pressure, then the label shall state both performance grade ratings as specified in AAMA/WDMA/CSA 101/1.5.2/A440 and the skylight shall comply with Section 2405.5.2. If the skylight is not rated separately for positive and negative pressure, then the performance grade rating shown on the label shall be the performance grade rating determined in accordance with AAMA/WDMA/CSA 101/1.5.2/A440 for both positive and negative design pressure and the skylight shall conform to Section 2405.5.1.

2405.5.1 Unit skylights rated for the same performance grade for both positive and negative design pressure. The design of unit skylights shall be based on the following equation:

\[F_g \leq PG \]

(Equation 24-13)

where:

\[F_g = \text{Maximum load on the skylight determined from Equations 24-2 through 24-4 in Section 2404.2.} \]

\[PG = \text{Performance grade rating of the skylight.} \]

2405.5.2 Unit skylights rated for separate performance grades for positive and negative design pressure. The design of unit skylights rated for performance grade for both positive and negative design pressures shall be based on the following equations:

\[F_{g1} \leq PG_{pos} \]

(Equation 24-14)

\[F_{g0} \leq PG_{neg} \]

(Equation 24-15)

where:

\[PG_{pos} = \text{Performance grade rating of the skylight under positive design pressure;} \]

\[PG_{neg} = \text{Performance grade rating of the skylight under negative design pressure; and} \]

\[F_g \text{ and } F_g, \text{ are determined in accordance with the following:} \]

For \(W_o \geq D \), where:

\[W_o = \text{Outward wind force, psf (kN/m²) as calculated in Section 1609.} \]
\[D = \text{The dead weight of the glazing, psf (kN/m}^2) \text{ as determined in Section 2404.2 for glass, or by the weight of the plastic, psf (kN/m}^2) \text{ for plastic glazing.} \]

\[F_{gi} = \text{Maximum load on the skylight determined from Equations 24-3 and 24-4 in Section 2404.2.} \]

\[F_{go} = \text{Maximum load on the skylight determined from Equation 24-2.} \]

For \(W_o < D \), where:

\[W_o = \text{Is the outward wind force, psf (kN/m}^2) \text{ as calculated in Section 1609.} \]

\[D = \text{The dead weight of the glazing, psf (kN/m}^2) \text{ as determined in Section 2404.2 for glass, or by the weight of the plastic for plastic glazing.} \]

\[F_{gi} = \text{Maximum load on the skylight determined from Equations 24-2 through 24-4 in Section 2404.2.} \]

\[F_{go} = 0. \]

SECTION 2406

SAFETY GLAZING

2406.1 Human impact loads. Individual glazed areas, including glass mirrors, in hazardous locations as defined in Section 2406.4 shall comply with Sections 2406.1.1 through 2406.1.4.

2406.1.1 Impact test. Except as provided in Sections 2406.1.2 through 2406.1.4, all glazing shall pass the impact test requirements of Section 2406.2.

2406.1.2 Plastic glazing. Plastic glazing shall meet the weathering requirements of ANSI Z97.1.

2406.1.3 Glass block. Glass-block walls shall comply with Section 2101.2.5.

2406.1.4 Louvered windows and jalousies. Louvered windows and jalousies shall comply with Section 2403.5.

2406.2 Impact test. Where required by other sections of this code, glazing shall be tested in accordance with CPSC 16 CFR 1201. Glazing shall comply with the test criteria for Category I or II as indicated in Table 2406.2(1).

Exception: Glazing not in doors or enclosures for hot tubs, whirlpools, saunas, steam rooms, bathtubs and showers shall be permitted to be tested in accordance with ANSI Z97.1. Glazing shall comply with the test criteria for Class A or B as indicated in Table 2406.2(2).

2406.3 Identification of safety glazing. Except as indicated in Section 2406.3.1, each pane of safety glazing installed in hazardous locations shall be identified by a manufacturer’s designation specifying who applied the designation, the manufacturer or installer and the safety glazing standard with which it complies, as well as the information specified in Section 2403.1. The designation shall be acid etched, sand blasted, ceramic fired, laser etched, embossed or of a type that once applied, cannot be removed without being destroyed. A label as defined in Section 202.1 and meeting the requirements of this section shall be permitted in lieu of the manufacturer’s designation.

Exceptions:

1. For other than tempered glass, manufacturer’s designations are not required, provided the building official approves the use of a certificate, affidavit or other evidence confirming compliance with this code.

2. Tempered spandrel glass is permitted to be identified by the manufacturer with a removable paper designation.

TABLE 2406.2(1)

<table>
<thead>
<tr>
<th>EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE</th>
<th>GLAZING IN STORM OR COMBINATION DOORS (Category class)</th>
<th>GLAZING IN DOORS (Category class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 7 OF SECTION 2406.4 (Category class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 6 OF SECTION 2406.4 (Category class)</th>
<th>DOORS AND ENCLOSURES REGULATED BY ITEM 5 OF SECTION 2406.4 (Category class)</th>
<th>SLIDING GLASS DOORS PATIO TYPE (Category class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 square feet or less</td>
<td>I</td>
<td>I</td>
<td>No requirement</td>
<td>I</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>More than 9 square feet</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
</tbody>
</table>

TABLE 2406.2(2)

<table>
<thead>
<tr>
<th>EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE</th>
<th>GLAZED PANELS REGULATED BY ITEM 7 OF SECTION 2406.4 (Category class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 6 OF SECTION 2406.4 (Category class)</th>
<th>DOORS AND ENCLOSURES REGULATED BY ITEM 5 OF SECTION 2406.4 (Category class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 square feet or less</td>
<td>No requirement</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>More than 9 square feet</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

TABLE 2406.2(1)

<table>
<thead>
<tr>
<th>EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE</th>
<th>SLIDING GLASS DOORS PATIO TYPE (Category class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 square feet or less</td>
<td>II</td>
</tr>
<tr>
<td>More than 9 square feet</td>
<td>II</td>
</tr>
</tbody>
</table>

TABLE 2406.2(2)

<table>
<thead>
<tr>
<th>EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE</th>
<th>GLAZED PANELS REGULATED BY ITEM 7 OF SECTION 2406.4 (Category class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 6 OF SECTION 2406.4 (Category class)</th>
<th>DOORS AND ENCLOSURES REGULATED BY ITEM 5 OF SECTION 2406.4 (Category class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 square feet or less</td>
<td>No requirement</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>More than 9 square feet</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

TABLE 2406.2(1)

For SI: 1 square foot = 0.0929 m².

TABLE 2406.2(2)

For SI: 1 square foot = 0.0929 m².

a. Use is only permitted by the exception to Section 2406.2.
2406.3.1 Multi-pane assemblies. Multi-pane glazed assemblies having individual panes not exceeding 1 square foot (0.09 m²) in exposed areas shall have at least one pane in the assembly marked as indicated in Section 2406.3. Other panes in the assembly shall be marked “CPSC 16 CFR 1201” or “ANSI Z97.1,” as appropriate.

2406.4 Hazardous locations. The following shall be considered specific hazardous locations requiring safety glazing materials:

1. Glazing in swinging doors except jalousies (see Section 2406.4.1).
2. Glazing in fixed and sliding panels of sliding door assemblies and panels in sliding and bifold closet door assemblies.
3. Glazing in storm doors.
4. Glazing in unframed swinging doors.
5. Glazing in doors and enclosures for hot tubs, whirlpools, saunas, steam rooms, bathtubs and showers. Glazing in any portion of a building wall enclosing these compartments where the bottom exposed edge of the glazing is less than 60 inches (1524 mm) above a standing surface.
6. Glazing in an individual fixed or operable panel adjacent to a door where the nearest exposed edge of the glazing is within a 24-inch (610 mm) arc of either vertical edge of the door in a closed position and where the bottom exposed edge of the glazing is less than 60 inches (1524 mm) above the walking surface.

Exceptions:

1. Panels where there is an intervening wall or other permanent barrier between the door and glazing.
2. Where access through the door is to a closet or storage area 3 feet (914 mm) or less in depth. Glazing in this application shall comply with Section 2406.4, Item 7.
3. Glazing in walls perpendicular to the plane of the door in a closed position, other than the wall towards which the door swings when opened, in one- and two-family dwellings or within dwelling units in Group R-2.

7. Glazing in an individual fixed or operable panel, other than in those locations described in preceding Items 5 and 6, which meets all of the following conditions:

7.1. Exposed area of an individual pane greater than 9 square feet (0.84 m²);
7.2. Exposed bottom edge less than 18 inches (457 mm) above the floor;
7.3. Exposed top edge greater than 36 inches (914 mm) above the floor; and
7.4. One or more walking surface(s) within 36 inches (914 mm) horizontally of the plane of the glazing.

Exception: Safety glazing for Item 7 is not required for the following installations:

1. A protective bar 1 1/2 inches (38 mm) or more in height, capable of withstanding a horizontal load of 50 pounds plf (730 N/m) without contacting the glass, is installed on the accessible sides of the glazing 34 inches to 38 inches (864 mm to 965 mm) above the floor.
2. The outboard pane in insulating glass units or multiple glazing where the bottom exposed edge of the glass is 25 feet (7620 mm) or more above any grade, roof, walking surface or other horizontal or sloped (within 45 degrees of horizontal) (0.78 rad) surface adjacent to the glass exterior.

8. Glazing in guards and railings, including structural baluster panels and nonstructural in-fill panels, regardless of area or height above a walking surface.

9. Glazing in walls and fences enclosing indoor and outdoor swimming pools, hot tubs and spas where all of the following conditions are present:

9.1. The bottom edge of the glazing on the pool or spa side is less than 60 inches (1524 mm) above a walking surface on the pool or spa side of the glazing; and
9.2. The glazing is within 60 inches (1524 mm) horizontally of the water’s edge of a swimming pool or spa.

10. Glazing adjacent to stairways, landings and ramps within 36 inches (914 mm) horizontally of a walking surface; when the exposed surface of the glass is less than 60 inches (1524 mm) above the plane of the adjacent walking surface.

11. Glazing adjacent to stairways within 60 inches (1524 mm) horizontally of the bottom tread of a stairway in any direction when the exposed surface of the glass is less than 60 inches (1524 mm) above the nose of the tread.

Exception: Safety glazing for Item 10 or 11 is not required for the following installations where:

1. The side of a stairway, landing or ramp which has a guard or handrail, including balusters or in-fill panels, complying with the provisions of Sections 1013 and 1607.7; and
2. The plane of the glass is greater than 18 inches (457 mm) from the railing.
2406.4.1 Exceptions. The following products, materials and uses shall not be considered specific hazardous locations:

1. Openings in doors through which a 3-inch (76 mm) sphere is unable to pass.
2. Decorative glass in Section 2406.4, Item 1, 6 or 7.
3. Glazing materials used as curved glazed panels in revolving doors.
5. Glass-block panels complying with Section 2101.2.5.
6. Louvered windows and jalousies complying with the requirements of Section 2403.5.
7. Mirrors and other glass panels mounted or hung on a surface that provides a continuous backing support.

2406.5 Fire department access panels. Fire department glass access panels shall be of tempered glass. For insulating glass units, all panes shall be tempered glass.

SECTION 2407
GLASS IN HANDRAILS AND GUARDS

2407.1 Materials. Glass used as a handrail assembly or a guard section shall be constructed of either single fully tempered glass, laminated fully tempered glass or laminated heat-strengthened glass. Glazing in railing in-fill panels shall be of an approved safety glazing material that conforms to the provisions of Section 2406.1.1. For all glazing types, the minimum nominal thickness shall be 1/4 inch (6.4 mm). Fully tempered glass and laminated glass shall comply with Category II of CPSC 16 CFR 1201 or Class A of ANSI Z97.1, listed in Chapter 35.

2407.1.1 Loads. The panels and their support system shall be designed to withstand the loads specified in Section 1607.7. A safety factor of four shall be used.

2407.1.2 Support. Each handrail or guard section shall be supported by a minimum of three glass balusters or shall be otherwise supported to remain in place should one baluster panel fail. Glass balusters shall not be installed without an attached handrail or guard.

Exception: A top rail shall not be required where the glass balusters are laminated glass with two or more glass plies of equal thickness and the same glass type when approved by the building official. The panels shall be designed to withstand the loads specified in Section 1607.7.

2407.1.3 Parking garages. Glazing materials shall not be installed in handrails or guards in parking garages except for pedestrian areas not exposed to impact from vehicles.

2407.1.4 Glazing in wind-borne debris regions. Glazing installed in in-fill panels or balusters in wind-borne debris regions shall comply with the following:

2407.1.4.1 Ballusters and in-fill panels. Glass installed in exterior railing in-fill panels or balusters shall be laminated glass complying with Category II of CPSC 16 CFR 1201 or Class A of ANSI Z97.1.

2407.1.4.2 Glass supporting top rail. When the top rail is supported by glass, the assembly shall be tested according to the impact requirements of Section 1609.1.2. The top rail shall remain in place after impact.

SECTION 2408
GLAZING IN ATHLETIC FACILITIES

2408.1 General. Glazing in athletic facilities and similar uses subject to impact loads, which forms whole or partial wall sections or which is used as a door or part of a door, shall comply with this section.

2408.2 Racquetball and squash courts.

2408.2.1 Testing. Test methods and loads for individual glazed areas in racquetball and squash courts subject to impact loads shall conform to those of CPSC 16 CFR or ANSI Z97.1, listed in Chapter 35, with impacts being applied at a height of 59 inches (1499 mm) above the playing surface to an actual or simulated glass wall installation with fixtures, fittings and methods of assembly identical to those used in practice.

Glass walls shall comply with the following conditions:

1. A glass wall in a racquetball or squash court, or similar use subject to impact loads, shall remain intact following a test impact.
2. The deflection of such walls shall not be greater than 1 1/2 inches (38 mm) at the point of impact for a drop height of 48 inches (1219 mm).

Glass doors shall comply with the following conditions:

1. Glass doors shall remain intact following a test impact at the prescribed height in the center of the door.
2. The relative deflection between the edge of a glass door and the adjacent wall shall not exceed the thickness of the wall plus 1/2 inch (12.7 mm) for a drop height of 48 inches (1219 mm).

2408.3 Gymnasiums and basketball courts. Glazing in multipurpose gymnasiums, basketball courts and similar athletic facilities subject to human impact loads shall comply with Category II of CPSC 16 CFR 1201 or Class A of ANSI Z97.1, listed in Chapter 35.

SECTION 2409
GLASS IN ELEVATOR HOISTWAYS
AND ELEVATOR CARS

2409.1 Glass in elevator hoistway enclosures. Glass in elevator hoistway enclosures and hoistway doors shall be laminated glass conforming to ANSI Z97.1 or CPSC 16 CFR Part 1201.

2409.1.1 Fire-resistance-rated hoistways. Glass installed in hoistways and hoistway doors where the hoistway is required to have a fire-resistance rating shall also comply with Section 715.

2409.1.2 Glass hoistway doors. The glass in glass hoistway doors shall be not less than 60 percent of the total visible door panel surface area as seen from the landing side.
2409.2 Glass visions panels. Glass in vision panels in elevator hoistway doors shall be permitted to be any transparent glazing material not less than \(\frac{1}{4} \) inches (0.64 mm) in thickness conforming to Class A in accordance with ANSI Z97.1 or Category II in accordance with CPSC 16 CFR Part 1201. The area of any single vision panel shall not be less than 24 square inches \((15484 \text{ mm}^2) \) and the total area of one or more vision panels in any hoistway door shall be not more than 85 square inches \((54839 \text{ mm}^2) \).

2409.3 Glass in elevator cars.

2409.3.1 Glass types. Glass in elevator car enclosures, glass elevator car doors and glass used for lining walls and ceilings of elevator cars shall be laminated glass conforming to Class A in accordance with ANSI Z97.1 or Category II in accordance with CPSC 16 CFR Part 1201.

Exception: Tempered glass shall be permitted to be used for lining walls and ceilings of elevator cars provided:

1. The glass is bonded to a nonpolymeric coating, sheeting or film backing having a physical integrity to hold the fragments when the glass breaks.
2. The glass is not subjected to further treatment such as sandblasting; etching; heat treatment or painting that could alter the original properties of the glass.
3. The glass is tested to the acceptance criteria for laminated glass as specified for Class A in accordance with ANSI Z97.1 or Category II in accordance with CPSC 16 CFR Part 1201.

2409.3.2 Surface area. The glass in glass elevator car doors shall be not less than 60 percent of the total visible door panel surface area as seen from the car side of the doors.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 25 – GYPSUM BOARD AND PLASTER

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter/Section

- 2501.2
- 2503.2
- 2504.2
- 2504.2.1
- 2505.3
- 2507.3
- 2508.5.6
- 2510.7.1

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 25
GYPSUM BOARD AND PLASTER

SECTION 2501
GENERAL

2501.1 Scope.

2501.1.1 General. Provisions of this chapter shall govern the materials, design, construction and quality of gypsum board, lath, gypsum plaster and cement plaster.

2501.1.2 Performance. Lathing, plastering and gypsum board construction shall be done in the manner and with the materials specified in this chapter, and when required for fire protection, shall also comply with the provisions of Chapter 7.

2501.1.3 Other materials. Other approved wall or ceiling coverings shall be permitted to be installed in accordance with the recommendations of the manufacturer and the conditions of approval.

2501.2 Additional requirements. Details of attachment for wall and ceiling coverings which are not provided for in these regulations shall be detailed in the approved construction documents.

SECTION 2502
DEFINITIONS

2502.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

CEMENT PLASTER. A mixture of portland or blended cement, portland cement or blended cement and hydrated lime, masonry cement or plastic cement and aggregate and other approved materials as specified in this code.

EXTERIOR SURFACES. Weather-exposed surfaces.

GYPSUM BOARD. Gypsum wallboard, gypsum sheathing, gypsum base for gypsum veneer plaster, exterior gypsum soffit board, predecorated gypsum board or water-resistant gypsum backing board complying with the standards listed in Tables 2506.2, 2507.2 and Chapter 35.

GYPSUM PLASTER. A mixture of calcined gypsum or calcined gypsum and lime and aggregate and other approved materials as specified in this code.

GYPSUM VENEER PLASTER. Gypsum plaster applied to an approved base in one or more coats normally not exceeding 1/4 inch (6.4 mm) in total thickness.

INTERIOR SURFACES. Surfaces other than weather-exposed surfaces.

WEATHER-EXPOSED SURFACES. Surfaces of walls, ceilings, floors, roofs, soffits and similar surfaces exposed to the weather except the following:

1. Ceilings and roof soffits enclosed by walls, fascia, bulkheads or beams that extend a minimum of 12 inches (305 mm) below such ceiling or roof soffits.

2. Walls or portions of walls beneath an unenclosed roof area, where located a horizontal distance from an open exterior opening equal to at least twice the height of the opening.

3. Ceiling and roof soffits located a minimum horizontal distance of 10 feet (3048 mm) from the outer edges of the ceiling or roof soffits.

WIRE BACKING. Horizontal strands of tautened wire attached to surfaces of vertical supports which, when covered with the building paper, provide a backing for cement plaster.

SECTION 2503
INSPECTION

2503.1 Inspection. Lath and gypsum board shall be inspected in accordance with Section 110.3.5, Chapter 1, Division II.

2503.2 Additional requirements for inspection and testing. Details of attachment for wall and ceiling coverings which are not provided for in these regulations shall be detailed in the approved construction documents.

1. Lath and gypsum board shall be inspected in accordance with Chapter 17A and Title 24, Part 1.

2. No lath or gypsum wallboard or their attachments shall be covered or finished until it has been inspected and approved by the inspector of record and/or special inspector.

3. The enforcement agency may require tests in accordance with Table 2506.2 to determine compliance with the provisions of these regulations.

4. The testing of gypsum and gypsum products shall conform with standards listed in Table 2506.2.

SECTION 2504
VERTICAL AND HORIZONTAL ASSEMBLIES

2504.1 Scope. The following requirements shall be met where construction involves gypsum board, lath and plaster in vertical and horizontal assemblies.

2504.1.1 Wood framing. Wood supports for lath or gypsum board, as well as wood stripping or furring, shall not be less than 2 inches (51 mm) nominal thickness in the least dimension.

Exception: The minimum nominal dimension of wood furring strips installed over solid backing shall not be less than 1 inch by 2 inches (25 mm by 51 mm).

2504.1.2 Studless partitions. The minimum thickness of vertically erected studless solid plaster partitions of 1/4-inch (9.5 mm) and 3/4-inch (19.1 mm) rib metal lath or...
2504.2 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1 & 4] In addition to the requirements of this section, the horizontal and vertical assemblies of plaster or gypsum board shall be designed to resist the loads specified in Chapter 16A of this code. For wood framing, see Chapter 23. For metal framing, see Chapter 22A ([DSA/SS/CC] Chapter 22). For suspended acoustical ceiling systems, see Section 2506. For gypsum construction see Section 2508.

2504.2.1 Wood furring strips. Wood furring strips for ceilings fastened to floor or ceiling joist shall be nailed at each bearing with two common wire nails, one of which shall be a slant nail and the other a face nail, or by one nail having spirally grooved or annular grooved shanks approved by the enforcement agency for this purpose. All stripping nails shall penetrate not less than 1/4 inches (44.5 mm) into the member receiving the point. Holes in stripping at joints shall be subdrilled to prevent splitting.

Where common wire nails are used to support horizontal wood stripping for plaster ceilings, such stripping shall be wire tied to the joists 4 feet (1219 mm) on center with two strands of No. 18 W&M gage galvanized annealed wire to an 8d common wire nail driven into each side of the joist 2 inches (51 mm) above the bottom of the joist or to each end of a 16d common wire nail driven horizontally through the joist 2 inches (51 mm) above the bottom of the joist, and the ends of the wire secured together with three twists of the wire.

SECTION 2505
SHEAR WALL CONSTRUCTION

2505.1 Resistance to shear (wood framing). Wood-framed shear walls sheathed with gypsum board, lath and plaster shall be designed and constructed in accordance with Section 2306.7 and are permitted to resist wind and seismic loads. Walls resisting seismic loads shall be subject to the limitations in Section 12.2.1 of ASCE 7.

2505.2 Resistance to shear (steel framing). Cold-formed steel-framed shear walls sheathed with gypsum board and constructed in accordance with the materials and provisions of Section 2210.6 are permitted to resist wind and seismic loads. Walls resisting seismic loads shall be subject to the limitations in Section 12.2.1 of ASCE 7.

2505.3 [DSA-SS, DSA-SS/CC and OSHPD 1, 2 & 4] Sections 2505.1 and 2505.2 are not permitted.

SECTION 2506
GYPSUM BOARD MATERIALS

2506.1 General. Gypsum board materials and accessories shall be identified by the manufacturer's designation to indicate compliance with the appropriate standards referenced in this section and stored to protect such materials from the weather.

2506.2 Standards. Gypsum board materials shall conform to the appropriate standards listed in Table 2506.2 and Chapter 35 and, where required for fire protection, shall conform to the provisions of Chapter 7.

<table>
<thead>
<tr>
<th>TABLE 2506.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYPSUM BOARD MATERIALS AND ACCESSORIES</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Accessories for gypsum board</td>
</tr>
<tr>
<td>Adhesives for fastening gypsum wallboard</td>
</tr>
<tr>
<td>Elastomeric joint sealants</td>
</tr>
<tr>
<td>Exterior soffit board</td>
</tr>
<tr>
<td>Fiber-reinforced gypsum panels</td>
</tr>
<tr>
<td>Glass mat gypsum backing panel</td>
</tr>
<tr>
<td>Glass mat gypsum panel</td>
</tr>
<tr>
<td>Glass mat gypsum substrate</td>
</tr>
<tr>
<td>Gypsum backing board and gypsum shaftliner board</td>
</tr>
<tr>
<td>Gypsum ceiling board</td>
</tr>
<tr>
<td>Gypsum sheathing</td>
</tr>
<tr>
<td>Gypsum wallboard</td>
</tr>
<tr>
<td>Joint reinforcing tape and compound</td>
</tr>
<tr>
<td>Nails for gypsum boards</td>
</tr>
<tr>
<td>Predecorated gypsum board</td>
</tr>
<tr>
<td>Steel screws</td>
</tr>
<tr>
<td>Steel studs, load-bearing</td>
</tr>
<tr>
<td>Steel studs, nonload-bearing</td>
</tr>
<tr>
<td>Standard specification for gypsum board</td>
</tr>
<tr>
<td>Testing gypsum and gypsum products</td>
</tr>
<tr>
<td>Water-resistant gypsum backing board</td>
</tr>
</tbody>
</table>

2506.2.1 Other materials. Metal suspension systems for acoustical and lay-in panel ceilings shall conform with ASTM C 635 listed in Chapter 35 and Section 13.5.6 of ASCE 7 for installation in high seismic areas.

SECTION 2507
LATHING AND PLASTERING

2507.1 General. Lathing and plastering materials and accessories shall be marked by the manufacturer's designation to indicate compliance with the appropriate standards referenced in this section and stored in such a manner to protect them from the weather.
2507.2 Standards. Lathing and plastering materials shall conform to the standards listed in Table 2507.2 and Chapter 35 and, where required for fire protection, shall also conform to the provisions of Chapter 7.

TABLE 2507.2

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories for gypsum veneer base</td>
<td>ASTM C 1047</td>
</tr>
<tr>
<td>Blended cement</td>
<td>ASTM C 595</td>
</tr>
<tr>
<td>Exterior plaster bonding compounds</td>
<td>ASTM C 932</td>
</tr>
<tr>
<td>Gypsum base for veneer plasters</td>
<td>ASTM C 588</td>
</tr>
<tr>
<td>Gypsum casting and molding plaster</td>
<td>ASTM C 59</td>
</tr>
<tr>
<td>Gypsum Keene’s cement</td>
<td>ASTM C 61</td>
</tr>
<tr>
<td>Gypsum lath</td>
<td>ASTM C 37</td>
</tr>
<tr>
<td>Gypsum plaster</td>
<td>ASTM C 28</td>
</tr>
<tr>
<td>Gypsum veneer plaster</td>
<td>ASTM C 587</td>
</tr>
<tr>
<td>Interior bonding compounds, gypsum</td>
<td>ASTM C 631</td>
</tr>
<tr>
<td>Lime plasters</td>
<td>ASTM C 5; C 206</td>
</tr>
<tr>
<td>Masonry cement</td>
<td>ASTM C 91</td>
</tr>
<tr>
<td>Metal lath</td>
<td>ASTM C 847</td>
</tr>
<tr>
<td>Plaster aggregates</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>ASTM C 35; C 897</td>
</tr>
<tr>
<td>Perlite</td>
<td>ASTM C 35</td>
</tr>
<tr>
<td>Vermiculite</td>
<td>ASTM C 35</td>
</tr>
<tr>
<td>Plastic cement</td>
<td>ASTM C 1328</td>
</tr>
<tr>
<td>Portland cement</td>
<td>ASTM C 150</td>
</tr>
<tr>
<td>Steel screws</td>
<td>ASTM C 1002; C 954</td>
</tr>
<tr>
<td>Steel studs and track</td>
<td>ASTM C 645; C 955</td>
</tr>
<tr>
<td>Welded wire lath</td>
<td>ASTM C 933</td>
</tr>
<tr>
<td>Woven wire plaster base</td>
<td>ASTM C 1032</td>
</tr>
</tbody>
</table>

2507.3 Lath attachment to horizontal wood supports.

[DSA-SS, DSA-SS/CC and OSHPD 1 & 4] Where interior or exterior lath is attached to horizontal wood supports, either of the following attachments shall be used in addition to the methods of attachment described in referenced standards listed in Table 2507.2.

1. Secure lath to alternate supports with ties consisting of a double strand of No. 18 W & M gage galvanized annealed wire at one edge of each sheet of lath. Wire ties shall be installed not less than 3 inches (76 mm) back from the edge of each sheet and shall be looped around stripping, or attached to an 8d common wire nail driven into each side of the joist 2 inches (51 mm) above the bottom of the joist or to each end of a 16d common wire nail driven horizontally through the joist 2 inches (51 mm) above the bottom of the joist and the ends of the wire secured together with three twists of the wire.

2. Secure lath to each support with 1/2-inch-wide (12.7 mm), 1/2-inch-long (38 mm) No. 9 W & M gage, ring shank, hook staple placed around a 10d common nail laid flat under the surface of the lath not more than 3 inches (76 mm) from edge of each sheet. Such staples may be placed over ribs of 1/2-inch (9.5 mm) rib lath or over back wire of welded wire fabric or other approved lath, omitting the 10d nails.

SECTION 2508

GYPSUM CONSTRUCTION

2508.1 General. Gypsum board and gypsum plaster construction shall be of the materials listed in Tables 2506.2 and 2507.2. These materials shall be assembled and installed in compliance with the appropriate standards listed in Tables 2508.1 and 2511.1.1, and Chapter 35.

TABLE 2508.1

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum board</td>
<td>GA-216; ASTM C 840</td>
</tr>
<tr>
<td>Gypsum sheathing</td>
<td>ASTM C 844</td>
</tr>
<tr>
<td>Gypsum veneer base</td>
<td>ASTM C 844</td>
</tr>
<tr>
<td>Interior lathing and furring</td>
<td>ASTM C 840</td>
</tr>
<tr>
<td>Steel framing for gypsum boards</td>
<td>ASTM C 754; C 1007</td>
</tr>
</tbody>
</table>

2508.2 Limitations. Gypsum wallboard or gypsum plaster shall not be used in any exterior surface where such gypsum construction will be exposed directly to the weather. Gypsum wallboard shall not be used where there will be direct exposure to water or continuous high humidity conditions. Gypsum sheathing shall be installed on exterior surfaces in accordance with ASTM C 1280.

2508.2.1 Weather protection. Gypsum wallboard, gypsum lath or gypsum plaster shall not be installed until weather protection for the installation is provided.

2508.3 Single-ply application. Edges and ends of gypsum board shall occur on the framing members, except those edges and ends that are perpendicular to the framing members. Edges and ends of gypsum board shall be in moderate contact except in concealed spaces where fire-resistance-rated construction, shear resistance or diaphragm action is not required.

2508.3.1 Floating angles. Fasteners at the top and bottom plates of vertical assemblies, or the edges and ends of horizontal assemblies perpendicular to supports, and at the wall line are permitted to be omitted except on shear resisting elements or fire-resistance-rated assemblies. Fasteners shall be applied in such a manner as not to fracture the face paper with the fastener head.

2508.4 Joint treatment. Gypsum board fire-resistance-rated assemblies shall have joints and fasteners treated.

Exception: Joint and fastener treatment need not be provided where any of the following conditions occur:

1. Where the gypsum board is to receive a decorative finish such as wood paneling, battens, acoustical finishes or any similar application that would be equivalent to joint treatment.

2. On single-layer systems where joints occur over wood framing members.
3. Square edge or tongue-and-groove edge gypsum board (V-edge), gypsum backing board or gypsum sheathing.

4. On multilayer systems where the joints of adjacent layers are offset from one to another.

5. Assemblies tested without joint treatment.

2508.5 Horizontal gypsum board diaphragm ceilings. Gypsum board shall be permitted to be used on wood joists to create a horizontal diaphragm ceiling in accordance with Table 2508.5.

2508.5.1 Diaphragm proportions. The maximum allowable diaphragm proportions shall be 1 1/2:1 between shear resisting elements. Rotation or cantilever conditions shall not be permitted.

2508.5.2 Installation. Gypsum board used in a horizontal diaphragm ceiling shall be installed perpendicular to ceiling framing members. End joints of adjacent courses of gypsum board shall not occur on the same joist.

2508.5.3 Blocking of perimeter edges. All perimeter edges shall be blocked using a wood member not less than 2 1/2-inch by 6-inch (51 mm by 159 mm) nominal dimension. Blocking material shall be installed flat over the top plate of the wall to provide a nailing surface not less than 2 inches (51 mm) in width for the attachment of the gypsum board.

2508.5.4 Fasteners. Fasteners used for the attachment of gypsum board to a horizontal diaphragm ceiling shall be as defined in Table 2508.5. Fasteners shall be spaced not more than 7 inches (178 mm) on center (o.c.) at all supports, including perimeter blocking, and not more than 3/8 inch (9.5 mm) from the edges and ends of the gypsum board.

2508.5.5 Lateral force restrictions. Gypsum board shall not be used in diaphragm ceilings to resist lateral forces imposed by masonry or concrete construction.

2508.5.6 Diaphragm ceiling connection to partitions. [DSA-SS, DSA-SS/CC and OSHPD 1 & 4] Gypsum board not be used in diaphragm ceilings to resist lateral forces imposed by partitions. Connection of diaphragm ceiling to the vertical lateral force resisting elements shall be designed and detailed to transfer lateral forces.

SECTION 2509
GYPSUM BOARD IN SHOWERS AND WATER CLOSETS

2509.1 Wet areas. Showers and public toilet walls shall conform to Sections 1210.2 and 1210.3.

2509.2 Base for tile. Glass mat water-resistant gypsum backing panels, discrete nonasbestos fiber-cement interior substrate sheets or nonasbestos fiber-mat reinforced cement substrate sheets in compliance with ASTM C 1178, C 1288 or C 1325 and installed in accordance with manufacturer recommendations shall be used as a base for wall tile in tub and shower areas and wall and ceiling panels in shower areas. Water-resistant gypsum backing board shall be used as a base for tile in water closet compartment walls when installed in accordance with GA-216 or ASTM C 840 and manufacturer recommendations. Regular gypsum wallboard is permitted under tile or wall panels in other wall and ceiling areas when installed in accordance with GA-216 or ASTM C 840.

2509.3 Limitations. Water-resistant gypsum backing board shall not be used in the following locations:

1. Over a vapor retarder in shower or bathtub compartments.
2. Where there will be direct exposure to water or in areas subject to continuous high humidity.
3. On ceilings where frame spacing exceeds 12 inches (305 mm) o.c. for 1/2-inch-thick (12.7 mm) water-resistant gypsum backing board and more than 16 inches (406 mm) o.c. for 5/8-inch-thick (15.9 mm) water-resistant gypsum backing board.

SECTION 2510
LATHING AND FURRING FOR CEMENT PLASTER (STUCCO)

2510.1 General. Exterior and interior cement plaster and lathing shall be done with the appropriate materials listed in Table 2507.2 and Chapter 35.

2510.2 Weather protection. Materials shall be stored in such a manner as to protect such materials from the weather.

TABLE 2508.5

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>THICKNESS OF MATERIAL (MINIMUM) (inches)</th>
<th>SPACING OF FRAMING MEMBERS (MAXIMUM) (inches)</th>
<th>SHEAR VALUE a,b (plf of ceiling)</th>
<th>MINIMUM FASTENER SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum board</td>
<td>1/2</td>
<td>16 o.c.</td>
<td>90</td>
<td>5d cooler or wallboard nail; 1 1/2-inch head; 1/4-inch long; 0.086-inch shank; 1/6-inch head</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>1/2</td>
<td>24 o.c.</td>
<td>70</td>
<td>5d cooler or wallboard nail; 1 1/2-inch long; 0.086-inch shank; 1/6-inch head</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.59 N/m.

a. Values are not cumulative with other horizontal diaphragm values and are for short-term loading due to wind or seismic loading. Values shall be reduced 25 percent for normal loading.

b. Values shall be reduced 50 percent in Seismic Design Categories D, E and F

c. 1 1/4-inch, No. 6 Type S or W screws are permitted to be substituted for the listed nails.
2510.3 Installation. Installation of these materials shall be in compliance with ASTM C 926 and ASTM C 1063.

2510.4 Corrosion resistance. Metal lath and lath attachments shall be of corrosion-resistant material.

2510.5 Backing. Backing or a lath shall provide sufficient rigidity to permit plaster applications.

2510.5.1 Support of lath. Where lath on vertical surfaces extends between rafters or other similar projecting members, solid backing shall be installed to provide support for lath and attachments.

2510.5.2 Use of gypsum backing board.

2510.5.2.1 Use of gypsum board as a backing board. Gypsum lath or gypsum wallboard shall not be used as a backing for cement plaster.

Exception: Gypsum lath or gypsum wallboard is permitted, with a water-resistant barrier, as a backing for self-furred metal lath or self-furred wire fabric lath and cement plaster where either of the following conditions occur:

1. On horizontal supports of ceilings or roof soffits.
2. On interior walls.

2510.5.2.2 Use of gypsum sheathing backing. Gypsum sheathing is permitted as a backing for metal or wire fabric lath and cement plaster on walls. A water-resistant barrier shall be provided in accordance with Section 2510.6.

2510.5.3 Backing not required. Wire backing is not required under expanded metal lath or paper-backed wire fabric lath.

2510.6 Water-resistant barriers. Water-resistant barriers shall be installed as required in Section 1404.2 and, where applied over wood-based sheathing, shall include a water-resistant vapor-permeable barrier with a performance at least equivalent to two layers of Grade D paper.

Exception: Where the water-resistant barrier that is applied over wood-based sheathing has a water resistance equal to or greater than that of 60-minute Grade D paper and is separated from the stucco by an intervening, substantially non-water-absorbing layer or drainage space.

2510.7 Preparation of masonry and concrete. Surfaces shall be clean, free from efflorescence, sufficiently damp and rough for proper bond. If the surface is insufficiently rough, approved bonding agents or a portland cement dash bond coat mixed in proportions of not more than two parts volume of sand to one part volume of portland cement or plastic cement shall be applied. The dash bond coat shall be left undisturbed and shall be moist cured not less than 24 hours.

2510.7.1 Additional requirements. [DSA-SS, DSA-SS/CC and OSHPD 1 & 4] Bonding agents shall conform with the provisions of United States Government Military Specifications MIL-B-19235.

SECTION 2511
INTERIOR PLASTER

2511.1 General. Plastering gypsum plaster or cement plaster shall not be less than three coats where applied over metal lath or wire fabric lath and not less than two coats where applied over other bases permitted by this chapter.

Exception: Gypsum veneer plaster and cement plaster specifically designed and approved for one-coat applications.

2511.1.1 Installation. Installation of lathing and plaster materials shall conform with Table 2511.1.1 and Section 2507.

TABLE 2511.1.1
INSTALLATION OF PLASTER CONSTRUCTION

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement plaster</td>
<td>ASTM C 926</td>
</tr>
<tr>
<td>Gypsum plaster</td>
<td>ASTM C 842</td>
</tr>
<tr>
<td>Gypsum veneer plaster</td>
<td>ASTM C 843</td>
</tr>
<tr>
<td>Interior lathing and furring</td>
<td>ASTM C 841</td>
</tr>
<tr>
<td>(gypsum plaster)</td>
<td></td>
</tr>
<tr>
<td>Lathing and furring (cement plaster)</td>
<td>ASTM C 1063</td>
</tr>
<tr>
<td>Steel framing</td>
<td>ASTM C 754; C 1007</td>
</tr>
</tbody>
</table>

2511.2 Limitations. Plaster shall not be applied directly to fiber insulation board. Cement plaster shall not be applied directly to gypsum lath or gypsum plaster except as specified in Sections 2510.5.1 and 2510.5.2.

2511.3 Grounds. Where installed, grounds shall ensure the minimum thickness of plaster as set forth in ASTM C 842 and ASTM C 926. Plaster thickness shall be measured from the face of lath and other bases.

2511.4 Interior masonry or concrete. Condition of surfaces shall be as specified in Section 2510.7. Approved specially prepared gypsum plaster designed for application to concrete surfaces or approved acoustical plaster is permitted. The total thickness of base coat plaster applied to concrete ceilings shall be as set forth in ASTM C 842 or ASTM C 926. Should ceiling surfaces require more than the maximum thickness permitted in ASTM C 842 or ASTM C 926, metal lath or wire fabric lath shall be installed on such surfaces before plastering.

2511.5 Wet areas. Showers and public toilet walls shall conform to Sections 1210.2 and 1210.3. When wood frame walls and partitions are covered on the interior with cement plaster or tile of similar material and are subject to water splash, the framing shall be protected with an approved moisture barrier.

SECTION 2512
EXTERIOR PLASTER

2512.1 General. Plastering with cement plaster shall be not less than three coats when applied over metal lath or wire fabric lath or gypsum board backing as specified in Section 2510.5 and shall be not less than two coats when applied over masonry or concrete. If the plaster surface is to be completely covered by veneer or other facing material, or is completely concealed by another wall, plaster application need only be two coats, provided the total thickness is as set forth in ASTM C 926.
2512.1.1 On-grade floor slab. On wood framed or steel stud construction with an on-grade concrete floor slab system, exterior plaster shall be applied in such a manner as to cover, but not to extend below, the lath and paper. The application of lath, paper and flashing or drip screeds shall comply with ASTM C 1063.

2512.1.2 Weep screeds. A minimum 0.019-inch (0.48 mm) (No. 26 galvanized sheet gage), corrosion-resistant weep screed with a minimum vertical attachment flange of 3\(\frac{1}{2}\) inches (89 mm) shall be provided at or below the foundation plate line on exterior stud walls in accordance with ASTM C 926. The weep screed shall be placed a minimum of 4 inches (102 mm) above the earth or 2 inches (51 mm) above paved areas and be of a type that will allow trapped water to drain to the exterior of the building. The water-resistant barrier shall lap the attachment flange. The exterior lath shall cover and terminate on the attachment flange of the weep screed.

2512.2 Plasticity agents. Only approved plasticity agents and approved amounts thereof shall be added to portland cement or blended cements. When plastic cement or masonry cement is used, no additional lime or plasticizers shall be added. Hydrated lime or the equivalent amount of lime putty used as a plasticizer is permitted to be added to cement plaster or cement and lime plaster in an amount not to exceed that set forth in ASTM C 926.

2512.3 Limitations. Gypsum plaster shall not be used on exterior surfaces.

2512.4 Cement plaster. Plaster coats shall be protected from freezing for a period of not less than 24 hours after set has occurred. Plaster shall be applied when the ambient temperature is higher than 40°F (4°C), unless provisions are made to keep cement plaster work above 40°F (4°C) during application and 48 hours thereafter.

2512.5 Second-coat application. The second coat shall be brought out to proper thickness, rodded and floated sufficiently rough to provide adequate bond for the finish coat. The second coat shall have no variation greater than \(\frac{1}{4}\) inch (6.4 mm) in any direction under a 5-foot (1524 mm) straight edge.

2512.6 Curing and interval. First and second coats of cement plaster shall be applied and moist cured as set forth in ASTM C 926 and Table 2512.6.

TABLE 2512.6 CEMENT PLASTERS

<table>
<thead>
<tr>
<th>COAT</th>
<th>MINIMUM PERIOD MOIST CURING</th>
<th>MINIMUM INTERVAL BETWEEN COATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>48 hours*</td>
<td>48 hours*</td>
</tr>
<tr>
<td>Second</td>
<td>48 hours</td>
<td>7 days*</td>
</tr>
<tr>
<td>Finish</td>
<td>—</td>
<td>Note c</td>
</tr>
</tbody>
</table>

*The first two coats shall be as required for the first coats of exterior plaster, except that the moist-curing time period between the first and second coats shall not be less than 24 hours. Moist curing shall not be required where job and weather conditions are favorable to the retention of moisture in the cement plaster for the required time period.

b. Twenty-four-hour minimum interval between coats of interior cement plaster. For alternate method of application, see Section 2512.8.

c. Finish coat plaster is permitted to be applied to interior cement plaster base coats after a 48-hour period.

2512.7 Application to solid backings. Where applied over gypsum backing as specified in Section 2510.5 or directly to unit masonry surfaces, the second coat is permitted to be applied as soon as the first coat has attained sufficient hardness.

2512.8 Alternate method of application. The second coat is permitted to be applied as soon as the first coat has attained sufficiently rigidity to receive the second coat.

2512.8.1 Admixtures. When using this method of application, calcium aluminate cement up to 15 percent of the weight of the portland cement is permitted to be added to the mix.

2512.8.2 Curing. Curing of the first coat is permitted to be omitted and the second coat shall be cured as set forth in ASTM C 926 and Table 2512.6.

2512.9 Finish coats. Cement plaster finish coats shall be applied over base coats that have been in place for the time periods set forth in ASTM C 926. The third or finish coat shall be applied with sufficient material and pressure to bond and to cover the brown coat and shall be of sufficient thickness to conceal the brown coat.

SECTION 2513

EXPOSED AGGREGATE PLASTER

2513.1 General. Exposed natural or integrally colored aggregate is permitted to be partially embedded in a natural or colored bedding coat of cement plaster or gypsum plaster, subject to the provisions of this section.

2513.2 Aggregate. The aggregate shall be applied manually or mechanically and shall consist of marble chips, pebbles or similar durable, moderately hard (three or more on the Mohs hardness scale), nonreactive materials.

2513.3 Bedding coat proportions. The bedding coat for interior or exterior surfaces shall be composed of one part portland cement and one part Type S lime; or one part blended cement and one part Type S lime; or masonry cement; or plastic cement, and a maximum of three parts of graded white or natural sand by volume. The bedding coat for interior surfaces shall be composed of 100 pounds (45.4 kg) of neat gypsum plaster and a maximum of 200 pounds (90.8 kg) of graded white sand.

A factory-prepared bedding coat for interior or exterior use is permitted. The bedding coat for exterior surfaces shall have a minimum compressive strength of 1,000 pounds per square inch (psi) (6895 kPa).

2513.4 Application. The bedding coat is permitted to be applied directly over the first (scratch) coat of plaster, provided the ultimate overall thickness is a minimum of \(\frac{1}{4}\) inch (12.7 mm), including lath. Over concrete or masonry surfaces, the overall thickness shall be a minimum of \(\frac{1}{2}\) inch (22 mm).

2513.5 Bases. Exposed aggregate plaster is permitted to be applied over concrete, masonry, cement plaster base coats or gypsum plaster base coats installed in accordance with Section 2511 or 2512.

2513.6 Preparation of masonry and concrete. Masonry and concrete surfaces shall be prepared in accordance with the provisions of Section 2510.7.
2513.7 Curing of base coats. Cement plaster base coats shall be cured in accordance with ASTM C 926. Cement plaster bedding coats shall retain sufficient moisture for hydration (hardening) for 24 hours minimum or, where necessary, shall be kept damp for 24 hours by light water spraying.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 26 – PLASTIC

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD 1</th>
<th>HCD 2</th>
<th>HCD 1-AC</th>
<th>DSA SS</th>
<th>DSA SS/CC</th>
<th>OSHPD 1</th>
<th>OSHPD 2</th>
<th>OSHPD 3</th>
<th>OSHPD 4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal’s adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
SECTION 2601 GENERAL

2601.1 Scope. These provisions shall govern the materials, design, application, construction and installation of foam plastic, foam plastic insulation, plastic veneer, interior plastic finish and trim and light-transmitting plastics. See Chapter 14 for requirements for exterior wall finish and trim.

SECTION 2602 DEFINITIONS

2602.1 General. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this code, have the meanings shown herein.

FIBER REINFORCED POLYMER. A polymeric composite material consisting of reinforcement fibers impregnated with a fiber-binding polymer which is then molded and hardened.

FIBERGLASS REINFORCED POLYMER. A polymeric composite material consisting of glass reinforcement fibers impregnated with a fiber-binding polymer which is then molded and hardened.

FOAM PLASTIC INSULATION. A plastic that is intentionally expanded by the use of a foaming agent to produce a reduced-density plastic containing voids consisting of open or closed cells distributed throughout the plastic for thermal insulating or acoustical purposes and that has a density less than 20 pounds per cubic foot (pcf) (320 kg/m³).

LIGHT-DIFFUSING SYSTEM. Construction consisting in whole or in part of lenses, panels, grids or baffles made with light-transmitting plastics positioned below independently mounted electrical light sources, skylights or light-transmitting plastic roof panels. Lenses, panels, grids and baffles that are part of an electrical fixture shall not be considered as a light-diffusing system.

LIGHT-TRANSMITTING PLASTIC ROOF PANELS. Structural plastic panels other than skylights that are fastened to structural members, or panels or sheathing and that are used as light-transmitting media in the plane of the roof.

LIGHT-TRANSMITTING PLASTIC WALL PANELS. Plastic materials that are fastened to structural members, or to structural panels or sheathing, and that are used as light-transmitting media in exterior walls.

PLASTIC, APPROVED. Any thermoplastic, thermosetting or reinforced thermosetting plastic material that conforms to combustibility classifications specified in the section applicable to the application and plastic type.

PLASTIC GLAZING. Plastic materials that are glazed or set in frame or sash and not held by mechanical fasteners that pass through the glazing material.

THERMOPLASTIC MATERIAL. A plastic material that is capable of being repeatedly softened by increase of temperature and hardened by decrease of temperature.

THERMOSETTING MATERIAL. A plastic material that is capable of being changed into a substantially nonreformable product when cured.

SECTION 2603 FOAM PLASTIC INSULATION

2603.1 General. The provisions of this section shall govern the requirements and uses of foam plastic insulation in buildings and structures.

2603.2 Labeling and identification. Packages and containers of foam plastic insulation and foam plastic insulation components delivered to the job site shall bear the label of an approved agency showing the manufacturer's name, product listing, product identification and information sufficient to determine that the end use will comply with the code requirements.

2603.3 Surface-burning characteristics. Unless otherwise indicated in this section, foam plastic insulation and foam plastic cores of manufactured assemblies shall have a flame spread index of not more than 75 and a smoke-developed index of not more than 450 where tested in the maximum thickness intended for use in accordance with ASTM E 84 or UL 723. Loose fill-type foam plastic insulation shall be tested as board stock for the flame spread and smoke-developed indexes.

Exceptions:

1. Smoke-developed index for interior trim as provided for in Section 2604.2.

2. In cold storage buildings, ice plants, food plants, food processing rooms and similar areas, foam plastic insulation where tested in a thickness of 4 inches (102 mm) shall be permitted in a thickness up to 10 inches (254 mm) where the building is equipped throughout with an automatic fire sprinkler system in accordance with Section 903.3.1.1. The approved automatic sprinkler system shall be provided in both the room and that part of the building in which the room is located.

3. Foam plastic insulation that is a part of a Class A, B or C roof-covering assembly provided the assembly with the foam plastic insulation satisfactorily passes FM 4450 or UL 1256. The smoke-developed index shall not be limited for roof applications.

4. Foam plastic insulation greater than 4 inches (102 mm) in thickness shall have a maximum flame spread index of 75 and a smoke-developed index of 450 where tested at a minimum thickness of 4 inches (102 mm), provided the end use is approved in accordance with Section 2603.2.
with Section 2603.9 using the thickness and density intended for use.

5. Flame spread and smoke-developed indexes for foam plastic interior signs in covered mall buildings provided the signs comply with Section 402.15.

2603.4 Thermal barrier. Except as provided for in Sections 2603.4.1 and 2603.9, foam plastic shall be separated from the interior of a building by an approved thermal barrier of ⅛-inch (12.7 mm) gypsum wallboard or equivalent thermal barrier material that will limit the average temperature rise of the unexposed surface to not more than 250°F (120°C) after 15 minutes of fire exposure, complying with the standard time-temperature curve of ASTM E 119 or UL 256. The thermal barrier shall be installed in such a manner that it will remain in place for 15 minutes based on FM 4880, UL 1040, NFPA 286 or UL 1715. Combustible concealed spaces shall comply with Section 717.

2603.4.1 Thermal barrier not required. The thermal barrier specified in Section 2603.4 is not required under the conditions set forth in Sections 2603.4.1.1 through 2603.4.1.13.

2603.4.1.1 Masonry or concrete construction. A thermal barrier is not required for foam plastic installed in a masonry or concrete wall, floor or roof system where the foam plastic insulation is covered on each face by a minimum of 1 inch (25 mm) thickness of masonry or concrete.

2603.4.1.2 Cooler and freezer walls. Foam plastic installed in a maximum thickness of 10 inches (254 mm) in cooler and freezer walls shall:
1. Have a flame spread index of 25 or less and a smoke-developed index of not more than 450, where tested in a minimum 4 inch (102 mm) thickness.
2. Have flash ignition and self-ignition temperatures of not less than 600°F and 800°F (316°C and 427°C), respectively.
3. Have a covering of not less than 0.032-inch (0.8 mm) aluminum or corrosion-resistant steel having a base metal thickness not less than 0.0160 inch (0.4 mm) at any point.
4. Be protected by an automatic sprinkler system in accordance with Section 903.3.1.1. Where the cooler or freezer is within a building, both the cooler or freezer and that part of the building in which it is located shall be sprinklered.

2603.4.1.3 Walk-in coolers. In nonsprinklered buildings, foam plastic having a thickness that does not exceed 4 inches (102 mm) and a maximum flame spread index of 75 is permitted in walk-in coolers or freezer units where the aggregate floor area does not exceed 400 square feet (37 m²) and the foam plastic is covered by a metal facing not less than 0.032-inch-thick (0.81 mm) aluminum or corrosion-resistant steel having a minimum base metal thickness of 0.016 inch (0.41 mm). A thickness of up to 10 inches (254 mm) is permitted where protected by a thermal barrier.

2603.4.1.4 Exterior walls—one-story buildings. For one-story buildings, foam plastic having a flame spread index of 25 or less, and a smoke-developed index of not more than 450, shall be permitted without thermal barriers in or on exterior walls in a thickness not more than 4 inches (102 mm) where the foam plastic is covered by a thickness of not less than 0.032-inch-thick (0.81 mm) aluminum or corrosion-resistant steel having a base metal thickness of 0.0160 inch (0.41 mm) and the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2603.4.1.5 Roofing. Foam plastic insulation under a roof assembly or roof covering that is installed in accordance with the code and the manufacturer’s instructions shall be separated from the interior of the building by wood structural panel sheathing not less than 0.47 inch (11.9 mm) in thickness bonded with exterior glue, with edges supported by blocking, tongue-and-groove joints or other approved type of edge support, or an equivalent material. A thermal barrier is not required for foam plastic insulation that is a part of a Class A, B or C roof-covering assembly, provided the assembly with the foam plastic insulation satisfactorily passes FM 4450 or UL 1256.

2603.4.1.6 Attics and crawl spaces. Within an attic or crawl space where entry is made only for service of utilities, foam plastic insulation shall be protected against ignition by ⅛-inch-thick (38 mm) mineral fiber insulation; ¼-inch-thick (6.4 mm) wood structural panel, particleboard or hardboard; ⅛-inch (9.5 mm) gypsum wallboard, corrosion-resistant steel having a base metal thickness of 0.016 inch (0.4 mm) or other approved material installed in such a manner that the foam plastic insulation is not exposed. The protective covering shall be consistent with the requirements for the type of construction.

2603.4.1.7 Doors not required to have a fire protection rating. Where pivoted or side-hinged doors are permitted without a fire protection rating, foam plastic insulation, having a flame spread index of 75 or less and a smoke-developed index of not more than 450, shall be permitted as a core material where the door facing is of metal having a minimum thickness of 0.032-inch (0.8 mm) aluminum or steel having a base metal thickness of not less than 0.016 inch (0.4 mm) at any point.

2603.4.1.8 Exterior doors in buildings of Group R-2 or R-3. In occupancies classified as Group R-2 or R-3, foam-filled exterior entrance doors to individual dwelling units that do not require a fire-resistance rating shall be faced with wood or other approved materials.

2603.4.1.9 Garage doors. Where garage doors are permitted without a fire-resistance rating and foam plastic is used as a core material, the door facing shall be metal having a minimum thickness of 0.032-inch (0.8 mm) aluminum or 0.010-inch (0.25 mm) steel or the facing shall be minimum 0.125-inch-thick (3.2 mm) wood. Garage doors having facings other than those described above.
shall be tested in accordance with, and meet the acceptance criteria of, DASMA 107.

Exception: Garage doors using foam plastic insulation complying with Section 2603.3 in detached and attached garages associated with one- and two-family dwellings need not be provided with a thermal barrier.

2603.4.1.10 Siding backer board

Foam plastic insulation of not more than 2,000 British thermal units per square feet (Btu/sq. ft.) (22.7 mJ/m²) as determined by NFPA 259 shall be permitted as a siding backer board with a maximum thickness of 1/4 inch (12.7 mm), provided it is separated from the interior of the building by not less than 2 inches (51 mm) of mineral fiber insulation or equivalent or where applied as insulation with residing over existing wall construction.

2603.4.1.11 Interior trim

Foam plastic used as interior trim in accordance with Section 2604 shall be permitted without a thermal barrier.

2603.4.1.12 Interior signs

Foam plastic used for interior signs in covered mall buildings in accordance with Section 402.16 shall be permitted without a thermal barrier. Foam plastic signs that are not affixed to interior building surfaces shall comply with Chapter 8 of the International Fire Code.

2603.4.1.13 Type V construction

Foam plastic spray applied to a sill plate and header of Type V construction is subject to all of the following:

1. The maximum thickness of the foam plastic shall be 3/4 inches (82.6 mm).
2. The density of the foam plastic shall be in the range of 1.5 to 2.0pcf (24 to 32 kg/m³).
3. The foam plastic shall have a flame spread index of 25 or less and an accompanying smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723.

2603.5 Exterior walls of buildings of any height

Exterior walls of buildings of Type I, II, III or IV construction of any height shall comply with Sections 2603.5.1 through 2603.5.7. Exterior walls of cold storage buildings required to be constructed of noncombustible materials, where the building is more than one story in height, shall also comply with the provisions of Sections 2603.5.1 through 2603.5.7. Exterior walls of buildings of Type V construction shall comply with Sections 2603.2, 2603.3 and 2603.4.

2603.5.1 Fire-resistance-rated walls

Where the wall is required to have a fire-resistance rating, data based on tests conducted in accordance with ASTM E 119 or UL 263 shall be provided to substantiate that the fire-resistance rating is maintained.

2603.5.2 Thermal barrier

Any foam plastic insulation shall be separated from the building interior by a thermal barrier meeting the provisions of Section 2603.4, unless special approval is obtained on the basis of Section 2603.9.

Exception: One-story buildings complying with Section 2603.4.1.4.

2603.5.3 Potential heat

The potential heat of foam plastic insulation in any portion of the wall or panel shall not exceed the potential heat expressed in Btu per square feet (m²/m²) of the foam plastic insulation contained in the wall assembly tested in accordance with Section 2603.5.5. The potential heat of the foam plastic insulation shall be determined by tests conducted in accordance with NFPA 259 and the results shall be expressed in Btu per square feet (m²/m²).

Exception: One-story buildings complying with Section 2603.4.1.4.

2603.5.4 Flame spread and smoke-developed indexes

Foam plastic insulation, exterior coatings and facings shall be tested separately in the thickness intended for use, but not to exceed 4 inches (102 mm), and shall each have a flame spread index of 25 or less and a smoke-developed index of 450 or less as determined in accordance with ASTM E 84 or UL 723.

Exception: Prefabricated or factory-manufactured panels having minimum 0.020-inch (0.51 mm) aluminum facings and a total thickness of 1/8 inch (6.4 mm) or less are permitted to be tested as an assembly where the foam plastic core is not exposed in the course of construction.

2603.5.5 Test standard

The wall assembly shall be tested in accordance with and comply with the acceptance criteria of NFPA 285.

Exception: One-story buildings complying with Section 2603.4.1.4.

2603.5.6 Label required

The edge or face of each piece of foam plastic insulation shall bear the label of an approved agency. The label shall contain the manufacturer’s or distributor’s identification, model number, serial number or definitive information describing the product or materials’ performance characteristics and approved agency’s identification.

2603.5.7 Ignition

Exterior walls shall not exhibit sustained flaming where tested in accordance with NFPA 268. Where a material is intended to be installed in more than one thickness, tests of the minimum and maximum thickness intended for use shall be performed.

Exception: Assemblies protected on the outside with one of the following:

1. A thermal barrier complying with Section 2603.4.
2. A minimum 1 inch (25 mm) thickness of concrete or masonry.
4. Metal-faced panels having minimum 0.019-inch-thick (0.48 mm) aluminum or 0.016-inch-thick (0.41 mm) corrosion-resistant steel outer facings.
5. A minimum 3/8 inch (22.2 mm) thickness of stucco complying with Section 2510.

2603.6 Roofing

Foam plastic insulation meeting the requirements of Sections 2603.2, 2603.3 and 2603.4 shall be permitted as part of a roof-covering assembly, provided the assembly...
with the foam plastic insulation is a Class A, B or C roofing assembly where tested in accordance with ASTM E 108 or UL 790.

2603.7 Plenums. Foam plastic insulation shall not be used as interior wall or ceiling finish in plenums except as permitted in Section 2604 or when protected by a thermal barrier in accordance with Section 2603.4.

2603.8 Protection against termites. In areas where the probability of termite infestation is very heavy in accordance with Figure 2603.8, extruded and expanded polystyrene, polyisocyanurate and other foam plastics shall not be installed on the exterior face or under interior or exterior foundation walls or slab foundations located below grade. The clearance between foam plastics installed above grade and exposed earth shall be at least 6 inches (152 mm).

Exceptions:

1. Buildings where the structural members of walls, floors, ceilings and roofs are entirely of non-combustible materials or preservative-treated wood.
2. An approved method of protecting the foam plastic and structure from subterranean termite damage is provided.
3. On the interior side of basement walls.

2603.9 Special approval. Foam plastic shall not be required to comply with the requirements of Sections 2603.4 through 2603.7 where specifically approved based on large-scale tests such as, but not limited to, NFPA 286 (with the acceptance criteria of Section 803.2), FM 4880, UL 1040 or UL 1715. Such testing shall be related to the actual end-use configuration and be performed on the finished manufactured foam plastic assembly in the maximum thickness intended for use. Foam plastics that are used as interior finish on the basis of special tests shall also conform to the flame spread requirements of Chapter 8. Assemblies tested shall include seams, joints and other typical details used in the installation of the assembly and shall be tested in the manner intended for use.

SECTION 2604
INTERIOR FINISH AND TRIM

2604.1 General. Plastic materials installed as interior finish or trim shall comply with Chapter 8. Foam plastics shall only be installed as interior finish where approved in accordance with the special provisions of Section 2603.9. Foam plastics that are used as interior finish shall also meet the flame-spread index requirements for interior finish in accordance with Chapter 8. Foam plastics installed as interior trim shall comply with Section 2604.2.
2604.2 **Interior trim.** Foam plastic used as interior trim shall comply with Sections 2604.2.1 through 2604.2.4.

2604.2.1 **Density.** The minimum density of the interior trim shall be 20 pcf (320 kg/m³).

2604.2.2 **Thickness.** The maximum thickness of the interior trim shall be 1/2 inch (12.7 mm) and the maximum width shall be 8 inches (204 mm).

2604.2.3 **Area limitation.** The interior trim shall not constitute more than 10 percent of the specific wall or ceiling areas to which it is attached.

2604.2.4 **Flame spread.** The flame spread index shall not exceed 75 where tested in accordance with ASTM E 84 or UL 723. The smoke-developed index shall not be limited.

Exception: When the interior trim material has been tested as an interior finish in accordance with NFPA 286 and complies with the acceptance criteria in Section 803.1.2.1, it shall not be required to be tested for flame spread index in accordance with ASTM E 84 or UL 723.

SECTION 2605

PLASTIC VENEER

2605.1 **Interior use.** Where used within a building, plastic veneer shall comply with the interior finish requirements of Chapter 8.

2605.2 **Exterior use.** Exterior plastic veneer, other than plastic siding, shall be permitted to be installed on the exterior walls of buildings of any type of construction in accordance with all of the following requirements:

1. Plastic veneer shall comply with Section 2606.4.
2. Plastic veneer shall not be attached to any exterior wall to a height greater than 50 feet (15 240 mm) above grade.
3. Sections of plastic veneer shall not exceed 300 square feet (27.9 m²) in area and shall be separated by a minimum of 4 feet (1219 mm) vertically.

Exception: The area and separation requirements and the smoke-density limitation are not applicable to plastic veneer applied to buildings constructed of Type VB construction, provided the walls are not required to have a fire-resistance rating.

2605.3 **Plastic siding.** Plastic siding shall comply with the requirements of Sections 1404 and 1405.

SECTION 2606

LIGHT-TRANSMITTING PLASTICS

2606.1 **General.** The provisions of this section and Sections 2607 through 2611 shall govern the quality and methods of application of light-transmitting plastics for use as light-transmitting materials in buildings and structures. Foam plastics shall comply with Section 2603. Light-transmitting plastic materials that meet the other code requirements for walls and roofs shall be permitted to be used in accordance with the other applicable chapters of the code.

2606.2 **Approval for use.** Sufficient technical data shall be submitted to substantiate the proposed use of any light-transmitting material, as approved by the building official and subject to the requirements of this section.

2606.3 **Identification.** Each unit or package of light-transmitting plastic shall be identified with a mark or decal satisfactory to the building official, which includes identification as to the material classification.

2606.4 **Specifications.** Light-transmitting plastics, including thermoplastic, thermosetting or reinforced thermosetting plastic material, shall have a self-ignition temperature of 650°F (343°C) or greater where tested in accordance with ASTM D 1929; a smoke-developed index not greater than 450 where tested in the manner intended for use in accordance with ASTM E 84 or UL 723, or a maximum average smoke density rating not greater than 75 where tested in the thickness intended for use in accordance with ASTM D 2843 and shall conform to one of the following combustibility classifications:

- **Class CC1:** Plastic materials that have a burning extent of 1 inch (25 mm) or less where tested at a nominal thickness of 0.060 inch (1.5 mm), or in the thickness intended for use, in accordance with ASTM D 635.
- **Class CC2:** Plastic materials that have a burning rate of 21/2 inches per minute (1.06 mm/s) or less where tested at a nominal thickness of 0.060 inch (1.5 mm), or in the thickness intended for use, in accordance with ASTM D 635.

2606.5 **Structural requirements.** Light-transmitting plastic materials in their assembly shall be of adequate strength and durability to withstand the loads indicated in Chapter 16. Technical data shall be submitted to establish stresses, maximum unsupported spans and such other information for the various thicknesses and forms used as deemed necessary by the building official.

2606.6 **Fastening.** Fastening shall be adequate to withstand the loads in Chapter 16. Proper allowance shall be made for expansion and contraction of light-transmitting plastic materials in accordance with accepted data on the coefficient of expansion of the material and other material in conjunction with which it is employed.

2606.7 **Light-diffusing systems.** Unless the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, light-diffusing systems shall not be installed in the following occupancies and locations:

1. Group A with an occupant load of 1,000 or more.
2. Theaters with a stage and proscenium opening and an occupant load of 700 or more.
5. Vertical exit enclosures and exit passageways.

2606.7.1 **Support.** Light-transmitting plastic diffusers shall be supported directly or indirectly from ceiling or roof construction by use of noncombustible hangers. Hangers shall be at least No. 12 steel-wire gage (0.106 inch) galvanized wire or equivalent.
2606.7.2 Installation. Light-transmitting plastic diffusers shall comply with Chapter 8 unless the light-transmitting plastic diffusers will fall from the mountings before igniting, at an ambient temperature of at least 200°F (111°C) below the ignition temperature of the panels. The panels shall remain in place at an ambient room temperature of 175°F (79°C) for a period of not less than 15 minutes.

2606.7.3 Size limitations. Individual panels or units shall not exceed 10 feet (3048 mm) in length nor 30 square feet (2.79 m²) in area.

2606.7.4 Fire suppression system. In buildings that are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, plastic light-diffusing systems shall be protected both above and below unless the sprinkler system has been specifically approved for installation only above the light-diffusing system. Areas of light-diffusing systems that are protected in accordance with this section shall not be limited.

2606.7.5 Electrical luminaires. Light-transmitting plastic panels and light-diffuser panels that are installed in approved electrical luminaires shall comply with the requirements of Chapter 8 unless the light-transmitting plastic panels conform to the requirements of Section 2606.7.2. The area of approved light-transmitting plastic materials that are used in required exits or corridors shall not exceed 30 percent of the aggregate area of the ceiling in which such panels are installed, unless the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2606.8 Partitions. Light-transmitting plastics used in or as partitions shall comply with the requirements of Chapters 6 and 8.

2606.9 Bathroom accessories. Light-transmitting plastics shall be permitted as glazing in shower stalls, shower doors, bathtub enclosures and similar accessory units. Safety glazing shall be provided in accordance with Chapter 24.

2606.10 Awnings, patio covers and similar structures. Awnings constructed of light-transmitting plastics shall be constructed in accordance with the provisions specified in Section 3105 and Chapter 32 for projections. Patio covers constructed of light-transmitting plastics shall comply with Section 2606. Light-transmitting plastics used in canopies at motor fuel-dispensing facilities shall comply with Section 2606, except as modified by Section 406.5.3.

2606.11 Greenhouses. Light-transmitting plastics shall be permitted in lieu of plain glass in greenhouses.

2606.12 Solar collectors. Light-transmitting plastic covers on solar collectors having noncombustible sides and bottoms shall be permitted on buildings not over three stories above grade plane or 9,000 square feet (836.1 m²) in total floor area, provided the light-transmitting plastic cover does not exceed 33.33 percent of the roof area for CC1 materials or 25 percent of the roof area for CC2 materials.

Exception: Light-transmitting plastic covers having a thickness of 0.010 inch (0.3 mm) or less shall be permitted to be of any plastic material provided the area of the solar collectors does not exceed 33.33 percent of the roof area.

SECTION 2607
LIGHT-TRANSMITTING PLASTIC WALL PANELS

2607.1 General. Light-transmitting plastics shall not be used as wall panels in exterior walls in occupancies in Groups A-1, A-2, H, I-1 and I-3. In other groups, light-transmitting plastics shall be permitted to be used as wall panels in exterior walls, provided that the walls are not required to have a fire-resistance rating and the installation conforms to the requirements of this section. Such panels shall be erected and anchored on a foundation, waterproofed or otherwise protected from moisture absorption and sealed with a coat of mastic or other approved waterproof coating. Light-transmitting plastic wall panels shall also comply with Section 2606.

2607.2 Installation. Exterior wall panels installed as provided for herein shall not alter the type of construction classification of the building.

2607.3 Height limitation. Light-transmitting plastics shall not be installed more than 75 feet (22860 mm) above grade plane, except as allowed by Section 2607.5.

2607.4 Area limitation and separation. The maximum area of a single wall panel and minimum vertical and horizontal separation requirements for exterior light-transmitting plastic wall panels shall be as provided for in Table 2607.4. The maximum percentage of wall area of any story in light-transmitting plastic wall panels shall not exceed that indicated in Table 2607.4 or the percentage of unprotected openings permitted by Section 705.8, whichever is smaller.

Exceptions:

1. In structures provided with approved flame barriers extending 30 inches (760 mm) beyond the exterior wall in the plane of the floor, a vertical separation is not required at the floor except that provided by the vertical thickness of the flame barrier projection.

2. Veneers of approved weather-resistant light-transmitting plastics used as exterior siding in buildings of Type V construction in compliance with Section 1406.

3. The area of light-transmitting plastic wall panels in exterior walls of greenhouses shall be exempt from the area limitations of Table 2607.4 but shall be limited as required for unprotected openings in accordance with Section 704.8.

2607.5 Automatic sprinkler system. Where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, the maximum percentage area of exterior wall in any story in light-transmitting plastic wall panels and the maximum square footage of a single area given in Table 2607.4 shall be increased 100 percent, but the area of light-transmitting plastic wall panels shall not exceed 50 percent of the wall area in any story, or the area permitted by Section 704.8 for unprotected openings, whichever is smaller. These installations shall be exempt from height limitations.
TABLE 2607.4
AREA LIMITATION AND SEPARATION REQUIREMENTS FOR LIGHT-TRANSMITTING PLASTIC WALL PANELS

<table>
<thead>
<tr>
<th>FIRE SEPARATION DISTANCE (feet)</th>
<th>CLASS OF PLASTIC</th>
<th>MAXIMUM PERCENTAGE AREA OF EXTERIOR WALL IN PLASTIC WALL PANELS</th>
<th>MAXIMUM SINGLE AREA OF PLASTIC WALL PANELS (square feet)</th>
<th>MINIMUM SEPARATION OF PLASTIC WALL PANELS (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 6</td>
<td>—</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
<td>—</td>
</tr>
<tr>
<td>6 or more but less than 11</td>
<td>CC1</td>
<td>10</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
<td>—</td>
</tr>
<tr>
<td>11 or more but less than or equal to 30</td>
<td>CC1</td>
<td>25</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>15</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Over 30</td>
<td>CC1</td>
<td>50</td>
<td>Not Limited</td>
<td>6p</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>50</td>
<td>100</td>
<td>6p</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m².

a. For combinations of plastic glazing and plastic wall panel areas permitted, see Section 2607.6.
b. For reductions in vertical separation allowed, see Section 2607.4.

2607.6 Combinations of glazing and wall panels. Combinations of light-transmitting plastic glazing and light-transmitting plastic wall panels shall be subject to the area, height and percentage limitations and the separation requirements applicable to the class of light-transmitting plastic as prescribed for light-transmitting plastic wall panel installations.

SECTION 2608
LIGHT-TRANSMITTING PLASTIC GLAZING

2608.1 Buildings of Type VB construction. Openings in the exterior walls of buildings of Type VB construction, where not required to be protected by Section 704, shall be permitted to be glazed or equipped with light-transmitting plastic. Light-transmitting plastic glazing shall also comply with Section 2606.

2608.2 Buildings of other types of construction. Openings in the exterior walls of buildings of types of construction other than Type VB, where not required to be protected by Section 704, shall be permitted to be glazed or equipped with light-transmitting plastic in accordance with Section 2606 and all of the following:

1. The aggregate area of light-transmitting plastic glazing shall not exceed 25 percent of the area of any wall face of the story in which it is installed. The area of a single pane of glazing installed above the first story above grade plane shall not exceed 16 square feet (1.5 m²) and the vertical dimension of a single pane shall not exceed 4 feet (1219 mm).

 Exception: Where an automatic sprinkler system is provided throughout in accordance with Section 903.3.1.1, the area of allowable glazing shall be increased to a maximum of 50 percent of the wall face of the story in which it is installed with no limit on the maximum dimension or area of a single pane of glazing.

2. Approved flame barriers extending 30 inches (762 mm) beyond the exterior wall in the plane of the floor, or vertical panels not less than 4 feet (1219 mm) in height, shall be installed between glazed units located in adjacent stories.

 Exception: Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

3. Light-transmitting plastics shall not be installed more than 75 feet (22860 mm) above grade level.

 Exception: Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

SECTION 2609
LIGHT-TRANSMITTING PLASTIC ROOF PANELS

2609.1 General. Light-transmitting plastic roof panels shall comply with this section and Section 2606. Light-transmitting plastic roof panels shall not be installed in Groups H, 1-2 and I-3. In all other groups, light-transmitting plastic roof panels shall comply with any one of the following conditions:

1. The building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2. The roof construction is not required to have a fire-resistance rating by Table 601.

3. The roof panels meet the requirements for roof coverings in accordance with Chapter 15.

2609.2 Separation. Individual roof panels shall be separated from each other by a distance of not less than 4 feet (1219 mm) measured in a horizontal plane.

Exceptions:

1. The separation between roof panels is not required in a building equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2. The separation between roof panels is not required in low-hazard occupancy buildings complying with the conditions of Section 2609.4, Exception 2 or 3.
2609.3 Location. Where exterior wall openings are required to be protected by Section 705.8, a roof panel shall not be installed within 6 feet (1829 mm) of such exterior wall.

2609.4 Area limitations. Roof panels shall be limited in area and the aggregate area of panels shall be limited by a percentage of the floor area of the room or space sheltered in accordance with Table 2609.4.

Exceptions:
1. The area limitations of Table 2609.4 shall be permitted to be increased by 100 percent in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. Low-hazard occupancy buildings, such as swimming pool shelters, shall be exempt from the area limitations of Table 2609.4, provided that the buildings do not exceed 5,000 square feet (465 m²) in area and have a minimum fire separation distance of 10 feet (3048 mm).
3. Greenhouses that are occupied for growing plants on a production or research basis, without public access, shall be exempt from the area limitations of Table 2609.4 provided they have a minimum fire separation distance of 4 feet (1220 mm).
4. Roof coverings over terraces and patios in occupancies in Group R-3 shall be exempt from the area limitations of Table 2609.4 and shall be permitted with light-transmitting plastics.

<table>
<thead>
<tr>
<th>CLASS OF PLASTIC</th>
<th>MAXIMUM AREA OF INDIVIDUAL ROOF PANELS (square feet)</th>
<th>MAXIMUM AGGREGATE AREA OF ROOF PANELS (percent of floor area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>CC2</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m².

SECTION 2610
LIGHT-TRANSMITTING PLASTIC SKYLIGHT GLAZING

2610.1 Light-transmitting plastic glazing of skylight assemblies. Skylight assemblies glazed with light-transmitting plastic shall conform to the provisions of this section and Section 2606. Unit skylights glazed with light-transmitting plastic shall also comply with Section 2405.5.

Exception: Skylights in which the light-transmitting plastic conforms to the required roof-covering class in accordance with Section 1505.

2610.2 Mounting. The light-transmitting plastic shall be mounted above the plane of the roof on a curb constructed in accordance with the requirements for the type of construction classification, but at least 4 inches (102 mm) above the plane of the roof. Edges of light-transmitting plastic skylights or domes shall be protected by metal or other approved noncombustible material, or the light-transmitting plastic dome or skylight shall be shown to be able to resist ignition where exposed at the edge to a flame from a Class B brand as described in ASTM E 108 or UL 790.

Exceptions:
1. Curbs shall not be required for skylights used on roofs having a minimum slope of three units vertical in 12 units horizontal (25-percent slope) in occupancies in Group R-3 and on buildings with a nonclassified roof covering.
2. The metal or noncombustible edge material is not required where nonclassified roof coverings are permitted.

2610.3 Slope. Flat or corrugated light-transmitting plastic skylights shall slope at least four units vertical in 12 units horizontal (4:12). Dome-shaped skylights shall rise above the mounting flange a minimum distance equal to 10 percent of the maximum span of the dome but not less than 3 inches (76 mm).

Exception: Skylights that pass the Class B Burning Brand Test specified in ASTM E 108 or UL 790.

2610.4 Maximum area of skylights. Each skylight shall have a maximum area within the curb of 100 square feet (9.3 m²).

Exception: The area limitation shall not apply where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or the building is equipped with smoke and heat vents in accordance with Section 910.

2610.5 Aggregate area of skylights. The aggregate area of skylights shall not exceed 33 1/3 percent of the floor area of the room or space sheltered by the roof in which such skylights are installed where Class CC1 materials are utilized, and 25 percent where Class CC2 materials are utilized.

Exception: The aggregate area limitations of light-transmitting plastic skylights shall be increased 100 percent beyond the limitations set forth in this section where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or the building is equipped with smoke and heat vents in accordance with Section 910.

2610.6 Separation. Skylights shall be separated from each other by a distance of not less than 4 feet (1219 mm) measured in a horizontal plane.

Exceptions:
1. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. In Group R-3, multiple skylights located above the same room or space with a combined area not exceeding the limits set forth in Section 2610.4.

2610.7 Location. Where exterior wall openings are required to be protected in accordance with Section 705, a skylight shall not be installed within 6 feet (1829 mm) of such exterior wall.
2610.8 Combinations of roof panels and skylights. Combinations of light-transmitting plastic roof panels and skylights shall be subject to the area and percentage limitations and separation requirements applicable to roof panel installations.

SECTION 2611
LIGHT-TRANSMITTING PLASTIC INTERIOR SIGNS

2611.2 Aggregate area. The sign shall not exceed 20 percent of the wall area.

2611.3 Maximum area. The sign shall not exceed 24 square feet (2.23 m²).

2611.4 Encasement. Edges and backs of the sign shall be fully encased in metal.

SECTION 2612
FIBER REINFORCED POLYMER AND FIBERGLASS REINFORCED POLYMER

2612.1 General. The provisions of this section shall govern the requirements and uses of fiber reinforced polymer or fiberglass reinforced polymer in and on buildings and structures.

2612.2 Labeling and identification. Packages and containers of fiber reinforced polymer or fiberglass reinforced polymer and their components delivered to the job site shall bear the label of an approved agency showing the manufacturer’s name, product listing, product identification and information sufficient to determine that the end use will comply with the code requirements.

Exceptions:

1. When all of the following conditions are met:

- When the area of the fiber reinforced polymer or the fiberglass reinforced polymer does not exceed 20 percent of the respective wall area, the fiber reinforced polymer or the fiberglass reinforced polymer shall have a flame spread index of 25 or less or when the area of the fiber reinforced polymer or the fiberglass reinforced polymer does not exceed 10 percent of the respective wall area, the fiber reinforced polymer or the fiberglass reinforced polymer shall have a flame spread index of 75 or less. The flame spread index requirement shall not be required for coatings or paints having a thickness of less than 0.036 inch (0.9 mm) that are applied directly to the surface of the fiber reinforced polymer or the fiberglass reinforced polymer.

2. Fireblocking complying with Section 717.2.6 shall be installed.

3. The fiber reinforced polymer or the fiberglass reinforced polymer shall be installed directly to a noncombustible substrate or be separated from the exterior wall by one of the following materials: corrosion-resistant steel having a minimum base metal thickness of 0.016 inch (0.41 mm) at any point, aluminum having a minimum thickness of 0.019 inch (0.5 mm) or other approved noncombustible material.

2. When installed on buildings that are 40 feet (12190 mm) or less above grade, the fiber reinforced polymer or the fiberglass reinforced polymer shall meet the requirements of Section 1406.2 and shall comply with all of the following conditions:

1. Where the fire separation distance is 5 feet (1524 mm) or less, the area of the fiber reinforced polymer or the fiberglass reinforced polymer shall not exceed 10 percent of the wall area. Where the fire separation distance is greater than 5 feet (1524 mm), there shall be no limit on the area of the exterior wall coverage using fiber reinforced polymer or the fiberglass reinforced polymer.

2. The fiber reinforced polymer or the fiberglass reinforced polymer shall have a flame spread index of 200 or less. The flame spread index requirement shall not be required for coatings or paints having a thickness of less than 0.036 inch (0.9 mm) that are applied directly to the surface of the fiber reinforced polymer or the fiberglass reinforced polymer.

3. Fireblocking complying with Section 717.2.6 shall be installed.
2.4. The fiber reinforced polymer or the fiberglass reinforced polymer shall be designed for uniform live loads as required in Table 1607.1 as well as for snow loads, wind loads and earthquake loads as specified in Sections 1608, 1609 and 1613, respectively.

SECTION 2613
REFLECTIVE PLASTIC CORE INSULATION

2613.1 General. The provisions of this section shall govern the requirements and uses of reflective plastic core insulation in buildings and structures. Reflective plastic core insulation shall comply with the requirements of Section 2613.2 and of one of the following: Section 2613.3 or 2613.4.

2613.2 Identification. Packages and containers of reflective plastic core insulation delivered to the job site shall show the manufacturer’s or supplier’s name, product identification and information sufficient to determine that the end use will comply with the code requirements.

2613.3 Surface-burning characteristics. Reflective plastic core insulation shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 450 when tested in accordance with ASTM E 84 or UL 723. The reflective plastic core insulation shall be tested at the maximum thickness intended for use and shall be tested using one of the mounting methods in Section 2613.3.1 or 2613.3.2.

2613.3.1 Mounting of test specimen. The test specimen shall be mounted on 2-inch-high (51 mm) metal frames so as to create an air space between the unexposed face of the reflective plastic core insulation and the lid of the test apparatus.

2613.3.2 Specific testing. A set of specimen preparation and mounting procedures shall be used which are specific to the testing of reflective plastic core insulation.

2613.4 Room corner test heat release. Reflective plastic core insulation shall comply with the acceptance criteria of Section 803.1.2.1 when tested in accordance with NFPA 286 or UL 1715 in the manner intended for use and at the maximum thickness intended for use.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 27 – ELECTRICAL

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2702.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2702.2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2702.2.15</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2702.2.21</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 27
ELECTRICAL
Refer to California Electrical Code, Title 24, Part 3

SECTION 2701
GENERAL

2701.1 Scope. This chapter governs the electrical components, equipment and systems used in buildings and structures covered by this code. Electrical components, equipment and systems shall be designed and constructed in accordance with the provisions of the California Electrical Code.

[F] SECTION 2702
EMERGENCY AND STANDBY POWER SYSTEMS

[F] 2702.1 Installation. Emergency and standby power systems required by this code or the California Fire Code shall be installed in accordance with this code, NFPA 110 and 111.

[F] 2702.1.1 Stationary generators. Stationary emergency and standby power generators required by this code shall be listed in accordance with UL 2200.

[F] 2702.2 Where required. Emergency and standby power systems shall be provided where required by Sections 2702.2.1 through 2702.2.20.

[F] 2702.2.1 Group A occupancies. Emergency power shall be provided for emergency voice/alarm communication systems in Group A occupancies in accordance with Section 907.5.2.2.4.

[F] 2702.2.2 Smoke control systems. Standby power shall be provided for smoke control systems in accordance with Section 909.11.

[F] 2702.2.3 Exit signs. Emergency power shall be provided for exit signs in accordance with Section 1011.5.3.

[F] 2702.2.4 Means of egress illumination. Emergency power shall be provided for means of egress illumination in accordance with Section 1006.3.

[F] 2702.2.5 Accessible means of egress elevators. Standby power shall be provided for elevators that are part of an accessible means of egress in accordance with Section 1007.4.

[F] 2702.2.6 Accessible means of egress platform lifts. Standby power in accordance with this section or ASME A 18.1 shall be provided for platform lifts that are part of an accessible means of egress in accordance with Section 1007.5.

[F] 2702.2.7 Horizontal sliding doors. Standby power shall be provided for horizontal sliding doors in accordance with Section 1008.1.4.3.

[F] 2702.2.8 Semiconductor fabrication facilities. Emergency power shall be provided for semiconductor fabrication facilities in accordance with Section 415.8.10.

[F] 2702.2.9 Membrane structures. Standby power shall be provided for auxiliary inflation systems in accordance with Section 3102.8.2. Emergency power shall be provided for exit signs in temporary tents and membrane structures in accordance with the California Fire Code.

[F] 2702.2.10 Hazardous materials. Emergency or standby power shall be provided in occupancies with hazardous materials in accordance with Section 414.5.4.

[F] 2702.2.11 Highly toxic and toxic materials. Emergency power shall be provided for occupancies with highly toxic or toxic materials in accordance with the California Fire Code.

[F] 2702.2.12 Organic peroxides. Standby power shall be provided for occupancies with silane gas in accordance with the California Fire Code.

[F] 2702.2.13 Pyrophoric materials. Emergency power shall be provided for occupancies with silane gas in accordance with the California Fire Code.

[F] 2702.2.14 Covered mall buildings. Standby power shall be provided for voice/alarm communication systems in covered mall buildings in accordance with Section 402.14.

[F] 2702.2.15 High-rise buildings and Group I-2 occupancies having occupied floors located more than 75 feet above the lowest level of fire department vehicle access. Emergency and standby power shall be provided in high-rise buildings and Group I-2 occupancies having occupied floors located more than 75 feet above the lowest level of fire department vehicle access in accordance with Sections 403.4.7 and 403.4.8.

[F] 2702.2.16 Underground buildings. Emergency and standby power shall be provided in underground buildings in accordance with Sections 405.8 and 405.9.

[F] 2702.2.17 Group I-3 occupancies. Emergency power shall be provided for doors in Group I-3 occupancies in accordance with Section 408.4.2.

[F] 2702.2.18 Airport traffic control towers. Standby power shall be provided in airport traffic control towers in accordance with Section 412.3.5.

[F] 2702.2.19 Elevators. Standby power for elevators shall be provided as set forth in Sections 3003.1, 3007.7 and 3008.15.

[F] 2702.2.20 Smokeproof enclosures. Standby power shall be provided for smokeproof enclosures as required by Section 909.20.6.2.

2702.2.21 Group L-Occupancy. Emergency power shall be provided in Group L occupancies in accordance with this chapter and Section 443.4.6.1.

[F] 2702.3 Maintenance. Emergency and standby power systems shall be maintained and tested in accordance with the California Fire Code.
The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 28
MECHANICAL SYSTEMS

Refer to California Mechanical Code, Title 24, Part 4

SECTION 2801
GENERAL

2801.1 Scope. Mechanical appliances, equipment and systems shall be constructed, installed and maintained in accordance with the California Mechanical Code. Masonry chimneys, fireplaces and barbecues shall comply with the California Mechanical Code and Chapter 21 of this code.

2802 Spark Arrester. [SFM] All chimneys attached to any appliance or fireplace that burns solid fuel shall be equipped with an approved spark arrester. The spark arrester shall meet all of the following requirements:

1. The net free area of the spark arrester shall not be less than four times the net free area of the outlet of the chimney.

2. The spark arrester screen shall have heat and corrosion resistance equivalent to 12-gage wire, 19-gage galvanized wire or 24-gage stainless steel.

3. Openings shall not permit the passage of spheres having a diameter larger than \(\frac{1}{2} \) inch (12.7 mm) and shall not block the passage of spheres having a diameter of less than \(\frac{3}{8} \) inch (9.5 mm).

4. The spark arrester shall be accessible for cleaning, and the screen or chimney cap shall be removable to allow for cleaning of the chimney flue.
CHAPTER 29
PLUMBING SYSTEMS
(Not adopted by the State of California)

Refer to California Plumbing Code, Title 24, Part 5

SECTION 2901
GENERAL

2901.1 Scope. The provisions of the California Plumbing Code shall govern the erection, installation, alteration, repairs, relocation, replacement, addition to, use or maintenance of plumbing equipment and systems. Plumbing systems and equipment shall be constructed, installed and maintained in accordance with the California Plumbing Code. Private sewage disposal systems shall conform to the California Plumbing Code.

For minimum plumbing fixture requirements, see Table 4-1 of the California Plumbing Code.

[Table 2902.1]

![Table with minimum number of required plumbing fixtures]

(continued)
<table>
<thead>
<tr>
<th>No.</th>
<th>CLASSIFICATION</th>
<th>OCCUPANCY</th>
<th>DESCRIPTION</th>
<th>WATER CLOSETS (URINALS SEE SECTION 419.2 OF THE CALIFORNIA PLUMBING CODE)</th>
<th>LAVATORIES</th>
<th>BATHTUBS OR SHOWERs (SEE SECTION 410.1 OF THE CALIFORNIA PLUMBING CODE)</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Business</td>
<td>B</td>
<td>Buildings for the transaction of business, professional services, other services involving merchandise, office buildings, banks, light industrial and similar uses</td>
<td>1 per 25 for the first 50 and 1 per 50 for the remainder exceeding 50</td>
<td>1 per 40 for the first 80 and 1 per 80 for the remainder exceeding 80</td>
<td>—</td>
<td>1 per 100</td>
</tr>
<tr>
<td>3</td>
<td>Educational</td>
<td>E</td>
<td>Educational facilities</td>
<td>1 per 50</td>
<td>1 per 50</td>
<td>—</td>
<td>1 per 100</td>
</tr>
<tr>
<td>4</td>
<td>Factory and industrial</td>
<td>F-1 and F-2</td>
<td>Structures in which occupants are engaged in work fabricating, assembly or processing of products or materials</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>See Section 411 of the International Plumbing Code</td>
<td>1 per 400</td>
</tr>
<tr>
<td>5</td>
<td>Institutional</td>
<td>I-1</td>
<td>Residential care</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-2</td>
<td>Hospitals, ambulatory nursing home patients</td>
<td>1 per room<sup>b</sup></td>
<td>1 per room<sup>b</sup></td>
<td>1 per 15</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-3</td>
<td>Employees, other than residential care</td>
<td>1 per 25</td>
<td>1 per 35</td>
<td>—</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-3</td>
<td>Visitors, other than residential care</td>
<td>1 per 75</td>
<td>1 per 100</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-3</td>
<td>Prisons<sup>b</sup></td>
<td>1 per cell</td>
<td>1 per cell</td>
<td>1 per 15</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-3</td>
<td>Reformatories, detention centers and correctional centers<sup>b</sup></td>
<td>1 per 15</td>
<td>1 per 15</td>
<td>1 per 15</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-4</td>
<td>Employees<sup>b</sup></td>
<td>1 per 25</td>
<td>1 per 35</td>
<td>—</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-4</td>
<td>Adult day care and child care</td>
<td>1 per 15</td>
<td>1 per 15</td>
<td>1</td>
<td>1 per 100</td>
</tr>
<tr>
<td>6</td>
<td>Mercantile</td>
<td>M</td>
<td>Retail stores, service stations, shops, salesrooms, markets and shopping centers</td>
<td>1 per 500</td>
<td>1 per 750</td>
<td>—</td>
<td>1 per 1000</td>
</tr>
<tr>
<td>7</td>
<td>Residential</td>
<td>R-1</td>
<td>Hotels, motels, boarding houses (transient)</td>
<td>1 per sleeping unit</td>
<td>1 per sleeping unit</td>
<td>1 per sleeping unit</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-2</td>
<td>Dormitories, fraternities, sororities and boarding houses (not transient)</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-2</td>
<td>Apartment house</td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>—</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2902.1—continued

MINIMUM NUMBER OF REQUIRED PLUMBING FIXTURES

<table>
<thead>
<tr>
<th>No.</th>
<th>CLASSIFICATION</th>
<th>OCCUPANCY</th>
<th>DESCRIPTION</th>
<th>WATER CLOSETS (URINALS SEE SECTION 419.2 OF THE CALIFORNIA PLUMBING CODE)</th>
<th>LAVATORIES</th>
<th>BATHTUBS/SHOWERs</th>
<th>DRINKING FOUNTAINS*</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MALE</td>
<td>FEMALE</td>
<td>MALE</td>
<td>FEMALE</td>
<td>(SEE SECTION 410.1 OF THE CALIFORNIA PLUMBING CODE)</td>
</tr>
<tr>
<td>7</td>
<td>Residential</td>
<td>R-3</td>
<td>Congregate living facilities with 16 or fewer persons</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R-4</td>
<td>Residential care/assisted living facilities</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
<td>1 service sink</td>
</tr>
<tr>
<td>8</td>
<td>Storage</td>
<td>S-1</td>
<td>Structures for the storage of goods, warehouses, storehouses and freight depots, low and moderate hazard</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td></td>
<td></td>
<td>See the California Plumbing Code</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The fixtures shown are based on one fixture being the minimum required for the number of persons indicated or any fraction of the number of persons indicated. The number of occupants shall be determined by this code.

b. Toilet facilities for employees shall be separate from facilities for inmates or patients.

c. A single-occupant toilet room with one water closet and one lavatory serving not more than two adjacent patient sleeping units shall be permitted where such room is provided with direct access from each patient sleeping unit and with provisions for privacy.

d. The occupant load for seasonal outdoor seating and entertainment areas shall be included when determining the minimum number of facilities required.

*e. The minimum number of required drinking fountains shall comply with Chapter 11B and the *California Plumbing Code.*

f. Drinking fountains are not required for an occupant load of 15 or fewer.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 30 – ELEVATORS AND CONVEYING SYSTEMS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter/Section

- 3001.1
- 3001.1 w/Exception
- 3001.3
- 3001.5
- 3002.4a – 3002.4.7a
- 3002.9 – 3002.9.5
- 3003.2.1 – 3003.2.1.2
- 3004.1
- 3004.3.1
- 3006.5 – 3006.5.5
- 3009

The Office of the State Fire Marshal’s adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 30
ELEVATORS AND CONVEYING SYSTEMS

SECTION 3001
GENERAL

3001.1 Scope. This chapter governs the design, construction, installation, alteration and repair of elevators and conveying systems and their components.

Exception: [DSA-AC & HCD 1-AC] For accessibility requirements for platform (wheelchair) lifts and elevators, see California Code of Regulations, Title 8 and Title 24, Part 2, Sections 1124A and 1116B.

3001.2 Referenced standards. Except as otherwise provided for in this code, the design, construction, installation, alteration, repair and maintenance of elevators and conveying systems and their components shall conform to ASME A17.1/CSA B44, ASME A90.1, ASME B20.1, ALI ALCTV, and ASCE 24 for construction in flood hazard areas established in Section 1612.3.

3001.3 Accessibility. Passenger elevators and platform (wheelchair) lifts required to be accessible by Chapter 11A or 11B shall conform to Chapter 11A for applications listed in Section 1.8.2.1.2 regulated by the Department of Housing and Community Development or Chapter 11B for applications listed in Section 1.9.1 regulated by the Division of the State Architect-Access Compliance.

3001.4 Change in use. A change in use of an elevator from freight to passenger, passenger to freight, or from one freight class to another freight class shall comply with Section 8.7 of ASME A17.1/CSA B44.

3001.5 Elevators utilized to transport hazardous materials. Elevators utilized to transport hazardous materials shall also comply with California Fire Code Section 2703.10.4.

SECTION 3002
HOISTWAY ENCLOSURES

3002.1 Hoistway enclosure protection. Elevator, dumbwaiter and other hoistway enclosures shall be shaft enclosures complying with Section 708.

3002.1.1 Opening protectives. Openings in hoistway enclosures shall be protected as required in Chapter 7.

Exception: The elevator car doors and the associated hoistway enclosure doors at the floor level designated for recall in accordance with Section 3003.2 shall be permitted to remain open during Phase I Emergency Recall Operation.

3002.1.2 Hardware. Hardware on opening protectives shall be of an approved type installed as tested, except that approved interlocks, mechanical locks and electric contacts, door and gate electric contacts and door-operating mechanisms shall be exempt from the fire test requirements.

3002.2 Number of elevator cars in a hoistway. Where four or more elevator cars serve all or the same portion of a building, the elevators shall be located in at least two separate hoistways. Not more than four elevator cars shall be located in any single hoistway enclosure.

3002.3 Emergency signs. An approved pictorial sign of a standardized design shall be posted adjacent to each elevator call station on all floors instructing occupants to use the exit stairways and not to use the elevators in case of fire. The sign shall read: IN FIRE EMERGENCY, DO NOT USE ELEVATOR. USE EXIT STAIRS.

Exceptions:

1. The emergency sign shall not be required for elevators that are part of an accessible means of egress complying with Section 1007.4.
2. The emergency sign shall not be required for elevators that are used for occupant self-evacuation in accordance with Section 3008.

3002.4 Elevator car to accommodate ambulance stretcher. Where elevators are provided in buildings four or more stories above, or four or more stories below, grade plane, at least one elevator shall be provided for fire department emergency access to all floors. The elevator car shall be of such a size and arrangement to accommodate an ambulance stretcher 24 inches by 84 inches by 84 inches (610 mm by 2134 mm) with not less than 5-inch (127 mm) radius corners, in the horizontal, open position and shall be identified by the international symbol for emergency medical services (star of life). The symbol shall not be less than 3 inches (76 mm) high and shall be placed inside on both sides of the hoistway door frame.

The following California sections replace the corresponding model code section for applications specified in Section 1.11 for the Office of the State Fire Marshal.

3002.4a General Stretcher Requirements. All buildings and structures with one or more passenger service elevators shall be provided with not less than one medical emergency service elevator to all landings meeting the provisions of Section 3002.4a.

Exceptions:

1. Elevators in structures used only by maintenance and operating personnel.
2. Elevators in jails and penal institutions.
3. Elevators in buildings or structures where each landing is at ground level or is accessible at grade level or by a ramp.
4. Elevator(s) in two-story buildings or structures equipped with stairs of a configuration that will accommodate the carrying of the gurney or stretcher as permitted by the local jurisdictional authority.
5. Elevators in buildings or structures less than four stories in height for which the local jurisdictional authority has granted an exception in the form of a written document.

3002.4.1a Gurney size. The medical emergency service elevator shall accommodate the loading and transport of an ambulance gurney or stretcher [maximum size 24 inches by 84 inches (610 mm by 2134 mm) with not less than 5-inch (127 mm) radius corners] in the horizontal position.

3002.4.2a Hoistway doors. The hoistway landing openings shall be provided with power-operated doors.

3002.4.3a Elevator entrance openings and car size. The elevator car shall be of such a size and arrangement to accommodate a 24-inch by 84-inch (610 mm by 2134 mm) ambulance gurney or stretcher with not less than 5-inch (127 mm) radius corners, in the horizontal, open position, shall be provided with a minimum clear distance between walls or between walls and door excluding return panels not less than 80 inches by 54 inches (2032 mm by 1372 mm), and a minimum distance from wall to return panel not less than 51 inches (1295 mm) with a 42-inch (1067 mm) side slide door.

Exception: The elevator car dimensions and/or the clear entrance opening dimensions may be altered where it can be demonstrated to the local jurisdictional authority's satisfaction that the proposed configuration will handle the designated gurney or stretcher with equivalent ease. Documentation from the local authority shall be provided to the Occupational Safety and Health Standards Board.

3002.4.4a Elevator recall. The elevator(s) designated the medical emergency elevator shall be equipped with a key switch to recall the elevator nonstop to the main floor. For the purpose of this section, elevators in compliance with Section 3003.2 shall be acceptable.

3002.4.5a Designation. Medical emergency elevators shall be identified by the international symbol (Star of Life) for emergency medical services.

3002.4.6a Symbol size. The symbol shall not be less than 3 inches (76 mm) in size.

3002.4.7a Symbol location. A symbol shall be permanently attached to each side of the hoistway door frame on the portion of the frame at right angles to the hallway or landing area. Each symbol shall be not less than 78 inches (1981 mm) and not more than 84 inches (2134 mm) above the floor level at the threshold.

3002.5 Emergency doors. Where an elevator is installed in a single blind hoistway or on the outside of a building, there shall be installed in the blind portion of the hoistway or blank face of the building, an emergency door in accordance with ASME A17.1/CSA B44.

3002.6 Prohibited doors. Doors, other than hoistway doors and the elevator car door, shall be prohibited at the point of access to an elevator car unless such doors are readily openable from the car side without a key, tool, special knowledge or effort.

3002.7 Common enclosure with stairway. Elevators shall not be in a common shaft enclosure with a stairway.

Exception: Open parking garages.

3002.8 Glass in elevator enclosures. Glass in elevator enclosures shall comply with Section 2409.1.

3002.9 Photoelectric tube bypass switch.

3002.9.1 Elevators equipped with photoelectric tube devices which control the closing of automatic, power-operated car or hoistway doors, or both, shall have a switch in the car which, when actuated, will render the photoelectric tube device ineffective.

3002.9.2 The switch shall be constant-pressure type, requiring not less than 10 pounds (44.5N) or more than 15 pounds (66.7 N) pressure to actuate.

3002.9.3 The switch shall be located not less than 6 feet (1829 mm) or more than 6 feet 6 inches (1981 mm) above the car floor and shall be located in or adjacent to the operating panel.

3002.9.4 The switch shall be clearly labeled TO BE USED IN CASE OF FIRE ONLY.

3002.9.5 Switches shall be kept in working order or be removed when existing installations are arranged to comply with Section 3002.9.5, Exception 1 or 2.

Exceptions:

1. Elevators installed and maintained in compliance with Section 3003.

2. Where alternate means acceptable to the fire authority having jurisdiction are provided that will ensure the doors can close under adverse smoke conditions.

[F] SECTION 3003 EMERGENCY OPERATIONS

[F] 3003.1 Standby power. In buildings and structures where standby power is required or furnished to operate an elevator, the operation shall be in accordance with Sections 3003.1.1 through 3003.1.4.

[F] 3003.1.1 Manual transfer. Standby power shall be manually transferable to all elevators in each bank.

[F] 3003.1.2 One elevator. Where only one elevator is installed, the elevator shall automatically transfer to standby power within 60 seconds after failure of normal power.

[F] 3003.1.3 Two or more elevators. Where two or more elevators are controlled by a common operating system, all elevators shall automatically transfer to standby power within 60 seconds after failure of normal power where the standby power source is of sufficient capacity to operate all elevators at the same time. Where the standby power source is not of sufficient capacity to operate all elevators at the same time, all elevators shall transfer to standby power in sequence, return to the designated landing and disconnect from the standby power source. After all elevators have been returned to the designated level, at least one elevator shall remain operable from the standby power source.
[F] 3003.1.4 Venting. Where standby power is connected to elevators, the machine room ventilation or air conditioning shall be connected to the standby power source.

[F] 3003.2 Fire-fighters' emergency operation. Elevators shall be provided with Phase I emergency recall operation and Phase II emergency in-car operation in accordance with ASME A17.1/CSA B44.

3003.2.1 Floor numbers. Elevator hoistways shall have a floor number not less than 4 inches (102 mm) in height, placed on the walls and/or doors of the hoistway at intervals such that a person in a stalled elevator, upon opening the car door, can determine the floor position.

3003.2.1.1 Fire signs. All automatic elevators shall have not less than one sign at each landing printed on a contrasting background in letters not less than \(\frac{1}{2} \) inch (12.7 mm) high to read: IN CASE OF FIRE USE STAIRWAY FOR EXIT. DO NOT USE ELEVATOR.

3003.2.1.2 Call and car operation buttons. Automatic passenger elevators shall have call and car operation buttons within 60 inches (1524 mm) of the floor. Emergency telephones shall also be within 60 inches (1524 mm) of the floor.

SECTION 3004
HOISTWAY VENTING

3004.1 Vents required. Hoistways of elevators and dumbwaiters penetrating more than three stories shall be provided with a means for venting smoke and hot gases to the outer air in case of fire.

Exceptions:
1. In occupancies of other than Groups R-1, R-2, R-2.1, I-2 and similar occupancies with overnight sleeping units, venting of hoistways is not required where the building is equipped throughout with an approved automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.
2. Sidewalk elevator hoistways are not required to be vented.
3. Elevators contained within and serving open parking garages only.
4. Elevators within individual residential dwelling units.

3004.2 Location of vents. Vents shall be located at the top of the hoistway and shall open either directly to the outer air or through noncombustible ducts to the outer air. Noncombustible ducts shall be permitted to pass through the elevator machine room, provided that portions of the ducts located outside the hoistway or machine room are enclosed by construction having not less than the fire-resistance rating required for the hoistway. Holes in the machine room floors for the passage of ropes, cables or other moving elevator equipment shall be limited as not to provide greater than 2 inches (51 mm) of clearance on all sides.

3004.3 Area of vents. Except as provided for in Section 3004.3.1, the area of the vents shall not be less than \(3\frac{1}{2} \) percent of the area of the hoistway nor less than 3 square feet (0.28 m²) for each elevator car, and not less than \(3\frac{1}{2} \) percent nor less than 0.5 square feet (0.047 m²) for each dumbwaiter car in the hoistway, whichever is greater. Of the total required vent area, not less than one-third shall be permanently open. Closed portions of the required vent area shall consist of openings glazed with annealed glass not greater than \(\frac{1}{6} \) inch (3.2 mm) in thickness.

Exception: The total required vent area shall not be required to be permanently open where all the vent openings automatically open upon detection of smoke in the elevator lobbies or hoistway, upon power failure and upon activation of a manual override control. The manual override control shall be capable of opening and closing the vents and shall be located in an approved location.

3004.3.1 Reduced vent area. Where mechanical ventilation conforming to the California Mechanical Code is provided, a reduction in the required vent area is allowed provided that all of the following conditions are met:
1. The occupancy is not in Group R-1, R-2, R-2.1 or I-2 or of a similar occupancy with overnight sleeping units.
2. The vents required by Section 3004.2 do not have outside exposure.
3. The hoistway does not extend to the top of the building.
4. The hoistway and machine room exhaust fan is automatically reactivated by thermostatic means.
5. Equivalent venting of the hoistway is accomplished.

3004.4 Plumbing and mechanical systems. Plumbing and mechanical systems shall not be located in an elevator shaft.

Exception: Floor drains, sumps and sump pumps shall be permitted at the base of the shaft provided they are indirectly connected to the plumbing system.

SECTION 3005
CONVEYING SYSTEMS

3005.1 General. Escalators, moving walks, conveyors, personnel hoists and material hoists shall comply with the provisions of this section.

3005.2 Escalators and moving walks. Escalators and moving walks shall be constructed of approved noncombustible and fire-retardant materials. This requirement shall not apply to electrical equipment, wiring, wheels, handrails and the use of \(\frac{1}{25} \)-inch (0.9 mm) wood veneers on balustrades backed up with noncombustible materials.

3005.2.1 Enclosure. Escalator floor openings shall be enclosed with shaft enclosures complying with Section 708.

3005.2.2 Escalators. Where provided in below-grade transportation stations, escalators shall have a clear width of 32 inches (815 mm) minimum.

Exception: The clear width is not required in existing facilities undergoing alterations.

3005.3 Conveyors. Conveyors and conveying systems shall comply with ASME B20.1.
3005.3.1 Enclosure. Conveyors and related equipment connecting successive floors or levels shall be enclosed with shaft enclosures complying with Section 708.

3005.3.2 Conveyor safeties. Power-operated conveyors, belts and other material-moving devices shall be equipped with automatic limit switches which will shut off the power in an emergency and automatically stop all operation of the device.

3005.4 Personnel and material hoists. Personnel and material hoists shall be designed utilizing an approved method that accounts for the conditions imposed during the intended operation of the hoist device. The design shall include, but is not limited to, anticipated loads, structural stability, impact, vibration, stresses and seismic restraint. The design shall account for the construction, installation, operation and inspection of the hoist tower, car, machinery and control equipment, guide members and hoisting mechanism. Additionally, the design of personnel hoists shall include provisions for field testing and maintenance which will demonstrate that the hoist device functions in accordance with the design. Field tests shall be conducted upon the completion of an installation or following a major alteration of a personnel hoist.

SECTION 3006
MACHINE ROOMS

3006.1 Access. An approved means of access shall be provided to elevator machine rooms and overhead machinery spaces.

3006.2 Venting. Elevator machine rooms that contain solid-state equipment for elevator operation shall be provided with an independent ventilation or air-conditioning system to protect against the overheating of the electrical equipment. The system shall be capable of maintaining temperatures within the range established for the elevator equipment.

3006.3 Pressurization. The elevator machine room serving a pressurized elevator hoistway shall be pressurized upon activation of a heat or smoke detector located in the elevator machine room.

3006.4 Machine rooms and machinery spaces. Elevator machine rooms and machinery spaces shall be enclosed with fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 712, or both. The fire-resistance rating shall not be less than the required rating of the hoistway enclosure served by the machinery. Openings in the fire barriers shall be protected with assemblies having a fire protection rating not less than that required for the hoistway enclosure doors.

Exceptions:

1. Where machine rooms and machinery spaces do not abut and have no openings to the hoistway enclosure they serve, the machine room and machinery spaces are not required to be fire-resistance rated.

2. In buildings four stories or less above grade plane when machine room and machinery spaces do not abut and have no openings to the hoistway enclosure they serve, the machine room and machinery spaces are not required to be fire-resistance rated.

3006.5 Shunt trip. Where elevator hoistways or elevator machine rooms containing elevator control equipment are protected with automatic sprinklers, a means installed in accordance with NFPA 72, Section 6.16, Elevator Shutdown, shall be provided to disconnect automatically the main line power supply to the affected elevator prior to the application of water. This means shall not be self-resetting. The activation of sprinklers outside the hoistway or machine room shall not disconnect the main line power supply.

3006.5.1 Elevator power shunt-trip shall not activate prior to the completion of elevator Phase I emergency recall operation to the designated recall floor.

3006.5.2 Elevator power shunt-trip capability shall be disabled during Phase II emergency in-car operation.

3006.5.3 Audible and visual annunciation shall be provided at the fire alarm control unit indicating that the automatic sprinklers, smoke detectors or heat detectors in the elevator hoistway or elevator machine room have activated.

3006.5.4 Audible and visual annunciation shall be provided at the fire alarm control unit indicating that the automatic sprinklers, smoke detectors or heat detectors in the elevator hoistway or elevator machine room have activated.

3006.5.5 Visual annunciation shall be provided inside all elevator cars indicating that the automatic sprinklers, smoke detectors or heat detectors in the elevator hoistway or elevator machine room have activated.

3006.6 Plumbing systems. Plumbing systems shall not be located in elevator equipment rooms.

SECTION 3007
FIRE SERVICE ACCESS ELEVATOR

3007.1 General. Where required by Section 403.6.1, every floor of the building shall be served by a fire service access elevator. Except as modified in this section, the fire service access elevator shall be installed in accordance with this chapter and ASME A17.1/CSA B44.

3007.2 Hoistway enclosures protection. The fire service access elevator shall be located in a shaft enclosure complying with Section 708.

3007.3 Hoistway lighting. When firefighters’ emergency operation is active, the entire height of the hoistway shall be illuminated at not less than 1 foot-candle (11 lux) as measured from the top of the car of each fire service access elevator.

3007.4 Fire service access elevator lobby. The fire service access elevator shall open into a fire service access elevator lobby in accordance with Sections 3007.4.1 through 3007.4.4.

Exception: Where a fire service access elevator has two entrances onto a floor, the second entrance shall be permitted to open into an elevator lobby in accordance with Section 708.14.1.

3007.4.1 Access. The fire service access elevator lobby shall have direct access to an exit enclosure.
3007.4.2 Lobby enclosure. The fire service access elevator lobby shall be enclosed with a smoke barrier having a minimum 1-hour fire-resistance rating, except that lobby doorways shall comply with Section 3007.4.3.

Exception: Enclosed fire service access elevator lobbies are not required at the street floor.

3007.4.3 Lobby doorways. Each fire service access elevator lobby shall be provided with a doorway that is protected with a 1/2-hour fire door assembly complying with Section 715.4. The fire door assembly shall also comply with the smoke and draft control door assembly requirements of Section 715.4.3.1 with the UL 1784 test conducted without the artificial bottom seat.

3007.4.4 Lobby size. Each enclosed fire service access elevator lobby shall be a minimum of 150 square feet (14 m²) in an area with a minimum dimension of 8 feet (2440 mm).

3007.5 Standpipe hose connection. A Class I standpipe hose connection in accordance with Section 905 shall be provided in the exit enclosure having direct access from the fire service access elevator lobby.

3007.6 Elevator system monitoring. The fire service access elevator shall be continuously monitored at the fire command center by a standard emergency service interface system meeting the requirements of NFPA 72.

3007.7 Electrical power. The following features serving each fire service access elevator shall be supplied by both normal power and Type 60/Class 2-Level 1 standby power:

1. Elevator equipment.
2. Elevator hoistway lighting.
3. Elevator machine room ventilation and cooling equipment.
4. Elevator controller cooling equipment.

3007.7.1 Protection of wiring or cables. Wires or cables that provide normal and standby power, control signals, communication with the car, lighting, heating, air conditioning, ventilation and fire-detecting systems to fire service access elevators shall be protected by construction having a minimum 1-hour fire-resistance rating or shall be circuit integrity cable having a minimum 1-hour fire-resistance rating.

SECTION 3008 OCCUPANT EVACUATION ELEVATORS

3008.1 General. Where elevators are to be used for occupant self-evacuation during fires, all passenger elevators for general public use shall comply with this section. Where other elevators are used for occupant self-evacuation, they shall also comply with this section.

3008.2 Fire safety and evacuation plan. The building shall have an approved fire safety and evacuation plan in accordance with the applicable requirements of Section 404 of the International Fire Code. The fire safety and evacuation plan shall incorporate specific procedures for the occupants using evacuation elevators.

3008.3 Operation. The occupant evacuation elevators shall be used for occupant self-evacuation only in the normal elevator operating mode prior to Phase I Emergency Recall Operation in accordance with the requirements in ASME A17.1/CSA B44 and the building’s fire safety and evacuation plan.

3008.4 Additional exit stairway. Where an additional means of egress is required in accordance with Section 403.5.2., an additional exit stairway shall not be required to be installed in buildings having elevators used for occupant self-evacuation in accordance with this section.

3008.5 Emergency voice/alarm communication system. The building shall be provided with an emergency voice/alarm communication system. The emergency voice/alarm communication system shall be accessible to the fire department. The system shall be provided in accordance with Section 907.5.2.2.

3008.6 Automatic sprinkler system. The building shall be protected throughout by an approved, electrically-supervised automatic sprinkler system in accordance with Section 903.3.1.1, except as otherwise permitted by Section 903.3.1.1.1 and as prohibited by Section 3008.6.1.

3008.6.1 Prohibited locations. Automatic sprinklers shall not be installed in elevator machine rooms and elevator machine spaces for occupant evacuation elevators.

3008.6.2 Sprinkler system monitoring. The sprinkler system shall have a sprinkler control valve supervisory switch and waterflow-initiating device provided for each floor that is monitored by the building’s fire alarm system.

3008.7 High-hazard content areas. No building areas shall contain high-hazard contents exceeding the maximum allowable quantities per control area as addressed in Section 414.2.

3008.8 Shunt trip. Means for elevator shutdown in accordance with Section 3006.5 shall not be installed on elevator systems used for occupant evacuation elevators.

3008.9 Hoistway enclosure protection. The occupant evacuation elevators shall be located in hoistway enclosure(s) complying with Section 708.

3008.10 Water protection. The occupant evacuation elevator hoistway shall be designed utilizing an approved method to prevent water from the operation of the automatic sprinkler system from infiltrating into the hoistway enclosure.

3008.11 Occupant evacuation elevator lobby. The occupant evacuation elevators shall open into an elevator lobby in accordance with Sections 3008.11.1 through 3008.11.4.

3008.11.1 Access. The occupant evacuation elevator lobby shall have direct access to an exit enclosure.

3008.11.2 Lobby enclosure. The occupant evacuation elevator lobby shall be enclosed with a smoke barrier having a minimum 1-hour fire-resistance rating, except that lobby doorways shall comply with Section 3008.11.5.

Exception: Enclosed occupant evacuation elevator lobbies are not required at the level(s) of exit discharge.
3008.11.3 Lobby doorways. Each occupant evacuation elevator lobby shall be provided with a doorway that is protected with a 1/4-hour fire door assembly complying with Section 715.4.

3008.11.3.1 Vision panel. A vision panel shall be installed in each fire door assembly protecting the lobby doorway. The vision panel shall consist of fire-protection-rated glazing and shall be located to furnish clear vision of the occupant evacuation elevator lobby.

3008.11.3.2 Door closing. Each fire door assembly protecting the lobby doorway shall be automatic-closing upon receipt of any fire alarm signal from the emergency voice/alarm communication system serving the building.

3008.11.4 Lobby size. Each occupant evacuation elevator lobby shall have minimum floor area as follows:

1. The occupant evacuation elevator lobby floor area shall accommodate, at 3 square feet (0.28 m²) per person, a minimum of 25 percent of the occupant load of the floor area served by the lobby.

2. The occupant evacuation elevator lobby floor area also shall accommodate one wheelchair space of 30 inches by 48 inches (760 mm by 1220 mm) for each 50 persons, or portion thereof, of the occupant load of the floor area served by the lobby.

Exception: The size of lobbies serving multiple banks of elevators shall have the minimum floor area approved on an individual basis and shall be consistent with the building’s fire safety and evacuation plan.

3008.11.5 Signage. An approved sign indicating elevators are suitable for occupant self-evacuation shall be posted on all floors adjacent to each elevator call station serving occupant evacuation elevators.

3008.12 Lobby status indicator. Each occupant evacuation elevator lobby shall be equipped with a status indicator arranged to display all of the following information:

1. An illuminated green light and the message, “Elevators available for occupant evacuation” when the elevators are operating in normal service and the fire alarm system is indicating an alarm in the building.

2. An illuminated red light and the message, “Elevators out of service, use exit stairs” when the elevators are in Phase I emergency recall operation in accordance with the requirements in ASME A17.1/CSA B44.

3. No illuminated light or message when the elevators are operating in normal service.

3008.13 Two-way communication system. A two-way communication system shall be provided in each occupant evacuation elevator lobby for the purpose of initiating communication with the fire command center or an alternative location approved by the fire department.

3008.13.1 Design and installation. The two-way communication system shall include audible and visible signals and shall be designed and installed in accordance with the requirements of ICC A117.1.

3008.13.2 Instructions. Instructions for the use of the two-way communication system along with the location of the station shall be permanently located adjacent to each station. Signage shall comply with the ICC A117.1 requirements for visual characters.

3008.14 Elevator system monitoring. The occupant evacuation elevators shall be continuously monitored at the fire command center or a central control point approved by the fire department and arranged to display all of the following information:

1. Floor location of each elevator car.
2. Direction of travel of each elevator car.
3. Status of each elevator car with respect to whether it is occupied.
4. Status of normal power to the elevator equipment, elevator controller cooling equipment, and elevator machine room ventilation and cooling equipment.
5. Status of standby or emergency power system that provides backup power to the elevator equipment, elevator controller cooling equipment, and elevator machine room ventilation and cooling equipment.
6. Activation of any fire alarm-initiating device in any elevator lobby, elevator machine room or machine space, or elevator hoistway.

3008.14.1 Elevator recall. The fire command center or an alternative location approved by the fire department shall be provided with the means to manually initiate a Phase I Emergency Recall of the occupant evacuation elevators in accordance with ASME A17.1/CSA B44.

3008.15 Electrical power. The following features serving each occupant evacuation elevator shall be supplied by both normal power and Type 60/Class 2/Level 1 standby power:

1. Elevator equipment.
2. Elevator machine room ventilation and cooling equipment.
3. Elevator controller cooling equipment.

3008.15.1 Protection of wiring or cables. Wires or cables that provide normal and standby power, control signals, communication with the car, lighting, heating, air conditioning, ventilation and fire-detecting systems to occupant evacuation elevators shall be protected by construction having a minimum 1-hour fire-resistance rating or shall be circuit integrity cable having a minimum 1-hour fire-resistance rating.
3009.1.1 **Seismic switch.** The seismic switch, as required by ASME A 17.1, shall be connected to the essential electrical system.

3009.1.2 **Annunciator.** Either a visible or an audible annunciator shall be connected to the essential electrical system and be located in the elevator machine room. The annunciator will indicate if the seismic switch is inoperative due to a loss of power. If a visual annunciator is used, it shall be clearly visible in the room.

3009.1.3 **Travel speed.** After a seismic switch has been triggered, the elevator shall have the ability to operate at a "go slow" speed until the elevator can be inspected. "Go slow" speed is defined as a travel speed of not more than 150 feet per minute (45.72 meters per minute).

3009.1.4 **Cable-operated elevators.** For cable-operated elevators, an additional sensor switch shall be installed on the governor rope/sheave. The sensor shall prevent car movement when the governor tail sheave is dislodged from its normal position.
<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3101</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3102</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3102.3.1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3103</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3104</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3104.2, Exception 2 only</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3104.2</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3105</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3105.4</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3106</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3109</td>
<td></td>
<td></td>
<td></td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>3109.4.4</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3110</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.

The state agency does not adopt sections identified by the following symbol: †
CHAPTER 31
SPECIAL CONSTRUCTION

SECTION 3101
GENERAL

3101.1 Scope. The provisions of this chapter shall govern special building construction including membrane structures, temporary structures, pedestrian walkways and tunnels, automatic vehicular gates, awnings and canopies, marquees, signs, and towers and antennas.

SECTION 3102
MEMBRANE STRUCTURES

3102.1 General. The provisions of this section shall apply to air-supported, air-inflated, membrane-covered cable and membrane-covered frame structures, collectively known as membrane structures, erected for a period of 180 days or longer. Those erected for a shorter period of time shall comply with the California Fire Code. Membrane structures covering water storage facilities, water clarifiers, water treatment plants, sewage treatment plants, greenhouses and similar facilities not used for human occupancy are required to meet only the requirements of Sections 3102.3.1 and 3102.7. Membrane structures erected on a building, balcony, deck or other structure for any period of time shall comply with this section.

3102.2 Definitions. The following words and terms shall, for the purposes of this section and as used elsewhere in this code, have the meanings shown herein.

AIR-INFLATED STRUCTURE. A structure that uses air-pressurized membrane beams, arches or other elements to enclose space. Occupants of such a structure do not occupy the pressurized area used to support the structure.

AIR-SUPPORTED STRUCTURE. A building wherein the shape of the structure is attained by air pressure and occupants of the structure are within the elevated pressure area. Air-supported structures are of two basic types:

Double skin. Similar to a single skin, but with an attached liner that is separated from the outer skin and provides an airspace which serves for insulation, acoustic, aesthetic or similar purposes.

Single skin. Where there is only the single outer skin and the air pressure is directly against that skin.

CABLE-RESTRAINED, AIR-SUPPORTED STRUCTURE. A structure in which the uplift is resisted by cables or webbings which are anchored to either foundations or dead men. Reinforcing cable or webbing is attached by various methods to the membrane or is an integral part of the membrane. This is not a cable-supported structure.

MEMBRANE-COVERED CABLE STRUCTURE. A nonpressurized structure in which a mast and cable system provides support and tension to the membrane weather barrier and the membrane imparts stability to the structure.

MEMBRANE-COVERED FRAME STRUCTURE. A nonpressurized building wherein the structure is composed of a rigid framework to support a tensioned membrane which provides the weather barrier.

NONCOMBUSTIBLE MEMBRANE STRUCTURE. A membrane structure in which the membrane and all component parts of the structure are noncombustible.

3102.3 Type of construction. Noncombustible membrane structures shall be classified as Type IIB construction. Noncombustible frame or cable-supported structures covered by an approved membrane in accordance with Section 3102.3.1 shall be classified as Type IIB construction. Heavy timber frame-supported structures covered by an approved membrane in accordance with Section 3102.3.1 shall be classified as Type IV construction. Other membrane structures shall be classified as Type V construction.

Exception: Plastic less than 30 feet (9144 mm) above any floor used in greenhouses, where occupancy by the general public is not authorized, and for aquaculture pond covers is not required to meet the fire propagation performance criteria of NFPA 701.

3102.3.1 Membrane and interior liner material. Membranes and interior liners shall be either noncombustible as set forth in Section 703.4 or meet the fire propagation performance criteria of NFPA 701 and the manufacturer’s test protocol. All fabrics and all interior decorative fabrics or materials shall be flame resistant in accordance with appropriate standards set forth in CCR, Title 19, Division 1, Chapter 8. Tops and sidewalls shall be made either from fabric which has been flame resistant treated with an approved exterior chemical process by an approved application concern, or from inherently flame resistant fabric approved and listed by the State Fire Marshal (see CCR, Title 19, Division 1, Chapter 8).

Exception: Plastic less than 20 mil (0.5 mm) in thickness used in greenhouses, where occupancy by the general public is not authorized, and for aquaculture pond covers is not required to meet the fire propagation performance criteria of NFPA 701.

3102.4 Allowable floor areas. The area of a membrane structure shall not exceed the limitations set forth in Table 503, except as provided in Section 506.

3102.5 Maximum height. Membrane structures shall not exceed one story nor shall such structures exceed the height limitations in feet set forth in Table 503.

Exception: Noncombustible membrane structures serving as roofs only.

3102.6 Mixed construction. Membrane structures shall be permitted to be utilized as specified in this section as a portion of buildings of other types of construction. Height and area
limits shall be as specified for the type of construction and occupancy of the building.

3102.6.1 Noncombustible membrane. A noncombustible membrane shall be permitted for use as the roof or as a skylight of any building or atrium of a building of any type of construction provided it is at least 20 feet (6096 mm) above any floor, balcony or gallery.

3102.6.1.1 Membrane. A membrane meeting the fire propagation performance criteria of NFPA 701 shall be permitted to be used as the roof or as a skylight on buildings of Types II, III, IV and V construction, provided it is at least 20 feet (6096 mm) above any floor, balcony or gallery.

3102.7 Engineering design. The structure shall be designed and constructed to sustain dead loads; loads due to tension or inflation; live loads including wind, snow or flood and seismic loads and in accordance with Chapter 16.

3102.8 Inflation systems. Air-supported and air-inflated structures shall be provided with primary and auxiliary inflation systems to meet the minimum requirements of Sections 3102.8.1 through 3102.8.3.

3102.8.1 Equipment requirements. This inflation system shall consist of one or more blowers and shall include provisions for automatic control to maintain the required inflation pressures. The system shall be so designed as to prevent overpressurization of the system.

3102.8.1.1 Auxiliary inflation system. In addition to the primary inflation system, in buildings exceeding 1,500 square feet (140 m²) in area, an auxiliary inflation system shall be provided with sufficient capacity to maintain the inflation of the structure in case of primary system failure. The auxiliary inflation system shall operate automatically when there is a loss of internal pressure and when the primary blower system becomes inoperative.

3102.8.1.2 Blower equipment. Blower equipment shall meet all of the following requirements:

1. Blowers shall be powered by continuous-rated motors at the maximum power required for any flow condition as required by the structural design.
2. Blowers shall be provided with inlet screens, belt guards and other protective devices as required by the building official to provide protection from injury.
3. Blowers shall be housed within a weather-protecting structure.
4. Blowers shall be equipped with backdraft check dampers to minimize air loss when inoperative.
5. Blower inlets shall be located to provide protection from air contamination. The location of inlets shall be approved.

3102.8.2 Standby power. Wherever an auxiliary inflation system is required, an approved standby power-generating system shall be provided. The system shall be equipped with a suitable means for automatically starting the generator set upon failure of the normal electrical service and for automatic transfer and operation of all of the required electrical functions at full power within 60 seconds of such service failure. Standby power shall be capable of operating independently for a minimum of 4 hours.

3102.8.3 Support provisions. A system capable of supporting the membrane in the event of deflation shall be provided for in air-supported and air-inflated structures having an occupant load of 50 or more or where covering a swimming pool regardless of occupant load. The support system shall be capable of maintaining membrane structures used as a roof for Type I construction not less than 20 feet (6096 mm) above floor or seating areas. The support system shall be capable of maintaining other membranes at least 7 feet (2134 mm) above the floor, seating area or surface of the water.

SECTION 3103
TEMPORARY STRUCTURES

3103.1 General. The provisions of this section shall apply to structures erected for a period of less than 180 days. Tents and other membrane structures erected for a period of less than 180 days shall comply with the California Fire Code. Those erected for a longer period of time shall comply with applicable sections of this code.

3103.1.1 Permit required. Temporary structures that cover an area in excess of 120 square feet (11.16 m²), including connecting areas or spaces with a common means of egress or entrance which are used or intended to be used for the gathering together of 10 or more persons, shall not be erected, operated or maintained for any purpose without obtaining a permit from the building official.

3103.2 Construction documents. A permit application and construction documents shall be submitted for each installation of a temporary structure. The construction documents shall include a site plan indicating the location of the temporary structure and information delineating the means of egress and the occupant load.

3103.3 Location. Temporary structures shall be located in accordance with the requirements of Table 602 based on the fire-resistance rating of the exterior walls for the proposed type of construction.

3103.4 Means of egress. Temporary structures shall conform to the means of egress requirements of Chapter 10 and shall have a maximum exit access travel distance of 100 feet (30480 mm).

SECTION 3104
PEDESTRIAN WALKWAYS AND TUNNELS

3104.1 General. This section shall apply to connections between buildings such as pedestrian walkways or tunnels, located at, above or below grade level, that are used as a means of travel by persons. The pedestrian walkway shall not contribute to the building area or the number of stories or height of connected buildings.
3104.2 Separate structures. Connected buildings shall be considered to be separate structures.

Exceptions:

1. Buildings on the same lot in accordance with Section 503.1.2.

2. [DSA-AC & HCD 1-AC] For purposes of accessibility as required by Chapter 11A, structurally connected buildings, buildings connected by stairs, walkways, or roofs, and buildings with multiple wings shall be considered one structure.

3104.3 Construction. The pedestrian walkway shall be of noncombustible construction.

Exceptions:

1. Combustible construction shall be permitted where connected buildings are of combustible construction.

2. Fire-retardant-treated wood, in accordance with Section 603.1, Item 25.3, shall be permitted for the roof construction of the pedestrian walkway where connected buildings are a minimum of Type I or II construction.

3104.4 Contents. Only materials and decorations approved by the building official shall be located in the pedestrian walkway.

3104.5 Fire barriers between pedestrian walkways and buildings. Walkways shall be separated from the interior of the building by not less than 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 712, or both. This protection shall extend vertically from a point 10 feet (3048 mm) above the walkway roof surface or the connected building roof line, whichever is lower, down to a point 10 feet (3048 mm) below the walkway and horizontally 10 feet (3048 mm) from each side of the pedestrian walkway. Openings within the 10-foot (3048 mm) horizontal extension of the protected walls beyond the walkway shall be equipped with devices providing a 1/2-hour fire protection rating in accordance with Section 715.

Exception: The walls separating the pedestrian walkway from a connected building and the openings within the 10-foot (3048 mm) horizontal extension of the protected walls beyond the walkway are not required to have a fire-resistance rating by this section where any of the following conditions exist:

1. The distance between the connected buildings is more than 10 feet (3048 mm). The pedestrian walkway and connected buildings, except for open parking garages, are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1. The wall is capable of resisting the passage of smoke or is constructed of a tempered, wired or laminated glass wall and doors subject to the following:

 1.1. The wall or glass separating the interior of the building from the pedestrian walkway shall be protected by an automatic sprinkler system in accordance with Section 903.3.1.1 and the sprinkler system shall completely wet the entire surface of interior sides of the wall or glass when actuated;

 1.2. The glass shall be in a gasketed frame and installed in such a manner that the framing system will deflect without breaking (loading) the glass before the sprinkler operates; and

 1.3. Obstructions shall not be installed between the sprinkler heads and the wall or glass.

2. The distance between the connected buildings is more than 10 feet (3048 mm) and both sidewalks of the pedestrian walkway are at least 50 percent open with the open area uniformly distributed to prevent the accumulation of smoke and toxic gases.

3. Buildings are on the same lot in accordance with Section 503.1.2.

4. Where exterior walls of connected buildings are required by Section 705 to have a fire-resistance rating greater than 2 hours, the walkway shall be equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1.

 The previous exception shall apply to pedestrian walkways having a maximum height above grade of three stories or 40 feet (12192 mm), or five stories or 55 feet (16764 mm) where sprinklered.

3104.6 Public way. Pedestrian walkways over a public way shall also comply with Chapter 32.

3104.7 Egress. Access shall be provided at all times to a pedestrian walkway that serves as a required exit.

3104.8 Width. The unobstructed width of pedestrian walkways shall not be less than 36 inches (914 mm). The total width shall not exceed 30 feet (9144 mm).

3104.9 Exit access travel. The length of exit access travel shall not exceed 200 feet (60960 mm).

Exceptions:

1. Exit access travel distance on a pedestrian walkway equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 shall not exceed 250 feet (76200 mm).

2. Exit access travel distance on a pedestrian walkway constructed with both sides at least 50 percent open shall not exceed 300 feet (91440 mm).

3. Exit access travel distance on a pedestrian walkway constructed with both sides at least 50 percent open, and equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, shall not exceed 400 feet (122 m).

3104.10 Tunnedled walkway. Separation between the tunneled walkway and the building to which it is connected shall not be less than 2-hour fire-resistant construction and openings therein shall be protected in accordance with Table 715.4.

SECTION 3105
AWNINGS AND CANOPIES

3105.1 General. Awnings or canopies shall comply with the requirements of this section and other applicable sections of this code.
3105.2 Definition. The following term shall, for the purposes of this section and as used elsewhere in this code, have the meaning shown herein.

RETRACTABLE AWNING. A retractable awning is a cover with a frame that retracts against a building or other structure to which it is entirely supported.

3105.3 Design and construction. Awnings and canopies shall be designed and constructed to withstand wind or other lateral loads and live loads as required by Chapter 16 with due allowance for shape, open construction and similar features that relieve the pressures or loads. Structural members shall be protected to prevent deterioration. Awnings shall have frames of noncombustible material, fire-retardant-treated wood, wood of Type IV size, or 1-hour construction with combustible or noncombustible covers and shall be either fixed, retractable, folding or collapsible.

3105.4 Canopy materials. Canopies shall be constructed of a rigid framework with an approved covering that meets the fire propagation performance criteria of NFPA 701 or has a flame spread index not greater than 25 when tested in accordance with ASTM E 84 or UL 723. All fabrics and all interior decorative fabrics or materials shall be flame resistant in accordance with appropriate standards set forth in CCR, Title 19, Division 1, Chapter 8. Tops and sidewalls shall be made either from fabric which has been flame resistant treated with an approved exterior chemical process by an approved application concern, or from inherently flame resistant fabric approved and listed by the State Fire Marshal (see CCR, Title 19, Division 1, Chapter 8).

SECTION 3106 MARQUEES

3106.1 General. Marquees shall comply with this section and other applicable sections of this code.

3106.2 Thickness. The maximum height or thickness of a marquee measured vertically from its lowest to its highest point shall not exceed 9 feet (2743 mm) where the marquee projects more than two-thirds of the distance from the property line to the curb line, and shall not exceed 9 feet (2743 mm) where the marquee is less than two-thirds of the distance from the property line to the curb line.

3106.3 Roof construction. Where the roof or any part thereof is a skylight, the daylight shall comply with the requirements of Chapter 24. Every roof and skylight of a marquee shall be sloped to downspouts that shall conduct any drainage from the marquee in such a manner so as not to spill over the sidewalk.

3106.4 Location prohibited. Every marquee shall be so located as not to interfere with the operation of any exterior standpipe, and such that the marquee does not obstruct the clear passage of stairways or exit discharge from the building or the installation or maintenance of street lighting.

3106.5 Construction. A marquee shall be supported entirely from the building and constructed of noncombustible materials. Marquees shall be designed as required in Chapter 16. Structural members shall be protected to prevent deterioration.

SECTION 3107 SIGNS

3107.1 General. Signs shall be designed, constructed and maintained in accordance with this code.

SECTION 3108 TELECOMMUNICATION AND BROADCAST TOWERS

3108.1 General. Towers shall be designed and constructed in accordance with the provisions of TIA-222.

Exception: Single free-standing poles used to support antennas not greater than 75 feet (22 860 mm), measured from the top of the pole to grade, shall not be required to be noncombustible.

3108.2 Location and access. Towers shall be located such that guy wires and other accessories shall not cross or encroach upon any street or other public space, or over above-ground electric utility lines, or encroach upon any privately owned property without the written consent of the owner of the encroached-upon property, space or above-ground electric utility lines. Towers shall be equipped with climbing and working facilities in compliance with TIA-222. Access to the tower sites shall be limited as required by applicable OSHA, FCC and EPA regulations.

SECTION 3109 SWIMMING POOL ENCLOSURES AND SAFETY DEVICES

3109.1 General. Swimming pools shall comply with the requirements of this section and other applicable sections of this code.

3109.2 Definition. The following word and term shall, for the purposes of this section and as used elsewhere in this code, have the meaning shown herein.

SWIMMING POOLS. Any structure intended for swimming, recreational bathing or wading that contains water over 24 inches (610 mm) deep. This includes in-ground, above-ground and on-ground pools; hot tubs; spas and fixed-in-place wading pools.

3109.3 Public swimming pools. Public swimming pools shall be completely enclosed by a fence at least 4 feet (1290 mm) in height or a screen enclosure. Openings in the fence shall not permit the passage of a 4-inch-diameter (102 mm) sphere. The fence or screen enclosure shall be equipped with self-closing and self-latching gates.
3109.4 Residential swimming pools. Residential swimming pools shall comply with Sections 3109.4.1 through 3109.4.3.

Exception: A swimming pool with a power safety cover or a spa with a safety cover complying with ASTM F 1346.

3109.4.1 Barrier height and clearances. The top of the barrier shall be at least 48 inches (1219 mm) above grade measured on the side of the barrier that faces away from the swimming pool. The maximum vertical clearance between grade and the bottom of the barrier shall be 2 inches (51 mm) measured on the side of the barrier that faces away from the swimming pool. Where the top of the pool structure is above grade, the barrier is authorized to be at ground level or mounted on top of the pool structure, and the maximum vertical clearance between the top of the pool structure and the bottom of the barrier shall be 4 inches (102 mm).

3109.4.1.1 Openings. Openings in the barrier shall not allow passage of a 4-inch-diameter (102 mm) sphere.

3109.4.1.2 Solid barrier surfaces. Solid barriers which do not have openings shall not contain indentations or protrusions except for normal construction tolerances and tooled masonry joints.

3109.4.1.3 Closely spaced horizontal members. Where the barrier is composed of horizontal and vertical members and the distance between the tops of the horizontal members is less than 45 inches (1143 mm), the horizontal members shall be located on the swimming pool side of the fence. Spacing between vertical members shall not exceed 1 1/4 inches (44 mm) in width. Where there are decorative cutouts within vertical members, spacing within the cutouts shall not exceed 1 1/4 inches (44 mm) in width.

3109.4.1.4 Widely spaced horizontal members. Where the barrier is composed of horizontal and vertical members and the distance between the tops of the horizontal members is 45 inches (1143 mm) or more, spacing between vertical members shall not exceed 4 inches (102 mm). Where there are decorative cutouts within vertical members, spacing within the cutouts shall not exceed 1 1/4 inches (44 mm) in width.

3109.4.1.5 Chain link dimensions. Maximum mesh size for chain link fences shall be a 2 1/4 inch square (57 mm square) unless the fence is provided with slats fastened at the top or the bottom which reduce the openings to no more than 1 1/4 inches (44 mm).

3109.4.1.6 Diagonal members. Where the barrier is composed of diagonal members, the maximum opening formed by the diagonal members shall be no more than 1 1/4 inches (44 mm).

3109.4.1.7 Gates. Access doors or gates shall comply with the requirements of Sections 3109.4.1.1 through 3109.4.1.6 and shall be equipped to accommodate a locking device. Pedestrian access doors or gates shall open outward away from the pool and shall be self-closing and have a self-latching device. Doors or gates other than pedestrian access doors or gates shall have a self-latching device. Release mechanisms shall be in accordance with Sections 1008.1.9 and 1109.12. Where the release mechanism of the self-latching device is located less than 54 inches (1372 mm) from the bottom of the door or gate, the release mechanism shall be located on the pool side of the door or gate at least 3 inches (76 mm) below the top of the door or gate, and the door or gate and barrier shall have no opening greater than 1/2 inch (12.7 mm) within 18 inches (457 mm) of the release mechanism.

3109.4.1.8 Dwelling wall as a barrier. Where a wall of a dwelling serves as part of the barrier, one of the following shall apply:

1. Doors with direct access to the pool through that wall shall be equipped with an alarm that produces an audible warning when the door and/or its screen, if present, are opened. The alarm shall be listed and labeled in accordance with UL 2017. In dwellings not required to be Accessible units, Type A units or Type B units, the deactivation switch shall be located 54 inches (1372 mm) or more above the threshold of the door. In dwellings required to be Accessible units, Type A units or Type B units, the deactivation switch(es) shall be located at 54 inches (1372 mm) maximum and 48 inches (1219 mm) minimum above the threshold of the door.

2. The pool shall be equipped with a power safety cover that complies with ASTM F 1346.

3. Other means of protection, such as self-closing doors with self-latching devices, which are approved, shall be accepted so long as the degree of protection afforded is not less than the protection afforded by Section 3109.4.1.8, Item 1 or 2.

3109.4.1.9 Pool structure as barrier. Where an above-ground pool structure is used as a barrier or where the barrier is mounted on top of the pool structure, and the means of access is a ladder or steps, then the ladder or steps shall be capable of being secured, locked or removed to prevent access, or the ladder or steps shall be surrounded by a barrier which meets the requirements of Sections 3109.4.1.1 through 3109.4.1.8. When the ladder or steps are secured, locked or removed, any opening created shall not allow the passage of a 4-inch-diameter (102 mm) sphere.

3109.4.2 Indoor swimming pools. Walls surrounding indoor swimming pools shall not be required to comply with Section 3109.4.1.8.

3109.4.3 Prohibited locations. Barriers shall be located so as to prohibit permanent structures, equipment or similar objects from being used to climb the barriers.

3109.4.4 Private swimming pools (statewide). These regulations are subject to local government modification. The applicable local government requirements at the time of application for a building permit should be verified. These standards become applicable commencing January 1, 1998, to a private, single-family home for which a construction permit for a new swimming pool has been issued on or after January 1, 1998.
3109.4.4.1 Definitions. As used in this division, the following terms have the following meanings:

APPROVED SAFETY POOL COVER means a manually or power-operated safety pool cover that meets all of the performance standards of the American Society for Testing and Materials (ASTM), in compliance with Standard F 1346-91.

ENCLOSURE means a fence, wall or other barrier that isolates a swimming pool from access to the home.

EXIT ALARMS means devices that make audible, continuous alarm sounds when any door or window that permits access from the residence to the pool area, that is without any intervening enclosure, is opened or is left ajar. Exit alarms may be battery operated or may be connected to the electrical wiring of the building.

PUBLIC SWIMMING POOL means a swimming pool operated for the use of the general public with or without charge, or for the use of the members and guests of a private club. Public swimming pool does not include a swimming pool located on the grounds of a private single-family home.

SWIMMING POOL or POOL means any structure intended for swimming or recreational bathing that contains water over 18 inches (457 mm) deep. Swimming pool includes in-ground and above-ground structures and includes, but is not limited to, hot tubs, spas, portable spas and nonportable wading pools.

3109.4.4.2 Construction permit; safety features required. Commencing January 1, 2007, except as provided in Section 3109.4.4.5, whenever a building permit is issued for construction of a new swimming pool or spa, or any building permit is issued for remodeling of an existing pool or spa, at a private, single-family home, it shall be equipped with at least one of the following seven drowning prevention safety features:

1. The pool shall be isolated from access to a home by an enclosure that meets the requirements of Section 3109.4.4.3.
2. The pool shall incorporate removable mesh pool fencing that meets American Society for Testing and Materials (ASTM) Specifications F 2286 standards in conjunction with a gate that is self-closing and self-latching and can accommodate a key lockable device.
3. The pool shall be equipped with an approved safety pool cover that meets all requirements of the ASTM Specifications F 1346.
4. The residence shall be equipped with exit alarms on those doors providing direct access to the pool.
5. All doors providing direct access from the home to the swimming pool shall be equipped with a self-closing, self-latching device with a release mechanism placed no lower than 54 inches (1372 mm) above the floor.
6. Swimming pool alarms that, when placed in pools, will sound upon detection of accidental or unauthorized entrance into the water. These pool alarms shall meet and be independently certified to the ASTM Standard F 2208 "Standards Specification for Pool Alarms" which includes surface motion, pressure, sonar, laser and infrared type alarms. For purposes of this article, "swimming pool alarms" shall not include swimming protection alarm devices designed for individual use, such as an alarm attached to a child that sounds when the child exceeds a certain distance or becomes submerged in water.
7. Other means of protection, if the degree of protection afforded is equal to or greater than that afforded by any of the devices set forth in items 1-4, and have been independently verified by an approved testing laboratory as meeting standards for those devices established by the ASTM or the American Society of Testing Mechanical Engineers (ASME).

Prior to the issuance of any final approval for the completion of permitted construction or remodeling work, the local building code official shall inspect the drowning safety prevention devices required by this act and if no violations are found, shall give final approval.

Authority: Health and Safety Code Section 18942(b) Reference: Health and Safety Code Section 115922 AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes 2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.3 Enclosure; required characteristics. An enclosure shall have all of the following characteristics:

1. Any access gates through the enclosure open away from the swimming pool and are self-closing with a self-latching device placed no lower than 60 inches (1524 mm) above the ground.
2. A minimum height of 60 inches (1524 mm).
3. A maximum vertical clearance from the ground to the bottom of the enclosure of 2 inches (51 mm).
4. Gaps or voids, if any, do not allow passage of a sphere equal to or greater than 4 inches (102 mm) in diameter.
5. An outside surface free of protrusions, cavities or other physical characteristics that would serve as handholds or footholds that could enable a child below the age of five years to climb over.

3109.4.4.4 Agreements to build; notice of provisions. Any person entering into an agreement to build a swimming pool or spa, or to engage in permitted work on a
pool or spa covered by this article, shall give the con-
sumer notice of the requirements of this article.

Pursuant to existing law, the Department of Health
Services shall have available on the department’s web-
site, commencing January 1, 2007, approved pool safety
information available for consumers to download. Pool
contractors are encouraged to share this information
with consumers regarding the potential dangers a pool
or spa poses to toddlers. Additionally, pool contractors
may provide the consumer with swimming pool safety
materials produced from organizations such as the
United States Consumer Product Safety Commission,
Drowning Prevention Foundation, California Coalition
for Children’s Safety & Health, Safe Kids Worldwide,
Association of Pool and Spa Professionals, or the Ameri-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes
2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.5 Exempt facilities. The requirements of this
article shall not apply to any of the following:

1. Public swimming pools.

2. Hot tubs or spas with locking safety covers that
comply with the American Society for Testing
Materials Emergency Performance Specification
(ASTM ES 13-89).

3. Any pool within the jurisdiction of any political
subdivision that adopts an ordinance for swim-
mingle pool safety that includes requirements that
are at least as stringent as this division.

4. An apartment complex or any residential setting
other than a single-family home.

Authority: Health and Safety Code Section
18942(b)
Reference: Health and Safety Code Section
115925
Ab 3305, (Statutes 1996, c.925); AB 2977 (Stat-
utes 2006, c.926); AB 382 (Statutes 2007,c.XXX)

3109.4.4.6 Application to facilities regulated by
Department of Social Services. This division does not
apply to any facility regulated by the State Department of
Social Services even if the facility is also used as a pri-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
Ab 3305, Statutes 1996, c.925); AB 2977 (Stat-
utes 2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.7 Modification and interpretation of division.
Notwithstanding any other provision of law, this article
shall not be subject to further modification or interpreta-
tion by any regulatory agency of the state, this authority
being reserved exclusively to local jurisdictions, as pro-
vided for in Item 5 of Section 3109.4.4.2 and Item 3 of
Section 3109.4.4.5.

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115927
AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes 2006,
c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.8 Construction requirements for building a
pool or spa. Whenever a building permit is issued for the
construction a new swimming pool or spa, the pool or
spa shall meet all of the following requirements:

1. The suction outlet of the pool or spa for which the
permit is issued shall be equipped to provide circu-
lation throughout the pool or spa as prescribed in
Paragraph 2.

2. The swimming pool or spa shall have at least two
circulation drains per pump that shall be hydrauli-
cally balanced and symmetrically plumbed through one or more “T”
fittings, and that are sepa-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes
2006, c.926); AB 382 (Statutes 2007, c.XXX)

3. Any backup safety system that an owner of a new
swimming pools or spa may choose to install in
addition to the requirements set forth in subdivi-
sions (1) and (2) shall meet the standards as pub-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305, Statutes 1996, c.925); AB 2977 (Stat-
utes 2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.9 Construction requirements for building a
pool or spa. Whenever a building permit is issued for the
construction a new swimming pool or spa, the pool or
spa shall meet all of the following requirements:

1. The suction outlet of the pool or spa for which the
permit is issued shall be equipped to provide circu-
lation throughout the pool or spa as prescribed in
Paragraph 2.

2. The swimming pool or spa shall have at least two
circulation drains per pump that shall be hydrauli-
cally balanced and symmetrically plumbed through one or more “T”
fittings, and that are sepa-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes 2006,
c.926); AB 382 (Statutes 2007, c.XXX)

3. Any backup safety system that an owner of a new
swimming pools or spa may choose to install in
addition to the requirements set forth in subdivi-
sions (1) and (2) shall meet the standards as pub-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305, Statutes 1996, c.925); AB 2977 (Stat-
utes 2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.8 Construction requirements for building a
pool or spa. Whenever a building permit is issued for the
construction a new swimming pool or spa, the pool or
spa shall meet all of the following requirements:

1. The suction outlet of the pool or spa for which the
permit is issued shall be equipped to provide circu-
lation throughout the pool or spa as prescribed in
Paragraph 2.

2. The swimming pool or spa shall have at least two
circulation drains per pump that shall be hydrauli-
cally balanced and symmetrically plumbed through one or more “T”
fittings, and that are sepa-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes 2006,
c.926); AB 382 (Statutes 2007, c.XXX)

3. Any backup safety system that an owner of a new
swimming pools or spa may choose to install in
addition to the requirements set forth in subdivi-
sions (1) and (2) shall meet the standards as pub-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305, Statutes 1996, c.925); AB 2977 (Stat-
utes 2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.4.4.8 Construction requirements for building a
pool or spa. Whenever a building permit is issued for the
construction a new swimming pool or spa, the pool or
spa shall meet all of the following requirements:

1. The suction outlet of the pool or spa for which the
permit is issued shall be equipped to provide circu-
lation throughout the pool or spa as prescribed in
Paragraph 2.

2. The swimming pool or spa shall have at least two
circulation drains per pump that shall be hydrauli-
cally balanced and symmetrically plumbed through one or more “T”
fittings, and that are sepa-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305 (Statutes 1996, c.925); AB 2977 (Statutes 2006,
c.926); AB 382 (Statutes 2007, c.XXX)

3. Any backup safety system that an owner of a new
swimming pools or spa may choose to install in
addition to the requirements set forth in subdivi-
sions (1) and (2) shall meet the standards as pub-

Authority: Health and Safety Code Section 18942(b)
Reference: Health and Safety Code Section 115926
AB 3305, Statutes 1996, c.925); AB 2977 (Stat-
utes 2006, c.926); AB 382 (Statutes 2007, c.XXX)

3109.5 Entrapment avoidance. Suction outlets shall be
designed and installed in accordance with ANSI/APSP-7.
SECTION 3110
AUTOMATIC VEHICULAR GATES

3110.1 General. Automatic vehicular gates shall comply with the requirements of this section and other applicable sections of this code.

3110.2 Definitions. The following word and term shall, for the purposes of this section and as used elsewhere in this code, have the meaning shown herein.

VEHICULAR GATE. A gate that is intended for use at a vehicular entrance or exit to a facility, building or portion thereof, and that is not intended for use by pedestrian traffic.

3110.3 Vehicular gates intended for automation. Vehicular gates intended for automation shall be designed, constructed and installed to comply with the requirements of ASTM F 2200.

3110.4 Vehicular gate openers. Vehicular gate openers, when provided, shall be listed in accordance with UL 325.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 31B – PUBLIC SWIMMING POOLS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
<td>AC</td>
<td>SS</td>
<td>SS/CC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>3113B.1 w/Exception 4 only</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 31B [DPH]
PUBLIC SWIMMING POOLS

Division I—GENERAL

SECTION 3101B
SCOPE
The provisions of this chapter shall apply to the construction, installation, alteration, addition, relocation, replacement or use of any public swimming pool, to its appurtenant auxiliary areas and facilities and to its mechanical equipment and related piping.

Notes:
1. Examples of public pools include those located in the following: commercial building, hotel, motel, resort, automobile and trailer park, automobile court, mobile home park, campground, apartment house, condominium, townhouse, homeowner association, club, community building, public or private school, gymnasium and health establishments.
2. See the California Energy Code, Part 6, for additional swimming pool standards.

SECTION 3102B
DEFINITIONS
For the purpose of this chapter, the following terms shall have the meanings indicated:

AUXILIARY AREA is a public dressing, locker, shower or toilet area or building space intended to be used by bathers.

BACKWASH is the process of thoroughly cleansing the filter media and/or elements and the contents of the filter vessel.

BATHER is a person using a pool and adjoining deck areas for the purpose of water sports such as diving, swimming, wading or related activities.

CLEAN POOL WATER is a pool water that is free of dirt, oils, scum, algae, floating materials or other visible organic and inorganic materials that would sully the water.

CLEAR POOL WATER is pool water that is free from cloudiness and is transparent.

CORROSION RESISTANT is capable of maintaining original surface characteristics under the prolonged influence of the use environment.

DECK is an area surrounding a pool which is specifically constructed or installed for use by bathers.

DRAIN is a fitting or fixture, usually at or near the bottom of a pool, through which water leaves the pool normally to the recirculation pump.

EFFECTIVE PARTICLE SIZE is the theoretical size of sieve that will pass 10 percent by weight of sand.

ENFORCING AGENCY means the health officer or director of environmental health or their designated registered sanitarian representative.

EQUIPMENT AREA is an area used for pool recirculation and purification equipment and related piping appurtenances.

INLET is a fitting or fixture through which circulation water enters the pool.

LADDER is a series of vertically separate treads or rungs either connected by vertical rail members or independently fastened to an adjacent vertical pool wall.

MEDICAL POOL is a special-purpose pool used by a state-recognized medical institution engaged in the healing arts under the direct supervision of licensed medical personnel for treatment of the infirm.

OVERFLOW SYSTEM is the system which includes perimeter-type overflow gutters, surface skimmers, surge or collector tanks, other surface water collective system components and their interconnecting piping.

POOL is a constructed or prefabricated artificial basin, chamber or tank intended to be used primarily by bathers, and not for cleaning of the body or for individual therapeutic use.

POOL VOLUME is the amount of water expressed in gallons (liters), that a pool holds when filled.

PRIVATE POOL is any constructed pool, permanent or portable, which is intended for noncommercial use as a swimming pool by not more than three owner families and their guests.

Note: A single-family residence is a Group R, Division 3 occupancy.

PUBLIC POOL is a pool other than a private pool.

RECESSED STEPS is a riser/tread or series of risers/treads extending down into the deck with the bottom riser or tread terminating at the pool wall (thus creating a “stairwell”).

RECESSED TREADS are a series of vertically spaced cavities in the pool wall creating tread areas for step holes.

RECIRCULATION SYSTEM is the interconnected system traversed by the recirculated water from the pool until it is returned to the pool, i.e., from the pool through the collector or surge tank, recirculation pump, filters, chemical treatment and heater (if provided), and returned to the pool.

SHALLOW POOL is a pool that has a maximum depth of less than 6 feet (1829 mm).

SLIP RESISTANT is a rough finish that is not abrasive to the bare foot.

STAIRS are series of two or more steps.

STEP is a riser and tread.
SECTION 3103B
SPECIAL POOL CLASSIFICATIONS

3103B.1 Spa pool. A spa pool is a pool, not used under medical supervision, that incorporates a water jet system, an aeration system or a combination of the two systems, and which may also utilize artificially heated water. The surface water area of a spa pool shall not exceed 250 square feet (23 m²), and the water depth shall not exceed 4 feet (1219 mm).

Note: See also Section 3119B.1.2.

3103B.2 Special-purpose pool. A special-purpose pool is a pool intended to be used exclusively for a single purpose, such as wading, instruction, diving, competition or for medical treatment where a licensed professional in the healing arts is in attendance.

3103B.3 Temporary training pool. A temporary training pool is a pool intended to be used for instruction in swimming, having a maximum water depth of 36 inches (914 mm), and so constructed as to be readily disassembled for storage or for transporting to and reassembly to its original integrity at a different location. A temporary training pool shall be limited to a maximum use of three months at any one geographical location during any 12-month period.

3103B.4 Wading pool. A wading pool is a pool intended to be used for wading by small children and having a maximum depth of 18 inches (457 mm) at the deepest point and a maximum depth of 12 inches (305 mm) at side walls.

SECTION 3104B
ACCESSIBILITY TO THE PHYSICALLY HANDICAPPED PERSON

Swimming pools and their appurtenances shall be in compliance with the requirements of the state architect for access to public accommodations by physically handicapped persons.

Note: See Chapter 11A.
handholds, recessed treads, steps, ladders, stairs, pool inlets and outlets, skimmers and perimeter overflow systems.

Exception: Benches shall be permitted in a spa pool, providing that the water depth over the bench does not exceed 24 inches (610 mm).

SECTION 3107B
ADDITIONAL REQUIREMENTS FOR A TEMPORARY TRAINING POOL

3107B.1 A temporary training pool shall comply with this section in addition to the provisions contained in Section 3106B.

3107B.1.1 Installation site. A temporary training pool shall be installed on a paved level surface extending at least 10 feet (3048 mm) beyond all pool walls.

3107B.1.2 Cover. The temporary training pool shall be provided with a solid cover. The cover shall be installed during periods when the pool is not open for use and shall be secured to the pool in a manner to prevent unauthorized removal.

3107B.1.3 Design. The pool cover shall be designed to support a uniform live load of 40 pounds per square foot (1.9 kN/m²). The structural design of the pool cover shall be approved by a California-registered professional engineer.

SECTION 3108B
POOL GEOMETRY

3108B.1 Dimensions and slopes. The dimensions and slopes of a pool shall conform to the appropriate Figure 31B-1 through 31B-3.

Exception: A special-purpose pool shall be permitted a depth greater than 3 ½ feet (1067 mm) at the shallowest end.

3108B.2 Drainable. The pool shall be completely drainable through a main drain which shall be located at the deepest point in the pool.

3108B.3 Dimensional tolerance. A construction tolerance shall be permitted on all dimensions in Figures 31B-1, 31B-2 and 31B-3, not to exceed 2 inches (51 mm) except that the tolerance of the water level of a pool with a nonadjustable overflow system shall not exceed ¼ inch (3.2 mm).

3108B.4 Slope break from shallow to deep water. When a pool has a change in bottom slope from shallow to deep water, flush-mounted devices for fastening a safety rope and buoys across the pool shall be installed where the water depth is 4 ½ feet (1372 mm).

SECTION 3109B
PERMANENT MARKINGS

3109B.1 Lane markings. Slip-resistant lane lines or other markings at the bottom of the pool shall not exceed 12 inches (305 mm) in width.

3109B.2 Depth marking line. There shall be installed a straight line of slip-resistant tile, 4 inches (102 mm) wide, of contrasting color across the bottom of the pool where the water depth is 4 ½ feet (1372 mm).

Exception: Pools having a maximum depth of 5 feet (1524 mm) or less shall not be required to have a depth marking line.

3109B.3 Decorative designs. Designs on the bottom or walls of the pool which are shaped in a form that might reasonably be mistaken for, or give the illusion of being, a human form shall be prohibited.

3109B.4 Water depth markers.

3109B.4.1 General. The water depth shall be clearly marked at the following locations:

1. Maximum depth;
2. Minimum depth;
3. Each end;
4. At the break in the bottom slope between the shallow and deep portions of the pool (see also Section 3108B.4); and
5. On the perimeter of the pool at distances not to exceed 25 feet (7620 mm)

Exception: A spa or wading pool shall have a minimum of two depth markers indicating the maximum depth.

3109B.4.2 Location. Depth markers shall be located on the vertical pool walls at each end and side of the pool at or above the water level. If a pool exceeds 20 feet (6096 mm) in width, additional markers shall be located on the edge of the deck next to the pool.

Exception: If depth markers cannot be located on the vertical pool walls above the waterline because of the pool design, the depth markers shall be located so as to be clearly visible to bathers in the pool.

3109B.4.3 Tolerance. Depth markers shall be positioned to indicate the water depth accurate to the nearest 6 inches (152 mm).

3109B.4.4 Size of markers. Depth markers shall:

1. Have numerals a minimum of 3 inches (76 mm) in height and of a color contrasting with the background.
2. Be made of a durable material that is resistant to weathering; and
3. Be slip resistant when they are located on the pool deck.
DEPTHS AND CLEARANCES FOR POOLS WITH BOARDS ABOVE 30°

PLAN VIEW

LONGITUDINAL SECTION

FIGURE 1

TABLE 1
MINIMUM REQUIRED DEPTHS AND CLEARANCES
FOR 1-METER AND 3-METER BOARDS

<table>
<thead>
<tr>
<th>Boards and Platforms</th>
<th>Minimum</th>
<th>Depth of Water</th>
<th>Length of Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Meter Board</td>
<td>Minimum</td>
<td>D-1 D-2 D-3 D-4</td>
<td>L-3 L-4 L-5 L-6 W-1 W-2</td>
</tr>
<tr>
<td>3-Meter Board</td>
<td>Minimum</td>
<td>D-2 D-3 D-4 D-5</td>
<td>L-3 L-4 L-5 L-6 W-1 W-2</td>
</tr>
</tbody>
</table>

Notes for Figure 1 and Table 1.
1. Maximum radius at shallow end shall be 1' 0".
2. Springline (D-1) shall extend to the break in slope between the shallow area and the diving bowl.
3. See exception to Section 3108B.
4. Dimension based on maximum slope and other minimum or maximum dimensions.

FIGURE 31B-1—DEPTH AND CLEARANCE FOR POOLS WITH BOARDS ABOVE 30 INCHES (762 mm)
Public Swimming Pools

Depths and Clearances for Pools with Diving Boards
30° or less above water level.

Table 2

Required Depths and Clearances for Pools with Diving Boards 30° or Less Above Water Level

<table>
<thead>
<tr>
<th>Boards and Platforms</th>
<th>Dim</th>
<th>Depth of Water</th>
<th>Length of Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desk Level Board</td>
<td>Min</td>
<td>4'-0"</td>
<td>D-1</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>6'-0"</td>
<td>D-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W-2</td>
</tr>
</tbody>
</table>

Notes for Figure 2 and Table 2:
1. Maximum radius at shallow end shall be 1'-0".
2. Springline (D-1) shall extend to the break in slope between the shallow area and the diving bowl.
3. See exception to Section 3108B.
4. Dimension W-1 and W-2 shall apply from wall at deep end to D-6.
5. Dimension based on maximum slope and other minimum or maximum dimensions.

Figure 31B-2—Depth and Clearances for Pools with Diving Boards
FIGURE 31B-3—DEPTH AND CLEARANCES FOR POOLS WITHOUT DIVING BOARDS

SECTION 3110B
STEPS, RECESSED STEPS, LADDERS AND RECESSED STAIRS (TREADS)

3110B.1 Construction. A means of entry and exit to and from the pool shall consist of steps, recessed steps, ladders or stairs, or a combination of them. One means of entry and exit shall be provided in the shallowest portion of a pool if the vertical distance from the bottom of the pool to the deck is over 2 feet (610 mm). A second means of entry and exit shall be provided in the deep portion of a pool having a depth greater than 4 1/2 feet (1372 mm). Where the width of the pool exceeds 30 feet (9144 mm), such means of entry and exit shall be provided at each side, not more than 100 feet (30 480 mm) apart.

3110B.2 Ladders. Ladders with a handhold shall be corrosion resistant and shall be equipped with slip-resistant tread surfaces. Ladders shall be rigidly installed and shall provide a clearance of not less than 3 inches (76 mm) or more than 5 inches (127 mm) between any part of the ladder and the pool wall.

3110B.3 Stairs. Each step of a stair shall have the same dimensions with a tread not less than 12 inches (305 mm) wide, except that if the top step is curved convexly, the top step tread shall not be less than 18 inches (457 mm) wide as measured at the point of maximum curvature. Risers shall be uniform and shall not exceed 12 inches (305 mm) in height. A safety railing shall be provided, extending from the deck to not less than a point above the top of the lowest step and with the upper railing surface not less than 28 inches (711 mm) above the deck.

3110B.4 Steps and step holes. Steps and step holes shall have a minimum tread of 5 inches (127 mm), width of 14 inches (356 mm) and shall be designed to be readily cleaned.

3110B.5 Hand railings. Hand railings shall be provided at the top of both sides and shall extend over the coping or edge of the deck for each ladder and step hole.

3110B.6 Steps for a spa pool. Each step of a spa pool shall have a tread width not less than 12 inches (305 mm). Risers shall not exceed 9 inches (229 mm) in height when one handrail is provided, or 12 inches (305 mm) in height when two handrails are provided. A handrail shall be installed over the steps, with the leading railing edge extending up to a point not less than 12 inches (305 mm) from the plane of the bottom riser. The steps shall be located where the deck is at least 4 feet (1219 mm) wide.

Notes for Figure 3 and Table 3.
1. Maximum radius at shallow end shall be 1' 0".
2. Springline (D-1) shall extend to the break in slope between the shallow area and the diving bowl.
3. See exception to Section 31088.
4. Width of pool at Section D-2 shall be at least 15'-0".

<table>
<thead>
<tr>
<th>Required Depths and Clearances for Pools without Diving Boards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depths of Water</td>
</tr>
<tr>
<td>Dimenions</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

FIGURE 31B-3—DEPTH AND CLEARANCES FOR POOLS WITHOUT DIVING BOARDS

[Diagram of Depths and Clearances for Pools without Diving Boards]
SECTION 3111B

HANDHOLDS

3111B.1 General. Every pool shall be provided with handholds (perimeter overflow system, bull-nosed coping or cantilevered decking) around the entire perimeter installed not greater than 9 inches (229 mm) above the waterline.

Exception: Handholds are not required for wading pools.

3111B.2 For special-use pools used for instruction or competitive swimming, a handhold at water level similar to the rim of a perimeter overflow system is required.

3111B.3 Where perimeter overflow systems are not provided, a bull-nosed coping or cantilevered decking or reinforced concrete, or material equivalent in strength and durability, with rounded, slip-resistant edges shall be provided. The overhang for either bull-nosed coping or cantilevered decking shall not exceed 2 inches (51 mm) or be less than 1 inch (25 mm) and shall not exceed 2/12 inches (64 mm) in thickness.

Exception: The enforcing agency may accept handholds other than those specified for spa pools.

SECTION 3112B

DIVING BOARDS

3112B.1 General. Diving boards and their supports, platforms and steps shall be substantially constructed and shall be of sufficient structural strength to carry the maximum anticipated load. Steps shall be of corrosion-resistant material, easily cleanable and of slip-resistant design.

3112B.2 Railings. Handrails shall be provided at all steps and ladders leading to diving boards more than 1 meter above the water, except those steps or ladders set 15 degrees or less from the vertical. Guardrails extending to a point on the platform directly above the water’s edge shall be provided on both sides of all platforms and diving boards which are over 1 meter high. Guardrails shall be 36 inches (914 mm) above the platform or diving board.

SECTION 3113B

POOL DECKS

3113B.1 General. A minimum continuous and unobstructed 4-foot wide (1219 mm) slip-resistant, nonabrasive deck area of concrete or like material shall be provided flush with the top of the pool shell wall extending completely around the pool, and the deck area shall further extend 4 feet (1219 mm) on both sides and rear of any diving board or slide and their appurtenances. The deck width shall be measured from the poolside edge of the coping lip.

Exceptions:

1. A deck at least 4 feet (1219 mm) in width shall extend around 50 percent or more of the perimeter of a spa pool. For spa pools that have their walls extending above the ground or floor level, the deck area requirement shall apply at the ground or floor level unless otherwise specified by the enforcing agency.

2. The deck width separating a spa pool from an adjacent pool shall not be less than 6 feet (1829 mm) wide.

3. The deck may be omitted from around a temporary training pool.

4. [DSA-AC] Any mechanism provided to assist persons with disabilities in gaining entry into the pool and in exiting from the pool shall comply with Chapter 11B, Section 1104B.4.3, Participation Areas.

3113B.2 Deck drainage. The pool deck surface shall be sloped a minimum of 1/8 inch (6.4 mm) per foot to deck drains or other approved surface water disposal areas. The pool deck surface shall not drain into the pool, its perimeter overflow channel, into an adjoining spa or other pool or be connected to the recirculation system.

Note: A deck drain system of one 4-inch (102 mm) drain inlet per 400 square feet (37 m²) of tributary deck area, with drains spaced 25 feet (7620 mm) apart, usually provides adequate surface water disposal.

3113B.3 Coping. Pool coping shall be slip resistant.

3113B.4 Coverings. Artificial covering shall be permitted on the deck area when approved by the enforcing agency.

Note: Deck slopes to provide proper drainage may vary with the texture of the surface. It is recommended that the minimum slope be creased if artificial covering or exposed aggregate concrete surface is contemplated.

3113B.5 Handrails shall be provided around the perimeter of any raised deck of a temporary training pool.

3113B.6 Unpaved areas. Landscape plants, flower beds or similar unpaved areas shall not be located within 4 feet (1219 mm) of a spa pool.

SECTION 3114B

POOL LIGHTING

3114B.1 General. Where pool lighting is provided, it shall be such that lifeguards or other persons may observe, without interference from direct and reflected glare from the lighting sources, every part of the underwater area and swimming pool surface, all diving boards or other pool appurtenances.

Notes: See (Part 3) Article 680 for electrical installation requirements.

3114B.2 Nighttime use. Pools used at night shall be equipped with underwater lighting fixtures that will provide complete illumination to all underwater areas of the pool with no blind spots. Illumination shall enable a lifeguard or other persons to determine whether:

1. A bather is lying on the bottom of the pool, and

2. The pool water conforms to the definition of “Clear pool water.”

Exception: Pools provided with a system of overhead lighting fixtures, where it can be demonstrated to the enforcing agency that the system is equivalent to the underwater fixture system.
3114B.3 Deck area lighting. Where the pool is to be used at night, pool deck areas shall be provided with lighting so that persons walking on the deck can identify hazards. Lighting fixtures shall be aimed toward the deck area and away from the pool surface insofar as practical.

ANCILLARY AREAS AND FACILITIES

SECTION 3115B
BATHHOUSE DRESSING, SHOWER AND TOILET FACILITIES

3115B.1 Shower and dressing facilities shall be provided for users of a pool.

Exceptions:
1. Shower and dressing facilities may not be required when bathers have access to such facilities in adjacent living quarters.
2. Public toilet facilities may be omitted when bathers have access to toilet facilities either in living quarters located not more than 300 feet (91 440 mm) in travel distance from the pool, or in an adjacent building such as a recreational facility, clubhouse or cabana.

3115B.2 Number of sanitary facilities. For the purpose of this subsection, one bather shall be considered for every 15 square feet (1.39 m²) of pool water surface area.

3115B.2.1 Showers. One shower shall be provided for every 50 bathers.

3115B.2.2 Toilets. Separate toilet facilities shall be provided for each sex. One toilet shall be provided for every 60 women, and one toilet plus one urinal for every 75 men.

3115B.2.3 Lavatories. One lavatory shall be provided for every 80 bathers.

3115B.3 Construction.

3115B.3.1 Floors. Floors shall have a hard, nonabsorbent surface such as portland cement concrete, ceramic tile or other approved material, which extends upward onto the wall at least 5 inches (127 mm) with a coved base. Floors which may be walked on by a wet bather shall be slip resistant. Floors shall be sloped not less than \(\frac{1}{4} \) inch (6.4 mm) per foot to floor drains or other approved surface water disposal areas. Carpeting and other similar artificial floor covering shall not be permitted on shower and toilet room floors.

Note: Rough rotary, raised rubber or wood float finish of concrete usually provides a slip-resistant finish.

3115B.3.2 Interior wall surfaces. The materials used in the walls, except for structural elements, shall be of a type of which is not adversely affected by moisture.

3115B.3.3 Privacy. All doors and windows shall be arranged to prevent viewing of the interior from any portion of the building used by the opposite sex and from view from the outdoors. View screens shall be permitted for this purpose.

3115B.4 Water supply.

3115B.4.1 Showers and lavatories shall be provided with hot and cold water faucets.

3115B.4.2 Tempered water shall be permitted in lieu of individual hot- and cold-water faucets.

3115B.4.3 A means to limit the hot water to 110°F (61°C) maximum shall be provided to prevent scalding. This temperature limit control shall not be adjustable by the bather.

SECTION 3116B
DRINKING FOUNTAINS

One guarded jet drinking fountain shall be provided for the first 250 bathers and an additional fountain shall be provided for each additional 200 bathers or fraction thereof. The number of bathers shall be determined according to Section 3115B.2.

Exception: Drinking fountains shall not be required when drinking water is available at adjacent living quarters, or in an adjacent building such as a bathhouse, cabana, clubhouse or recreational facility.

SECTION 3117B
HOSE BIBBS

Hose bibbs shall be provided for each pool and located so that all portions of the pool deck area may be reached with a 75-foot (22 860 mm) length of hose attached to the hose bibb. Hose bibbs shall be located so that they do not constitute a safety hazard and shall be protected against backflow.

SECTION 3118B
ENCLOSURE OF POOL AREA

3118B.1 Enclosure. The pool shall be enclosed by one or a combination of the following: a fence, portion of a building, wall or other approved durable enclosure. Doors, openable windows or gates of living quarters or associated private premises shall not be permitted as part of the pool enclosure. The enclosure, doors and gates shall meet all of the following specifications:

1. The enclosure shall have a minimum effective perpendicular height of 5 feet (1524 mm) as measured from the outside as depicted in Figures 31B-4 and 31B-5.

2. Openings, holes or gaps in the enclosure, doors and/or gates shall not allow the passage of a 4-inch (102 mm) diameter sphere. The bottom of the enclosure shall be within 2 inches (51 mm) of the finished grade.

3. The enclosure shall be designed and constructed so that it cannot be readily climbed by small children. Horizontal and diagonal member designs, which might serve as a ladder for small children, are prohibited. Horizontal members shall be spaced at least 48 inches (1219 mm) apart. Planters or other structures shall not be permitted to encroach upon the clear span area as depicted in Figure 31B-5. Chain link may be used, provided that openings are not greater than \(\frac{1}{4} \) inch (44 mm) measured horizontally.
3118B.2 Gates. Gates and doors opening into the pool enclosure shall also meet the following specifications:

1. Gates and doors shall be equipped with self-closing and self-latching devices. The self-latching device shall be designed to keep the gate or door securely closed. Gates and doors shall open outward away from the pool except where otherwise prohibited by law. Hand-activated door- or gate-opening hardware shall be located at least 3½ feet (1067 mm) above the deck or walkway.

2. Except as otherwise provided herein, gates and doors shall be capable of being locked during times when the pool is closed. Exit doors which comply with Chapter 10 shall be considered as meeting these requirements.

Exception: Doors leading from areas of hotels and motels, as defined in Business and Professions Code Section 25503.16(b), which are open to the general public, e.g., restaurants, lobbies, bars, meeting rooms and retail shops, need not be self-latching.

3. The pool enclosure shall have at least one means of egress without a key for emergency purposes. Unless all gates or doors are so equipped, those gates and/or doors which will allow egress without a key shall be clearly and conspicuously labeled in letters at least 4 inches (102 mm) high "EMERGENCY EXIT."

4. The enclosure shall be designed and constructed so that all persons will be required to pass through common pool enclosure gates or doors in order to gain access to the pool area. All gates and doors exiting the pool area shall open into a public area or walkway accessible by all patrons of the pool.

3118B.3 Retroactivity. Sections 3118B.1 and 3118B.2 shall apply only to a public swimming pool constructed on or after July 1, 1994.

3118B.4 Enclosure of pools constructed prior to July 1, 1994. When the physical characteristics of a site preclude providing a 4-foot (1219 mm) deck around the perimeter of an existing pool, the enforcing agency may allow the installation of an enclosure which reduces the pool deck to less than 4 feet (1219 mm) in width.

3119B.1 Spa pool. The occupant capacity of a spa pool shall be based on one bather for every 10 square feet (0.929 m²) of pool water surface area.

3119B.1.2 Other pools. The occupant capacity of all other pools shall be based on one bather for every 20 square feet (1.858 m²) of pool water surface area.

Exception: Occupant capacity requirements do not apply to wading pools.

3119B.2 Signs for shallow pool. Signs with clearly legible letters not less than 4 inches (102 mm) high shall be posted in a conspicuous place and shall state: NO DIVING ALLOWED.

3119B.3 Warning sign for pool using gas chlorine. Pools at which gas chlorine is used for disinfection shall have a conspicuously posted sign on the exterior side of the entry door to the chlorine room, or on the adjacent wall area. In addition to displaying the appropriate hazard identification symbol for gas chlorine, the sign shall state with clearly legible letters not less than 4 inches (102 mm) high the following: DANGER: GASEOUS OXIDIZER—CHLORINE.

3119B.4 Warning sign for pool without pool lighting. Where pool lighting fixtures which comply with Section 3114B are not provided, a sign with clearly legible letters not less than 4 inches (102 mm) high shall be posted in a prominent place near each entrance to the pool area. This sign shall state: NO USE OF POOL ALLOWED AFTER DARK.

3119B.5 Warning sign for a spa pool. A precaution sign with clearly legible letters shall be posted in a prominent place near the entrance to a spa pool which shall contain the following language:

CAUTION

1. Elderly persons, pregnant women, infants and those with health conditions requiring medical care should consult with a physician before entering a spa.

2. Unsupervised use by children under the age of 14 is prohibited.

3. Hot-water immersion while under the influence of alcohol, narcotics, drugs or medicines may lead to serious consequences and is not recommended.

4. Do not use alone.

5. Long exposure may result in nausea, dizziness or fainting.

3119B.6 Approved signs. Approved signs shall be maintained in a legible manner.
FIGURE 31B-4—PERPENDICULAR FENCING DIMENSIONS ON SLOPING GROUND

FIGURE 31B-5—EFFECTIVE FENCING HEIGHT
SECTION 3120B
INDOOR POOL VENTILATION
A pool located indoors shall be ventilated according to acceptable engineering principles.

Note: See Section 1202.2 for ventilation requirements for dressing and toilet rooms.

SECTION 3121B
FOUNDATIONS FOR POOL EQUIPMENT
Pool equipment shall be mounted on a portland cement concrete or other easily cleanable nonabsorbent floor material. Floors shall be sloped a minimum of 1/4 inch (6.4 mm) per foot to drains or other drainage disposal methods approved by the local enforcing agency.

SECTION 3122B
GAS CHLORINATION EQUIPMENT ROOM
Compressed chlorine gas storage containers and associated chlorinating equipment, when installed indoors, shall be in a separate room of not less than 1-hour fire-resistive construction and shall comply with all of the following sections.

3122B.1 Location. The room shall not be located in a basement or below ground.

3122B.2 Entry. The entry door to the room shall open to the exterior of the building or structure and shall not open directly toward the pool or pool deck.

3122B.3 Ventilation. A mechanically operated exhaust ventilation system shall be provided sufficient to produce 60 air changes per hour. The exhaust ventilation shall be taken at a point at or near the floor level. The system shall be vented to the outside air, and at the point of discharge shall be at least 10 feet (3048 mm) from any openable windows, an adjacent building, and above the adjoining grade level. Fresh-air intakes directly communicating with the outdoors shall be located within 6 inches (152 mm) of the ceiling.

RECIRCULATION AND TREATMENT SYSTEM COMPONENTS

SECTION 3123B
GENERAL REQUIREMENTS
3123B.1 System description. Each pool shall be provided with a separate recirculation and treatment system designed for continuous recirculation, filtration and disinfection of the pool water. The system shall consist of pumps, filters, chemical feeders, skimmers or perimeter overflow systems, and all valves, pipes, connections, fittings and appurtenances.

Exception: Pools using fresh water equivalent in flow to the requirements of Section 3124B.

Notes:
1. Fresh makeup pool water shall conform to the physical and bacteriological standards of California Code of Regulations, Title 22, Chapter 20, Section 65531.
2. Two spa pools shall be permitted to share one recirculation and treatment system, providing the flow and chlorination feed rate to each spa pool is individually metered and adjustable.

3123B.2 Installation. All recirculation and treatment system components shall be installed according to this code and in accordance with the equipment manufacturer’s written instructions.

3123B.3 Accessibility. All filters, valves, pumps, strainers and equipment requiring adjustment shall be readily accessible for repair and replacement.

Note: Readily accessible means capable of being reached quickly for operation, renewal or inspections, without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, chairs, etc.

SECTION 3124B
TURNOVER TIME
The recirculation and purification system shall have sufficient capacity to provide a complete turnover of pool water in:
1. One-half hour or less for a spa pool.
2. One hour or less for a wading pool.
3. Two hours or less for a temporary training pool.
4. Six hours or less for all other types of public pools.

SECTION 3125B
RECIRCULATION PIPING SYSTEM AND COMPONENTS
3125B.1 Line sizes. Piping systems, including all parts and fittings other than inlet devices or venturi throats, shall be sized so that the flow velocity shall not exceed 10 feet per second (3.048 m/s) excepting that the flow velocity shall not exceed 8 feet per second (2.438 m/s) in any copper piping or in any pump suction piping.

3125B.2 Gages for filters. A gage shall be provided on each filter influent and effluent line. Each gage shall have a scale range approximately 1 1/2 times the maximum anticipated working pressure and shall be accurate within 2 percent of scale. A vacuum gage shall be provided for suction-type filters.

3125B.3 Flow meter. The recirculation system shall be provided with a flow meter, accurate within 10 percent of actual flow.

3125B.4 Strainers. A hair-and-lint strainer shall be provided on the suction side of the recirculation pump.

Exception: A pump used with a vacuum filter where the filter elements are not removed for cleaning.

3125B.5 Backwash piping. Piping, including necessary valves conforming to Section 3125B.1, shall be provided for each filter vessel or element which is of a type of requiring periodic backwashing.
3125B.6 Valves. Valves shall be accessible for operation and repair and shall not be located under any required deck area surrounding a pool. Valves, or other approved means of control, shall be installed on all recirculation, backwashing and drain system lines which require shutoff isolation, adjustment or control of the rate of flow. Each valve shall be identified with appropriate markings affixed directly to or near the valve.

SECTION 3126B
RECIRCULATION PUMP CAPACITY

3126B.1 Pumps shall have design capacity at the following heads:

1. Pressure diatomaceous earth. At least 60 feet (18 288 mm).
2. Vacuum diatomaceous earth. Twenty inches (508 mm) vacuum on the suction side and 40 feet (12 192 mm) total head.
3. Rapid sand. At least 45 feet (13 716 mm).
4. High-rate sand. At least 60 feet (18 288 mm).

3126B.2 Pumps with other hydraulic (flow-head) characteristics shall be permitted which comply with the flow capacity in Section 3124B.

SECTION 3127B
WATER SUPPLY INLETS

3127B.1 General. The pool shall be supplied with water by means of a permanently installed pipeline from a public water supply system holding a permit from the Department of Health Services or from another approved source.

Exception: The enforcing agency may exempt spa pools, temporary pools and pools less than 1,500 gallons (5678 L) capacity from having to use permanently installed fill lines.

3127B.2 Backflow protection. There shall not be a direct connection between any domestic water supply system and the pool or its piping system unless protected against backflow in an approved manner.

3127B.3 Air-gap separation for pool fill inlets. Water supply inlets to a pool shall be installed not less than 1 inch (25 mm) or less than two pipe diameters above the overflow rim of the pool. Over-the-rim spouts shall be installed under a diving board or shall be properly guarded to prevent tripping.

Exception: Vacuum breakers, or other backflow prevention devices, may be used instead of air-gap separation. Such devices shall be installed on the discharge side of the last inlet valve with the critical level not less than 6 inches (152 mm) above the overflow rim of the swimming pool.

SECTION 3128B
FILTERS (ALL TYPES)

3128B.1 General requirements. All filters, regardless of type, shall be designed and constructed to withstand normal continuous use without deterioration which could affect filter operation. Each filter shall comply with all of the following provisions:

1. Maintain clean and clear pool water under anticipated operating conditions.
2. Structural or functional failures shall not permit the passage of unfiltered water.
3. Filtration surfaces shall be easily disassembled and inspected.
4. Filtration surfaces shall be easily restored to the design capacity.
5. Filter parts shall be capable of resisting electrolytic corrosion (galvanic electric currents) due to the use of dissimilar metals.

3128B.2 Minimum pressure drop. The maximum pressure drop of a pressure-type filter, measured from the filter housing inlet to the filter housing discharge, shall not exceed 3 pounds per square inch gage (psig) (20.68 kPa) when initially operating at design flow rate.

3128B.3 Installation. Each filter vessel and element shall be installed, piped and provided with necessary valves so that it can be isolated from the system for repairs and backwashed individually.

3128B.4 Air release. When the design of the filter permits its accumulation of air in the top of the housing or vessel, the filter vessel shall be equipped with an air-release valve connected at the top of the housing that will expel air which enters the filter vessel or tank.

3128B.5 Underdrain system. The underdrain system for sand filters shall provide uniform distribution and collection of the flow during filtering and backwashing. The underdrain system shall be constructed of corrosion-resistant material and shall be nonclogging.

3128B.6 Freeboard. For sand filters, not less than 10 inches (254 mm) of freeboard shall be provided between the upper surface of the filter sand and the lowest portion of the pipes or drains which serve as overflows during backwashing.

SECTION 3129B
RAPID SAND PRESSURE FILTERS

3129B.1 Flow rates. The filtration rate shall not exceed 3 gallons per minute (gpm) per square foot (122.24 L/m² per m²). The design backwash rate shall not be less than 12 gpm per square foot (488.96 L/m² per m²) of filter area.

3129B.2 Filter media. The filter shall contain not less than 20 inches (508 mm) of depth of sand and not less than 10 inches (254 mm) of filter gravel above the underdrain system.

3129B.2.1 The filter sand shall have an effective particle size of 0.3 to 0.5 mm and a uniformity coefficient of not more than 1.75.

3129B.2.2 The filter gravel shall be graded and placed to provide uniform flow distribution from the underdrain system and to support the bed of filter sand without loss of sand to the pool or without development of jet streams or channeling in the filtration media.
3129B.3 Coagulant addition. Facilities with dosage-control features shall be provided for adding coagulating chemicals ahead of the filter when required by the enforcing agency.

SECTION 3130B
DIATOMACEOUS EARTH FILTERS

3130B.1 Flow rates. The filtration rate for both pressure and vacuum-type diatomaceous earth filters shall not exceed 2 gpm per square foot (81.49 L/m² per m²) excepting that filters designed for continuous feeding of filter aid shall not exceed 2 1/2 gpm per square foot (101.87 L/m² per m²).

Note: See also Section 3128B for other requirements.

3130B.2 Precoating. Provisions shall be made for precoating with diatomaceous earth filter aid. Continuous feeding of filter aid shall be required in a pool with a water surface area 2,000 square feet (186 m²) or more, and the continuous feeding equipment shall be capable of feeding not less than 0.1 pound (0.045 kg) per 24 hours per square foot (0.093 m²) of filter area.

SECTION 3131B
HIGH-RATE SAND FILTERS

3131B.1 Permissible use. Sand filters operating at filtration rates higher than the maximum rate specified in Section 3129B shall be permitted by the enforcing agency under the conditions as set forth in Section 3105B.

3131B.2 Design and operating requirements. A sand filter permitted under Sections 3105B.1, 3105B.2 and 3105B.3 shall comply with the following requirements instead of the requirements contained in Section 3129B.

1. The filter shall contain not less than 12 inches (305 mm) of depth of filter sand.
2. The filter sand shall not have an effective particle size greater than 0.45 mm and a uniformity coefficient not greater than 1.50.
3. The design backwash rate shall not be less than 15 gpm per square foot (611.21 L/m² per m²) of filter area.
4. The filter bed shall not show any signs of migration or vary more than 1 inch (25 mm) on the surface after 15 minutes of backwashing, followed by 15 minutes of filtration.

Note: See Section 3128B for other requirements.

SECTION 3132B
CHEMICAL FEEDERS

All chemical feeders, including disinfectant feeders, and the auxiliary components shall comply with all of the provisions of this section.

Note: Chemical feeders include those used for solutions, slurries or solids and also include auxiliary parts such as pumps, strainers, tubing connections, tanks, injection fittings and other required components.

3132B.1 General design requirements. Chemical feeder equipment shall comply with all of the following:

1. Equipment shall be capable of being easily disassembled for cleaning and repair.
2. Equipment shall be constructed of corrosion-resistant materials.
3. Equipment shall be constructed to permit repeated adjustments without loss of output rate accuracy if equipped with an adjustable output rate device.
4. Equipment shall be constructed to minimize a stoppage from chemicals intended to be used therein or from foreign materials that may be contained in said chemicals.

3132B.2 Piping. Piping used for the chemical feeder and its auxiliary equipment shall be resistant to the chemical and erosion action of the chemicals intended to be used therein and shall be installed to permit cleaning or otherwise to prevent clogging of the parts with chemicals.

3132B.3 Installation. The feeder and its auxiliary equipment shall be constructed and installed to prevent uncontrolled discharge or siphonage of chemicals and fumes directly into the pool, its recirculating system or the pool area.

SECTION 3133B
DISINFECTANT FEEDERS

Disinfectant feeders shall comply with the provisions contained in this section in addition to the provisions contained in Section 3132B.

3133B.1 Minimum capacity. The disinfectant feeder shall be capable of supplying not less than the equivalent of 3 pounds (1 kg) of chlorine per day (PPD) per 10,000 gallons (37,850 L) of pool water capacity.

Exception: A feeder of lesser capacity shall be permitted when it can be demonstrated to the enforcing agency that the lesser capacity feeder can comply with the disinfection requirements of Section 65529, Title 22, Chapter 20, California Code of Regulations.

3133B.2 Rate of flow adjustment. Each feeder shall have a graduated and clearly marked rate of flow adjustment feature capable of providing disinfectant flows from 25 percent to 100 percent of rated capacity. The graduated markings shall be accurate within 10 percent of the flow rate at any setting.

3133B.3 Compressed chlorine gas disinfection equipment. Compressed chlorine gas disinfectant equipment shall comply with the provisions contained in this section in addition to the provisions contained in Sections 3133B.1 and 3133B.2.

Note: See Section 3122B for special construction requirements of a room containing compressed chlorine gas disinfectant equipment.

3133B.3.1 Chlorine containers. Each chlorine gas container or cylinder shall be firmly secured to prevent accidental movement. A precaution cap shall be provided in place at all times when the cylinder is not connected to the chlorinator.
3133B.3.2 Container scale. A means of weighing chlorine containers shall be provided in the gas chlorinator room.

3133B.3.3 Chlorine feeding device. In addition to the requirements contained in Section 3133B.1, the chlorine feeding device shall be capable of delivering chlorine in aqueous solution at maximum design rate. The device shall not allow the backflow of water into the chlorine solution container. The device shall not allow the release of chlorine gas to the atmosphere under normal operating conditions. The devices shall be designed and installed to conduct chlorine gas leaks to the outdoors during an accident or an interruption of the water supply.

3133B.3.4 Piping. Piping carrying chlorine gas under pressure shall not be located outside the chlorination equipment room.

SECTION 3134B POOL FITTINGS

The pool shall be equipped with one or more skimming methods which, when combined, shall be capable of continually withdrawing not less than 75 percent of the required circulation capacity, to provide continuous skimming of the water surface and to provide an overflow drainage system.

3134B.1 Surface skimmers. Each surface skimmer shall comply with all of the following provisions:

1. The skimmer shall be of the built-in type, recessed into the pool wall.
2. Each skimmer shall be individually adjustable for the rate of flow with either an external or internal device.
3. The skimmer weir shall automatically adjust to variations in the pool water level over a range of not less than 4 inches (102 mm).
4. The skimmer shall be provided with an air-lock protective device which shall not permit leakage of air into the recirculation suction piping system. This device shall not leak more than 3 gpm (11.356 L/m) of water during normal operations.
5. Each skimmer shall be provided with a removable and cleanable screen or basket to trap large solids.
6. There shall not be less than one skimmer for each 500 square feet (46.45 m²) of pool water surface area, or fractional part thereof.
7. The skimmer shall be constructed with suitable materials and methods to withstand anticipated use conditions.
8. Each skimmer shall be located in relation to pool inlets to aid recirculation and skimming.

Exception: Skimmers shall not be used as the required overflow devices on a pool with a water surface area over 5,000 square feet (464.52 m²).

3134B.2 Perimeter overflow systems. A perimeter overflow system shall comply with all of the following provisions:

1. Location. The overflow system shall be built into the walls and extend completely around the pool except where steps require interruption.
2. Channel detail. The overflow channel shall not be less than 3 inches (76 mm) deep, the section shall not diverge with depth and the width of the bottom shall not be less than 3 inches (76 mm). The opening beneath the coping into the overflow system shall be a minimum of 4 inches (102 mm) beneath the coping in any direction measured radially from the inner edge of the overflow channel lip.
3. Channel lip. The overflow channel lip shall not be more than 12 inches (305 mm) below the level of the deck. The lip edge shall be rounded and shall not be thicker than 2 1/6 inches (64 mm) or thinner than 1 inch (25 mm) from the top 2 inches (51 mm).
4. Channel covering. Covered overflow channels shall be permitted, providing bathers cannot enter it or get their arms or legs caught in the cover.
5. Channel outlets. Overflow channel outlets shall not be less than 2 1/6 inches (64 mm) in diameter spaced not more than 15 feet (4572 mm) apart and the channel bottom slope to the drain shall not be less than 1/2 inch (6.4 mm) per foot.

Exception: Other drain spacing or channel bottom slope shall be permitted if hydraulically designed in accordance with acceptable engineering principles.

6. Channel outlet covers. Overflow channel outlets shall be provided with a clear opening area in the grating not less than 1.5 times the cross-sectional area of the outlet required in Section 3134B.
7. Overflow drain piping. Overflow drain piping shall provide drainage of the overflow system, shall carry overflow water to a surge storage chamber and shall establish hydraulic equilibrium in the pool and return to skimming within 10 minutes after being flooded by a sudden large use of the pool by bathers.
8. Surge storage capacity. A perimeter overflow system shall be provided with a minimum surge storage of not less than 1 gallon per square foot (40.75 L/m²) of pool water surface area. Surge storage shall be permitted in the perimeter overflow channel, the overflow water drain piping returning to the surge chamber and in the surge chamber.
9. Surge flow control. Automatic makeup (fresh) water-flow controls with a manual override provision shall be provided to maintain the proper operating pool water level.

3134B.3 Outlets. Each pool shall be provided with a bottom drain and outlets through which circulation shall take place and by which the pool can be emptied. The bottom drain and recirculation outlets shall be covered with grates or other protective devices which shall be removable only with tools. Slots or openings in grates or covers shall not exceed 1/6 inch (12.7 mm) in the smaller dimension and shall be of such area, shape and arrangement to prevent physical entrapment or a suction hazard to bathers.

Exception: Recirculation outlets for a spa pool shall be either a safety type which cannot be completely covered by any part of the body, or shall be installed in duplicate so as to prevent a suction hazard to bathers.
3134B.4 Hydrostatic devices. In areas of anticipated high groundwater table, an approved hydrostatic relief device shall be installed.

3134B.5 Inlet Fittings. Each pool shall be provided with not less than two recirculation inlets for the first 10,000-gallon (37,850 L) capacity and one additional inlet for each additional 10,000-gallon (37,850 L) capacity, or fractional part thereof.

Exception: A spa pool shall be provided with not less than one inlet.

3134B.5.1 Construction. Inlet fittings shall not protrude greater than 1 1/4 inches (32 mm) into the pool and shall be shaped, rounded and smooth.

3134B.5.2 Inlet fittings shall be located greater than 18 inches (457 mm) below the waterline, except for the spa pool or wading pool. One floor inlet shall be provided for each 10,000 gallons (37,850 L) of pool capacity for a pool which exceeds 40 feet (12,192 mm) in width. Inlet fittings shall be separated by at least 10 feet (3048 mm) and shall be located to ensure uniform circulation.

3134B.5.3 Adjustment. Provisions shall be made for adjusting the volume of flow through each inlet. Wall inlets shall be capable of adjusting the direction of flow to produce sufficient velocity to impart a substantial circulatory movement to the pool water.

SECTION 3135B
SPA POOL SPECIAL REQUIREMENTS

3135B.1 Aeration system. A spa pool aeration and/or jet system shall be completely separate from its filtration system and shall not be interconnected with any nonspa pool.

3135B.2 Maximum operating temperature. The maximum allowable water temperature shall be 104°F (57.8°C) for a spa pool.

SECTION 3136B
CLEANING SYSTEMS

A built-in or portable-type vacuum cleaning system shall be provided which is capable of removing sediment from all parts of the pool floor. When jet-type units are used, they shall be provided with approved-type backflow protection for the water system.

SECTION 3137B
WASTE WATER DISPOSAL

3137B.1 General requirements. Material cleaned from filters, waste water from temporary training pool showers and backwash water from any pool system shall be disposed of in a manner which will not create a (public) nuisance.

3137B.1.1 Sand filters. In accordance with applicable local regulations, the backwash water from a sand filter shall be disposed of to a storm drain or sewer system, dry well, or, when approved, such water may be disposed of by surface or subsurface irrigation.
Note: These building standards are in statute but have not been adopted through the regulatory process. Enforcement of these standards set forth in this section does not depend upon adoption of regulations; therefore, enforcement agencies shall enforce the standards pursuant to the timeline set forth in this section prior to adoption of related regulations.

SECTION 3160B

1. “Public swimming pool,” as used in this section, means any swimming pool operated for the use of the general public with or without charge, or for the use of the members and guests of a private club, including any swimming pool located on the grounds of a hotel, motel, inn, an apartment complex or any residential setting other than a single-family home. For purposes of this section, “public swimming pool” shall not include a swimming pool located on the grounds of a private single-family home, or a swimming pool owned or operated by the state or any local governmental entity as set forth in Section 116049 of the Health and Safety Code.

2. All dry-niche light fixtures, and all underwater wet-niche light fixtures operating at more than 15 volts in public swimming pools, as defined in this section, shall be protected by a ground fault circuit interrupter in the branch circuit, and all light fixtures in public swimming pools shall have encapsulated terminals.

3. Any public swimming pool that does not meet the requirements specified in Item 2 by January 1, 1998, shall be retrofitted to comply with these requirements by July 1, 1998.

4. The ground-fault circuit interrupter required pursuant to this section shall comply with Underwriter’s Laboratory standards.

5. The owner or operator of a public swimming pool shall have its public swimming pool inspected by a qualified inspector on or before September 1, 1998, to determine compliance with this section.

6. All electrical work required for compliance with this section shall be performed by an electrician licensed pursuant to Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code.

SECTION 3161B

1. “Public wading pool” means a pool that meets all of the following criteria:

 1.1. It has a maximum water depth not exceeding 18 inches (457 mm).
1.2. It is a pool other than a pool that is located on the premises of a one-unit or two-unit residence, intended solely for the use of the residents or guests.

2. “Public wading pool” includes, but is not limited to, a pool owned or operated by private persons or agencies, or by state or local governmental agencies.

3. “Public wading pool” includes, but is not limited to, a pool located in an apartment house, hotel or similar setting that is intended for the use of residents or guests.

4. “Alteration” means any of the following:

 4.1. To change, modify or rearrange the structural parts or the design.

 4.2. To enlarge.

 4.3. To move the location of.

 4.4. To install a new water circulation system.

 4.5. To make any repairs costing fifty dollars ($50) or more to an existing circulation system.

5. A public wading pool shall have at least two circulation drains per pump that are hydraulically balanced and symmetrically plumbed through one or more T fittings, and are separated by a distance of at least 3 feet (914 mm) in any dimension between drains.

6. All public wading pool main drain suction outlets that are under 12 inches (305 mm) across shall be covered with antivortex grates or similar protective devices. All main drain suction outlets shall be covered with grates or antivortex plates that cannot be removed except with the use of tools. Slots or openings in the grates or similar protective devices shall be of a shape, area and arrangement that would prevent physical entrapment and would not pose any suction hazard to bathers.

7. The maximum velocity in the pump suction hydraulic system shall not exceed 6 feet per second (1.8 m/s) when 100 percent of the pump’s flow comes from the main drain system and any main drain suction fitting in the system is completely blocked.

8. On and after January 1, 1998, all newly constructed public wading pools shall be constructed in compliance with this section.

9. Commencing January 1, 1998, whenever a construction permit is issued for alteration of an existing public wading pool, it shall be retrofitted so as to be in compliance with this section.

10. By January 1, 2000, every public wading pool, regardless of the date of original construction, shall be retrofitted to comply with this section.

 [SB 873, Statutes of 1997, C.913]

SECTION 3162B
ANTI-ENTRAPMENT DEVICES AND SYSTEMS

1. The legislature finds and declares that the public health interest requires that there be uniform statewide health and safety standards for public swimming pools to prevent physical entrapment and serious injury to children and adults. It is the intent of the legislature to occupy the whole field of health and safety standards for public swimming pools and the requirements established in this article and the regulations adopted pursuant to this article shall be exclusive to all local health and safety standards related to public swimming pools.

2. As used in this section, the following words have the following meanings:

 a. “ASME/ANSI performance standard” means a standard that is accredited by the American National Standards Institute and published by the American Society of Mechanical Engineers.

 b. ASTM performance standard means a standard that is developed and published by ASTM International.

 c. Main drain means a submerged suction outlet typically located at the bottom of a swimming pool that conducts water to a recirculating pump.

 d. Public swimming pool means an outdoor or indoor structure, whether in-ground or above-ground, intended for swimming of recreational bathing, including a swimming pool, hot tub, spa, or nonportable wading pool, that is any of the following:

 i. Open to the public generally, whether for a fee or free of charge.

 ii. Open exclusively to members of an organization and their guests, residents of a multiunit apartment building, apartment complex, residential real estate development, or other multifamily residential area, or patrons of a hotel or other public accommodations facility.

 iii. Located on the premises of an athletic club, or public or private school.

 e. Qualified individual means a contractor who holds a current valid license issued by the State of California or a professional engineer licensed in the State of California who has experience working on public swimming pools.

 f. Safety vacuum release system means a vacuum release system that ceases operation of the pump, reverses the circulation flow, or otherwise provides a vacuum release at a suction outlet when a blockage is detected.

 g. Skimmer equalizer line means a suction outlet located below the water line and connected to the body of a skimmer that prevents are from being drawn into the pump if the water level drops below the skimmer weir. However, a skimmer equalizer line is not a main drain.

 h. Unblockable drain means a drain of any size and shape that a human body cannot sufficiently block to create a suction entrapment hazard.
3. Subject to Subdivision (4), an ASME/ANSI or ASTM performance standard relating to anti-entrapment devices or systems or an amendment or successor to, or later published edition of an ASME/ANSI or ASTM performance standard relating to anti-entrapment devices or systems shall become the applicable standard in California 90 days after publication by ASME/ANSI or ASTM, respectively, provided that the performance standard or amendment or successor to, or later published edition is approved by the department within 90 days of the publication of the performance standard by ASME/ANSI or ASTM, respectively. Notwithstanding any other law, the department may implement, interpret or make specific the provisions of this section by means of a policy letter or similar instruction and this action by the department shall not be subject to the rulemaking requirements of the Administrative Procedures Act (Chapter 3.5 (commencing with Section 11340) of Part 1 of Division 3 of Title 2 of the Government Code).

4. Subject to Subdivision (7), every public swimming pool shall be equipped with anti-entrapment devices or systems that comply with ASME/ANSI performance standard A112.19.8, as in effect December 31, 2009, or any applicable ASME/ANSI performance standard that has been adopted by the department pursuant to Subdivision (3).

5. Subject to Subdivisions (6) and (7), every public swimming pool with a single main drain that is not an unblockable drain shall be equipped with at least one or more of the following devices or systems that are designed to prevent physical entrapment by pool drain:
 a. A safety vacuum release system that has been tested by a department-approved independent third party and found to conform to any applicable ASME/ANSI performance standard A112.19.17, as in effect on December 31, 2009, or any applicable ASME/ANSI performance standard that has been approved by the department pursuant to Subdivision (3).
 b. A suction-limiting vent system with a tamper-resistant atmospheric opening, provided that it conforms to any applicable ASME/ANSI or ASTM performance standard that has been approved by the department pursuant to Subdivision (3).
 c. A gravity drainage system that utilizes a collector tank, provided that it conforms to any applicable ASME/ANSI or ASTM performance standard that has been adopted by the department pursuant to Subdivision (3).
 d. An automatic pump shut-off system tested by a department-approved independent third party and

found to conform to any applicable ASME/ANSI or ASTM performance standard that has been adopted by the department pursuant to Subdivision (3).

e. Any other system that is deemed, in accordance with federal law, to be equally effective as, or more effective than, the systems described in paragraphs (a) and (d), inclusive, at preventing or eliminating the risk of injury or death associated with pool drainage systems.

6. Every public swimming pool constructed on or after January 1, 2010, shall have at least two main drains per pump that are hydraulically balanced and symmetrically plumbed through one or more "T" fittings, and are separated by a distance of at least three feet in any dimension between the drains. A public swimming pool constructed on or after January 1, 2010, that meets the requirements of this subdivision, shall be exempt from the requirements of Subdivision (5).

7. A public swimming pool constructed prior to January 1, 2010, shall be retrofitted to comply with Subdivisions (4) and (5) by no later than July 1, 2010, except that no further retrofitting is required for a public swimming pool that completed a retrofit between December 19, 2007, and January 1, 2010, that complied with the Virginia Graeme Baker Pool and Spa Safety Act (15 U.S.C. Sec. 8001 et seq.) as in effect on the date of issue of the construction permit, or for a nonportable wading pool that completed a retrofit prior to January 1, 2010, that complied with state law on the date of issue of the construction permit. A public swimming pool owner who meets the exception described in this subdivision shall do one of the following prior to September 30, 2010:
 a. File the form issued by the department pursuant to Subdivision (8), as otherwise provided in Subdivision (9).
 b. File a signed statement attesting that the required work has been completed.
 c. Provide a document providing the name and license number of the qualified individual who completed the required work.
 d. Provide either a copy of the final building permit, if required by the local agency, or a copy of one of the following documents if no permit was required:
 i. A document that describes the modification in a manner that provides sufficient information to document the work that has been done to comply with federal law.
 ii. A copy of the final paid invoice. The amount paid for the services may be omitted or redacted from the final invoice prior to submission.

8. Prior to March 31, 2010, the department shall issue a form for use by the owner of a public swimming pool to
indicate compliance with this section. The department shall consult with county health officers and directors of departments of environmental health in developing the form and shall post the form on the department's internet website. The form shall be completed by the owner of a public swimming pool prior to filing the form with the appropriate city, county, or city and county department of environmental health. The form shall include, but not be limited to, the following information:

a. A statement of whether the pool operates with a single or split main drain.

b. Identification of the type of anti-entrapment devices or systems that have been installed pursuant to Subdivision (4) and the date or dates of installation.

c. Identification of the type of devices or systems designed to prevent physical entrapment that have been installed pursuant to Subdivision (5) in a public swimming pool with a single main drain that is not an unblockable drain and the date or dates of the installation of the reason why the requirement is not applicable.

d. A signature and license number of a qualified individual who certifies that the factual information provided on the form in response to paragraphs (a) to (c), inclusive, is true to the best of his or her knowledge.

9. A qualified individual who improperly certifies information pursuant to Paragraph (d) of Subdivision (8) shall be subject to potential disciplinary action at the discretion of the licensing authority.

10. Except as provided in Subdivision (7), each public swimming pool owner shall file a completed copy of the form issued by the department pursuant to this section with the city, county, or city and county department of environmental health in the city, county, or city and county in which the swimming pool is located. The form shall be filed within 30 days following the completion of the swimming pool construction of installation required pursuant to this section or, if the construction or installation is completed prior to the date that the department issues the form pursuant to this section, within 30 days of the date that the department issues the form. The public swimming pool owner or operator shall not make a false statement, representation, certification, record, report, or otherwise falsify information that he or she is required to file or maintain pursuant to this section.

11. In enforcing this section, health officers and directors of city, county, or city and county departments of environmental health shall consider documentation filed on or with the form issued pursuant to this section by the owner of a public swimming pool as evidence of compliance with this section. A city, county, or city and county department of environmental health may verify the accuracy of the information filed on or with the form.

12. To the extent that the requirements for public wading pools imposed by Section 116064 conflict with this section, the requirements of this section shall prevail.

a. Until January 1, 2014, the department may assess an annual fee on the owners of each public swimming pool, to be collected by the applicable local health department, in an amount not to exceed the amount necessary to defray the department's costs of carrying out its duties under Section 116064.1 and this, but in no case shall this fee exceed six dollars ($6).

b. The local health department may retain a portion of the fee collected pursuant to Paragraph (a) in an amount necessary to cover the administrative costs of collecting the fee, but in no case to exceed one dollar ($1).

c. The local health department shall bill the owner of each public swimming pool in its jurisdiction for the amount of the state fee. The local health department shall transmit the collected state fee to the controller for deposit into the Recreational Health Fund, which is hereby created in the State Treasury. The local health department shall not be required to take action to collect an unpaid state fee, but shall submit to the department, every six months, a list containing the name and address of the owner of each public swimming pool who has failed to pay the state fee for more than 90 days after the date that the bill was provided to the owner of the public swimming pool.

d. Owners that are exempt from local swimming pool permit fees shall also be exempt from the fees imposed pursuant to this subdivision.

e. Except as provided in Paragraph (b), all moneys collected by the department pursuant to this section be deposited into the Recreational Health Fund. Notwithstanding Section 16305.7 of the Government Code, interest and dividends on moneys in the Recreational Health Fund shall also be deposited in the fund. Moneys in the fund shall, upon appropriation by the legislature, be available to the department for carrying out its duties under Section 116064.1 and this section and shall not be redirected for any other purpose.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 31C – RADIATION

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD BSC SFM</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
</tbody>
</table>

2010 CALIFORNIA BUILDING CODE
CHAPTER 31C [DHS] RADIATION

SECTION 3101C SCOPE

For the purpose of this chapter, the following terms shall have the meaning indicated:

PRIMARY PROTECTIVE BARRIER is a barrier to attenuate the useful beam.

SECONDARY PROTECTIVE BARRIER is a barrier to attenuate stray radiation.

STRAY RADIATION is radiation not serving any useful purpose, which includes leakage and scattered radiation.

USEFUL BEAM is the radiation which passes through the window, aperture, cone or other collimating device of the tube housing.

SECTION 3102C RADIATION SHIELDING BARRIERS

All radiation shielding barriers in rooms and enclosures housing machines shall meet the requirements of Section 12-31C-101, Chapter 12-31C, Part 12, California Referenced Standards Code. The Department of Health Services is the only agency that may grant a variance or exception to these standards.

SECTION 3103C MEDICAL RADIOGRAPHIC AND PHOTOFLUOROGRAPHIC INSTALLATIONS

3103C.1 Operator station. The operator’s station at the control shall be behind a protective barrier either in a separate room, in a protected booth or behind a shield which will intercept the useful beam and any radiation which has been scattered only once.

3103C.2 Patient observation and communication. Provision shall be made for the operator to observe and communicate with the patient without leaving the shielded position at the control panel. When an observation window is used, it must provide radiation attenuation equal to that required in the surrounding barrier.

SECTION 3104C MEDICAL THERAPEUTIC X-RAY INSTALLATIONS

3104C.1 General. All wall, floor and ceiling areas that can be struck by the useful beam, plus a border of 1 foot (305 mm), shall be provided with primary protective barriers.

3104C.2 Equipment operating above 50 kVp. Equipment operating above 50 kVp shall conform with the following:

1. The control station shielding shall either be an integral part of the building or anchored to the building.

2. The control station shall be provided with a window having radiation attenuation equal to that required by the adjacent barrier, or a mirror system, or a closed-circuit television viewing screen. The patient area must be visible to the operator without having to leave the protected area during exposure.

3104C.3 Equipment operating above 150 kVp. Equipment operating above 150 kVp shall conform to the following:

1. The treatment room shall be provided with interlocks so that when any door of the treatment room is opened, either the machine will shut off automatically or the radiation level within the room will be reduced to an average of not more than 2 milliroentgens per hour and a maximum of 10 milliroentgens per hour at a distance of one meter in any direction from the target. After such shutoff or reduction in output, it shall be possible to restore the machine to full operation only from the control panel.

2. The control station shall be within a protective booth or in an adjacent room.

3104C.4 A minimum of one door shall be provided with an auxiliary means for being opened in case of power failure or mechanical breakdown, where large power-driven doors offer the only access to the room.

3104C.5 A flashing red warning signal light energized only when the useful beam is on shall be located adjacent to the entrance(s) to a therapy room with equipment capable of operating above 500 kVp.
California Building Code-Matrix Adoption Table

Chapter 31D – Food Establishments

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 31D [DPH]
FOOD ESTABLISHMENTS

SECTION 3101D
SCOPE

The provisions of this chapter shall apply to the construction of commissaries serving mobile food preparation units.

SECTION 3102D
DEFINITIONS

For the purpose of this chapter, the following term shall have the meaning indicated:

COMMISSARIES SERVING MOBILE FOOD PREPARATION UNITS are food establishments in which food, containers, equipment or supplies are stored or handled for use in vehicles, mobile food preparation units, food carts or vending machines.

SECTION 3103D
BUILDING AND STRUCTURES

3103D.1 Light. Ten foot candles (107.6 lux) of uniformly distributed light as measured 30 inches (762 mm) above the floor shall be provided in all rooms and areas in commissaries serving mobile food preparation units.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 31F – MARINE OIL TERMINALS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 31F [SLC]
MARINE OIL TERMINALS

Division I

SECTION 3101F [SLC]
INTRODUCTION

3101F.1 General. The Lempert-Keene-Seastrand oil spill prevention and response act of 1990 (act), as amended, authorized the California State Lands Commission (SLC) to regulate marine oil terminals (MOTs) in order to protect public health, safety and the environment. The authority for this regulation is contained in Sections 8755 and 8756 of the California Public Resources Code. This act defines “oil” as any kind of petroleum, liquid hydrocarbons, or petroleum products or any fraction or residues thereof, including but not limited to, crude oil, bunker fuel, gasoline, diesel fuel, aviation fuel, oil sludge, oil refuse, oil mixed with waste, and liquid distillates from unprocessed natural gas. The provisions of this chapter regulate marine oil terminals as defined under this act.

3101F.2 Purpose. The purpose of this code is to establish minimum engineering, inspection and maintenance criteria for MOTs in order to prevent oil spills and to protect public health, safety and the environment. This code does not, in general, address operational requirements. Relevant provisions from existing codes, industry standards, recommended practices, regulations and guidelines have been incorporated directly or through reference, as part of this code.

Where there are differing requirements between this code and/or references cited herein, the choice of application shall be subject to approval of the Marine Facilities Division (Division) of the SLC.

In special circumstances where certain requirements of these standards cannot be met, alternatives that provide an equal or better protection of the public health, safety and the environment shall be subject to Division approval.

3101F.3 Applicability. The provisions of this chapter are applicable to the evaluation of existing MOTs and design of new MOTs in California. Each provision is classified as New (N), Existing (E), or Both (N/E) and shall be applied accordingly. If no classification is indicated, the classification shall be considered to be (N/E).

Existing (E) requirements apply to MOTs that are in operation on the date this code is adopted. For these MOTs, equivalent or in-kind replacement of existing equipment, short pipeline sections, or minor modification of existing components shall also be subject to the existing (E) requirements.

New (N) requirements apply to:

1. A MOT or berthing system (Subsection 3102F.1.3) that commences or recommences operation with a new or modified operations manual after adoption of this code.
2. Addition of new structural components or systems at an existing MOT that are structurally independent of existing components or systems.
3. Addition of new (nonreplacement) equipment, piping, pipelines, components or systems to an existing MOT.
4. Major repairs or substantially modified in-place systems.
5. Any associated major installations or modifications.

3101F.4 Overview. This Code ensures that a MOT can be safely operated within its inherent structural and equipment-related constraints.

Section 3102F defines minimum requirements for audit, inspection and evaluation of the structural, electrical and mechanical systems on a prescribed periodic basis, or following a significant damage-causing event.

Section 3103F, 3104F and 3107F provide criteria for structural loading, deformation and performance-based evaluation considering earthquake, wind, wave, current, seiche and tsunami effects.

Section 3105F provides requirements for the safe mooring and berthing of tank vessels and barges.

Section 3106F describes requirements for geotechnical hazards and foundation analyses, including consideration of slope stability and soil failure.

Section 3108F provides requirements for fire prevention, detection and suppression including appropriate water and foam volumes.

Sections 3109F through 3111F provide requirements for piping, mechanical and electrical equipment.

English units are prescribed herein; however, many of the units in the references are in System International (SI).

3101F.5 Risk reduction strategies. Risk reduction strategies, such as pipeline segmentation devices, system flexibility and spill containment devices may be used to reduce the size of a potential oil spill. Such strategies may reduce the MOT risk classification as determined from Table 31F-4-1.

3101F.6 Review requirements.

3101F.6.1 Quality assurance. All audits, inspections, engineering analyses or design shall be reviewed by a professional having similar or higher qualifications as the person who performed the work, to ensure quality assurance. This review may be performed in-house.

Peer review is required for nonlinear dynamic structural analyses and alternative lateral force procedures not prescribed herein. The peer review may be from an independent internal or external source. The peer reviewer shall be a California registered civil or structural engineer.

3101F.6.2 Division review. The following will be subject to review and approval by the Division or its designated representative(s) for compliance with this code:

1. Any audit, inspection, analysis or evaluation of existing MOTs.
2. Any significant change, modification or re-design of a structural, mooring, fire, piping/pipelines, mechanical or electrical system at an existing MOT, prior to use or reuse.
3. Engineering analysis and design for any new MOT prior to construction.
4. Construction inspection team and the construction inspection report(s).

Authority: Sections 8755 and 8757, Public Resources Code.
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
1. The maximum interval between Underwater Audit Inspections shall be reduced as appropriate based on the extent of deterioration observed on a structure, the rate of further anticipated deterioration or other factors.

2. Benign environments include fresh water and maximum current velocities less than 1.5 knots for the majority of the days in a calendar year.

3. Aggressive environments include brackish or salt water, polluted water, or waters with current velocities greater than 1.5 knots for the majority of the days in the calendar year.

4. For most structures, two maximum intervals will be shown in this table, one for the assessment of construction material (timber, concrete, steel, etc.) and one for scour (last 2 columns). The shorter interval of the two should dictate the maximum interval used.

5. MOTs rated “Critical” will not be operational; and Emergency Action shall be required in accordance with Table 31F-2-7.

<table>
<thead>
<tr>
<th>CONDITION RATING FROM PREVIOUS INSPECTION</th>
<th>CONSTRUCTION MATERIAL</th>
<th>CHANNEL BOTTOM OR MUD LINE—SCOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unwrapped Timber or Unprotected Steel (no coating or cathodic protection)</td>
<td>Concrete, Wrapped Timber, Protected Steel or Composite Materials (FRP, plastic, etc.)</td>
</tr>
<tr>
<td></td>
<td>Benign² Environment</td>
<td>Aggressive³ Environment</td>
</tr>
<tr>
<td>6 (Good)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>5 (Satisfactory)</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4 (Fair)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3 (Poor)</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2 (Serious)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1 (Critical)</td>
<td>N/A^5</td>
<td>N/A^5</td>
</tr>
</tbody>
</table>

1. The maximum interval between Underwater Audit Inspections shall be reduced as appropriate based on the extent of deterioration observed on a structure, the rate of further anticipated deterioration or other factors.

2. Benign environments include fresh water and maximum current velocities less than 1.5 knots for the majority of the days in a calendar year.

3. Aggressive environments include brackish or salt water, polluted water, or waters with current velocities greater than 1.5 knots for the majority of the days in the calendar year.

4. For most structures, two maximum intervals will be shown in this table, one for the assessment of construction material (timber, concrete, steel, etc.) and one for scour (last 2 columns). The shorter interval of the two should dictate the maximum interval used.

5. MOTs rated “Critical” will not be operational; and Emergency Action shall be required in accordance with Table 31F-2-7.
curate, the audit must include a baseline inspection to gather
data in sufficient detail to adequately evaluate the MOT.

The level of detail required shall be such that structural
member sizes, connection and reinforcing details are docu­
mented, if required in the structural analysis. In addition,
the strength and/or ductility characteristics of construc­
tion materials shall be determined, as appropriate. Nondestruc­
tive testing, partially destructive testing and/or laboratory
testing methods may be used.

All fire, piping, mechanical and electrical systems shall
be documented as to location, capacity, operating limits and
physical conditions.

3102F.2 Annual inspection. The annual inspection required
by 2 CCR 2320 (a)(1) [2.1], may include an engineering ex­
namination of the topside and underside areas of the dock, in­
cluding the splash zone. The Division shall perform the in­
spection, with cooperation from the owner/operator. Observations will
be recorded and a report of violations and deficiencies shall be
provided to the operator.

Subject to operating procedures, a boat shall be provided to
facilitate the inspection of the dock undersides and piles down
to the splash zone. If a boat is not available or the under dock
inspection cannot be performed by the Division during the
annual inspection, the MOT operator shall carry out or cause
to be carried out, such an inspection. The operator will then
provide the Division with a report detailing the examination
results including photographs, videos and sketches as neces­
sary to accurately depict the state of the underside of the dock.

3102F.3 Audit.

3102F.3.1 Objective. The objective of the audit is to review
structural, mechanical and electrical systems on a pre­
scribed periodic basis to verify that each berthing system is
fit for its specific defined purpose. The audit includes both
above water and underwater inspections, as well as engi­
neering analyses.

3102F.3.2 Overview. The initial audit shall include above
water and underwater structural inspections, mooring,
berthing and structural evaluations, and electrical/
mechanical systems evaluation. The audit is performed by a
multidisciplinary team of engineers, qualified inspectors
and may include Division representatives.

The above water inspection involves an examination of all
structural, mechanical and electrical components above the
waterline. Structural defects and their severity shall be doc­
umented, but the exact size and location of each deficiency is
typically not required.

A rational and representative underwater sampling of
piles may be acceptable with Division approval, for cases of
limited visibility, heavy marine growth, restricted inspec­
tion times because of environmental factors (currents, water
temperatures, etc.) or a very large number of piles.

A global condition assessment rating (CAR) shall be
assigned to above and underwater structural systems (Table
31F-2-5).

Remedial action priorities (RAP) shall be assigned for
component deficiencies (Table 31F-2-6). Recommendations
for remediation and/or upgrading shall be prescribed as nec­
essary.

An audit is not considered complete until the audit report
is received by the Division.

3102F.3.3 Schedule.

3102F.3.3.1 Initial audit. Table 31F-2-1 provides the
deadlines for the submission of the initial audit report.
The MOT classification in Table 31F-2-1 is determined
from the higher assigned risk classification obtained
from Table 31F-4-1.

For a new MOT berthing system, the initial audit shall
be performed within three years of commencement of
operations.

3102F.3.3.2 Subsequent audits. An above water audit of
structural, mechanical and electrical systems shall be
completed at a maximum interval of 3 years. This interval
may be reduced, based on the recommendation of the
audit team leader, and with the approval of the Division,
depending on the extent and rate of deterioration or other
factors.

The maximum interval for underwater audits is
dependent upon the condition of the facility, the con­
struction material type and/or the environment at the
mudline, as shown in Table 31F-2-2.

If there are no changes in the defined purpose (see Sec­
tion 3102F.3.6.1) of the berthing system, then analyses
from previous audits may be referenced. However, if
there is a significant change in a berthing system, or
when deterioration or damage must be considered, a new
analysis may be required.

The Division may require an audit to justify changes in
the use of a berthing system. An example of such change
would be in the berthing and mooring configuration of
larger or smaller vessels relative to dolphin and fender
spacing, and potential resultant modification to opera­
tional environmental limitations (e.g., wind speed).

Subsequent audits of the above water and underwater
structures and mechanical and electrical systems may or
may not be performed concurrently, depending upon the
required inspection intervals based on the prior audit
report.

3102F.3.4 Audit team.

3102F.3.4.1 Project manager. The audit shall be con­
ducted by a multidisciplinary team under the direction of
a project manager representing the MOT. The project
manager shall have specific knowledge of the MOT and
may serve other roles on the audit team.

3102F.3.4.2 Audit team leader. The audit team leader
shall lead the on-site audit team and shall be responsible
for directing field activities, including the inspection of all
structural, mechanical and electrical systems. The team
leader shall be a California registered civil or structural engineer and may serve other roles on the audit team.

3102F.3.4.3 Structural inspection team. The structural inspection shall be conducted under the direction of a registered civil or structural engineer.

All members of the structural inspection team shall be graduates of a 4-year civil/structural engineering, or closely related (ocean/coastal) engineering curriculum, and shall have been certified as an Engineer-in-Training; or shall be technicians who have completed a course of study in structural inspections. The minimum acceptable course in structural inspections shall include 80 hours of instruction specifically related to structural inspection, followed by successful completion of a comprehensive examination. An example of an acceptable course is the U.S. Department of Transportation’s “Safety Inspection of In-Service Bridges.” Certification as a Level IV Bridge Inspector by the National Institute of Certification in Engineering Technologies (NICET) shall also be acceptable [2.2].

For underwater inspections, the registered civil or structural engineer directing the underwater structural inspection shall also be a commercially trained diver or equivalent and shall actively participate in the inspection, by personally conducting a minimum of 25 percent of the underwater examination [2.2].

Each underwater team member shall also be a commercially trained diver, or equivalent. Divers performing underwater inspections shall be certified as Level IV Bridge Inspectors by the National Institute of Certification in Engineering Technologies (NICET) as a minimum [2.2].

<table>
<thead>
<tr>
<th>TABLE 31F-2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERWATER INSPECTION LEVELS OF EFFORT [2.2]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>PURPOSE</th>
<th>DETECTABLE DEFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>General visual/tactile inspection to confirm as-built condition and detect severe damage</td>
<td>Extensive corrosion, holes Severe mechanical damage Major spalling and cracking Severe reinforcement corrosion Broken piles Major loss of section Broken piles and braceings Severe abrasion or marine borer attack Permanent deformation Broken piles Major cracking or mechanical damage</td>
</tr>
<tr>
<td>II</td>
<td>To detect surface defects normally obscured by marine growth</td>
<td>Moderate mechanical damage Corrosion pitting and loss of section Surface cracking and spalling Rust staining Exposed reinforcing steel and/or prestressing strands External pile damage due to marine borer Splintered piles Loss of bolts and fasteners</td>
</tr>
<tr>
<td>III</td>
<td>To detect hidden or interior damage, evaluate loss of cross-sectional area, or evaluate material homogeneity</td>
<td>Thickness of material Electrical potentials for cathodic protection Location of reinforcing steel Beginning of corrosion of reinforcing steel Internal voids Change in material strength Internal damage due to marine borers (internal voids) Decrease in material strength N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 31F-2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPE OF UNDERWATER INSPECTIONS [2.2]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>SAMPLE SIZE AND METHODOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td>Piles</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Sample Size:</td>
</tr>
</tbody>
</table>

1. The minimum inspection sampling size for small structures shall include at least two components.

LF = Linear Feet; SF = Square Feet; N/A = Not Applicable
TABLE 31F-2-5
CONDITION ASSESSMENT RATINGS (CAR) [2.2]

<table>
<thead>
<tr>
<th>RATING</th>
<th>DESCRIPTION OF STRUCTURAL SYSTEMS, ABOVE AND BELOW WATER LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Good
No problems or only minor problems noted. Structural elements may show very minor deterioration, but no overstressing observed. The capacity of the structure meets the requirements of this standard. The structure should be considered fit-for-purpose. No repairs or upgrades are required.</td>
</tr>
<tr>
<td>5</td>
<td>Satisfactory
Limited minor to moderate defects or deterioration observed, but no overstressing observed. The capacity of the structure meets the requirements of this standard. The structure should be considered fit-for-purpose. No repairs or upgrades are required.</td>
</tr>
<tr>
<td>4</td>
<td>Fair
All primary structural elements are sound; but minor to moderate defects or deterioration observed. Localized areas of moderate to advanced deterioration may be present, but do not significantly reduce the load bearing capacity of the structure. The capacity of the structure is no more than 15 percent below the structural requirements of this standard, as determined from an engineering evaluation. The structure should be considered as marginal. Repair and/or upgrade measures may be required to remain operational. Facility may remain operational provided a plan and schedule for remedial action is presented to and accepted by the Division.</td>
</tr>
<tr>
<td>3</td>
<td>Poor
Advanced deterioration or overstressing observed on widespread portions of the structure, but does not significantly reduce the load bearing capacity of the structure. The capacity of the structure is no more than 25 percent below the structural requirements of this standard, as determined from an engineering evaluation. The structure is not fit-for-purpose. Repair and/or upgrade measures may be required to remain operational. The facility may be allowed to remain operational on a restricted or contingency basis until the deficiencies are corrected, provided a plan and schedule for such work is presented to and accepted by the Division.</td>
</tr>
<tr>
<td>2</td>
<td>Serious
Advanced deterioration, overstressing or breakage may have significantly affected the load bearing capacity of primary structural components. Local failures are possible and loading restrictions may be necessary. The capacity of the structure is more than 25 percent below the structural requirements of this standard, as determined from an engineering evaluation. The structure is not fit-for-purpose. Repairs and/or upgrade measures may be required to remain operational. The facility may be allowed to remain operational on a restricted basis until the deficiencies are corrected, provided a plan and schedule for such work is presented to and accepted by the Division.</td>
</tr>
<tr>
<td>1</td>
<td>Critical
Very advanced deterioration, overstressing or breakage has resulted in localized failure(s) of primary structural components. More widespread failures are possible or likely to occur and load restrictions should be implemented as necessary. The capacity of the structure is critically deficient relative to the structural requirements of this standard. The structure is not fit-for-purpose. The facility shall cease operations until deficiencies are corrected and accepted by the Division.</td>
</tr>
</tbody>
</table>

TABLE 31F-2-6
COMPONENT DEFICIENCY REMEDIAL ACTION PRIORITIES (RAP)

<table>
<thead>
<tr>
<th>REMEDIAL PRIORITIES</th>
<th>DESCRIPTION AND REMEDIAL ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Specified whenever a condition that poses an immediate threat to public health, safety or the environment is observed. Emergency actions may consist of barricading or closing all or portions of the berthing system, evacuating product lines and ceasing transfer operations. The berthing system is not fit-for-purpose. Immediate remedial actions are required prior to the continuance of normal operations.</td>
</tr>
<tr>
<td>P2</td>
<td>Specified whenever defects or deficiencies pose a potential threat to public health, safety and the environment. Actions may consist of limiting or restricting operations until remedial measures have been completed. The berthing system is not fit-for-purpose. This priority requires investigation, evaluation and urgent action.</td>
</tr>
<tr>
<td>P3</td>
<td>Specified whenever systems require upgrading in order to comply with the requirement of these standards or current applicable codes. These deficiencies do not require emergency or urgent actions. The MOT may have limitations placed on its operational status.</td>
</tr>
<tr>
<td>P4</td>
<td>Specified whenever damage or defects requiring repair are observed. The berthing system is fit-for-purpose. Repair can be performed during normal maintenance cycles, but not to exceed one year.</td>
</tr>
<tr>
<td>R</td>
<td>Recommended action is a good engineering/maintenance practice, but not required by these standards. The berthing system is fit-for-purpose.</td>
</tr>
</tbody>
</table>
Table 31F-2-7
Structural Follow-up Actions [2.2]

<table>
<thead>
<tr>
<th>FOLLOW-UP ACTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Action</td>
<td>Specified whenever a condition which poses an immediate threat to public health, safety or the environment is observed. Emergency Actions may consist of barricading or closing all or portions of the berthing system, limiting vessel size, placing load restrictions, evacuating product lines, ceasing transfer operations, etc.</td>
</tr>
<tr>
<td>Engineering Evaluation</td>
<td>Specified whenever structural damage or deficiencies are observed which require further investigation or evaluation to determine appropriate follow-up actions.</td>
</tr>
<tr>
<td>Repair Design Inspection</td>
<td>Specified whenever damage or defects requiring repair are observed. The repair design inspection is performed to the level of detail necessary to prepare appropriate repair plans, specifications and estimates.</td>
</tr>
<tr>
<td>Upgrade Design and Implementation</td>
<td>Specified whenever the structural system requires upgrading in order to comply with the requirements of these standards and current applicable codes.</td>
</tr>
<tr>
<td>Special Inspection</td>
<td>Typically specified to determine the cause or significance of nonypical deterioration, usually prior to designing repairs. Special testing, laboratory analysis, monitoring or investigation using nonstandard equipment or techniques are typically required.</td>
</tr>
<tr>
<td>Develop and Implement Repair Plans</td>
<td>Specified when the Repair Design Inspection and required Special Inspections have been completed. Indicates that the structure is ready to have repair plans prepared and implemented.</td>
</tr>
<tr>
<td>No Action</td>
<td>Specified when no further action is necessary until the next scheduled audit or inspection.</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>GLOBAL STRUCTURAL CONDITION ASSESSMENT RATINGS (CAR)</th>
<th>EXECUTIVE SUMMARY TABLE (ES-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERTHING SYSTEM</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>North Wharf</td>
<td>Above Water Structure</td>
</tr>
<tr>
<td></td>
<td>Underwater Structure</td>
</tr>
<tr>
<td>South Wharf</td>
<td>Above Water Structure</td>
</tr>
<tr>
<td></td>
<td>Underwater Structure</td>
</tr>
</tbody>
</table>

Dolphin, Trestle, etc.: — — — — — —

1. Place check mark and date of respective audit in proper column to indicate for each structural system, whether the system was included in the current audit or whether the results are summarized from a previous audit.

Example

<table>
<thead>
<tr>
<th>COMPONENT DEFICIENCY REMEDIAL ACTION PRIORITIES (RAP)</th>
<th>EXECUTIVE SUMMARY TABLE (ES-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERTHING SYSTEM</td>
<td>DEFICIENCY</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>North Wharf</td>
<td>Fire main leaking</td>
</tr>
<tr>
<td></td>
<td>Pipeline badly corroded</td>
</tr>
<tr>
<td></td>
<td>Electrical (Class I, Div 2 violation)</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>POST-EVENT RATINGS AND REMEDIAL ACTIONS [2.2]</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY OF DAMAGE</td>
<td>REMEDIAL ACTIONS</td>
</tr>
<tr>
<td>A</td>
<td>No significant event-induced damage observed.</td>
</tr>
<tr>
<td>B</td>
<td>Minor to moderate event-induced damage observed but all primary structural elements and electrical/mechanical systems are sound.</td>
</tr>
<tr>
<td>C</td>
<td>Moderate to major event-induced damage observed which may have significantly affected the load bearing capacity of primary structural elements or the functionality of key electrical/mechanical systems.</td>
</tr>
<tr>
<td>D</td>
<td>Major event-induced damage has resulted in localized or widespread failure of primary structural components; or the functionality of key electrical/mechanical systems has been significantly affected. Additional failures are possible or likely to occur.</td>
</tr>
</tbody>
</table>
manual tasks such as cleaning or supporting the diving operation, but not conducting or reporting on inspections, may have lesser technical qualifications [2.2].

3102F.3.4.4 Seismic structural analyst. A California registered civil or structural engineer shall perform the seismic structural evaluation required for the audit.

3102F.3.4.5 Electrical inspection team. A registered electrical engineer shall direct the on-site team performing the inspection and evaluation of electrical components and systems.

3102F.3.4.6 Mechanical inspection team. A registered engineer shall direct the on-site team performing the inspection of pipeline, mechanical and fire systems.

3102F.3.4.7 Divisional representation. The Division representative(s) may participate in any audit as observer(s) and may provide guidance.

3102F.3.4.8 Geotechnical analyst. A California registered civil engineer with a California authorization as a geotechnical engineer shall perform the geotechnical evaluation required for the audit and all other geotechnical evaluations.

3102F.3.5 Scope of inspection.

3102F.3.5.1 Above water structural inspection. The above water inspection shall include all accessible components above +3 ft MLLW. Accessible components shall be defined as those components above and below deck that are reachable without the need for excavation or extensive removal of materials that may impair visual inspection. The above water inspection shall include but not be limited to the following:

1. Piles
2. Pile caps
3. Beams
4. Deck soffit
5. Bracing
6. Retaining walls and bulkheads
7. Connections
8. Seawalls
9. Slope protection
10. Deck topsides and curbing
11. Expansion joints
12. Fender system components
13. Dolphins and deadmen
14. Mooring points and hardware
15. Navigation aids
16. Platforms, ladders, stairs, handrails and gangways
17. Backfill (sinkholes/differential settlement)

3102F.3.5.2 Underwater structural inspection. The underwater inspection shall include all accessible components from +3 ft MLLW to the mudline, including the slope and slope protection, in areas immediately surrounding the MOT. The water depth at the berth(s) shall be evaluated, verifying the maximum or loaded draft specified in the MOT's Operations Manual (2 CCR 2383 (d)) [2.1].

The underwater structural inspection shall include the Level I, II and III inspection efforts, as shown in Tables 31F-2-3 and 31F-2-4. The underwater inspection levels of effort are described below, per [2.2]:

Level I—Includes a close visual examination, or a tactile examination using large sweeping motions of the hands where visibility is limited. Although the Level I effort is often referred to as a “swim-by” inspection, it must be detailed enough to detect obvious major damage or deterioration due to overstress or other severe deterioration. It should confirm the continuity of the full length of all members and detect undermining or exposure of normally buried elements. A Level I effort may also include limited probing of the substructure and adjacent channel bottom.

Level II—A detailed inspection which requires marine growth removal from a representative sampling of components within the structure. For piles, a 12-inch high band should be cleaned at designated locations, generally near the low waterline, at the mudline, and midway between the low waterline and the mudline. On a rectangular pile, the marine growth removal should include at least three sides; on an octagon pile, at least six sides; on a round pile, at least three-fourths of the perimeter. On large diameter piles, 3 ft or greater, marine growth removal should be effected on 1 ft by 1 ft areas at four locations approximately equally spaced around the perimeter, at each elevation. On large solid faced elements such as retaining structures, marine growth removal should be effected on 1 ft by 1 ft areas at the three specified elevations. The inspection should also focus on typical areas of weakness, such as attachment points and welds. The Level II effort is intended to detect and identify damaged and deteriorated areas that may be hidden by surface biofouling. The thoroughness of marine growth removal should be governed by what is necessary to discern the condition of the underlying structural material. Removal of all biofouling staining is generally not required.

Level III—A detailed inspection typically involving nondestructive or partially-destructive testing, conducted to detect hidden or interior damage, or to evaluate material homogeneity.

Typical inspection and testing techniques include the use of ultrasonics, coring or boring, physical material sampling and in-situ hardness testing. Level III testing is generally limited to key structural areas, areas which are suspect, or areas which may be representative of the underwater structure.

3102F.3.5.3 Special inspection considerations.

3102F.3.5.3.1 Coated components. For coated steel components, Level I and Level II efforts should focus on the evaluation of the integrity and effectiveness of the coating. The piles should be inspected without damaging the coating. Level III efforts should include
ultrasonic thickness measurements without removal of the coating, where feasible.

3102F.3.5.3.2 Encased components. For steel, concrete or timber components that have been encased, the Level I and II efforts should focus on the evaluation of the integrity of the encasement. If evidence of significant damage to the encasement is present, or if evidence of significant deterioration of the underlying component is present, then the damage evaluation should consider whether the encasement was provided for protection and/or structural capacity. Encasements should not typically be removed for an audit.

For encasements on which the formwork has been left in place, the inspection should focus on the integrity of the encasement, not the formwork. Level I and Level II efforts in such cases should concentrate on the top and bottom of the encasement. For concrete components, if deterioration, loss of bonding, or other significant problems with the encasement are suspected, it may be necessary to conduct a special inspection, including coring of the encasement and laboratory evaluation of the materials.

3102F.3.5.3.3 Wrapped components. For steel, concrete or timber components that have been wrapped, the Level I and II efforts should focus on the evaluation of the integrity of the wrap. Since the effectiveness of a wrap may be compromised by removal, and since the removal and re-installation of wraps is time-consuming, it should not be routinely done. However, if evidence of significant damage exists, or if the effectiveness of the wraps is in question, then samples should be removed to facilitate the inspection and evaluation. The samples may be limited to particular zones or portions of members if damage is suspected, based on the physical evidence of potential problems. A minimum sample size of three members should be used. A five-percent sample size, up to 30 total members, may be adequate as an upper limit.

For wrapped timber components, Level III efforts should consist of removal of the wraps from a representative sample of components in order to evaluate the condition of the timber beneath the wrap. The sample may be limited to particular zones or portions of the members if damage is suspected (e.g., at the mudline/bottom of wrap or in the tidal zone). The sample size should be determined based on the physical evidence of potential problems and the aggressiveness of the environment. A minimum sample size of three members should be used. A five-percent sample size, up to 30 total members, may be adequate as an upper limit.

3102F.3.5.4 Mechanical electrical equipment. The inspection of mechanical and electrical equipment shall include but not be limited to the following components and systems:

1. Loading arms
2. Cranes and lifting equipment, including cables
3. Piping/manifolds and supports
4. Oil transfer hoses
5. Fire detection and suppression systems
6. Vapor control system
7. Sumps/sump tanks
8. Vent systems
9. Pumps and pump systems
10. Lighting
11. Communications equipment
12. Gangways
13. Electrical switches and junction boxes
14. Emergency power equipment
15. Air compressors
16. Meters
17. Cathodic protection systems
18. Winches
19. ESD and other control systems
20. Ladders

All alarms, limit switches, load cells, current meters, anemometers, leak detection equipment, etc., shall be operated and/or tested to the extent feasible, to ensure proper function.

3102F.3.6 Evaluation and assessment.

3102F.3.6.1 Terminal operating limits. The physical boundaries of the facility shall be defined by the berthing system operating limits, along with the vessel size limits and environmental conditions.

The audit shall include a "Statement of Terminal Operating Limits," which must provide a concise statement of the purpose of each berthing system in terms of operating limits. This description must at least include, the minimum and maximum vessel sizes, including Length Overall (LOA), beam, and maximum draft with associated displacement (see Fig. 31F-2-1).

In establishing limits for both the minimum and maximum vessel sizes, due consideration shall be given to water depths, dolphin spacing, fender system limitations, manifold height and hose/loading arm reach, with allowances for tidal fluctuations, surge and drift.

Maximum wind, current or wave conditions, or combinations thereof, shall be clearly defined as limiting conditions for vessels at each berth, both with and without active product transfer.

3102F.3.6.2 Mooring and berthing. Mooring and berthing analyses shall be performed in accordance with Section 3105F. The analyses shall be consistent with the terminal operating limits and the structural configuration of the wharf and/or dolphins and associated hardware.

3102F.3.6.3 Structure. A structural evaluation, including a seismic analysis, shall be performed in accordance with Sections 3103F through 3107F. Such evaluation shall consider local or global reduction in capacity, as determined from the inspection.
Based on inspection results, structural analyses and engineering judgment, CARs shall be assigned on a global basis, independently for above and underwater structures. The CARs defined in Table 31F-2-5 shall be used for this purpose. The CAR documents the structural fitness-for-purpose. Structural component deficiencies may be assigned CARs as per Table 31F-2-6. The assigned ratings shall remain in effect until all the significant corrective action has been completed to the satisfaction of the division, or until completion of the next audit.

3102F.3.6.4 Mechanical and electrical systems. An evaluation of all mechanical and electrical systems and components shall be performed in accordance with Sections 3108F through 3111F of these standards. If a pipeline analysis is required, forces and imposed seismic displacements resulting from the structural analysis shall be considered. Mechanical and electrical component deficiencies shall be assigned ratings from Table 31F-2-6.

3102F.3.7 Follow-up actions. Structural follow-up actions as described in Table 31F-2-7 shall be prescribed. Multiple follow-up actions may be assigned; however, guidance should be provided as to the order in which the follow-up actions should be carried out.

If a CAR of “1” (Table 31F-2-5) or a RAP of “P1” (Table 31F-2-6) or “Emergency Action” using Table 31F-2-7, is assigned to a berthing system, the Division shall be notified immediately. The audit report shall include implementation schedules for all follow-up and remedial actions. Follow-up and remedial actions and implementation schedules are subject to Division approval. Follow-up actions shall also state the maximum interval before the next audit.

3102F.3.8 Documentation and reporting. The audit report shall be signed and stamped by the audit team leader.

Each audit, whether partial or complete, shall be adequately documented. Partial audits cover only specific systems or equipment examined. The resulting report shall summarize and reference relevant previous ratings and deficiencies.

The contents of the audit report for each berthing system shall, at a minimum, include the following as appropriate:

Executive summary—a concise summary of the audit results and analyses conclusions. It shall include summary information for each berthing system, including an overview of the assigned follow-up actions (See Example Tables ES-1 and ES-2).

Table of contents

Body of report

Introduction—a brief description of the purpose and scope of the audit, as well as a description of the inspection/evaluation methodology used for the audit.

Existing conditions—a brief description, along with a summary of the observed conditions. Subsections should be used to describe the above water structure, underwater structure and mechanical and electrical systems, to the extent each are included in the scope of the audit. Photos, plan views and sketches shall be utilized as appropriate to describe the structure and the observed conditions. Details of the inspection results such as test data, measurements data, etc., shall be documented in an appendix.

Evaluation and assessment—a CAR shall be assigned to structural systems (above and under water). Mooring and berthing analyses, structural analysis results, and all supporting calculations shall be included in appendices as appropriate to substantiate the ratings. However, the results and recommendations of the engineering analyses shall be included in this section. Component deficiencies should be described and a corresponding RAP assigned.

Follow-up actions—Specific structural follow-up actions shall be documented (Table 31F-2-7), and remedial schedules included, for each audited system. Audit team leaders shall specify which follow-up actions require a California registered engineer to certify that the completion is acceptable.

Appendices—When appropriate, the following appendices shall be included:

1. Background data on the terminal—description of the service environment (wind/waves/currents), extent and type of marine growth, unusual environmental conditions, etc.
2. Inspection/testing data
3. Mooring and berthing analyses
4. Structural and seismic analyses and calculations
5. Geotechnical report
6. MOT Fire Plan
7. Pipeline stress and displacement analyses
8. Mechanical and electrical system documentation
9. Photographs and/or sketches shall be included to document typical conditions and referenced deficiencies, and to justify CARs and RAPs.
10. Condition assessment rating (CAR) report and supporting data
11. Remedial action priorities (RAP) report and supporting data

3102F.3.9 Action plan implementation report. Within 90 days of completion of the remedial measures (for serious deficiencies, such as P1, P2 or any structural CAR less than 5) specified in the follow-up action plan(s), a report shall be submitted to the Division and shall include:

1. A description of each action taken
2. Updated RAPs and CARs
3. Supporting documentation with calculations and/or relevant data

3102F.4 Post-Event inspection. A post-event inspection is a focused inspection following a significant, potentially damage-causing event such as an earthquake, storm, vessel impact, fire, explosion or tsunami. The primary purpose is to assess the integrity of structural, mechanical and electrical systems. This
assessments will determine the operational status and/or any remedial measures required.

3102F.4.1 Notification and action plan. Notification as per 2 CCR 2325(e) [2.1] shall be provided to the local area Division field office. The notification shall include, as a minimum:

1. Brief description of the event
2. Brief description of the nature, extent and significance of any damage observed as a result of the event
3. Operational status and any required restrictions
4. Statement as to whether a Post-Event inspection will be carried out

The Division may carry out or cause to be carried out, a post-event inspection. In the interim, the Division may direct a change in the operations manual, per 2 CCR 2385 (f)(3) [2.1].

If a post-event inspection is required, an action plan shall be submitted to the Division within five (5) days after the event. This deadline may be extended in special circumstances. The action plan shall include the scope of the inspection (above water, underwater, electrical, mechanical systems, physical limits, applicable berthing systems, etc.) and submission date of the final report. The action plan is subject to Division approval.

3102F.4.2 Inspection team. The qualifications of the inspector shall be the same as those prescribed in Section 3102F.3.4. Division representatives may participate in any post-event inspection, as observers, and may provide guidance.

3102F.4.3 Scope. The post-event inspection shall focus on the possible damage caused by the event. General observations of long-term or preexisting deterioration such as significant corrosion-related damage or other deterioration should be made as appropriate, but should not be the focus of the inspection. The inspection shall always include an above-water assessment of structural, mechanical and electrical components.

The inspection team leader shall determine the need for, and methodology of, an underwater structural assessment, in consultation with the Division. Above water observations, such as shifting or differential settlement, misalignments, significant cracking or spalling, bulging, etc., shall be used to determine whether or not an underwater assessment is required. Similarly, the inspection team shall determine, in consultation with the Division, the need for, and methodology of any supplemental inspections (e.g., special inspections as per Section 3102F.3.5.3).

The following information may be important in determining the need for, and methodology of, the post-event inspection:

1. Earthquakes or vessel or debris impact typically cause damage both above and below the water line. Following a major earthquake, the inspection should focus on components likely to attract highest lateral loads (batter or shorter piles in the rear of the structure, etc.). In case of vessel or debris impact, the inspection effort should focus on components in the path of the impact mass.
2. Major floods or tsunamis may cause undermining of the structure, and/or scouring at the mud line.
3. Fire damage varies significantly with the type of construction materials but all types may be adversely affected. Special inspections (sampling and laboratory testing) shall be conducted, as determined by the inspection team leader, in order to determine the nature and extent of damage.
4. High wind or wave events often cause damage both above and below the water line. An underwater inspection may be required if damage is visible above the waterline. Structural damage may be potentially increased if a vessel was at the berth during the event. The effects of high wind may be most prevalent on equipment and connections of such equipment to the structure.

The methodology of conducting an underwater post-event inspection should be established with due consideration of the structure type and type of damage anticipated. Whereas slope failures or scour may be readily apparent in waters of adequate visibility, overstressing cracks on piles covered with marine growth will not be readily apparent. Where such hidden damage is suspected, marine growth removal should be performed on a representative sampling of components in accordance with the Level II effort requirements described in Section 3102F.3.5.2. The cause of the event will determine the appropriate sample size and locations.

3102F.4.4 Post-Event ratings. A post-event rating [2.2] shall be assigned to each berthing system upon completion of the inspection (see Table 31F-2-8). All observations of the above and under water structure, mechanical and electrical components and systems shall be considered in assigning a post-event rating.

Ratings should consider only damage that was likely caused by the event. Pre-existing deterioration such as corrosion damage should not be considered unless the structural integrity is immediately threatened or safety systems or protection of the environment may be compromised.

Assignment of ratings should reflect an overall characterization of the berthing system being rated. The rating shall consider both the severity of the deterioration and the extent to which it is widespread throughout the facility. The fact that the facility was designed for loads that are lower than the current standards for design should have no influence upon the ratings.

3102F.4.5 Follow-up actions. Follow-up actions shall be assigned upon completion of the post-event inspection of each berthing system. Table 31F-2-6 specifies remedial action priorities and actions for mechanical and electrical deficiencies. Table 31F-2-7 specifies various options for structural systems. Multiple follow-up actions may be assigned; however, guidance should be provided as to the order in which the follow-up actions should be carried out. Follow-up actions shall be subject to Division approval.
3102F.4.6 Documentation and reporting. Documentation of the specific attributes of each defect shall not be required during a post-event inspection. However, a narrative description of significant damage shall be used. The description shall be consistent with and shall justify the post-event rating assigned.

A report shall be prepared and submitted to the Division upon completion of the post-event inspection and shall, at a minimum, include:

1. Brief description of the facility including the physical limits of the structure, type of construction material(s), and the mechanical and electrical systems present
2. Brief description of the event triggering the inspection
3. Scope of the inspection (above water, underwater, electrical or mechanical)
4. Date of the inspection
5. Names and affiliations of inspection team
6. Description of the nature, extent and significance of any observed damage resulting from the event
7. Photographs should be provided to substantiate the descriptions and justify the condition rating
8. Assignment of a post-event rating
9. Statement regarding whether the facility is fit to resume operations and, if so, under what conditions
10. Assignment of follow-up action(s)
11. Inspection data, drawings, calculations and other relevant engineering materials
12. Signature and stamp of team leader(s)

3102F.4.7 Action Plan Report. Upon completion of all actions delineated in the action plan, a final report shall be submitted to the Division to document the work completed. Supporting documentation such as calculations or other relevant data shall be provided in appendices.

3102F.5 References.

[2.1] California Code of Regulations (CCR), Title 2, Division 3, Chapter 1, Article5, Marine Terminals Inspection and Monitoring, Sections 2315, 2320, 2325 and 2385 (short form example: 2 CCR 2315 (Title 2 of California Code of Regulations, Section 2315).

Authority: Sections 8755 and 8757, Public Resources Code
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
EXAMPLE

STATEMENT OF TERMINAL OPERATING LIMITS

BERTHING SYSTEM NAME:

FACILITY OWNER/OPERATOR:

FACILITY ADDRESS:

DATE:

NO. OF TRANSFERS/YEAR:

OIL SPILL AT RISK (BSU):

FACILITY SEISMIC CLASSIFICATION:

FACILITY MOORING/BERTHING CLASSIFICATION:

FACILITY FIRE HAZARD CLASSIFICATION:

VESSEL SIZE LIMITS:

ALL MOORING LINES SHALL HAVE A MINIMUM BREAKING STRENGTH OF

MAXIMUM VESSEL:

- LOA
- DWT
- BEAM
- DRAFT
- LSP
- MIN. WATER DEPTH

MINIMUM VESSEL:

- LOA
- DWT
- BEAM
- DRAFT
- LSP

PHYSICAL BOUNDARIES OF BERTHING SYSTEM:

- WEST BERTH
- EAST BERTH
- CAUSEWAY
- PIPEWAY
- FENDER LINE

ENVIRONMENTAL CONDITION LIMITS:

(MUST BE QUALIFIED AND DOCUMENTED BY A MOORING/BERTHING ANALYSIS)

NOTE:

WIND RESTRICTION DIAGRAM IS APPLICABLE WITH ARMSTRONG EBBOR FLOOD CURRENT OF 5.2 KNOTS, WAVE PERIOD >4S SECONDS, CHANGE WIND DRAFT >9FT, AND PASSING VESSELS EFFECTS ARE INsignificant.

LEGEND:

- TERMINATE PRODUCT TRANSFER
- DISCONNECT PRODUCT LINE AND DEPART BERTH

FIGURE 31F-2-1
SECTION 3103F
STRUCTURAL LOADING CRITERIA

3103F.1 General. Section 3103F establishes the environmental and operating loads acting on the marine oil terminal (MOT) structures and on moored vessel(s). The analyses procedures are presented in Sections 3104F – 3107F.

3103F.2 Dead loads.

3103F.2.1 General. Dead loads shall include the weight of the entire structure, including permanent attachments such as loading arms, pipelines, deck crane, fire monitor tower, gangway structure, vapor control equipment and mooring hardware. Unit weights specified in Section 3103F.2.2 may be used for MOT structures if actual weights are not available.

3103F.2.2 Unit weights. The unit weights in Table 31F-3-1 may be used for both existing and new MOTs.

<table>
<thead>
<tr>
<th>TABLE 31F-3-1 UNIT WEIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL</td>
</tr>
<tr>
<td>Steel or cast steel</td>
</tr>
<tr>
<td>Cast iron</td>
</tr>
<tr>
<td>Aluminum alloys</td>
</tr>
<tr>
<td>Timber (untreated)</td>
</tr>
<tr>
<td>Timber (treated)</td>
</tr>
<tr>
<td>Concrete, reinforced (normal weight)</td>
</tr>
<tr>
<td>Concrete, reinforced (lightweight)</td>
</tr>
<tr>
<td>Asphalt paving</td>
</tr>
</tbody>
</table>

* pounds per cubic foot

3103F.2.3 Equipment and Piping Area Loads. The equipment and piping area loads in Table 31F-3-2 may be used, as a minimum, in lieu of detailed as-built data.

<table>
<thead>
<tr>
<th>TABLE 31F-3-2 EQUIPMENT AND PIPING AREA LOADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
</tr>
<tr>
<td>Open areas</td>
</tr>
<tr>
<td>Areas containing equipment and piping</td>
</tr>
<tr>
<td>Trestle roadway</td>
</tr>
</tbody>
</table>

* Allowance for incidental items such as railings, lighting, miscellaneous equipment, etc.
** 35 psf is for miscellaneous general items such as walkways, pipe supports, lighting and instrumentation. Major equipment weight shall be established and added into this weight for piping manifold, valves, deck crane, fire monitor tower, gangway structure and similar major equipment.
*** pounds per square foot

3103F.3 Live loads and buoyancy. The following vertical live loading shall be considered, where appropriate: uniform loading, truck loading, crane loading and buoyancy. Additionally, MOT specific, nonpermanent equipment shall be identified and used in loading computations.

3103F.4 Earthquake loads.

3103F.4.1 General. Earthquake loads are described in terms of Peak Ground Acceleration (PGA), spectral acceleration and earthquake magnitude. The required seismic analysis procedures (Tables 31F-4-2 and 31F-4-3) are dependent on the risk classification obtained from Table 31F-4-1.

3103F.4.2 Design earthquake motion parameters. The earthquake ground motion parameters of peak ground acceleration, spectral acceleration and earthquake magnitude are modified for site amplification and near fault directivity effects. The resulting values are the design peak ground acceleration (DPGA), design spectral acceleration (DSA) and design earthquake magnitude (DEM).

The peak ground and spectral acceleration may be evaluated using:

1. U.S. Geological Survey (USGS) or California Geological Survey [CGS, formerly the California Division of Mines and Geology (CDMG)] maps as discussed in Section 3103F.4.2.2.
2. A site-specific probabilistic seismic hazard analysis (PSHA) as discussed in Section 3103F.4.2.3.
3. For the Ports of Los Angeles, Long Beach and Port Hueneme, PSHA results are provided in Section 3103F.4.2.3.

Unless stated otherwise, the DSA values are for 5 percent damping; values at other levels may be obtained as per Section 3103F.4.2.9.

The appropriate probability levels associated with DPGA and DSA for different seismic performance levels are provided in Table 31F-4-2. Deterministic earthquake motions, which are used only for comparison to the probabilistic results, are addressed in Section 3103F.4.2.7.

The evaluation of Design Earthquake Magnitude (DEM), is discussed in Section 3103F.4.2.8. This parameter is required when acceleration time histories (Section 3103F.4.2.10) are addressed or if liquefaction potential (Section 3106F.3) is being evaluated.

3103F.4.2.1 Site classes. The following site classes, defined in Section 3106F.2, shall be used in developing values of DSA and DPGA:

\[S_A, S_B, S_C, S_D, S_E \text{ and } S_F \]

For \(S_F \), a site-specific response analysis is required per Section 3103F.4.2.5.

3103F.4.2.2 Earthquake motions from USGS maps. Earthquake ground motion parameters can be obtained from the Maps 29-32 in the National Earthquake Hazard Reduction Program (NEHRP) design map set discussed in subsection 1.6.1 of [3.1], or the USGS website: [http://earthquake.usgs.gov/research/hazmaps/]. These are available as peak ground acceleration and spectral acceleration values at 5 percent damping for 10 and 2 percent probability of exceedance in 50 years, which correspond to Average Return Periods (ARPs) of 475 and 2,475 years, respectively. The spectral acceleration values are available for 0.2, and 1.0 second spectral periods. In obtaining peak ground acceleration and spectral acceleration values from the USGS web site, the site location can be specified in terms of site longitude and latitude or the zip code when appropriate. The
resulting values of peak ground acceleration and spectral acceleration correspond to surface motions for Site Classification approximately corresponding to the boundary of Site Class S_b and S_c.

Once peak ground acceleration and spectral acceleration values are obtained for 10 and 2 percent probability of exceedence in 50 years, the corresponding values for other probability levels may be obtained. A procedure is presented in subsection 1.6 of Chapter 1 of [3.1].

3103F.4.2.3 Earthquake motions from site-specific probabilistic seismic hazard analyses. Peak ground acceleration and spectral acceleration values can be obtained using site-specific probabilistic seismic hazard analysis (PSHA). In this approach, the seismic sources and their characterization used in the analysis shall be based on the published data from the California Geological Survey, which can be obtained online at the following website: (http://www.conservation.ca.gov/CGS/Pages/Index.aspx) [3.2].

Appropriate attenuation relationships shall be used to obtain values of peak ground acceleration and spectral acceleration at the ground surface for site conditions corresponding to the boundary of Site Class S_b and S_c, regardless of the actual subsurface conditions at the site. These results shall be compared to those based on the FEMA/USGS maps discussed in Section 3103F.4.2.2. If the two sets of values are significantly different, a justification for using the characterization chosen shall be provided.

Alternatively, peak ground acceleration and spectral accelerations at the ground surface for the subsurface conditions that actually exist at the site may be directly obtained by using appropriate attenuation relationships in a site-specific PSHA. This approach is not permissible for Site Classes S_b and S_c.

For site-specific PSHA, peak ground acceleration and spectral acceleration values corresponding to the seismic performance level (See Table 31F-4-2) shall be obtained.

For peak ground acceleration, PSHA may be conducted using the “magnitude weighting” procedure in Idriss [3.3]. The actual magnitude weighting values should follow the Southern California Earthquake Center (SCEC) procedures [3.4]. This magnitude weighting procedure incorporates the effects of duration corresponding to various magnitude events in the PSHA results. The resulting peak ground acceleration shall be used only for liquefaction assessment (see Section 3106F.4).

PSHA have been developed for the Ports of Los Angeles and Long Beach [3.5, 3.6] and provide site-specific information for seismic analyses. Table 31F-3-3 provides response spectra, for a 475 year return period earthquake and 5 percent critical damping. Figure 31F-3-1 provides the corresponding spectra for the two ports. Additionally, these references provide spectra for return periods from 72 to 2,500 years.

For the port of Port Hueneme, a PSHA was performed by Lawrence Livermore National Laboratory [3.7] and the results are shown in Table 31F-3-4 and Figure 31F-3-2. These results are provided only for site classification “S_c” and five percent critical damping. To obtain appropriate values for piles and/or the mudline, the simplified procedures of Section 3103F.4.2.4 may be used.

FIGURE 31F-3-1 DESIGN ACCELERATION RESPONSE SPECTRA FOR THE PORTS OF LOS ANGELES AND LONG BEACH, 475 YEAR RETURN PERIOD (5% CRITICAL DAMPING)

Port of Los Angeles

Port of Long Beach

2010 CALIFORNIA BUILDING CODE
3103F.4.2.4 Simplified evaluation of site amplification effects. When the MOT Site Class is different from the S_n-S_c boundary, site amplification effects shall be incorporated in peak ground accelerations and spectral accelerations. This may be accomplished using a simplified method or a site-specific evaluation (Section 3103F.4.2.5).

For a given site class, the following procedure [3.1] presents a simplified method that may be used to incorporate the site amplification effects for peak ground acceleration and spectral acceleration computed for the S_n and S_c boundary.

1. Calculate the spectral acceleration values at 0.20 and 1.0 second period:

$$S_{xs} = F_a S_s$$

$$S_{x1} = F_v S_f$$

where:

F_a = site coefficient obtained from Table 31F-3-5

F_v = site coefficient obtained from Table 31F-3-6

S_s = short period (usually at 0.20 seconds) spectral acceleration value (for the boundary of S_n and S_c) obtained using Section 3103F.4.2.2, or at the period corresponding to the peak in spectral acceleration values when obtained from Section 3103F.4.2.3

$$S_f = \text{spectral acceleration value (for the boundary of } S_n \text{ and } S_c) \text{ at 1.0 second period}$$

$$S_{xs} = \text{spectral acceleration value obtained using the short period } S_s \text{ and factored by Table 31F-3-5 for the Site Class under consideration.}$$

$$S_{x1} = \text{spectral acceleration value obtained using the 1.0 second period } S_f \text{ and factored by Table 31F-3-6 for the Site Class under consideration.}$$

2. Set $PGA_x = 0.4S_{xs}$

$$PGA_x = \text{peak ground acceleration corresponding to the Site Class under consideration.}$$

When the value of PGA_x is less than the peak ground acceleration obtained following Section 3103F.4.2.2 or Section 3103F.4.2.3, an explanation of the results shall be provided.

3. PGA_x, S_{xs}, and S_{x1} constitute three spectral acceleration values for the Site Class under consideration corresponding to periods of 0, S_s (usually 0.2 seconds), and 1.0 second, respectively.

4. The final response spectra, without consideration for near-fault directivity effects, values of S_a for the Site Class under consideration may be obtained using the following equations (for 5 percent critical damping):

$$S_a = (S_{xs})(0.4 + 3T/T_o)$$

where:

$T = \text{Period corresponding to calculated } S_a$

$T_o = \text{Period at which the constant acceleration and constant velocity regions of the design spectrum intersect}$

for $0.2T_o < T < T_o$

$$S_a = S_{xs}$$

for $T > T_o$

$$S_a = S_{x1}/T$$

where:

$$T_o = S_{xs}/S_{xs}$$

The resulting PGA_x is the DPGA. However, the S_a (except for the ports of Los Angeles, Long Beach and Port Hueneme) shall be modified for near-fault directivity effects, per Section 3103F.4.2.6 to obtain the final DSAs.
NOTE: Site-specific dynamic site response analysis shall be performed. Site-specific response analysis results shall be justified or is not adequate, two-dimensional equivalent accelerations are often involved. When the site is near-fault directivity effects shall be considered. Near-fault directivity effects are included in the seismic shaking level considered in the analysis.

The choice of the method used in site response analysis shall be justified considering the expected stress-strain behavior of soils under the shaking level considered in the analysis.

Site-specific site response analysis may be performed using one-dimensional analysis. However, to the extent that MOTs are involved in the structures, the one-dimensional analysis should be used judiciously. When one-dimensional analysis cannot be justified or is not adequate, two-dimensional equivalent linear or nonlinear response analysis shall be performed. Site-specific response analysis results shall be compared to those based on the simplified method of Section 3103F.4.2.4 for reasonableness.

For the port areas of Los Angeles, Long Beach and Port Hueneme, the resulting response spectra shall not fall below values obtained in Section 3103F.4.2.3.

The peak ground accelerations obtained from this site-specific evaluation are DPGAs and the spectral accelerations are DSAs as long as the near-fault directivity effects addressed in Section 3103F.4.2.6 are appropriately incorporated into the time histories (Section 3103F.4.2.10).

TABLE 31F-3-3
DESIGN ACCELERATION RESPONSE SPECTRA FOR THE PORTS OF LOS ANGELES AND LONG BEACH, 475 YEAR RETURN PERIOD (5% Critical Damping)

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>Spectral Acceleration (g's)</th>
<th>Port of Los Angeles</th>
<th>Port of Long Beach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.520</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.520</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.931</td>
<td>0.910</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1.154</td>
<td>1.132</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1.270</td>
<td>1.121</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1.223</td>
<td>1.050</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.148</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.937</td>
<td>0.840</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.740</td>
<td>0.717</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.510</td>
<td>0.510</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.380</td>
<td>0.362</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.210</td>
<td>0.199</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.135</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.094</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>0.069</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.041</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>0.027</td>
<td>0.027</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 31F-3-4
RESPONSE SPECTRA FOR PORT HUENEME, 475 YEAR RETURN PERIOD (5% Critical Damping)

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>Frequency (Hz)</th>
<th>Spectral Acceleration (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>33.33</td>
<td>0.41</td>
</tr>
<tr>
<td>0.05</td>
<td>20.00</td>
<td>0.46</td>
</tr>
<tr>
<td>0.10</td>
<td>10.0</td>
<td>0.63</td>
</tr>
<tr>
<td>0.15</td>
<td>6.67</td>
<td>0.75</td>
</tr>
<tr>
<td>0.20</td>
<td>5.0</td>
<td>0.80</td>
</tr>
<tr>
<td>0.30</td>
<td>3.33</td>
<td>0.78</td>
</tr>
<tr>
<td>0.50</td>
<td>2.00</td>
<td>0.69</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.49</td>
</tr>
<tr>
<td>2.0</td>
<td>0.50</td>
<td>0.28</td>
</tr>
</tbody>
</table>

TABLE 31F-3-5
VALUES OF F_c

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1.0</th>
<th>> 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>S_B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>S_C</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>S_D</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>S_E</td>
<td>2.5</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>S_F</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

NOTE: Linear interpolation can be used to estimate values of F_c for intermediate values of S_c.

* Site-specific dynamic site response analysis shall be performed.

TABLE 31F-3-6
VALUES OF F_c

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>< 0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>> 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>S_B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>S_C</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>S_D</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>S_E</td>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>S_F</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

NOTE: Linear interpolation can be used to estimate values of F_c for intermediate values of S_c.

* Site-specific dynamic site response analysis shall be performed.

3103F.4.2.5 Site-specific evaluation of amplification effects. As an alternative to the procedure presented in Section 3103F.4.2.4, a site-specific response analysis may be performed. For S_c, a site specific response analysis is required. The analysis shall be either an equivalent linear or nonlinear analysis. Appropriate acceleration time histories as discussed in Section 3103F.4.2.10 shall be used.

In general, an equivalent linear analysis using, for example, SHAKE91 [3.8] is acceptable when the strength and stiffness of soils are unlikely to change significantly during the seismic shaking, and the level of shaking is not large. A nonlinear analysis should be used when the strength and/or stiffness of soils could significantly change during the seismic shaking or significant nonlinearity of soils is expected because of high seismic shaking levels.

The choice of the method used in site response analysis shall be justified considering the expected stress-strain behavior of soils under the shaking level considered in the analysis.

Site-specific site response analysis may be performed using one-dimensional analysis. However, to the extent that MOTs are involved in the structures, the one-dimensional analysis should be used judiciously. When one-dimensional analysis cannot be justified or is not adequate, two-dimensional equivalent linear or nonlinear response analysis shall be performed. Site-specific response analysis results shall be compared to those based on the simplified method of Section 3103F.4.2.4 for reasonableness.

For the port areas of Los Angeles, Long Beach and Port Hueneme, the resulting response spectra shall not fall below values obtained in Section 3103F.4.2.3.

The peak ground accelerations obtained from this site-specific evaluation are DPGAs and the spectral accelerations are DSAs as long as the near-fault directivity effects addressed in Section 3103F.4.2.6 are appropriately incorporated into the time histories (Section 3103F.4.2.10).

3103F.4.2.6 Directivity effects. When the site is 15 km (9.3 miles) or closer to a seismic source that can significantly affect the site, near-fault directivity effects shall be reflected in the spectral acceleration values and in the
If spectral accelerations are obtained in this manner, the effects of site amplification using either Section 3103F.4.2.4, 3103F.4.2.5 or an equivalent method (if justified) shall be incorporated.

3103F.4.2.7 Deterministic earthquake motions. Deterministic ground motions from "scenario" earthquakes may be used for comparison purposes. Deterministic peak ground accelerations and spectral accelerations may be obtained using the "Critical Seismic Source" with maximum earthquake magnitude and its closest appropriate distance to the MOT. "Critical Seismic Source" is that which results in the largest computed median peak ground acceleration and spectral acceleration values when appropriate attenuation relationships are used. The values obtained from multiple attenuation relationships should be used to calculate the median peak ground acceleration and spectral acceleration values.

For comparison, the values of peak ground accelerations and spectral accelerations may be obtained from the USGS maps (3.1), corresponding to the Maximum Considered Earthquake (MCE). In this case, the median values of peak ground acceleration and spectral acceleration values shall be 213 (see Subsection 1.6 of [3.1]) of the values shown on the USGS maps.
3103F.4.2.8 Design earthquake magnitude. The design earthquake magnitude used in developing site-specific acceleration time histories (Section 3103F.4.2.10) or liquefaction assessment (Section 3106F.3) is obtained using either of the following two methods.

1. The design earthquake may be selected as the largest earthquake magnitude associated with the critical seismic source. The distance shall be taken as the closest distance from the source to the site. The resulting design earthquake shall be associated with all DPGA values for the site, irrespective of probability levels.

2. The design earthquake (DEQ) may be obtained for each DPGA or DSA value and associated probability level by determining the corresponding dominant distance and magnitude. These are the values of the distance and magnitude that contribute the most to the mean seismic hazards estimates for the probability of interest. They are usually determined by locating the summits of the 3-D surface of contribution of each small interval of magnitude and distance to the total mean hazards estimate. If this 3-D surface shows several modes with approximate weight of more than 20 percent of the total, several DEQs may be considered, and the DEQ leading to the most conservative design parameters shall be used.

3103F.4.2.9 Design spectral acceleration for various damping values. Design spectral acceleration (DSA) values at damping other than 5 percent shall be obtained by using a procedure given in [3.1], and is denoted as DSA_d. The following procedure does not include near-fault directivity effects.

For \(0 < T < 0.2 T_0 \)
\[
DSA_d = S_{SS} \left(\frac{5}{B_5} \cdot 2 \right) T/T_0 + 0.4 \tag{3-8}
\]

For \(0.2 T_0 < T < T_0 \)
\[
DSA_d = DSA/B_5 \tag{3-9}
\]

For \(T > T_0 \)
\[
DSA_d = S_1/(B_1 T) \tag{3-10}
\]

where:
- \(T \) = period
- \(T_0 = S_0/S_{SS} \)
- \(B_5 \) = Coefficient used to adjust the short period spectral response, for the effect of viscous damping.
- \(B_1 \) = Coefficient used to adjust one-second period spectral response, for the effect of viscous damping.
Values of B_s and B_t are obtained from Table 31F-3-7.

Such a procedure shall incorporate the near-fault directivity effects when the MOT is 15 km (9.3 miles) or closer to a significant seismic source.

<table>
<thead>
<tr>
<th>DAMPING (%)</th>
<th>B_s</th>
<th>B_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>30</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>40</td>
<td>2.7</td>
<td>1.9</td>
</tr>
<tr>
<td>> 50</td>
<td>3.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Note: Linear interpolation should be used for damping values not specifically listed.

3103F.4.2.10 Development of acceleration time histories. When acceleration time histories are utilized, target spectral acceleration values shall be initially selected corresponding to the DSA values at appropriate probability levels. For each set of target spectral acceleration values corresponding to one probability level, at least three sets of horizontal time histories (one or two horizontal acceleration time histories per set) shall be developed.

Initial time histories shall consider magnitude, distance and the type of fault that are reasonably similar to those associated with the conditions contributing most to the probabilistic DSA values. Preferred initial time histories should have their earthquake magnitude and distance to the seismic source similar to the mode-magnitude and mode-distance derived from the PSHA or from appropriate maps. When an adequate number of recorded time histories are not available, acceleration time histories from simulations may be used as supplements.

Scaling or adjustments, either in the frequency domain or in the time domain (preferably), prior to generating acceleration time histories should be kept to a minimum. When the target spectral accelerations include near-fault directivity effects (Section 3103F.4.2.6), the initial time histories should exhibit directivity effects.

When three sets of time histories are used in the analysis, the envelope of the spectral acceleration values from each time history shall be equal to or higher than the target spectral accelerations. If the envelope values fall below the target values, adjustments shall be made to ensure that average values are higher than the target spectral accelerations. If this is not the case, then an explanation for the use of these particular spectral acceleration values shall be provided.

When three sets of time histories are used in the analysis, the maximum value of each response parameter shall be used in the design, evaluation and rehabilitation. When seven or more sets of time histories are used in the analysis, the average value of each response parameter may be used.

3103F.5 Mooring loads on vessels.

3103F.5.1 General. Forces acting on a moored vessel may be generated by wind, waves, current, tidal variations, tsunamis, seiches and hydrodynamic effects of passing vessels. Forces from wind and current acting directly on the MOT structure (not through the vessel in the form of mooring and/or breasting loads) shall be determined in Section 3103F.7.

The vessel’s moorings shall be strong enough to hold during all expected conditions of surge, current and weather and long enough to allow adjustment for changes in draft, drift and tide (2 CCR 2340 (c) (1)) [3.10].

3103F.5.2 Wind loads. Wind loads on a vessel, moored at a MOT, shall be determined using procedures described in this section. Wind loads shall be calculated for each of the load cases identified in Section 3105F.2.

3103F.5.5.1 Design wind speed. The design wind speed is the maximum wind speed of 30-second duration used in the mooring analysis (see Section 3105F).

3103F.5.5.1.1 Operating condition. The operating condition is the wind envelope in which a vessel may conduct transfer operations. It is determined from the mooring analysis (Section 3105F). Transfer operations shall cease, at an existing MOT, when the wind exceeds the maximum velocity of the envelope.

3103F.5.5.1.2 Survival condition. The survival condition is defined as the state wherein a vessel can remain safely moored at the berth during severe winds. For new MOTs, the survival condition threshold is the maximum wind velocity, for a 30-second gust and a 25-year return period, obtained from historical data.

For an existing MOT, a reduced survival condition threshold is acceptable (see Figure 31F-2-1). If the wind rises above these levels, the vessel must depart the berth; it shall be able to depart within 30 minutes (see 2 CCR 2340 (c) (28)) [3.10].

The 30-second duration wind speed shall be determined from the annual maximum wind data. Average annual summaries cannot be used. Maximum wind speed data for eight directions (45-degree increments) shall be obtained. If other duration wind data is available, it shall be adjusted to a 30-second duration, in accordance with Equation (3.12). The 25-year return period shall be used to establish the design wind speed for each direction. Once these wind speeds are established for each increment, the highest wind speed shall be used to determine the mooring/berthing risk classification, from Table 31F-5-1. In order to simplify the
analysis for barges (or other small vessels), they may be considered to be solid free-standing walls (Chapter 6 of ASCE 7 [3.11]). This will eliminate the need to perform a computer assisted mooring analysis.

3103F.5.2.2 Wind speed corrections. Wind speed measured at an elevation of 33 feet (10 meters) above the water surface, with duration of 30 seconds shall be used to determine the design wind speed. If these conditions are not met, the following corrections shall be applied.

The correction for elevation is obtained from the equation:

$$ V_w = V_h \left(\frac{33}{h} \right)^{1/7} \tag{3-11} $$

where:

- $V_w =$ wind speed at elevation 33 ft. (10 m.)
- $V_h =$ wind speed at elevation h
- $h =$ elevation above water surface of wind data [feet]

The available wind duration shall be adjusted to a 30-second value, using the following formula:

$$ V_{r=30\text{sec}} = \frac{V_r}{c_i} \tag{3-12} $$

where:

- $V_r = 30\text{sec}$ = wind speed for a 30-second duration
- $V_r =$ wind speed over a given duration
- $c_i =$ conversion factor from Figure 31F-3-3

If wind data is available over land only, the following equation shall be used to convert the wind speed from over-land to over-water conditions [3.10]:

$$ V_w = 1.10 V_L \tag{3-13} $$

where:

- $V_w =$ over water wind speed
- $V_L =$ over land wind speed

Alternatively, wind loads for any type of vessel may be calculated using the guidelines in Ferritto et al, 1999 [3.15].

3103F.5.3 Current loads. Environmental loads induced by currents at MOTs shall be calculated as specified in this subsection.

3103F.5.3.1 Design current velocity. Maximum ebb and flood currents, annual river runoffs and controlled releases shall be considered when establishing the design current velocities for both existing and new MOTs.

Local current velocities may be obtained from NOAA [3.16] or other sources, but must be supplemented by site-specific data, if the current velocity is higher than 1.5 knots.

Site-specific data shall be obtained by real time measurements over a one-year period. If this information is not available, a safety factor of 1.25 shall be applied to the best available data until real time measurements are obtained.

If the facility is not in operation during annual river runoffs and controlled releases, the current loads may be adjusted.

Operational dates need to be clearly stated in the definition of the terminal operating limits (see Section 3102F.3.6).

3103F.5.3.2 Current velocity adjustment factors. An average current velocity (V_c) shall be used to compute forces and moments. If the current velocity profile is known, the average current velocity can be obtained from the following equation:

$$ V_c^2 = \frac{1}{T} \int_{0}^{T} (V_c)^2 \, ds \tag{3-14} $$

where:

- $V_c =$ average current velocity (knots)
- $T =$ draft of vessel
- $V_c =$ current velocity as a function of depth (knots)
- $s =$ water depth measured from the surface

If the velocity profile is not known, the velocity at a known water depth should be adjusted by the factors provided in Figure 31F-3-4 to obtain the equivalent average velocity over the draft of the vessel.

3103F.5.3.3 Static current loads. The OCIMF [3.13], the British Standard [3.14] or the UFC 4-159-03 [3.17] procedures shall be used to determine current loads for moored tank vessels.

3103F.5.3.4 Sea level rise (SLR). All MOTs shall consider the predicted SLR over the remaining life of the terminal, due to subsidence or climate change combined with maximum high tide and storm surge. Consideration shall include but not be limited to variation in fender locations, additional berthing loads (deeper draft vessels) and any components near the splash zone.

3103F.5.4 Wave loads. When the significant wave period, T_s, is greater than 4 seconds (See Section 3105F.3.1), the transverse wave induced vessel reactions shall be calculated using a simplified dynamic mooring analysis described below.

The horizontal water particle accelerations shall be calculated for the various wave conditions, taken at the mid-depth of the loaded vessel draft. The water particle accelerations shall then be used to calculate the wave excitation forces to determine the static displacement of the vessel. The Froude-Krylov method discussed in Chakrabarti’s Chapter 7 [3.18] may be used to calculate the wave excitation forces, by conservatively approximating the vessel as a rectangular box with dimensions similar to the actual
dimensions of the vessel. The horizontal water particle accelerations shall be calculated for the various wave conditions, taken at the mid-depth of the loaded vessel draft. The computed excitation force assumes a 90-degree incidence angle with the longitudinal axis of the vessel, which will result in forces that are significantly greater than the forces that would actually act upon the vessel from quartering seas. A load reduction factor may be used to account for the dynamic response of the linear spring mass system.

3103F.5.5 Passing vessels. When required in Section 3105F.3, the sway and surge forces, as well as yaw moment, on a moored vessel, due to passing vessels, shall be established considering the following:

1. Ratio of length of moored vessel to length of passing vessel.
2. Distance from moored vessel to passing vessel.
3. Ratio of midship section areas of the moored and passing vessels.
4. Underkeel clearances of the moored and passing vessels.
5. Draft and trim of the moored vessel and draft of the passing vessel.
6. Mooring line tensions.

The passing vessel’s speed should take into consideration the ebb or flood current. Normal operating wind and current conditions can be assumed when calculating forces due to a passing vessel. Either method of Kriebel [3.19] or Wang [3.20] may be used to determine forces on a moored vessel. Kriebel’s recent wave tank study improves on an earlier work of Seelig [3.21].

3103F.6 Seiche. The penetration of long period low amplitude waves into a harbor can result in resonant standing wave systems, when the wave forcing frequency coincides with a natural frequency of the harbor. The resonant standing waves can result in large surge motions if this frequency is close to the natural frequency of the mooring system. Section 3105F.3.3 prescribes the procedure for the evaluation of these effects.

3103F.5.7 Tsunamis. A tsunami may be generated by an earthquake or a subsea or coastal landslide, which may induce large wave heights and excessive currents. The large wave or surge and the excessive currents are potentially damaging, especially if there is a tank vessel moored alongside the MOT wharf.

Tsunamis can be generated either by a distant or near source. A tsunami generated by a distant source (far field event) may allow operators to have an adequate warning for mitigating the risk by depart the MOT and go into deep water. For near-field events, with sources less than 500 miles away, the vessel may not have adequate time to depart. Each MOT shall have a “tsunami plan” describing what actions will be performed, in the event of a distant tsunami.

Recent tsunami studies have been completed for both Southern and Northern California. For the Ports of Los Angeles and Long Beach, one of those recent studies focused on near field tsunamis with predicted return periods of 5,000 to 10,000 years [3.22]. These maximum water levels (run-up) would not normally be used for MOT design. However, because the study also provides actual tidal records from recent distant tsunamis, it should be used for design.

The run-up value for Port Hueneme was obtained from an earlier study by Synolakis et al. [3.23].

Run up-values: Port of Los Angeles and Long Beach = 8 ft. Port Hueneme = 11 ft.

For the San Francisco Bay, a recent study provides the maximum credible tsunami water levels and current speeds. These results are deterministic and are based on the most severe seismic sources that could reasonably impact MOTs in the San Francisco Bay [3.24]. Table 31F-3-8 provides values for the marine oil terminal locations within San Francisco Bay. Water levels could be positive or negative and current velocities may vary in direction. In order to determine the maximum run-up at a MOT, the largest values should be added to the mean high tide. Further details are available in [3.24].

Loads from tsunami-induced waves can be calculated for various structural configurations [3.25]. Tsunami wave heights in shallow water and particle kinematics can also be obtained. Other structural considerations include uplift and debris impact.

Table 31F-3-8

<table>
<thead>
<tr>
<th>S.F. Bay Locale</th>
<th>Maximum Water Levels (ft.)</th>
<th>Current Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richmond, outer</td>
<td>7.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Richmond, inner</td>
<td>7.9</td>
<td>8.9</td>
</tr>
<tr>
<td>Martinez</td>
<td>2.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Selby</td>
<td>2.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Rodeo</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Benicia</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

3103F.6 Berthing Loads.

3103F.6.1 General

Berthing loads are quantified in terms of transfer of kinetic energy of the vessel into potential energy dissipated by the fender(s). The terms and equations below are based on those in UFC 4-152-01, "Piers and Wharves" [3.26]. An alternate procedure is presented in PIANC [3.27].

Kinetic energy shall be calculated from the following equation:

$$E_{vessel} = \frac{1}{2} \frac{W}{g} V^2$$ \hspace{1cm} (3-15)

where:

- E_{vessel} = Berthing energy of vessel [ft-lbs]
- W = Weight of vessel [lbs]
- g = Acceleration due to gravity [ft/s²]
- V = Velocity of vessel [ft/s]
$W = \text{Total weight of vessel and cargo in pounds [long tons } \times 2240]\)$

$g = \text{Acceleration due to gravity [32.2 ft/sec}^2\text{]}$

$V_n = \text{Berthing velocity normal to the berth [ft/sec]}$

The following correction factors shall be used to modify the actual energy to be absorbed by the fender system:

$$E_{\text{fender}} = C_B \cdot C_m \cdot E_{\text{vessel}} \tag{3-16}$$

where:

$$E_{\text{fender}} = \text{Energy to be absorbed by the fender system}$$

$C_B = \text{Berthing Coefficient}$

$C_m = \text{Effective mass or virtual mass coefficient (see Section 3103F.6.6)}$

The berthing coefficient, C_B, is given by:

$$C_B = C_e \cdot C_g \cdot C_d \cdot C_c \tag{3-17}$$

where:

$C_e = \text{Eccentricity Coefficient}$

$C_g = \text{Geometric Coefficient}$

$C_d = \text{Deformation Coefficient}$

$C_c = \text{Configuration Coefficient}$

These coefficients are defined in Sections 3103F.6.2 through 3103F.6.5.

The approximate displacement of the vessel (when only partially loaded) at impact, DT, can be determined from an extension of an equation from Gaythwaite [3.28]:

$$DT = 1.25 \cdot \text{DWT} \left(\frac{d_{\text{actual}}}{d_{\text{max}}} \right) \tag{3-18}$$

where:

$\text{DWT} = \text{Dead Weight Tonnage (in long tons)}$

$d_{\text{actual}} = \text{Actual arrival draft of the vessel}$

$d_{\text{max}} = \text{Maximum loaded vessel draft}$

The berthing load shall be based on the fender reaction due to the kinetic berthing energy. The structural capacity shall be established based on allowable concrete, steel or timber properties in the structural components, as defined in Section 3107F.

3103F.6.2 Eccentricity coefficient (C_e). During the berthing maneuver, when the vessel is not parallel to the berthing line (usually the wharf face), not all the kinetic energy of the vessel will be transmitted to the fenders. Due to the reaction from the fender(s), the vessel will start to rotate around the contact point, thus dissipating part of its energy. Treating the vessel as a rigid rod of negligible width in the analysis of the energy impact on the fenders leads to the equation:

$$C_e = \frac{k^2}{a^2 + k^2} \tag{3-19}$$

where:

$k = \text{Longitudinal radius of gyration of the vessel [ft]}$

$a = \text{Distance between the vessel’s center of gravity and the point of contact on the vessel’s side, projected onto the vessel’s longitudinal axis [ft]}$

3103F.6.3 Geometric coefficient (C_g). The geometric coefficient, C_g, depends upon the geometric configuration of the ship at the point of impact. It varies from 0.85 for an increasing convex curvature to 1.25 for concave curvature. Generally, 0.95 is recommended for the impact point at or beyond the quarter points of the ship, and 1.0 for broadside berthing in which contact is made along the straight side [3.26].

3103F.6.4 Deformation coefficient (C_d). This accounts for the energy reduction effects due to local deformation of the ships hull and deflection of the whole ship along its longitudinal axis. The energy absorbed by the ship depends on the relative stiffness of the ship and the obstruction. The deformation coefficient varies from 0.9 for a nonresilient fender to nearly 1.0 for a flexible fender. For larger ships on energy-absorbing fender systems, little or no deformation of the ship takes place; therefore, a coefficient of 1.0 is recommended.

3103F.6.5 Configuration coefficient (C_c). This factor accounts for the difference between an open pier or wharf and a solid pier or wharf. In the first case, the movements of the water surrounding the berthing vessel is not (or is hardly) affected by the berth. In the second case, the water between the berthing vessel and the structure introduces a cushion effect that represents an extra force on the vessel away from the berth and reduces the energy to be absorbed by the fender system.

For open berth and corners of solid piers, $C_c = 1.0$

For solid piers with parallel approach, $C_c = 0.8$

For berths with different conditions, C_c may be interpolated between these values [3.26].

3103F.6.6 Effective mass or virtual mass coefficient (C_m). In determining the kinetic energy of a berthing vessel, the effective or the virtual mass is the sum of vessel mass and hydrodynamic mass. The hydrodynamic mass does not necessarily vary with the mass of the vessel, but is closely related to the projected area of the vessel at right angles to the direction of motion.

Other factors, such as the form of vessel, water depth, berthing velocity, and acceleration or deceleration of the vessel, will have some effect on the hydrodynamic mass. Taking into account both model and prototype experiments, the effective or virtual mass coefficient can be estimated as:

$$C_m = 1 + 2 \cdot \frac{d_{\text{actual}}}{B} \tag{3-20}$$

where:

$d_{\text{actual}} = \text{Actual arrival draft of the vessel}$

$B = \text{Beam of vessel}$

The value of C_m for use in design should be a minimum of 1.5 and need not exceed 2.0 [3.26].

3103F.6.7 Berthing velocity and angle. The berthing velocity, V_n, is influenced by a large number of factors such as environmental conditions of the site (wind, current and wave),
method of berthing (with or without tugboat assistance), condition of the vessel during berthing (ballast or fully laden) and human factors (experience of the tugboat captain).

The berthing velocity, normal to berth, shall be in accordance with Table 31F-3-9, for existing berths. Site condition is determined from Table 31F-3-10. For new berths, the berthing velocity, \(V_n \), is established according to Table 4.2.1 of the PIANC guidelines [3.27].

Subject to Division approval, if an existing MOT can demonstrate lower velocities by velocity monitoring equipment, then such a velocity may be used.

In order to obtain the normal berthing velocity, \(V_n \), an approach angle, defined as the angle formed by the fender line and the longitudinal axis of the vessel must be determined. The berthing angles, used to compute the normal berthing velocity, for various vessel sizes are shown in Table 31F-3-11.

TABLE 31F-3-11

<table>
<thead>
<tr>
<th>VESSEL SIZE (DWT)</th>
<th>ANGLE [degrees]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge</td>
<td>15</td>
</tr>
<tr>
<td>< 10,000</td>
<td>10</td>
</tr>
<tr>
<td>10,000-50,000</td>
<td>8</td>
</tr>
<tr>
<td>> 50,000</td>
<td>6</td>
</tr>
</tbody>
</table>

3103F.7 Wind And current loads on structures.

3103F.7.1 General

This section provides methods to determine the wind and current loads acting on the structure directly, as opposed to wind and current forces acting on the structure from a moored vessel.

3103F.7.2 Wind loads

Chapter 6 of ASCE 7[3.11] shall be used to establish minimum wind loads on the structure.

Additional information about wind loads may be obtained from Simiu and Scanlan [3.29].

3103F.8 Load combinations

As a minimum, each component of the structure shall be analyzed for all applicable load combinations given in Table 31F-3-12 or 31F-3-13, depending on component type. For additional load combinations see “Piers and Wharves,” DOD UFC 4-152-01 [3.26].

The “vacant condition” is the case wherein there is no vessel at the berth. The “mooring and breasting condition” exists after the vessel is securely tied to the wharf. The “berthing condition” occurs as the vessel impacts the wharf, and the “earthquake condition” assumes no vessel is at the berth, and there is no wind or current forces on the structure.

The use of various load types is discussed below:

3103F.8.1 Dead load (D)

Upper and lower bound values of dead load are applied for the vacant condition to check the maximum moment and shear with minimum axial load.

3103F.8.2 Live load (L)

The live load on MOTs is typically small and is therefore neglected for combinations including earthquake loads.

3103F.8.3 Buoyancy load (B)

Buoyancy forces shall be considered for any submerged or immersed substructures (including pipelines, sumps and structural components).

3103F.8.4 Wind (W) and current (C) on the structure

Wind and currents on the vessel are included in the mooring and breasting condition. The wind and current loads acting on the structure are therefore additional loads that can act simultaneously with the mooring, breasting and/or berthing loads.

TABLE 31F-3-9

<table>
<thead>
<tr>
<th>VESSEL SIZE (dwt)</th>
<th>TUG BOAT ASSISTANCE</th>
<th>SITE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10,000</td>
<td>No</td>
<td>Unfavorable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.31 ft/sec</td>
</tr>
<tr>
<td>10,000 - 50,000</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.98 ft/sec</td>
</tr>
<tr>
<td>50,000 - 100,000</td>
<td>Yes</td>
<td>Favorable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.53 ft/sec</td>
</tr>
<tr>
<td>> 100,000</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.39 ft/sec</td>
</tr>
</tbody>
</table>

1. If tug boat is used for vessel size smaller than 10,000 DWT the berthing velocity maybe reduced by 20%

TABLE 31F-3-10

<table>
<thead>
<tr>
<th>SITE CONDITIONS</th>
<th>DESCRIPTION</th>
<th>WIND SPEED</th>
<th>SIGNIFICANT WAVE HEIGHT</th>
<th>CURRENT SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfavorable</td>
<td>Strong Wind</td>
<td>> 38 knots</td>
<td>> 6.5 ft</td>
<td>> 2 knots</td>
</tr>
<tr>
<td></td>
<td>Strong Currents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Waves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>Strong Wind</td>
<td>≥ 38 knots</td>
<td>≤ 6.5 ft</td>
<td>≤ 2 knots</td>
</tr>
<tr>
<td></td>
<td>Moderate Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate Waves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>Moderate Wind</td>
<td>< 38 knots</td>
<td>< 6.5 ft</td>
<td>< 2 knots</td>
</tr>
<tr>
<td></td>
<td>Moderate Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate Waves</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. A 30-second duration measured at a height of 33 ft.
2. Taken at 0.5 x water depth
TABLE 31F-3-12
LRFD LOAD FACTORS FOR LOAD COMBINATIONS [3.26]

<table>
<thead>
<tr>
<th>LOAD TYPE</th>
<th>VACANT CONDITION</th>
<th>MOORING & BREASTING CONDITION</th>
<th>BERTHING CONDITION</th>
<th>EARTHQUAKE CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load (D)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2 + k1 0.9-k1</td>
</tr>
<tr>
<td>Live Load (L)</td>
<td>1.6</td>
<td>—</td>
<td>1.6°</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>Buoyancy (B)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2 0.9</td>
</tr>
<tr>
<td>Wind on Structure (W)</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>—</td>
</tr>
<tr>
<td>Current on Structure (C)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2 1.0</td>
</tr>
<tr>
<td>Earth Pressure on the Structure (H)</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>Mooring/Breasting Load (M)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Berthing Load (Bb)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Earthquake Load (E)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.0 1.0</td>
</tr>
</tbody>
</table>

1. k = 0.50 (PGA) The k factor (k=0.5(PGA)) and buoyancy (B) shall be applied to the vertical dead load (D) only and not to the inertial mass of the structure.
2. The load factor for live load (L) may be reduced to 1.3 for the maximum outrigger float load from a truck crane.
3. For Level 1 and 2 earthquake conditions with strain levels defined in Division 7, the current on structure (C) may not be required.
4. An earth pressure on the Structure factor (H) of 1.0 may be used for pile or bulkhead structures.

TABLE 31F-3-13
SERVICE OR ASD LOAD FACTORS FOR LOAD COMBINATIONS [3.26]

<table>
<thead>
<tr>
<th>LOAD TYPE</th>
<th>VACANT CONDITION</th>
<th>MOORING & BREASTING CONDITION</th>
<th>BERTHING CONDITION</th>
<th>EARTHQUAKE CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load (D)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1 + 0.7k1 1 - 0.7k1</td>
</tr>
<tr>
<td>Live Load (L)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.75</td>
<td>—</td>
</tr>
<tr>
<td>Buoyancy (B)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0 0.6</td>
</tr>
<tr>
<td>Wind on Structure (W)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.75</td>
<td>—</td>
</tr>
<tr>
<td>Current on Structure (C)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>Earth Pressure on the Structure (H)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>Mooring/Breasting Load (M)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Berthing Load (Bb)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Earthquake Load (E)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.7 0.7</td>
</tr>
<tr>
<td>% Allowable Stress</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100°</td>
</tr>
</tbody>
</table>

1. k = 0.5 (PGA)
2. Increase in allowable stress shall not be used with these load combinations unless it can be demonstrated that such increase is justified by structural behavior caused by rate or duration of load. See ASCE 7 [3.11]

3103F.8.5 Earth pressure on the structure (H). The soil pressure on end walls, typically concrete cut-off walls, steel sheet pile walls on wharf type structures and/or piles shall be considered.

3103F.8.6 Mooring line/breasting loads (M). Mooring line and breasting loads can occur simultaneously or individually, depending on the combination of wind and current. Multiple load cases for operating and survival conditions may be required (see Sections 3103F.5.2 and 3105F.2). In addition, loads caused by passing vessels shall be considered for the "mooring and breasting condition." Refer to Sections 3103F.2 and 3105F.3 for the determination of mooring line and breasting loads.

3103F.8.7 Berthing load (Bb). Berthing is a frequent occurrence, and shall be considered as a normal operating load. No increase in allowable stresses shall be applied for ASD, and a load factor of 1.7 shall be applied for the LRFD approach.

3103F.8.8 Earthquake loads (E). In LRFD or performance based design, use a load factor of 1.0; for ASD use 0.7. A load factor of 1.0 shall be assigned to the earthquake loads. Performance based seismic analysis methodology requires that the actual force demand be limited to defined strains in concrete, steel and timber. For the deck and pile evaluation, two cases of dead load (upper and lower bound) shall be considered in combination with the seismic load.

3103F.9 Safety factors for mooring lines. Safety factors for different material types of mooring lines are given in Table 31F-3.14. The safety factors should be applied to the minimum number of lines specified by the mooring analysis, using the highest loads calculated for the environmental conditions. The minimum breaking load (MBL) of new ropes is obtained from the certificate issued by the manufacturer. If nylon tails are used in combination with steel wire ropes, the safety factor shall be based on the weaker of the two ropes.

3103F.10 Mooring hardware. Marine hardware consists of quick release hooks, other mooring fittings and base bolts. The certificate issued by the manufacturer normally defines the allowable working loads of this hardware.
Note: This table is modified from Table 6-11, UFC 4-159-03 [3.17]

3103F.10.1 Quick release hooks
For new MOTs or Berthing Systems, a minimum of three quick-release hooks are required for each breasting line location for tankers larger than 50,000 DWT. At least two hooks at each location shall be provided for breasting lines for tankers less than 50,000 DWT.

All hooks and supporting structures shall withstand the minimum breaking load (MBL) of the strongest line with a safety factor of 1.2 or greater. Only one mooring line shall be placed on each quick release hook.

For multiple quick release hooks, the minimum horizontal load for the design of the tie-down shall be:

\[
F_d = 1.2 \times \text{MBL} \times (1 + 0.75(n-1)) \quad (3-21)
\]

\[
F_d = \text{Minimum factored demand for assembly tie-down.}
\]

\[
n = \text{Number of hooks on the assembly.}
\]

The capacity of the supporting structures must be larger than \(F_d \) (See Section 3107F.4.3).

3103F.10.2 Other Fittings
Other fittings include cleats, bitts and bollards.

If the allowable working loads for existing fittings are not available, the values listed in Table 31F-3-15 may be used for typical sizes, bolt patterns and layout. The allowable working loads are defined for mooring line angles up to 60 degrees from the horizontal. The combination of vertical and horizontal loads must be considered.

Table 31F-3-14
SAFETY FACTORS FOR ROPES*

<table>
<thead>
<tr>
<th>TYPE OF FITTINGS</th>
<th>NO. OF BOLTS</th>
<th>NO. OF COL</th>
<th>WORKING LOAD (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel wire rope</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester tail</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon tail</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Mooring Equipment Guidelines, OCIMF[3.27]

Table 31F-3-15
ALLOWABLE WORKING LOADS

<table>
<thead>
<tr>
<th>TYPE OF FITTINGS</th>
<th>NO. OF BOLTS</th>
<th>BOLT SIZE (in)</th>
<th>WORKING LOAD (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 in. cleat</td>
<td>4</td>
<td>1 1/8</td>
<td>20</td>
</tr>
<tr>
<td>42 in. cleat</td>
<td>6</td>
<td>1 1/8</td>
<td>40</td>
</tr>
<tr>
<td>Low bitt</td>
<td>10</td>
<td>1 1/8</td>
<td>60 per column</td>
</tr>
<tr>
<td>High bitt</td>
<td>10</td>
<td>1 1/4</td>
<td>75 per column</td>
</tr>
<tr>
<td>44 1/2 in. fit. bollard</td>
<td>4</td>
<td>1 1/4</td>
<td>70</td>
</tr>
<tr>
<td>44 1/2 in. fit. bollard</td>
<td>8</td>
<td>2 1/4</td>
<td>200</td>
</tr>
<tr>
<td>46 in. fit. bollard</td>
<td>12</td>
<td>2 1/4</td>
<td>450</td>
</tr>
</tbody>
</table>

Note: This table is modified from Table 6-11, UFC 4-159-03 [3.17]

3103F.10.3 Base bolts
Base bolts are subjected to both shear and uplift. Forces on bolts shall be determined using the following factors:

1. Height of load application on bitts or bollards.
2. Actual vertical angles of mooring lines for the highest and lowest tide and vessel draft conditions, for all sizes of vessels at each particular berth.
3. Actual horizontal angles from the mooring line configurations, for all vessel sizes and positions at each particular berth.
4. Simultaneous loads from more than one vessel.

For existing MOTs, the deteriorated condition of the base bolts and supporting members shall be considered in determining the capacity of the fitting.

3103F.11 Miscellaneous loads
Handrails and guardrails shall be designed for 25 plf with a 200-pound minimum concentrated load in any location or direction.

3103F.12 Symbols

\[
a = \text{Distance between the vessel’s center of gravity and the point of contact on the vessel’s side, projected onto the vessel’s longitudinal axis [ft]}
\]

\[
B = \text{Beam of vessel}
\]

\[
B_1 = \text{Coefficient used to adjust one-second period spectral response, for the effect of viscous damping}
\]

\[
B_s = \text{Coefficient used to adjust the short period spectral response, for the effect of visous damping}
\]

\[
C_b = \text{Berthing Coefficient}
\]

\[
C_c = \text{Configuration Coefficient}
\]

\[
C_g = \text{Geometric Coefficient}
\]

\[
C_d = \text{Deformation Coefficient}
\]

\[
C_e = \text{Eccentricity Coefficient}
\]

\[
C_m = \text{Effective mass or virtual mass coefficient}
\]

\[
C_r = \text{Windspeed conversion factor}
\]

\[
\text{DSA} = \text{Design Spectral Acceleration}
\]

\[
\text{DSA_d} = \text{DSA values at damping other than 5 percent}
\]

\[
\text{DT} = \text{Displacement of vessel}
\]

\[
\text{DWT} = \text{Dead weight tons}
\]

\[
\text{d_{actual}} = \text{Arrival maximum draft of vessel at berth}
\]

\[
\text{d_{max}} = \text{Maximum vessel draft (in open seas)}
\]

\[
E_{fender} = \text{Energy to be absorbed by the fender system}
\]

\[
E_{vessel} = \text{Berthing energy of vessel [ft-lbs]}
\]

\[
F_p F_v = \text{Site coefficients from Tables 31F-3-5 and 31F-3-6}
\]

\[
g = \text{Acceleration due to gravity [32.2 ft/sec}^2]\]

\[
h = \text{Elevation above water surface [feet]}
\]

\[
K = \text{Current velocity correction factor (Fig 31F-3-4)}
\]

\[
k = \text{Radius of longitudinal gyration of the vessel [ft]}
\]

\[
\text{PGA_x} = \text{Peak ground acceleration corresponding to the Site Class under consideration.}
\]

\[
s = \text{Water depth measured from the surface}
\]

\[
S_a = \text{Spectral acceleration}
\]

\[
S_i = \text{Spectral acceleration value (for the boundary of S_a and S_b) at 1.0 second}
\]
$S_A - S_R = $ Site classes as defined in Table 31F-6-1
$S_V = $ Spectral acceleration value (for the boundary of S_R and S_S at 0.2
$S_{SV} = $ Spectral acceleration value at 1.0 second corresponding to the Site Class under consideration
$S_{SS} = $ Spectral acceleration value at 0.2 second corresponding to the period of S_S and the Site Class under consideration
$T = $ Draft of vessel (see Fig 31F-3-4)
$T = $ Period (Sec)
$T_o = $ Period at which the constant acceleration and constant velocity regions of the design spectrum intersect
$V_c = $ Average current velocity [knots]
$V_c = $ Current velocity as a function of depth [knots]
$V_n = $ Berthing velocity normal to the berth [ft/sec]
$V_w = $ Wind speed for a 33ft. (10 m) elevation [knots]
$V_o = $ Wind speed at 33ft. (10 m) elevation [knots]
$V_{30sec} = $ Wind speed for a 30 second interval
$W = $ Total weight of vessel and cargo in pounds [displacement tonnage x 2240]
$WD = $ Water Depth (Fig 31F-3-4)

3103F.13 References.

[3.16] National Oceanic and Atmospheric Administration, Contact: National PORTS Program Manager, Center for Operational Oceanographic Products and Services, 1305 EW Highway, Silver Spring, MD 20910.

Proceedings of the American Society of Civil Engineers, Vol. 101, WW3, Reston, VA.

Authority: Sections 8755 and 8757, Public Resources Code.
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
Section 3104F

Seismic Analysis and Structural Performance

3104F.1 General.

3104F.1.1 **Purpose.** The purpose of this section is to establish minimum standards for seismic analysis and structural performance. Seismic performance is evaluated at two criteria levels. Level 1 requirements define a performance criterion to ensure MOT functionality. Level 2 requirements safeguard against major structural damage or collapse.

3104F.1.2 **Applicability.** Section 3104F applies to all new and existing MOTs structures. Structures supporting loading arms, pipelines, oil transfer and storage equipment, critical nonstructural systems and vessel mooring structures, such as mooring and breasting dolphins are included. Catwalks and similar components that are not part of the lateral load carrying system and do not support oil transfer equipment may be excluded.

3104F.1.3 **Oil spill risk classification.** Each existing MOT shall be categorized into one of three risk classifications (high, medium or low) as shown in Table 31F-4-1, based on the highest of the following:

1. Exposed total volume of oil during transfer ("total volume" as calculated in Section 3108F.2.3)
2. Number of oil transfer operations per berthing system per year
3. Maximum vessel size (DWT) that may call at the berthing system

If risk reduction strategies (see Section 3101F.5) are adopted such that the maximum volume of exposed oil during transfer is less than 1,200 barrels, the classification level of the facility may be lowered. All new MOTs are classified as high risk.

3104F.1.4 **Configuration classification.** Each MOT shall be designated as regular or irregular, in accordance with Figure 31F-4-1.

Irregular configurations, such as the "T" layout, may be analyzed as regular if the presence of expansion joints divides the T-configuration into two or more regular segments. Expansion joints in this context are defined as joints that separate each structural segment in such a manner that each segment will move independently during an earthquake.

If an irregular MOT is divided into seismically isolated sections, an evaluation of the relative movement of pipelines and supports shall be considered, including phase differences (Section 3109F.3).

3104F.2 Existing MOTs

3104F.2.1 **Design earthquake motions.** Two levels of design seismic performance shall be considered. These levels are defined as follows:

- **Level 1 Seismic performance:**
 - Minor or no structural damage
 - Temporary or no interruption in operations

- **Level 2 Seismic performance:**
 - Controlled inelastic structural behavior with repairable damage
 - Prevention of structural collapse
 - Temporary loss of operations, restorable within months
 - Prevention of major spill (≥ 1200 bbls)

3104F.2.2 **Basis for evaluation.** Component capacities shall be based on existing conditions, calculated as "best estimates," taking into account the mean material strengths, strain hardening and degradation overtime. The capacity of components with little or no ductility, which may lead to brittle failure scenarios, shall be calculated based on lower bound material strengths. Methods to establish component strength and deformation capacities for typical structural

<table>
<thead>
<tr>
<th>RISK CLASSIFICATION</th>
<th>EXPOSED OIL (bbis)</th>
<th>TRANSFERS PER YEAR PER BERTHING SYSTEM</th>
<th>MAXIMUM VESSEL SIZE (DWT x 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>≥ 1200</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Medium</td>
<td>< 1200</td>
<td>≥ 90</td>
<td>≥ 30</td>
</tr>
<tr>
<td>Low</td>
<td>< 1200</td>
<td>< 90</td>
<td>< 30</td>
</tr>
</tbody>
</table>

Figure 31F-4-1

PIER AND WHARF CONFIGURATIONS

materials and components are provided in Section 3107F. Geotechnical considerations are discussed in Section 3106F.

3104F.2.3 Analytical procedures. The objective of the seismic analysis is to verify that the displacement capacity of the structure is greater than the displacement demand, for each performance level defined in Table 31F-4-2. The required analytical procedures are summarized in Table 31F-4-3.

The displacement capacity of the structure shall be calculated using the nonlinear static (pushover) procedure. It is also acceptable to use a nonlinear dynamic procedure for capacity evaluation. Methods used to calculate the displacement demand are linear modal, nonlinear static and nonlinear dynamic.

Any rational method, subject to the division's approval, can be used in lieu of the required analytical procedures shown in Table 31F-4-3.

3104F.2.3.1 Nonlinear static capacity procedure (pushover). Two-dimensional nonlinear static (pushover) analyses shall be performed; three-dimensional analyses are optional. A model that incorporates the nonlinear load deformation characteristics of all components for the lateral force-resisting system shall be displaced to a target displacement to determine the internal deformations and forces. The target displacement depends on the seismic performance level under consideration. Modeling details are as follows:

3104F.2.3.1.1 Modeling. A series of nonlinear pushover analyses may be required depending on the complexity of the MOT structure. At a minimum, pushover analysis of a two-dimensional model shall be conducted in both the longitudinal and transverse directions. The piles shall be represented by nonlinear elements that capture the moment-curvature/rotation relationships for components with expected inelastic behavior in accordance with Section 3107F. A nonlinear element is not required to represent each pile location. Piles with similar lateral force-deflection behavior may be lumped in fewer larger springs, provided that the overall torsional effects are captured.

Linear material component behavior is acceptable where nonlinear response will not occur. All components shall be based on effective moment of inertia calculated in accordance with Section 3107F. Specific requirements for timber pile structures are discussed in the next section.

3104F.2.3.1.2 Timber pile supported structures. For all timber pile supported structures, linear elastic procedures may be used. Alternatively, the nonlinear static procedure may be used to estimate the target displacement demand, \(\Delta_e \).

A simplified single pile model for a typical timber pile supported structure is shown in Figure 31F-4-2. The pile-deck connections may be assumed to be “pinned.” The lateral bracing can often be ignored if it is in poor condition. These assumptions shall be used for the analysis, unless a detailed condition assessment and lateral analysis indicate that the existing bracing and connections may provide reliable lateral resistance.

![FIGURE 31F-4-2—SIMPLIFIED SINGLE PILE MODEL OF A TIMBER PILE SUPPORTED STRUCTURE](image)

<table>
<thead>
<tr>
<th>TABLE 31F-4-2</th>
<th>SEISMIC PERFORMANCE CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISK CLASSIFICATION</td>
<td>SEISMIC PERFORMANCE LEVEL</td>
</tr>
<tr>
<td>High</td>
<td>Level 1</td>
</tr>
<tr>
<td>Medium</td>
<td>Level 1</td>
</tr>
<tr>
<td>Low</td>
<td>Level 2</td>
</tr>
<tr>
<td>Medium</td>
<td>Level 2</td>
</tr>
<tr>
<td>Low</td>
<td>Level 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 31F-4-3</th>
<th>MINIMUM REQUIRED ANALYTICAL PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISK CLASSIFICATION</td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td>High/Medium</td>
<td>Irregular</td>
</tr>
<tr>
<td>High/Medium</td>
<td>Regular</td>
</tr>
<tr>
<td>Low</td>
<td>Regular/Irregular</td>
</tr>
<tr>
<td>High/Medium/Low</td>
<td>Regular/Irregular</td>
</tr>
</tbody>
</table>
A series of single pile analyses may be sufficient to establish the nonlinear springs required for the pushover analysis.

3104F.2.3.1.3 Soil-structure interaction (SSI). Load-deformation characteristics for foundations shall be modeled as per Section 3106F.5. Selection of soil springs shall be based on the following:

1. Effect of the large difference in up and down slope stiffnesses for wharf type structures
2. Effect of upper and lower bound soil parameters, especially for t-z curves used to model batter pile behavior

A separate analysis that captures the demand (Section 3104F.2.3.2) on the piles due to permanent ground deformations, at embankments only, shall be performed.

If a simplified methodology is followed, the piles need to be checked for the following load combinations:

\[1.0E_{\text{inertial}} \]
\[1.0H_d + 0.25E_{\text{inertial}} \]

where:

- \(E_{\text{inertial}} = \) Inertial seismic load
- \(H_d = \) Foundation deformation load

3104F.2.3.2 Nonlinear static demand procedure. A nonlinear static procedure shall be used to determine the displacement demand for all concrete and steel structures, with the exception of irregular configurations with high or moderate seismic risk classifications. The following Sections (3104F.2.3.2.1 through 3104F.2.3.4) describe the procedure of Priestly et al. [4.1]; an alternate procedure is presented in ATC 40 [4.2], which is improved in FEMA 440 [4.3]. A linear modal procedure is required for irregular structures with high or moderate seismic risk classifications, and may be used for all other classifications in lieu of the nonlinear static procedure.

3104F.2.3.2.1 Lateral stiffness. The lateral stiffness, \(k \), is calculated from the force-displacement relation as the total base shear, \(V_y \), corresponding to the yield displacement of the structure. \(\Delta_y \) is the displacement at first yield in the pile/deck connection reinforcement.

3104F.2.3.2.2 Structural period. The fundamental period, \(T \), of the structure in the direction under consideration shall be calculated as follows:

\[T = 2\pi \sqrt{\frac{m}{k}} \]

(4-1)

where:

- \(m = \) mass of structure in kips/g
- \(k = \) stiffness in direction under consideration in kips/ft
- \(g = \) gravity, 32 ft/sec^2 (9.8 meters/sec^2)

3104F.2.3.2.3 Target displacement demand. The target displacement demand of the structure, \(\Delta_d \), can be calculated by multiplying the spectral response acceleration, \(S_a \), corresponding to the period, \(T \), by \(T^2/4\pi^2 \):

\[\Delta_d = S_a \frac{T^2}{4\pi^2} \]

(4-2)

If \(T < T_o \), where \(T_o \) is the period corresponding to the peak of the acceleration response spectrum, a refined analysis (see Section 3104F.2.3.2.5) shall be used to calculate the displacement demand. Multidirectional excitation shall be addressed per Section 3104F.4.2.

3104F.2.3.2.4 Damping. The displacement demand established in Section 3104F.2.3.2.3 is based on 5 percent damping. Higher damping values obtained from a refined analysis may be used to calculate the displacement demand.

3104F.2.3.2.5 Refined analyses. Refined displacement demand analyses may be calculated as per Chapters 4 and 5 of [4.1] and is briefly summarized below.

1. Determine \(\Delta_d \), from Section 3104F.2.3.2.3.
2. From the nonlinear pushover analysis, determine the structural yield displacement \(\Delta_y \).
3. The ductility level, \(\mu_\Delta \), is found from \(\Delta_d / \Delta_y \). Use the appropriate relationship between ductility and damping, for the component undergoing inelastic deformation, to estimate the effective structural damping, \(\xi_{\text{eff}} \). In lieu of more detailed analysis, the relationship shown in Figure 31F-4-3 or equation (4-3) may be used for concrete and steel piles connected to the deck through dowels embedded in the concrete.

\[\xi_{\text{eff}} = 0.05 + \frac{1}{\pi} \left(1 - \frac{1 - r}{\sqrt{\mu_\Delta}} - r \sqrt{\mu_\Delta} \right) \]

(4-3)

where:

- \(r = \) ratio of second slope over elastic slope (see Figure 31F-4-5)
4. From the acceleration response spectra, create elastic displacement spectra, S_D, using equation (4-4) for various levels of damping.

$$S_D = \frac{T^2}{4\pi^2} S_A$$

(4-4)

5. Using the curve applicable to the effective structural damping, ξ, find the effective period, T_d (see Figure 31F-4-4).

6. In order to convert from a design displacement response spectra to another spectra for a different damping level, the adjustment factors in Section 3103F.4.2.9 shall be used.

7. The effective stiffness k_e can then be found from:

$$k_e = \frac{4\pi^2}{T_d^2} M$$

(4-5)

where:

M = mass of deck considered in the analysis.

T_d = effective structural period

8. The required strength F_w can now be estimated by:

$$F_w = k_e \Delta_e$$

(4-6)

9. F_w and Δ_e can be plotted on the force-displacement curve established by the pushover analysis. Since this is an iterative process, the intersection of F_w and Δ_e most likely will not fall on the force-displacement curve and a second iteration will be required. An adjusted value of Δ_e taken as the intersection between the force-displacement curve and a line between the origin and F_w and Δ_e can be used to find μ_e.

10. Repeat the process until a satisfactory solution is obtained (see Figure 31F-4-5).

3104F.2.3.3 Linear modal demand procedure. For irregular concrete/steel structures with moderate or high risk classifications, a linear analysis is required to predict the global displacement demands. A 3-D linear elastic response analysis shall be used, with effective moment of inertia applied to components to establish lateral displacement demands.

Sufficient modes shall be included in the analysis such that 90 percent of the participating mass is captured in each of the principal horizontal directions for the structure. For modal combinations, the complete quadratic combination rule shall be used. Multidirectional excitation shall be accounted for in accordance with Section 3104F.4.2.

The lateral stiffness of the linear elastic response model shall be based on the initial stiffness of the nonlinear pushover curve as shown in Figure 31F-4-6 (also see Section 3106F.5.1). The p-y springs shall be adjusted based on the secant method approach. Most of the p-y springs will typically be based on their initial stiffness; no iteration is required.

If the fundamental period in the direction under consideration is less than T_o, as defined in Section 3104F.2.3.2.3, then the displacement demand shall be amplified as specified in Section 3104F.2.3.2.5.
3104F.2.3.4 Nonlinear dynamic analysis. Nonlinear dynamic time history analysis is optional, and if performed, a peer review is required (see Section 3101F.6.1). Multiple acceleration records shall be used, as explained in Section 3103F.4.2.10. The following assumptions may be made:

1. Equivalent "super piles" can represent groups of piles.
2. If the deck has sufficient rigidity (both in-plane and out-of-plane) to justify its approximation as a rigid element, a 2-D plan simulation may be adequate.

A time-history analysis should always be compared with a simplified approach to ensure that results are reasonable. Displacements calculated from the nonlinear time history analyses may be used directly in design, but shall not be less than 80 percent of the values obtained from Section 3104F.2.3.2.

3104F.2.3.5 Alternative procedures. Alternative lateral-force procedures using rational analyses based on well-established principles of mechanics may be used in lieu of those prescribed in these provisions. As per Section 3101F.6.1, peer review is required.

3104F.3 New MOTs. The analysis and design requirements described in Section 3104F.2 shall also apply to new MOTs. Additional requirements are as follows:

1. Site-specific response spectra analysis (see Section 3103F.4.2.3).
2. Soil parameters based on site-specific and new borings (see Section 3106F.2.2).

3104F.4 General analysis and design requirements.

3104F.4.1 Load combinations. Earthquake loads shall be used in the load combinations described in Section 3103F.8.

3104F.4.2 Combination of orthogonal effects. The design displacement demand, Δ_d, shall be calculated by combining the longitudinal, Δ_x, and transverse, Δ_y, displacements in the horizontal plane (Figure 31F-4-7):

$$\Delta_d = \sqrt{\Delta_x^2 + \Delta_y^2}$$

where:

$$\Delta_x = \Delta_{xy} + 0.3\Delta_{xx}$$

and

$$\Delta_y = 0.3\Delta_{yx} + \Delta_{yy}$$

or

$$\Delta_y = \Delta_{yx} + 0.3\Delta_{yy}$$

$$\Delta_y = 0.3\Delta_{xy} + \Delta_{yy}$$

whichever results in the greater design displacement demand.

In lieu of combining the displacement demands as presented above, the design displacement demand for marginal wharf type MOTs may be calculated as:

$$\Delta_d = \Delta_y \sqrt{1 + \left(0.3 \frac{1 + 20e}{L}\right)^2}$$

where:

Δ_y = transverse displacement demand
e = eccentricity between center of mass and center of rigidity
L = longitudinal length between wharf expansion

This equation is only valid for wharf aspect ratios (length/breadth) greater than 3.

3104F.4.3 P-\(\Delta\) Effects. The P-\(\Delta\) effect (i.e., the additional moment induced by the total vertical load multiplied by the lateral deck deflection) shall be considered unless the following relationship is satisfied (see Figure 31F-4-8):

$$\frac{V}{W} \geq 4 \frac{\Delta_d}{H}$$

where:

V = base shear strength of the structure obtained from a plastic analysis
W = dead load of the frame
Δ_d = displacement demand
H = distance from the location of maximum in-ground moment to center of gravity of the deck

For wharf structures where the lateral displacement is limited by almost fully embedded piles, P-\(\Delta\) effects may be ignored; however, the individual stability of the piles shall be checked in accordance with Section 3107F.2.5.2.

If the landside batter piles are allowed to fail in a Level 2 evaluation, the remaining portion of the wharf shall be checked for P-\(\Delta\) effects.
3104F.4.4 Expansion joints. The effect of expansion joints shall be considered in the seismic analysis.

3104F.4.5 Shear key forces. Shear force across shear keys connecting adjacent wharf segments, \(V_{sk} \), (approximate upper bound to the shear key force [4.4]) shall be calculated as follows:

\[
V_{sk} = 1.5 \left(\frac{e}{L_t} \right) V_{\Delta T}
\]

where:

\(V_{\Delta T} = \) total segment lateral force found from a push-over analysis

\(L_t = \) segment length

\(e = \) eccentricity between the center of rigidity and the center of mass

3104F.4.6 Connections. For an existing wharf, the deteriorated conditions at the junction between the pile top and pile cap shall be considered in evaluating the moment capacity. Connection detail between the vertical pile and pile cap shall be evaluated to determine whether full or partial moment capacity can be developed under seismic action.

For new MOTs, the connection details shall develop the full moment capacities.

The modeling shall simulate the actual moment capacity (full or partial) of the joint in accordance with Section 3107F.2.7.

3104F.4.7 Batter piles. Batter piles primarily respond to earthquakes by developing large axial compression or tension forces. Bending moments are generally of secondary importance. Failure in compression may be dictated by the deck-pile connection (most common type), material compression, buckling, or by excessive local shear in deck members adjacent to the batter pile. Failure in tension may be dictated by connection strength or by pile pull out. (p. 3-83 of [4.4]).

When the controlling failure scenario is reached and the batter pile fails, the computer model shall be adjusted to consist of only the vertical pile acting either as a full or partial moment frame based on the connection details between the pile top and pile cap. The remaining displacement capacity, involving vertical piles, before the secondary failure stage develops, shall then be established (see Section 3107F.2.8).

Axial p-z curves shall be modeled. In compression, displacement capacity should consider the effect of the reduction in pile modulus of elasticity at high loads and the increase in effective length for friction piles. This procedure allows the pile to deform axially before reaching ultimate loads, thereby increasing the displacement ductility [4.4].

Horizontal nonlinear p-y springs are only applied to batter piles with significant embedment, such as for landside batter piles in a wharf structure. Moment fixity can be assumed for batter piles that extend well above the ground such as waterside batter piles in a wharf structure or batter piles in a pier type structure.

3104F.5 Nonstructural components. Nonstructural components including, but not limited to pipelines, loading arms, raised platforms, control rooms and vapor control equipment may affect the global structural response. In such cases, the seismic characteristics (mass and/or stiffness) of the nonstructural components shall be considered in the structural analysis.

3104F.5.1 Mass contribution. The weight of permanently attached nonstructural components shall be included in the dead load of the structure, per Section 3103F.2. An exception is an MOT pipeline that is allowed to slide between anchor points and hence the pipeline response is typically out of phase with the structural response. Thus, the pipeline may be subjected to a different acceleration than the substructure, even if the pipeline cannot slide between anchor points. In such cases, the pipeline mass shall not be included directly in the seismic mass of the structure.

3104F.5.2 Seismic loads. In general, for nonstructural components, the evaluation procedures of Section 3110F.8 are adequate.

For pipelines, the seismic analysis shall be performed in accordance with Section 3109F.3, in lieu of Section 3110F.8. If an analysis has been performed and support reactions are available, they may be used to determine the forces on the support structure.

A pipeline segment under consideration shall extend between two adjacent anchor points. A simplified pipeline analysis may be used when the relative displacement demands of anchor points are considered. As an option, a full nonlinear time-history analysis can be used to capture the nonlinear interaction between the structure and the pipeline.

3104F.6 Nonstructural critical systems assessment. A seismic assessment of the survivability and continued operation during a Level 2 earthquake (see Table 31F-4-2) shall be performed for critical systems such as fire protection, emergency shutdown and electrical power systems. The assessment shall consider the adequacy and condition of anchorage, flexibility and seismically-induced interaction. The results shall be included in the Audit.

3104F.7 Symbols.

\(e = \) Eccentricity between center of mass and center of rigidity
\(E_{\text{inertial}} = \) Inertial seismic load
\(F_u = \) Required strength at maximum response
\(H = \) Distance from maximum in-ground moment to center of gravity of the deck
\(H_d = \) Foundation deformation load
\(k = \) Stiffness in direction under consideration in k/ft
\(k_e = \) Effective stiffness
\(L = \) Longitudinal length between wharf expansion joints
\(m = \) Mass of structure in kips/g
\(M = \) Mass of deck considered in the analysis
\(r = \) Ratio of second slope over elastic slope
\(S_A = \) Spectral response acceleration, at \(T \)
\(S_D = \) Displacement response spectrum, at \(T \)
\(S_{\text{ap}} = \) Spectral response acceleration of pipeline segment under consideration
\(T = \) Fundamental period of structure
\(T_d = \) Effective structural period
\(V = \) Base shear strength of the structure obtained from a plastic analysis
\(V_y = \) Total base shear
\(V_{AT} = \) Total segment lateral force
\(V_{sk} = \) Shear force across shear keys
\(W = \) Dead load of the frame
\(W_p = \) Weight of pipeline segment under consideration
\(\Delta_d = \) Design displacement demand
\(\Delta_x = \) Longitudinal displacement demand
\(\Delta_{xx} = \) X displacement under X direction excitation
\(\Delta_{xy} = \) X displacement under Y direction excitation
\(\Delta_y = \) Transverse displacement demand
\(\Delta_{yx} = \) Y displacement under X direction excitation
\(\Delta_{yy} = \) Y displacement under Y direction excitation
\(\mu \Delta = \) Ductility level
\(\xi_{sy} \) or \(\xi = \) Effective structural damping

3104F.8 References.

Authority: Sections 8755 and 8757, Public Resources Code.

Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
Section 3105F
Mooring and Berthing Analysis and Design

3105F.1 General.

3105F.1.1 Purpose. This section establishes minimum standards for safe mooring and berthing of vessels at MOTs.

3105F.1.2 Applicability. This section applies to onshore MOTs; Figure 31F-5-1 shows typical pier and wharf configurations.

3105F.1.3 Mooring/berthing risk classification. Each MOT shall be assigned a mooring/berthing risk classification of high, medium or low, as determined from Table 31F-5-1, based on the following site-specific parameters:

1. Wind
2. Current
3. Hydrodynamic effects of passing vessels
4. Change in vessel draft

Exceedance of any of the defined condition thresholds in Table 31F-5-1 places the MOT in the appropriate mooring/berthing risk classification.

The maximum wind, V_w (corrected for duration, height and over water) and maximum current, V_c, shall be obtained (see Section 3103F.5).

In order to determine if there are significant potential passing vessel effects on moored vessels at an MOT, see Section 3105F.3.2.

The range of vessel draft shall be based on the local tidal variation and the operational limits of the vessels berthing at the MOT.

Multiple berth MOTs shall use the same conditions for each berth unless it can be demonstrated that there are significant differences.

MOTs with high mooring/berthing risk classifications (Table 31F-5-1) shall have the following equipment in operation: an anemometer (NIE), a current meter (NIE) (may be omitted if safety factor according to Section 3103F.5.3.1 is applied to current) and remote reading tension load devices (N).

3105F.1.4 New MOTs. Quick release hooks are required at all new MOTs, except for spring line fittings. Quick release hooks shall be sized, within normal allowable stresses, for the safe working load of the largest size mooring line and configuration. To avoid accidental release, the freeing mechanism shall be activated by a two-step process. Quick release hooks shall be insulated electrically from the mooring structure, and should be supported so as not to contact the deck.

3105F.1.5 Analysis and design of mooring components. The existing condition of the MOT shall be used in the mooring analysis (see Section 3102F). Structural characteristics of the MOT, including type and configuration of mooring fittings such as bollards, bitts, hooks and capstans and material properties and condition, shall be determined in accordance with Sections 3107F.4 and 3103F.10.

The analysis and design of mooring components shall be based on the loading combinations and safety factors defined in Sections 3103F.8 through 3103F.10, and in accordance with ACI 318 [5.1], AISC [5.2] and ANSI/AF&PA NDS [5.3], as applicable.

3105F.2 Mooring analyses. A mooring analysis shall be performed for each berthing system, to justify the safe berthing of the various deadweight capacities of vessels expected at the MOT. The forces acting on a moored vessel shall be determined in accordance with Section 3103F.5. Mooring line and breasting load combinations shall be in accordance with Section 3103F.8.

Two procedures, manual and numerical are available for performing mooring analyses. These procedures shall conform to either the OCIMF documents, "Mooring Equipment Guidelines" [5.4] and "Prediction of Wind and Current Loads on VLCCs" [5.5] or the Department of Defense "Moorings" document [5.6]. The manual procedure (Section 3105F.2.1) may be used for barges.

A new mooring assessment shall be performed when conditions change, such as any modification in the mooring configuration, vessel size or new information indicating greater wind, current or other environmental loads.

In general, vessels shall remain in contact with the breasting or fendering system. Vessel motion (sway) of up to 2 feet off the breasting structure may be allowed under the most severe environmental loads, unless greater movement can be justified by an appropriate mooring analysis that accounts for potential dynamic effects. The allowable movement shall be consistent with mooring analysis results, indicating that forces in the mooring lines and their supports are within the allowable safety factors. Also, a check shall be made as to whether the movement is within the limitations of the cargo transfer equipment.
The most severe combination of the environmental loads has to be identified for each mooring component. At a minimum, the following conditions shall be considered:

1. Two current directions (maximum ebb and flood; See Section 3103F.5.3)
2. Two tide levels (highest high and lowest low)
3. Two vessel loading conditions (ballast and maximum draft at the terminal)
4. Eight wind directions (45 degree increments)

3105F.2.1 Manual procedure. For MOTs classified as Low risk (Table 31F-5-1), simplified calculations may be used to determine the mooring forces, except if any of the following conditions exist (Figures 31F-5-2 and 31F-5-3, below).

1. Mooring layout is significantly asymmetrical
2. Horizontal mooring line angles (α) on bow and stern exceed 45 degrees
3. Horizontal breast mooring line angles exceed 15 normal to the hull
4. Horizontal spring mooring line angles exceed 10 degrees from a line parallel to the hull
5. Vertical mooring line angles (θ) exceed 25 degrees
6. Mooring lines for lateral loads not grouped at bow and stern

When the forces have been determined and the distance between the bow and stern mooring points is known, the yaw moment can be resolved into lateral loads at the bow and stern. The total environmental loads on a moored vessel are comprised of the lateral load at the vessel bow, the lateral load at the vessel stern and the longitudinal load. Line pretension loads must be added.

Four load cases shall be considered:

1. Entire load is taken by mooring lines
2. Entire load is taken by breasting structures
3. Load is taken by combination of mooring lines and breasting structures
4. Longitudinal load is taken only by spring lines

3105F.2.2 Numerical procedure. A numerical procedure is required to obtain mooring forces for MOTs classified as Medium or High (See Table 31F-5-1) and for those that do not satisfy the requirements for using simplified calculations. Computer program(s) shall be based on mooring analysis procedures that consider the characteristics of the mooring system, calculate the environmental loads and provide resulting mooring line forces and vessel motions (surge and sway).

3105F.3 Wave, passing vessel, seiche and tsunami.

3105F.3.1 Wind waves. MOTs are generally located in sheltered waters such that typical wind waves can be assumed not to affect the moored vessel if the significant wave period, T_s, is less than 4 seconds. However, if the period is equal to or greater than 4 seconds, then a simplified dynamic analysis (See Section 3103F.5.4) is required. The wave period shall be established based on a 1-year significant wave height, H_s. For MOTs within a harbor basin, the wave period shall be based on the locally generated waves with relatively short fetch.

3105F.3.2 Passing vessels. These forces generated by passing vessels are due to pressure gradients associated with the flow pattern. These pressure gradients cause the moored vessel to sway, surge, and yaw, thus imposing forces on the mooring lines.

Passing vessel analysis shall be conducted when all of the following conditions exist (See Figure 31F-5-4):

1. Passing vessel size is greater than 25,000 dwt.
2. Distance L is 500 feet or less
3. Vessel speed V is greater than V_{crit}

where:

$$V_{crit} = 1.5 + \frac{L - 2B}{500 - 2B} \cdot 4.5 \text{(knots)} \quad (5-1)$$

Exception: If $L \leq 2B$, passing vessel loads shall he considered.
L and B are shown in Figure 31F-5-4, in units of feet. V is defined as the speed of vessel over land minus the current velocity, when traveling with the current, or the speed of vessel over land plus the current velocity, when traveling against the current.

![FIGURE 31F-5-4 PASSING VESSEL](image)

When such conditions (1, 2 and 3 above) exist, the surge and sway forces and the yaw moment acting on the moored vessel shall, as a minimum, be established in accordance with Section 3103F.5.5. If the demands from such evaluation are greater than 75 percent of the mooring system capacity (breaking strength of mooring lines), then a more sophisticated dynamic analysis is required.

For MOTs located in ports, the passing distance, L, may be established based on channel width and vessel traffic patterns. The guidelines established in the Department of Defense, UFC 4-150-06, Figure 5-17 [5.7] for interior channels may be used. The "vertical bank" in Figure 5-17 of [5.7] shall be replaced by the side of the moored vessel when establishing the distance, "L."

For MOTs, not located within a port, the distance, "L,” must be determined from observed traffic patterns. The following passing vessel positions shall be investigated:

1. Passing vessel is centered on the moored ship. This position produces maximum sway force.
2. The midship of the passing vessel is fore or aft of the centerline of the moored ship by a distance of 0.40 times the length of the moored ship. This position is assumed to produce maximum surge force and yaw moment at the same time.

The mooring loads due to a passing vessel shall be added to the mooring loads due to wind and current.

3105F.3.3 Seiche

A seiche analysis is required for existing MOTs located within a harbor basin and which have historically experienced seiche. A seiche analysis is required for new MOTs inside a harbor basin prone to penetration of ocean waves.

The standing wave system or seiche is characterized by a series of "nodes" and "antinodes." Seiche typically has wave periods ranging from 20 seconds up to several hours, with wave heights in the range of 0.1 to 0.4 ft [5.7].

The following procedure may be used, as a minimum, in evaluating the effects of seiche within a harbor basin. In more complex cases where the assumptions below are not applicable, dynamic methods are required.

1. Calculate the natural period of oscillation of the basin. The basin may be idealized as rectangular, closed or open at the seaward end. Use Chapter 2 of UFC 4-150-06 [5.7] to calculate the wave period and length for different modes. The first three modes shall be considered in the analysis.
2. Determine the location of the moored ship with respect to the antinode and node of the first three modes to determine the possibility of resonance.
3. Determine the natural period of the vessel and mooring system. The calculation shall be based on the total mass of the system and the stiffness of the mooring lines in surge. The surge motion of the moored vessel is estimated by analyzing the vessel motion as a harmonically forced linear single degree of freedom spring mass system. Methods outlined in a paper by F.A. Kilner [5.8] can be used to calculate the vessel motion.
4. Vessels are generally berthed parallel to the channel; therefore, only longitudinal (surge) motions shall be considered, with the associated mooring loads in the spring lines. The loads on the mooring lines (spring lines) are then determined from the computed vessel motion and the stiffness of those mooring lines.

3105F.3.4 Tsunami

Run-up and current velocity shall be considered in the tsunami assessment. Table 31F-3-8 provides run-up values for the San Francisco Bay area, Los Angeles/Long Beach Harbors and Port Hueneme.

3105F.4 Berthing analysis and design

In general and for new MOTs, the fender system alone shall be designed to absorb the berthing energy. For existing MOTs, the berthing analysis may include the fender and structure.

The analysis and design of berthing components shall be based on the loading combinations and safety factors defined in Sections 3103F.8 and 3103F.9 and in accordance with ACI 318 [5.1], AISC [5.2], and ANSI/AFPA NDS [5.3], as applicable.

3105F.4.1 Berthing energy demand

The kinetic berthing energy demand shall be determined in accordance with Section 3103F.6.

3105F.4.2 Berthing energy capacity

For existing MOTs, the berthing energy capacity shall be calculated as the area under the force-deflection curve for the combined structure and fender system as indicated in Figure 31F-5-5. Fender piles may be included in the lateral analysis to establish the total force-deflection curve for the berthing system. Load-deflection curves for other fender types shall be obtained from manufacturer’s data. The condition of fenders shall be taken into account when performing the analysis.

When batter piles are present, the fender system typically absorbs most of the berthing energy. This can be established by comparing the force-deflection curves for the fender system and batter piles. In this case only the fender system energy absorption shall be considered.
3105F.4.3 Tanker contact length.

3105F.4.3.1 Continuous fender system. A continuous fender system consists of fender piles, chocks, wales, and rubber or spring fender units.

The contact length of a ship during berthing depends on the spacing of the fender piles and fender units, and the connection details of the chocks and wales to the fender piles.

The contact length, \(L_c \), can be approximated by the chord formed by the curvature of the bow and the berthing angle as shown in Equation 5-2 below.

\[
L_c = 2r \sin \alpha
\]
(5-2)

where:

- \(L_c \) = contact length
- \(r \) = Bow radius
- \(\alpha \) = Berthing Angle

In lieu of detailed analysis to determine the contact length, Table 31F-5-2 may be used. The contact length for a vessel within the range listed in the table can be obtained by interpolation.

TABLE 31F-5-2

<table>
<thead>
<tr>
<th>VESSEL SIZE (dwt)</th>
<th>CONTACT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>25 ft</td>
</tr>
<tr>
<td>1,000 to 2,500</td>
<td>35 ft</td>
</tr>
<tr>
<td>5,000 to 26,000</td>
<td>40 ft</td>
</tr>
<tr>
<td>35,000 to 50,000</td>
<td>50 ft</td>
</tr>
<tr>
<td>65,000</td>
<td>60 ft</td>
</tr>
<tr>
<td>100,000 to 125,000</td>
<td>70 ft</td>
</tr>
</tbody>
</table>

3105F.4.3.2 Discrete fender system. For discrete fender systems (i.e., not continuous), one fender unit or breasting dolphin shall be able to absorb the entire berthing energy.

3105F.4.4 Longitudinal and vertical berthing forces. The longitudinal and vertical components of the horizontal berthing force shall be calculated using appropriate coefficients of friction between the vessel and the fender. In lieu of as-built data, the values in Table 31F-5-3 may be used for typical fender/vessel materials:

TABLE 31F-5-3 COEFFICIENT OF FRICTION

<table>
<thead>
<tr>
<th>CONTACT MATERIALS</th>
<th>FRICTION COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber to Steel</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Urethane to Steel</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Steel to Steel</td>
<td>0.25</td>
</tr>
<tr>
<td>Rubber to Steel</td>
<td>0.6 to 0.7</td>
</tr>
<tr>
<td>UHMW* to Steel</td>
<td>0.1 to 0.2</td>
</tr>
</tbody>
</table>

*Ultra-high molecular weight plastic rubbing strips.

Longitudinal and vertical forces shall be determined by:

\[
F = \mu N
\]
(5-3)

where:

- \(F \) = longitudinal or vertical component of horizontal berthing force
- \(\mu \) = coefficient of friction of contact materials
- \(N \) = maximum horizontal berthing force (normal to fender)

3105F.4.5 Design and selection of new fender systems. For guidelines on new fender designs, refer to the Department of Defense “Piers and Wharves” document (UFC 4-152-01) [5.9] and the PIANC Guidelines for the Design of Fenders Systems: 2002 [5.10].

3105F.5 Layout of new MOTs. The number and spacing of independent mooring dolphins and breasting dolphins depends on the DWT and length overall (LOA) of vessels to be accommodated.

Breasting dolphins shall be positioned adjacent to the parallel body of the vessel when berthed. A minimum of two breasting dolphins shall be provided. The spacing of breasting dolphins shall be adequate for all sizes of vessels that may berth at the MOT.

Mooring dolphins shall be set back from the berthing line (fender line) for a distance between 115 ft and 165 ft, so that longer bow, stern and breast lines can be deployed.

For a preliminary layout, the guidelines in the British Standards, Part 4, Section 2 [5.11], may be used in conjunction with the guidelines below.

1. **If four breasting dolphins are provided**, the spacing between exterior breasting dolphins shall be between 0.3 and 0.4 LOA of the maximum sized vessel expected to call at the MOT. The spacing between interior breasting dolphins shall be approximately 0.3 to 0.4LOA of the minimum sized vessel expected to call at the MOT.

2. **If only two breasting dolphins are provided**, the spacing between the dolphins shall be the smaller (0.3LOA) of the guidelines specified above.

3. If bow and stern lines are used for mooring, the spacing between exterior mooring dolphins shall be 1.35 times the LOA of the maximum sized vessel expected to call at the MOT.
4. The spacing between **interior mooring dolphins** shall be 0.8 times the **LOA** of the maximum sized vessel expected to call at the MOT.

The final layout of the mooring and breasting dolphins shall be determined based on the results of the mooring analysis that provides optimal mooring line and breasting forces for the range of vessels to be accommodated. The breasting force under the mooring condition shall not exceed the maximum fender reaction of the fender unit when it is being compressed at the manufacturers rated deflection.

3105F.6 Symbols.

- α = Berthing Angle. It also indicates the angle of horizontal mooring lines, see Fig 5-2.
- Δ = Deflection
- θ = Vertical mooring line angles
- B = Beam of vessel
- F = Longitudinal or vertical component of horizontal normal berthing force
- L = Distance between passing and moored vessels
- L_c = Contact length
- N = Maximum horizontal berthing force
- r = Bow radius
- μ = Coefficient of friction of contact materials
- V = Ground speed (knots)
- V_c = Maximum current (knots)
- V_{crit} = Ground speed (knots) above which passing loads must be considered
- V_w = Maximum wind speed (knots)

3105F.7 References.

- [5.1] American Concrete Institute, ACI 318-05, 2005, "Building Code Requirements for Structural Concrete (318-05) and Commentary (318R-05)," Farmington Hills, Michigan.

SECTION 3106F
GEOTECHNICAL HAZARDS AND FOUNDATIONS

3106F.1 General.

3106F.1.1 Purpose. This section provides minimum standards for analyses and evaluation of geotechnical hazards and foundations.

3106F.1.2 Applicability. The requirements provided herein apply to all new and existing MOTs.

3106F.1.3 Seismic loading. The seismic loading for geotechnical hazard assessment and foundation analyses is provided in Section 3103F.4.

3106F.2 Site Characterization.

3106F.2.1 Site classes. Each MOT shall be assigned at least one site class, based on site-specific geotechnical information. Site Classes S_A, S_B, S_C, S_D and S_E are defined in Table 31F-6-1 and Site Class S_F is defined as follows:

1. Soils vulnerable to significant potential loss of stiffness, strength, and/or volume under seismic loading, such as liquefiable soils, quick and highly sensitive clays, and collapsible weakly cemented soils.
2. Peats and/or highly organic clays, where the thickness of peat or highly organic clay exceeds 10 feet.
3. Very high plasticity clays with a plasticity index (PI) greater than 75, where depth of clay exceeds 25 feet.
4. Very thick soft/medium stiff clays, where the depth of clay exceeds 120 feet.

3106F.2.2 Site-Specific information. In general, geotechnical characterization shall be based on site-specific information. This information may be obtained from existing or nonsite specific sources. However, if existing or nonsite specific information is used, the geotechnical engineer of record shall provide adequate justification for its use.

Site-specific investigations shall include, at a minimum, borings and/or cone penetration tests, soil classifications, configuration, foundation loading and an assessment of seismic hazards. The array (number and depths) of exploratory borings and cone penetration tests (CPT) will depend on the proposed or existing structures and site stratigraphy. The investigation or testing activities shall be completed following the procedures in Section 5 of SCEC [6.3]. CPT data may also be used by first converting to standard penetration test (SPT) data, using an appropriate method, that reflects the effects of soil gradation. If geotechnical data other than SPT and CPT are used, an adequate explanation and rationale shall be provided.

Quantitative soil information is required to a depth of 100 feet below the mudline, for assigning a Site Class (see Table 31F-6-1). When data to a depth of 100 feet is unavailable, other information such as geologic considerations may be used to determine the Site Class.

3106F.3 Liquefaction. A liquefaction assessment shall address triggering and the resulting hazards, using residual shear strengths of liquefied soils.

3106F.3.1 Triggering assessment. Liquefaction triggering shall be expressed in terms of the factor of safety (SF):

$$SF = \frac{CRR}{CSR} \quad (6-1)$$

where:

- CRR = Cyclic Resistance Ratio
- CSR = The Cyclic Stress Ratio induced by Design Peak Ground Acceleration (DPGA) or other postulated shaking

The CRR shall be determined from Figure 7.1 in SCEC [6.3]. If available, both the SPT and CPT data can be used.

CSR shall be evaluated using the simplified procedure in Section 3106F.3.1.1 or site-specific response analysis procedures in Section 3106F.3.1.2.

Shaking-induced shear strength reductions in liquefiable materials are determined as follows:

1. SF > 1.4

Reductions of shear strength for the materials for postearthquake conditions may be neglected.

TABLE 31F-6-1

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>SOIL PROFILE NAME/GENERIC DESCRIPTION</th>
<th>SHEAR WAVE VELOCITY, V_S (ft/sec)</th>
<th>STANDARD PENETRATION TEST [BLOWS/FT]</th>
<th>UNDRAINED SHEAR STRENGTH, S_u (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_A</td>
<td>Hard Rock</td>
<td>> 5,000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S_B</td>
<td>Rock</td>
<td>2,500 to 5,000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S_C</td>
<td>Very Stiff/Dense Soil and Soft Rock</td>
<td>1,200</td>
<td>> 50</td>
<td>> 2,000</td>
</tr>
<tr>
<td>S_D</td>
<td>Stiff/Dense Soil Profile</td>
<td>600 to 1,200</td>
<td>15 to 50</td>
<td>1,000 to 2,000</td>
</tr>
<tr>
<td>S_E</td>
<td>Soft/Loose Soil Profile</td>
<td>< 600</td>
<td>< 15</td>
<td>< 1,000</td>
</tr>
<tr>
<td>S_F</td>
<td>Defined in Section 3106F.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Site Class SF shall require site-specific geotechnical information as discussed in Sections 3106F.2.2 and 3103F.4.
2. Site Class SE also includes any soil profile with more than 10 feet of soft clay defined as a soil with a plasticity index, PI > 20, water content > 40 percent and $S_u < 500$ psf.
3. The plasticity index, PI, and the moisture content shall be determined in accordance with ASTM D4318 [6.1] and ASTM D2216 [6.2], respectively.
2. $1.0 < SF < 1.4$

A strength value intermediate to the material’s initial strength and residual undrained shear strength should be selected based on the level of residual excess pore water pressure expected to be generated by the ground shaking (e.g., Figure 10 of Seed and Harder, [6.4]).

3. $SF \leq 1.0$

Reduction of the material shear strength to a residual undrained shear strength level shall be considered, as described in Section 3106F.3.2.

3106F.3.1.1 Simplified procedure. The simplified procedure to evaluate liquefaction triggering shall follow Section 7 of SCEC [6.3]. Cyclic stress ratio (CSR) is used to define seismic loading, in terms of the Design Peak Ground Acceleration (DPGA) and Design Earthquake Magnitude (DEM). DPGA and DEM are addressed in Section 3103F.4.2. CSR is defined as:

$$CSR = 0.65 \left(\frac{DPGA}{g} \right) \left(\frac{\sigma_v}{\sigma_{v'}^*} \right) \left(\frac{r_d}{r_{MSF}} \right)$$

(6-2)

where:

- $g =$ gravitational constant
- $\sigma_v =$ the vertical total stress
- $\sigma_{v'}^* =$ the vertical effective stress
- $r_d =$ a stress reduction factor
- $r_{MSF} =$ the magnitude scaling factor

For values of r_{MSF} and r_d, see SCEC [6.3] Figures 7.2 and 7.3, respectively. To evaluate r_{MSF}, the DEM value associated with DPGA shall be used.

3106F.3.1.2 Site specific response procedure. In lieu of the simplified procedure, either one-dimensional or two-dimensional site response analysis may be performed using the ground motion parameters discussed in Section 3103F.4. The computed cyclic stresses at various points within the pertinent soil layers shall be expressed as values of CSR.

3106F.3.2 Residual strength. The residual undrained shear strength may be estimated from Figure 7.7 of SCEC [6.3]. When necessary, a conservative extrapolation of the strength should be made. Under no circumstances, shall the residual shear strength be higher than the shear strength based on effective strength parameters.

The best estimate value should correspond to $1/3$, from the lower bound of the range for a given value of equivalent clean sand SPT blowcount. When a value other than the "$1/3$ value" is selected for the residual shear strength, the selection shall be justified. An alternate method is provided in Stark and Mesri [6.5]. The residual strength of liquefied soils may be obtained as a function of effective confining pressures if a justification is provided. The resulting residual shear strength shall be used as the postearthquake shear strength of liquefied soils.

3106F.4 Other geotechnical hazards. For a SF less than 1.4, the potential for the following hazards shall be evaluated:

1. Flow slides
2. Slope movements
3. Lateral spreading
4. Ground settlement and differential settlement
5. Other surface manifestations

These hazards shall be evaluated, using the residual shear strength described above (Section 3106F.3.2).

3106F.4.1 Stability of earth structures. If a slope failure could affect the MOT, a stability analysis of slopes and earth retaining structures shall be performed. The analysis shall use limit equilibrium methods that satisfy all of the force and/or moment equilibrium conditions and determine the slope stability safety factor.

1. Slope stability safety factor ≥ 1.2

Flow slides can be precluded; however, seismically induced ground movements shall be addressed.

2. $1.0 \leq$ Slope stability safety factor < 1.2

Seismically induced ground movements should be evaluated using the methods described below.

3. Slope stability safety factor < 1.0

Mitigation measures shall be implemented per Section 3106F.6.

3106F.4.2 Simplified ground movement analysis. The seismically induced ground settlement may be estimated using Section 7.6 of SCEC [6.3]. Surface manifestation of liquefaction may be evaluated using Section 7.7 of SCEC. Results shall be evaluated to determine if mitigation measures are required.

Seismically induced deformation or displacement of slopes shall be evaluated using the Makdisi-Seed [6.6] simplified method as described below.

The stability analysis shall be used with the residual shear strengths of soils to estimate the yield acceleration coefficient, K_s, associated with the critical potential movement plane. In general, the DPGA shall be used as K_s, and DEM as the earthquake magnitude, M. These parameters shall be used together with the upper bound curves Figures 9-11 of [6.6], to estimate the seismically induced ground movement along the critical plane.

However, the value of K_{max} may be different from the DPGA value to include the effects of amplification, incoherence, etc. When such adjustments are made in converting DPGA to K_{max}, a justification shall be provided. Linear interpolation using the upper bound curves in Figure 10 (ordinate scale should be divided by 10) in [6.6] or Figure 4-10 in Ferritto et al [6.7] can be used to estimate the seismically induced ground movement for other earthquake magnitudes.

For the Ports of Los Angeles and Long Beach, Newmark displacement curves are available and are site-specific [3.5, 3.6]. Curves are provided for both Level 1 and Level 2.
earthquakes, and plot yield acceleration versus lateral displacement.

For screening purposes only, lateral spreading shall be evaluated, using the simplified equations in Youd et al. [6.8]. The total seismically induced ground displacement shall include all contributory directions.

1. When the resulting displacement from the screening method is > 0.1 ft., the Makdisi-Seed simplified method or other similar methods shall be used to estimate lateral spreading.
2. If the computed displacement from the simplified method(s) is \(\leq 0.5 \) ft., the effects can be neglected.
3. If the computed displacements using simplified methods are > 0.5 ft., the use of a detailed ground movement analysis (see Section 3106F.4.3) may be considered.
4. If the final resulting displacement, regardless of the method used, remains > 0.5 ft., it shall be considered in the structural analysis.

3106F.4.3 Detailed ground movement analysis. As an alternative to the simplified methods discussed above, a two-dimensional (2-D) equivalent linear or nonlinear dynamic analysis of the MOT and/or slopes and earth retaining systems may be performed.

An equivalent linear analysis is adequate when the stiffness and/or strength of the soils involved are likely to degrade by less than one-third, during seismic excitation of less than 0.3 g's. Appropriate time histories need to be obtained to calculate seismically induced displacement (see Section 3103F.4.2). Such analysis should account for the accumulating effects of displacement if double-integration of acceleration time histories is used. The seismic stresses or stress time histories from equivalent linear analysis may be used to estimate seismically induced deformation.

A nonlinear analysis should be used if the stiffness and/or strength of the soils involved are likely to degrade by more than one-third during seismic motion.

If the structure is included in the analysis, the ground motion directly affects the structural response. Otherwise, the uncoupled, calculated movement of the soil on the structure shall be evaluated.

3106F.5 Soil structure interaction.

3106F.5.1 Soil parameters. Soil structure interaction (SSI) shall be addressed for the seismic evaluation of MOT structures. SSI may consist of linear or non-linear springs (and possibly dash-pots) for various degrees of freedom, including horizontal, vertical, torsional, and rotational, as required by the structural analysis.

Pile capacity parameters may be evaluated using the procedures in Chapter 4 of FEMA 356 [6.9]. The "p-y" curves, "t-z" curves, and tip load — displacement curves for piles (nonlinear springs for horizontal and vertical modes and nonlinear vertical springs for the pile tip, respectively) and deep foundations shall be evaluated using Section 6 of API RP 2A-WSD [6.10] including the consideration of pile group effects. Equivalent springs (and dashpots) representing the degrading properties of soils may be developed.

Where appropriate, alternative procedures can be used to develop these parameters. Rationale for the use of alternative procedures shall be provided. One simplified method is presented in Chapter 4 of the UFC 3-220-01A [6.11] and provides deflection and moment for an isolated pile, subject to a lateral load.

3106F.5.2 Shallow foundations. Shallow foundations shall be assumed to move with the ground. Springs and dashpots may be evaluated as per Gazetas [6.12].

3106F.5.3 Underground structures. Buried flexible structures or buried portions of flexible structures including piles and pipelines shall be assumed to deform with estimated ground movement at depth.

As the soil settles, it shall be assumed to apply shear forces to buried structures or buried portions of structures including deep foundations.

3106F.6 Mitigation measures and alternatives. If the hazards and consequences addressed in Sections 3106F.3 and 3106F.4 are beyond the specified range, the following options shall be considered:

1. Perform a more sophisticated analysis
2. Modify the structure
3. Modify the foundation soil

Examples of possible measures to modify foundation soils are provided in Table 4-1 of [6.7].

3106F.7 Symbols.

\(SF \) = Safety Factor
\(CRR \) = Cyclic Resistance Ratio
\(CSR \) = Cyclic Stress Ratio induced by DPGA
\(g \) = Gravitational constant
\(\sigma_v \) = the vertical total stress
\(\sigma'_v \) = the vertical effective stress
\(r_a \) = a stress reduction factor
\(r_{MSE} \) = the magnitude scaling factor

3106F.8 References.

Authority: Sections 8755 and 8757, Public Resources Code.
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
MARINE OIL TERMINALS

SECTION 3107F
STRUCTURAL ANALYSIS AND DESIGN OF COMPONENTS

3107F.1 General.

3107F.1.1 Purpose. This section establishes the minimum performance standards for structural components. Evaluation procedures for seismic performance, strength and deformation characteristics of concrete, steel and timber components are prescribed herein. Analytical procedures for structural systems are presented in Section 3104F.

3107F.1.2 Applicability. This section addresses MOTs constructed using the following structural components:

1. Reinforced concrete decks supported by batter and/or vertical concrete piles
2. Reinforced concrete decks supported by batter and/or vertical steel piles, including pipe piles filled with concrete
3. Reinforced concrete decks supported by batter and/or vertical timber piles
4. Timber decks supported by batter or vertical timber, concrete or steel pipe piles
5. Retaining structures constructed of steel, concrete sheet piles or reinforced concrete.

3107F.2 Concrete deck with concrete or steel piles.

3107F.2.1 Component strength. The following parameters shall be established in order to compute the component strength:

1. Specified concrete compressive strengths
2. Concrete and steel modulus of elasticity
3. Yield and tensile strength of mild reinforcing and prestressed steel and corresponding strains
4. Confinement steel strength and corresponding strains
5. Embedment length
6. Concrete cover
7. Yield and tensile strength of structural steel
8. Ductility

In addition, for “existing” components, the following conditions shall be considered:

9. Environmental effects, such as reinforcing steel corrosion, concrete spalling, cracking and chemical attack
10. Fire damage
11. Past and current loading effects, including overload, fatigue or fracture
12. Earthquake damage
13. Discontinuous components
14. Construction deficiencies

3107F.2.1.1 Material properties. Material properties of existing components, not determined from testing procedures, and of new components, shall be established using the following methodology.

The strength of structural components shall be evaluated based on the following values (Section 5.3 of [7.1] and pp. 3-73 and 3-74 of [7.2]):

Specified material strength shall be used for nonductile components (shear controlled), all mechanical, electrical and mooring equipment (attachments to the deck) and for all non seismic load combinations:

\[f_c' = 1.0 f_c \] \hspace{1cm} (7-1a)
\[f_y = 1.0 f_y \] \hspace{1cm} (7-1b)
\[f_p = 1.0 f_p \] \hspace{1cm} (7-1c)

In addition, these values (7-1a, 7-1b and 7-1c) may be used conservatively as alternatives to determine the nominal strength of ductile components (N).

Expected lower bound estimates of material strength shall be used for determination of moment-curvature relations and nominal strength of all ductile components:

\[f_c' = 1.3 f_c' \] \hspace{1cm} (7-2a)
\[f_y = 1.1 f_y \] \hspace{1cm} (7-2b)
\[f_p = 1.0 f_p \] \hspace{1cm} (7-2c)

Upper bound estimates of material strength shall be used for the determination of moment-curvature relations, to obtain the feasible maximum demand on capacity protected members:

\[f_c' = 1.7 f_c' \] \hspace{1cm} (7-3a)
\[f_y = 1.3 f_y \] \hspace{1cm} (7-3b)
\[f_p = 1.1 f_p \] \hspace{1cm} (7-3c)

where:

\[f_c' = \text{Specified compressive strength of concrete} \]
\[f_y = \text{Specified yield strength of reinforcement or specified minimum yield stress steel} \]
\[f_p = \text{Specified yield strength of prestress strands} \]

“Capacity Design” (Section 5.3 of [7.1]) ensures that the strength at protected components (such as pile caps and decks), joints and actions (such as shear), is greater than the maximum feasible demand (over strength), based on realistic upper bound estimates of plastic hinge flexural strength. An additional series of nonlinear analyses using moment curvature characteristics of pile hinges may be required.

Alternatively, if a moment-curvature analysis is performed that takes into account the strain hardening of the steel, the demands used to evaluate the capacity protected components may be estimated by multiplying the moment-curvature values by 1.25.
Based on a historical review of the building materials used in the twentieth century, guidelines for tensile and yield properties of concrete reinforcing bars and the compressive strength of structural concrete have been established (see Tables 6-1 to 6-3 of FEMA 356 [7.3]. The values shown in these tables can be used as default properties, only if as-built information is not available and testing is not performed. The values in Tables 31F-7-1 and 31F-7-2, are adjusted according to equations (7-1) through (7-3).

3107F.2.1.2 Knowledge factor \((k)\). Knowledge factor, \(k\), shall be applied on a component basis.

The following information is required, at a minimum, for a component strength assessment:

1. Original construction records, including drawings and specifications.
2. One set of “as-built” drawings and/or sketches, documenting both gravity and lateral systems (Section 3102F.1.5) and any postconstruction modification data.
3. A visual condition survey, for structural components including identification of the size, location and connections of these components.
4. In the absence of material properties, values from limited in-situ testing or conservative estimates of material properties (Tables 31F-7-1 and 31F-7-2).
5. Assessment of component conditions, from an in-situ evaluation, including any observable deterioration.
6. Detailed geotechnical information, based on recent test data, including risk of liquefaction, lateral spreading and slope stability.

TABLE 31F-7-1

<table>
<thead>
<tr>
<th>TIME FRAME</th>
<th>PILING</th>
<th>BEAMS</th>
<th>SLABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900-1919</td>
<td>2,500-3,000</td>
<td>2,000-3,000</td>
<td>1,500-3,000</td>
</tr>
<tr>
<td>1920-1949</td>
<td>3,000-4,000</td>
<td>2,000-3,000</td>
<td>2,000-3,000</td>
</tr>
<tr>
<td>1950-1965</td>
<td>4,000-5,000</td>
<td>3,000-4,000</td>
<td>3,000-4,000</td>
</tr>
<tr>
<td>1966-present</td>
<td>5,000-6,000</td>
<td>3,000-5,000</td>
<td>3,000-5,000</td>
</tr>
</tbody>
</table>

1. Concrete strengths are likely to be highly variable for an older structure.

TABLE 31F-7-2

<table>
<thead>
<tr>
<th>ASTM</th>
<th>STEEL TYPE</th>
<th>YEAR RANGE</th>
<th>GRADE</th>
<th>STRUCTURAL</th>
<th>INTERMEDIATE</th>
<th>HARD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33,000</td>
<td>40,000</td>
<td>50,000</td>
<td>60,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55,000</td>
<td>70,000</td>
<td>80,000</td>
<td>90,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95,000</td>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>Billet</td>
<td>1911-1966</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A16</td>
<td>Rail(^4)</td>
<td>1913-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A61</td>
<td>Rail(^4)</td>
<td>1963-1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A160</td>
<td>Axe</td>
<td>1936-1964</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A160</td>
<td>Axe</td>
<td>1965-1966</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A408</td>
<td>Billet</td>
<td>1957-1966</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A431</td>
<td>Billet</td>
<td>1959-1966</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A432</td>
<td>Billet</td>
<td>1959-1966</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A615</td>
<td>Billet</td>
<td>1968-1972</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A615</td>
<td>Billet</td>
<td>1974-1986</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A615</td>
<td>Billet</td>
<td>1987-1997</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A616</td>
<td>Rail(^4)</td>
<td>1968-1997</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A617</td>
<td>Axe</td>
<td>1968-1997</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A706</td>
<td>Low-Alloy(^5)</td>
<td>1974-1997</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A955</td>
<td>Stainless</td>
<td>1996-1997</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Note: An entry “X” indicates that grade was available in those years.
1. The terms structural, intermediate and hard became obsolete in 1968.
2. Actual yield and tensile strengths may exceed minimum values.
3. Until about 1920, a variety of proprietary reinforcing steels were used. Yield strengths are likely to be in the range from 33,000 psi to 55,000 psi, but higher values are possible. Plain and twisted square bars were sometimes used between 1900 and 1949.
4. Rail bars should be marked with the letter “R.”
5. ASTM steel is marked with the letter “W.”
The knowledge factor, \(k \), is 1.0 when comprehensive knowledge as specified above is utilized. Otherwise, the knowledge factor shall be 0.75. Further guidance on the determination of the appropriate \(k \) value can be found in Table 2-1 of FEMA 356 [7.3].

3107F.2.2 Component stiffness. Stiffness that takes into account the stress and deformation levels experienced by the component shall be used. Nonlinear load-deformation relations shall be used to represent the component load-deformation response. However, in lieu of using nonlinear methods to establish the stiffness and moment curvature relation of structural components, the equations of Table 31F-7-3 may be used to approximate the effective elastic stiffness, \(E_{le} \), for lateral analyses (see Section 3107F.5 for definition of symbols).

TABLE 31F-7-3

<table>
<thead>
<tr>
<th>CONCRETE COMPONENT</th>
<th>(E_{le} = \frac{I_s f_{c}{G}{c}}{E{le}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Pile</td>
<td>(0.3 + N/(f'{c} A{g}))</td>
</tr>
<tr>
<td>Pile/Deck Dowel Connection(^1)</td>
<td>(0.3 + N/(f'{c} A{g}))</td>
</tr>
<tr>
<td>Prestressed Pile(^1)</td>
<td>(0.6 < E_{l}/E_{le} < 0.75)</td>
</tr>
<tr>
<td>Steel Pile</td>
<td>1.0</td>
</tr>
<tr>
<td>Concrete w/Steel Casing</td>
<td>(E_{s} I_{s} + 0.25E_{c} I_{c})</td>
</tr>
<tr>
<td></td>
<td>((E_{s} I_{s} + E_{c} I_{c}))</td>
</tr>
<tr>
<td>Deck</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\(^1\) The pile/deck connection and prestressed pile may also be approximated as one member with an average stiffness of 0.42 \(E_{le}/E_{ig} \) \((\text{Ferrito et al., 1999 [7.2]} \)

\(N \) = the axial load level.
\(E_{s} \) = Young's modulus for steel
\(I_{s} \) = Moment of inertia for steel section.
\(E_{c} \) = Young's modulus for concrete
\(I_{c} \) = Moment of inertia for uncracked concrete section

3107F.2.3 Deformation capacity of flexural members. Stress-strain models for confined and unconfined concrete, mild and prestressed steel presented in Section 3107F.2.4 shall be used to perform the moment-curvature analysis.

The stress-strain characteristics of steel piles shall be based on the actual steel properties. If as-built information is not available, the stress-strain relationship may be obtained per Section 3107F.2.4.2.

For concrete in-filled steel piles, the stress-strain model for confined concrete shall be in accordance with Section 3107F.2.4.1.

Each structural component expected to undergo inelastic deformation shall be defined by its moment-curvature relation. The displacement demand and capacity shall be calculated per Sections 3104F.2 and 3104F.3, as appropriate.

The moment-rotation relationship for concrete components shall be derived from the moment-curvature analysis per Section 3107F.2.5.4 and shall be used to determine lateral displacement limitations of the design. Connection details shall be examined per Section 3107F.2.7.

3107F.2.4 Stress-Strain models.

3107F.2.4.1 Concrete. The stress-strain model and terms for confined and unconfined concrete are shown in Figure 31F-7-1.

3107F.2.4.2 Reinforcement steel and structural steel. The stress-strain model and terms for reinforcing and structural steel are shown in Figure 31F-7-2.

3107F.2.4.3 Prestressed steel. The stress-strain model of Blakeley and Park [7.4] may be used for prestressed steel. The model and terms are illustrated in Figure 31F-7-3.

3107F.2.4.4 Alternative stress-strain models. Alternative stress-strain models are acceptable if adequately documented and supported by test results, subject to Division approval.
3107F.2.5 Concrete piles.

3107F.2.5.1 General. The capacity of concrete piles is based on permissible concrete and steel strains corresponding to the desired performance criteria.

Different values may apply for plastic hinges forming at in-ground and pile-top locations. These procedures are applicable to circular, octagonal, rectangular and square pile cross sections.

3107F.2.5.2 Stability. Stability considerations are important to pier-type structures. The moment-axial load interaction shall consider effects of high slenderness ratios (kl/r). An additional bending moment due to axial load eccentricity shall be incorporated unless:

\[e/h \leq 0.10 \]

(7-4)

where:
- \(e \) = eccentricity of axial load
- \(h \) = width of pile in considered direction

3107F.2.5.3 Plastic hinge length. The plastic hinge length is required to convert the moment-curvature relationship into a moment-plastic rotation relationship for the nonlinear pushover analysis.

The pile's plastic hinge length, \(L_p \) (above ground), when the plastic hinge forms against a supporting member is:

\[L_p = 0.08L + 0.15f_{ye}d_{bl} \geq 0.3f_{ye}d_{bl} \]

(7-5)

where:
- \(L \) = the distance from the critical section of the plastic hinge to the point of contraflexure
- \(d_{bl} \) = the diameter of the longitudinal reinforcement
- \(f_{ye} \) = design yield strength of longitudinal reinforcement (ksi)

If a large reduction in moment capacity occurs due to spalling, then the plastic hinge length shall be:

\[L_p = 0.3f_{ye}d_{bl} \]

(7-6)

When the plastic hinge forms in-ground, the plastic hinge length may be determined from Figure 31F-7-4 (see page 311 of [7.1]).

3107F.2.5.4 Plastic rotation. The plastic rotation, \(\theta_p \), can be determined from Equation 7-8, by using moment-curvature analysis and applicable strain limitations, as shown in Figure 31F-7-5.

The plastic rotation is:

\[\theta_p = L_p\phi_p = (\phi_m - \phi_y) \]

(7-8)

where:
- \(L_p \) = plastic hinge length
- \(\phi_p \) = plastic curvature
- \(\phi_m \) = maximum curvature
- \(\phi_y \) = yield curvature

The maximum curvature, \(\phi_m \), shall be determined by the concrete or steel strain limit state at the prescribed performance level, whichever comes first.

Alternatively, the maximum curvature, \(\phi_m \), may be calculated as:

\[\phi_m = \frac{\xi_{cm}}{C_u} \]

(7-9)

where:
- \(\xi_{cm} \) = max limiting compression strain for the prescribed performance level (Table 31F-7-5)
- \(C_u \) = neutral-axis depth, at ultimate strength of section

The stiffness parameter (x-axis) is:

\[KD^6 \]

\[[D^*]EI_e \]

(7-7)

where:
- \(EI_e \) = the effective stiffness
- \(K \) = the subgrade modulus
- \(D \) = pile diameter
- \(D^* \) = reference diameter of 6 ft

If site specific soil information is not available then the values for \(K \) in Table 31F-7-4 may be used.

<table>
<thead>
<tr>
<th>SOIL TYPE</th>
<th>AVG UNDRAINED SHEAR STRENGTH [psf]</th>
<th>SUBGRADE MODULUS K [lb/in^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Clay</td>
<td>250-500</td>
<td>30</td>
</tr>
<tr>
<td>Medium Clay</td>
<td>300-1000</td>
<td>100</td>
</tr>
<tr>
<td>Stiff Clay</td>
<td>1000-2000</td>
<td>500</td>
</tr>
<tr>
<td>Very Stiff Clay</td>
<td>2000-4000</td>
<td>1000</td>
</tr>
<tr>
<td>Hard Clay</td>
<td>4000-8000</td>
<td>2000</td>
</tr>
<tr>
<td>Loose Sand (above WT/submerged)</td>
<td>—</td>
<td>25/20</td>
</tr>
<tr>
<td>Medium Sand (above WT/submerged)</td>
<td>—</td>
<td>90/60</td>
</tr>
<tr>
<td>Sand (above WT/submerged)</td>
<td>—</td>
<td>275/125</td>
</tr>
</tbody>
</table>

FIGURE 31F-7-4
INFLUENCE OF PILE/SOIL STIFFNESS RATIO ON PLASTIC HINGE LENGTH (after Fig. 5.30 of [7.1])

2010 CALIFORNIA BUILDING CODE 555
3107F.2.5.5.1 Unconfined concrete piles: An unconfined concrete pile is defined as a pile having no confinement steel or one in which the spacing of the confinement steel exceeds 12 inches.

Ultimate concrete compressive strain:

$$\varepsilon_{cu} = 0.005 \quad (7-11)$$

3107F.2.5.5.2 Confined concrete piles:

Ultimate concrete compressive strain [7.1]:

$$\varepsilon_{cu} = 0.004 + (1.4 \rho_s f_{sh} \varepsilon_m) f'_{cc} \geq 0.005 \quad (7-12)$$

where:

- $$\rho_s$$ = effective volume ratio of confining steel
- $$f_{sh}$$ = yield stress of confining steel
- $$\varepsilon_m$$ = strain at peak stress of confining reinforcement, 0.15 for grade 40, 0.10 for grade 60
- $$f'_{cc}$$ = confined strength of concrete approximated by 1.5 $$f'_{c}$$

3107F.2.5.6 Component acceptance/damage criteria. The maximum allowable concrete strains may not exceed the ultimate values defined in Section 3107F.2.5.5. The following limiting values (Table 31F-7-5) apply for each performance level for both existing and new structures. The “Level 1 or 2” refer to the seismic performance criteria (see Section 3104F.2.1).
For all nonseismic loading combinations, concrete components shall be designed in accordance with the ACI requirements [7.5].

Note that for existing facilities, the pile/deck hinge may be controlled by the capacity of dowel reinforcement in accordance with Section 317F.2.7.

TABLE 31F-7-5 LIMITS OF STRAIN

<table>
<thead>
<tr>
<th>COMPONENT STRAIN</th>
<th>LEVEL 1</th>
<th>LEVEL 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCCS Pile/deck hinge</td>
<td>$\varepsilon_c \leq 0.004$</td>
<td>$\varepsilon_c \leq 0.025$</td>
</tr>
<tr>
<td>MCCS In-ground hinge</td>
<td>$\varepsilon_c \leq 0.004$</td>
<td>$\varepsilon_c \leq 0.008$</td>
</tr>
<tr>
<td>MRSTS Pile/deck hinge</td>
<td>$\varepsilon_c \leq 0.01$</td>
<td>$\varepsilon_c \leq 0.05$</td>
</tr>
<tr>
<td>MRSTS In-ground hinge</td>
<td>$\varepsilon_c \leq 0.01$</td>
<td>$\varepsilon_c \leq 0.025$</td>
</tr>
<tr>
<td>MPSTS In-ground hinge</td>
<td>$\varepsilon_c \leq 0.005$</td>
<td>$\varepsilon_c \leq 0.025$ (total strain)</td>
</tr>
</tbody>
</table>

MCCS = Maximum Concrete Compression Strain, ε_c
MRSTS = Maximum Reinforcing Steel Tension Strain, ε_c
MPSTS = Maximum Prestressing Steel Tension Strain, ε_p

3107F.2.5.7 Shear design

If expected lower bound of material strength Section 3107F.2.1.1 Equations (7-2a, 7-2b, 7-2c) are used in obtaining the nominal shear strength, a new nonlinear analysis utilizing the upper bound estimate of material strength Section 3107F.2.1.1 Equations (7-3a, 7-3b, 7-3c) shall be used to obtain the plastic hinge shear demand. An alternative conservative approach is to multiply the maximum shear demand, V_{max} from the original analysis by 1.4 (Section 8.16.4.4.2 of ATC-32 [7.6]):

$$V_{design} = 1.4V_{max}$$ \hspace{1cm} (7-13)

If moment curvature analysis that takes into account strain-hardening, an uncertainty factor of 1.25 may be used:

$$V_{design} = 1.25V_{max}$$ \hspace{1cm} (7-14)

Shear capacity shall be based on nominal material strengths, and reduction factors according to ACI-318 [7.5].

As an alternative, the method of Kowalski and Priestley [7.7] may be used. Their method is based on a three-parameter model with separate contributions to shear strength from concrete (V_c), transverse reinforcement (V_s), and axial load (V_p) to obtain nominal shear strength (V_n):

$$V_n = V_c + V_s + V_p$$ \hspace{1cm} (7-15)

A shear strength reduction factor of 0.85 shall be applied to the nominal strength, V_n, to determine the design shear strength. Therefore:

$$V_{design} \leq 0.85V_n$$ \hspace{1cm} (7-16)

The equations to determine V_c, V_s, and V_p are:

$$V_c = k \sqrt{f'_c A_e}$$ \hspace{1cm} (7-17)

where:

k = factor dependent on the curvature ductility

$$\mu = \frac{\phi}{\phi_y}$$, within the plastic hinge region, from Figure 31F-7-6. For regions greater than $2D_p$ (see Equation 7-18) from the plastic hinge location, the strength can be based on $\mu_b = 1.0$ (see Ferritto et al. [7.2]).

f'_c = concrete compressive strength

A_e = effective shear area

Circular spirals or hoops [7.2]:

$$V_s = \frac{\pi A_{sp} f_{sh} (D_p - c - c_o) \cot(\theta)}{s}$$ \hspace{1cm} (7-18)

where:

A_{sp} = spiral or hoop cross section area

f_{sh} = yield strength of transverse or hoop reinforcement

D_p = pile diameter or gross depth (in case of a rectangular pile with spiral confinement)

c = depth from extreme compression fiber to neutral axis (IV.A.) at flexural strength (see Fig. 31F-7-7)

c_o = concrete cover to center of hoop or spiral (see Fig. 31F-7-7)

θ = angle of critical crack to the pile axis (see Fig. 31F-7-7) taken as 30° for existing structures, and 35° for new design

s = spacing of hoops or spiral along the pile axis

Rectangular hoops or spirals [7.2]:

$$V_s = A_{sh} f_{sh} (D_p - c - c_o) \cot(\theta)$$ \hspace{1cm} (7-19)

where:

A_{sh} = total area of transverse reinforcement, parallel to direction of applied shear cut by an inclined shear crack
Shear strength from axial mechanism, V_p (see Fig. 31F-7-8):

$$V_p = \Phi (N_u + F_p) \tan \alpha$$ \hspace{1cm} (7-20)

where:

- $N_u =$ external axial compression on pile including seismic load. Compression is taken as positive; tension as negative
- $F_p =$ prestress compressive force in pile
- $\alpha =$ angle between line joining centers of flexural compression in the deck/pile and in-ground hinges, and the pile axis
- $\Phi =$ 1.0 for existing structures, and 0.85 for new design

FIGURE 31F-7-8

AXIAL FORCE SHEAR MECHANISM

3107F.2.6 Steel piles.

3107F.2.6.1 General. The capacity of steel piles is based on allowable strains corresponding to the desired performance criteria and design earthquake.

3107F.2.6.2 Stability. Section 3107F.2.5.2 applies to steel piles.

3107F.2.6.3 Plastic hinge length. The plastic hinge length depends on the section shape and the slope of the moment diagram in the vicinity of the plastic hinge.

For plastic hinges forming in steel piles at the deck/pile interface and where the hinge forms in the steel section rather than in a special connection detail (such as a reinforced concrete dowel connection), allowance should be made for strain penetration into the pile cap. This increase may be taken as $0.25D_p$ where D_p is the pile diameter or pile depth in the direction of the applied shear force.

3107F.2.6.4 Ultimate flexural strain capacity. The following limiting value applies:

Strain at extreme-fiber, $\varepsilon_{u} \leq 0.035$

3107F.2.6.5 Component acceptance/damage criteria.

The maximum allowable strain may not exceed the ultimate value defined in Section 3107F.2.6.4. Table 31F-7-6 provides limiting strain values for each performance level, for both new and existing structures.

Steel components for noncompact hollow piles ($D_p/t < 0.07 \times E_{fy}$) and for all nonseismic loading combinations shall be designed in accordance with AISC [7.8].

TABLE 31F-7-6

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>LEVEL 1</th>
<th>LEVEL 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Filled Pipe</td>
<td>0.008</td>
<td>0.030</td>
</tr>
<tr>
<td>Hollow Pipe</td>
<td>0.008</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Level 1 or 2 refer to the seismic performance criteria (Section 3104F.2.1)

3107F.2.6.6 Shear design.** The procedures of Section 3107F.2.5.7, which are used to establish V_{design}, are applicable to steel piles.

The shear capacity shall be established from the AISC [7.8]. For concrete filled pipe, equation (7-15) may be used to determine shear capacity; however, V_{pile} must be substituted for V_p

$$V_{pile} = (\pi/2) t_{f, pile} (D_p - c - c_o) \cot \theta$$ \hspace{1cm} (7-21)

where:

- $t =$ steel pile wall thickness
- $f_{y, pile} =$ yield strength of steel pile
- $c_o =$ distance from outside of steel pipe to center of hoop or spiral

[All other terms are as listed for Equation (7-18)].

3107F.2.7 Pile/deck connection strength.

3107F.2.7.1 Joint shear capacity. The joint shear capacity shall be computed in accordance with ACI 318 [7.5]. For existing MOTs, the method [7.1, 7.2] given below may be used:

1. Determine the nominal shear stress in the joint region corresponding to the pile plastic moment capacity.

$$V_j = \frac{0.9M_p}{\sqrt{2l_{d}D_p^2}}$$ \hspace{1cm} (7-22)

where:

- $V_j =$ Nominal shear stress
- $M_p =$ Overstrength moment demand of the plastic hinge (the maximum possible moment in the pile) as determined from the procedure of Section 3107F.2.5.7.
- $l_{d} =$ Vertical development length, see Figure 31F-7-9
- $D_p =$ Diameter of pile
2. Determine the nominal principal tension p_t, stress in the joint region:

$$ p_t = \frac{f_a}{2} + \left(\frac{f_a}{2} \right)^2 + v_j^2 $$

(7-23)

where:

$$ f_a = \frac{N}{(D_p + h_d)^2} $$

(7-24)

is the average compressive stress at the joint center caused by the pile axial compressive force N and h_d is the deck depth. Note, if the pile is subjected to axial tension under seismic load, the value of N, and f_a will be negative.

If $p_t > 5.0 \sqrt{f_c'}$, psi, joint failure will occur at a lower moment than the column plastic moment capacity M_p. In this case, the maximum moment that can be developed at the pile/deck interface will be limited by the joint principal tension stress capacity, which will continue to degrade as the joint rotation increases, as shown in Figure 31F-7-10. The moment capacity of the connection at which joint failure initiates can be established from Equations 7-26 and 7-27.

For $p_t = 5.0 \sqrt{f_c'}$, determine the corresponding joint shear stress, v_j:

$$ v_j = \sqrt{p_t (p_t - f_a)} $$

(7-25)

3. The moment capacity of the connection can be approximated as:

$$ M_r = \left(\frac{1}{90} \right) \sqrt{2} v_j f_a D_p^2 \leq M_p $$

(7-26)

This will result in a reduced strength and effective stiffness for the pile in a pushover analysis. The maximum displacement capacity of the pile should be based on a drift angle of 0.04 radians.

If no mechanisms are available to provide residual strength, the moment capacity will decrease to zero as the joint shear strain increases to 0.04 radians, as shown in Figure 31F-7-11.

If deck stirrups are present within $h_d/2$ of the face of the pile, the moment capacity, $M_{c,r}$, at the maximum plastic rotation of 0.04 radians may be increased from zero to the following (see Figure 31F-7-12):

$$ M_{c,r} = 2 A_s f_s (h_d - d_e) + N \left(\frac{D_p}{2} - d_e \right) $$

(7-27)

A_s = Area of slab stirrups on one side of joint

h_d = See Figure 31F-7-9 (deck thickness)

d_e = Depth from edge of concrete to center of main reinforcement

In addition, the bottom deck steel ($A_{s, \text{deckbottom}}$) area within $h_d/2$ of the face of the pile shall satisfy:

$$ A_{s, \text{deckbottom}} \geq 0.5 \cdot A_s $$

(7-28)
4. Using the same initial stiffness as in Section 3107F.2.5.4, the moment-curvature relationship established for the pile top can now be adjusted to account for the joint degradation.

The adjusted yield curvature, \(\phi^*_y \), can be found from:

\[
\phi^*_y = \frac{\phi_y M_c}{M_n}
\]

(7-29)

\(M_n \) is defined in Figure 31F-7-5.

The plastic curvature, \(\phi_p \), corresponding to a joint rotation of 0.04 can be calculated as:

\[
\phi_p = \frac{0.04}{L_p}
\]

(7-30)

Where \(L_p \) is given by equation 7-5.

The adjusted ultimate curvature, \(\phi^*_u \), can now be calculated as:

\[
\phi^*_u = \phi_p + \frac{\phi_u M_{cr}}{M_n}
\]

(7-31)

Note that \(M_{cr} = 0 \) unless deck stirrups are present as discussed above. Examples of adjusted moment curvature relationships are shown in Figure 31F-7-13.

When the development length is less than that calculated by the equation 7-32, the moment capacity shall be calculated using a proportionately reduced yield strength, \(f_{ye,r} \), for the vertical pile reinforcement:

\[
f_{ye,r} = f_{ye} \frac{l_d}{l_{de}}
\]

(7-33)

where:

\(l_d = \) actual development length
\(f_{ye} = \) expected yield strength of dowel

3107F.2.8 Batter piles.

3107F.2.8.1 Existing ordinary batter piles. Wharves or piers with ordinary (not fused, plugged or having a seismic release mechanism) batter piles typically have a very stiff response when subjected to lateral loads in the direction of the batter. The structure often maintains most of its initial stiffness all the way to failure of the first row of batter piles. Since batter piles most likely will fail under a Level 2 seismic event, the following method may be used to evaluate the post-failure behavior of the wharf or pier:

1. Identify the failure mechanism of the batter pile-deck connection (refer to Section 3104F.4.7) for typical failure scenarios) and the corresponding lateral displacement.
2. Release the lateral load between the batter pile and the deck when the lateral failure displacement is reached.
3. Push on the structure until subsequent failure(s) have been identified.

As an example, following these steps will result in a force-displacement (pushover) curve similar to the one shown in Figure 31F-7-14 for a wharf supported by one row of batter piles.

When the row of batter piles fail in tension or shear, stored energy will be released. The structure will therefore experience a lateral displacement demand following the nonductile pile failures. If the structure can respond to this displacement demand without exceeding other structural limita-
tions, it may be assumed that the structure is stable and will start to respond to further shaking with a much longer period and corresponding lower seismic demands. The wharf structure may therefore be able to sustain larger seismic demands following the loss of the batter piles than before the loss of pile capacity, because of a much softer seismic response.

The area under the pushover curve before the batter pile failures is compared to the equivalent area under the post failure pushover curve (refer to Figure 31F-7-14). If no other structural limitations are reached with the new displacement demand, it is assumed that the structure is capable of absorbing the energy. It should be noted that even though the shear failure is nonductile, it is expected that energy will be absorbed and the damping will increase during the damage of the piles. The above method is, therefore, considered conservative.

Following the shear failure of a batter pile row, the period of the structure increases such that equal displacement can be assumed when estimating the post-failure displacement demand. The new period may be estimated from the initial stiffness of the post-failure system as shown in Figure 31F-7-14. A new displacement demand can then be calculated in accordance with Section 3104F.2.

3107F.2.8.2 Nonordinary Batter Piles. For the case of a plugged batter pile system, an appropriate displacement force relationship considering plug friction may be used in modeling the structural system.

For fused and seismic release mechanism batter pile systems, a nonlinear modeling procedure shall be used and peer reviewed (Section 3101F.6.1).

3107F.2.9 Concrete pile caps with concrete deck. Pile caps and decks are capacity protected components. Use the procedure of Section 3107F.2.5.7 to establish the over strength demand of the plastic hinges. Component capacity shall be based on nominal material strengths, and reduction factors according to ACI-318 [7.5].

3107F.2.9.1 Component acceptance/damage criteria. For new pile caps and deck, Level 1 seismic performance shall utilize the design methods in ACI-318 [7.5]; Level 2 seismic performance shall be limited to the following strains:

- Deck/pile cap: $\varepsilon_s \leq 0.005$
- Reinforcing steel tension strain: $\varepsilon_r \leq 0.01$

For existing pile caps and deck, the limiting strain values are defined in Table 31F-7-5.

Concrete components for all nonseismic loading combinations shall be designed in accordance with ACI318 [7.5].

3107F.2.9.2 Shear capacity (strength). Shear capacity shall be based on nominal material strengths; reduction factors shall be in accordance with ACI318 [7.5].

3107F.2.10 Concrete detailing. For new MOTs, the required development splice length, cover and detailing shall conform to ACI 318 [7.5], with the following exceptions:

1. For pile/deck dowels, the development length may be calculated in accordance with Section 3107F.2.7.2.
2. The minimum concrete cover for prestressed concrete piles shall be three inches, unless corrosion inhibitors are used, in which case a cover of two-and-one-half inches is acceptable.
3. The minimum concrete cover for wharf beams and slabs, and all concrete placed against soil shall be three inches, except for headed reinforcing bars (pilode dowels or shear stirrups) the cover may be reduced to two-and-one-half inch cover at the top surface only. If corrosion inhibitors are used, a cover of two-and-one-half inches is acceptable.

3107F.3 Timber piles and deck components.

3107F.3.1 Component strength. The following parameters shall be established in order to assess component strength:

New and existing components:
- 1. Modulus of rupture
- 2. Modulus of elasticity
- 3. Type and grade of timber

Existing components only:
- 1. Original cross-section shape and physical dimensions
- 2. Location and dimension of braced frames
- 3. Current physical condition of members including visible deformation
- 4. Degradation may include environmental effects (e.g., decay, splitting, fire damage, biological and chemical attack) including its effect on the moment of inertia, I
- 5. Loading and displacement effects (e.g., overload, damage from earthquakes, crushing and twisting)

Section 3104F.2.2 discusses existing material properties. At a minimum, the type and grade of wood shall be established. The adjusted design stress values in the ANSI/AF&PA NDS [7.9] may be used as default values by replacing the Format Conversion Factor of ANSI/AF&PA NDS [7.9] with the factor 2.8 divided by the Resistance Factor (Table N1 [7.9]).

For deck components, the adjusted design stresses shall be limited to the values of ANSI/AF&PA NDS [7.9]. Piling deformation limits shall be calculated based on the strain limits in accordance with Section 3107F.3.3.

The values shown in the ANSI/AF&PA NDS [7.9] are not developed specifically for MOTs and can be used as default properties only if as-built information is not available, the member is not.
damaged and testing is not performed. To account for the inherent uncertainty in establishing component capacities for existing structures with limited knowledge about the actual material properties, a reduction (knowledge) factor of \(k = 0.75 \) shall be included in the component strength and deformation capacity analyses in accordance with Section 3107F.2.1.2.

The modulus of elasticity shall be based on tests or the ANSI/IF&PA NDS Tables 6A and 6B [7.9]. Alternatively the values shown in Table 31F-7-7 may be used for typical timber piles.

TABLE 31F-7-7 [after (7.9)]

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>(E) (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Coast Douglas Fir</td>
<td>1,500,000</td>
</tr>
<tr>
<td>Red Oak</td>
<td>1,250,000</td>
</tr>
<tr>
<td>Red Pine</td>
<td>1,280,000</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>1,500,000</td>
</tr>
</tbody>
</table>

3107F.3.2 Deformation capacity of flexural members. The displacement demand and capacity of existing timber structures may be established per Section 3104F.2.

The soil spring requirements for the lateral pile analysis shall be in accordance with Section 3106F.

A linear curvature distribution may be assumed along the full length of a timber pile.

The displacement capacity of a timber pile can then be established per Section 3107F.3.3.2.

3107F.3.3 Timber piles.

3107F.3.3.1 Stability. Section 3107F.2.5.2 shall apply to timber piles.

3107F.3.3.2 Displacement capacity. A distinction shall be made between a pier-type pile, with a long unsupported length and a wharf-landside-type pile with a short unsupported length between the deck and soil. The effective length, \(L \), is the distance between the pinned deck/pile connection and in-ground fixity as shown in Figure 31F-7-15. For pier-type (long unsupported length) vertical piles, three simplified procedures to determine fixity or displacement capacity are described in UFC 4-151-10 [7.10], UFC 3-220-01A [7.11] and Chai [7.12].

In order to determine fixity in soft soils, another alternative is to use Table 31F-7-8.

The displacement capacity, \(\Delta \), for a pile pinned at the top, with effective length, \(L \), (see Table 31F-7-8 and UFC 4-151-10[7.10]), and moment, \(M \), is:

\[
\Delta = \frac{ML^2}{3EI}
\]

TABLE 31F-7-8

<table>
<thead>
<tr>
<th>PILE EI_D</th>
<th>SOFT CLAYS</th>
<th>LOOSE GRANULAR & MEDIUM CLAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10^{10} lb in^2</td>
<td>10 feet</td>
<td>8 feet</td>
</tr>
<tr>
<td>> 10^{10} lb in^2</td>
<td>12 feet</td>
<td>10 feet</td>
</tr>
</tbody>
</table>

3107F.3.3.3 Component acceptance/damage criteria. The following limiting strain values apply for each seismic performance level for existing structures:

TABLE 31F-7-9

<table>
<thead>
<tr>
<th>EARTHQUAKE LEVEL</th>
<th>MAX. TIMBER STRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>0.002</td>
</tr>
<tr>
<td>Level 2</td>
<td>0.004</td>
</tr>
</tbody>
</table>

For new and alternatively, for existing structures ANSI/AF&PA NDS [7.9] may be used.
Timber components for all nonseismic loading combinations shall be designed in accordance with ANSI/AF&PA NDS [7.9].

3107F.3.3.4 Shear design. To account for material strength uncertainties, the maximum shear demand, \(V_{\text{max}} \), established from the single pile lateral analysis shall be multiplied by 1.2:

\[
V_{\text{demand}} = 1.2V_{\text{max}} \quad (7-39)
\]

The factored maximum shear stress demand \(\tau_{\text{max}} \) in a circular pile can then be determined:

\[
\tau_{\text{max}} = \frac{10}{9}\frac{V_{\text{demand}}}{\pi \cdot r^2} \quad (7-40)
\]

where:
\(r \) = radius of pile

For the seismic load combinations, the maximum allowable shear stress, \(\tau_{\text{capacity}} \), is the design shear strength, \(\tau_{\text{design}} \), from the ANSI/AF&PA NDS [7.9] multiplied by a factor of 2.8.

\[
\tau_{\text{capacity}} = 2.8\tau_{\text{design}} \quad (7-41)
\]

The shear capacity must be greater than the maximum demand.

3107F.4 Retaining structures. Retaining structures constructed of steel or concrete shall conform to AISC [7.8] or ACI 318 [7.5] respectively. For the determination of static and seismic loads on the sheet pile and sheet pile behavior, the following references are acceptable: NCEL [7.13], Strom and Ebeling [7.14], and PIANC TC-7 (Technical Commentary - 7) [7.15]. The applied loads and analysis methodology shall be determined by a California registered geotechnical engineer, and may be subject to peer review.

3107F.5 Mooring and berthing components. Mooring components include bitts, bollards, cleats, pelican hooks, capstans, mooring dolphins and quick release hooks.

Berthing components include fender piles and fenders, which may be camels, fender panels or wales.

Applicable safety factors to be applied to the demand are provided in Section 3103F.10.

3107F.5.1 Component strength. The following parameters shall be established in order to calculate component strength:

New and existing components:

1. Yield and tensile strength of structural steel
2. Structural steel modulus of elasticity
3. Yield and tensile strength of bolts
4. Concrete infill compressive strength
5. Concrete infill modulus of elasticity

Additional parameters for existing components:

1. Condition of steel including corrosion
2. Effective cross-sectional areas

3. Condition of embedment material such as concrete slab or timber deck

3107F.5.2 Mooring and berthing component demand. The maximum mooring line forces (demand) shall be established per Section 3105F. Multiple lines may be attached to the mooring component at varying horizontal and vertical angles. Mooring components shall therefore be checked for all the mooring analysis load cases. The maximum demand on breasting dolphins and fender piles shall be established according to Sections 3103F.6 and 3105F.

3107F.5.3 Capacity of mooring and berthing components. The structural and connection capacity of mooring components bolted to the deck shall be established in accordance with AISC [7.8], ACI-318 [7.5], ANSI/AF&PA NDS [7.9] as appropriate. The mooring component capacity may be governed by the strength of the deck material. Therefore, a check of the deck capacity to withstand mooring component loads shall be performed.

3107F.6 Symbols.

\(A_s \) = Effective shear area
\(A_t \) = Uncracked, gross section area
\(A_h \) = Total area of transverse reinforcement, parallel to direction of applied shear cut by an inclined shear crack
\(A_{sp} \) = Area of reinforcing steel
\(A_{op} \) = Spiral or hoop cross section area
\(c \) = Depth from extreme compression fiber to neutral axis at flexural strength
\(c_d \) = Outside of steel pipe to center of hoop or spiral or concrete cover to center of hoop or spiral
\(c_u \) = Value of neutral axis depth at ultimate strength of section
\(D \) = Pile diameter
\(D^* \) = Reference diameter of 6 ft
\(D_b \) = Dowel bar diameter
\(d_c \) = Depth from edge of concrete to center of reinforcement
\(d_{bl} \) = Diameter of the longitudinal reinforcement
\(d_p \) = Pile diameter or gross depth (in case of a rectangular pile with spiral confinement)
\(e \) = Eccentricity of axial load
\(\varepsilon \) = Allowable strain limit
\(\varepsilon_{cm} \) = Max extreme fiber compression strain
\(\varepsilon_{cuw} \) = Ultimate concrete compressive strain
\(\varepsilon_{cm} \) = Strain at peak stress of confining reinforcement
\(\varepsilon_u \) = Ultimate steel strain
\(E \) = Modulus of elasticity
\(f'_{c} \) = Concrete compression strength
\(f'_{cc} \) = Confined strength of concrete
\[F_p = \text{Prestress compression force in pile} \]
\[f_p = \text{Yield strength of prestress strands} \]
\[f_s = \text{Yield strength of steel} \]
\[f_{sy} = \text{Design yield strength of longitudinal or dowel reinforcement (ksi)} \]
\[f_{th} = \text{Yield stress of confining steel} \]
\[f_{sh} = \text{Yield strength of transverse or hoop reinforcement} \]
\[f_{s,pc} = \text{Yield strength of steel pile} \]
\[f_{pt} = \text{Reduced dowel yield strength} \]
\[h = \text{Width of pile in considered direction} \]
\[h_d = \text{Deck depth} \]
\[H = \text{Distance from ground to pile point of contraflexure} \]
\[I_c = \text{Moment of inertia of uncracked section} \]
\[I_e = \text{Effective moment of inertia} \]
\[I_g = \text{Gross moment of inertia} \]
\[K = \text{Subgrade modulus} \]
\[k = \text{Factor dependent on the curvature ductility} \]
\[k = \text{Knowledge factor} \]
\[L = \text{The distance from the critical section of the plastic hinge to the point of contraflexure} \]
\[L_p = \text{Plastic hinge length} \]
\[l_{dc} = \text{Minimum development length} \]
\[l_d = \text{Existing development length} \]
\[l_v = \text{Vertical development length} \]
\[M_c = \text{Moment capacity of the connection} \]
\[M_{cr} = \text{Moment capacity at plastic rotation} \]
\[M_n = \text{Moment at secant stiffness} \]
\[M_p = \text{Moment as determined from a pushover analysis at displacements corresponding to the damage control limit state} \]
\[M_y = \text{Moment at first yield} \]
\[N = \text{Pile axial compressive force} \]
\[N_o = \text{External axial compression on pile including load due to earthquake action} \]
\[\rho_c = \text{Effective volume ratio of confining steel} \]
\[\rho_i = \text{Nominal principal tension} \]
\[r = \text{Radius of circular pile} \]
\[s = \text{Spacing of hoops or spiral along the pile axis} \]
\[t = \text{Pile wall thickness} \]
\[\Delta = \text{Displacement} \]
\[\Phi = 1.0 \text{ for existing structures, and } 0.85 \text{ for new design} \]
\[\alpha = \text{Angle between line joining centers of flexural compression in the deck/pile and in-ground hinges, and the pile axis} \]
\[\phi_a = \text{Allowable curvature} \]
\[\phi_m = \text{Maximum curvature} \]
\[\phi_p = \text{Plastic curvature} \]
\[\phi_u = \text{Ultimate curvature} \]
\[\phi_{u1} = \text{Adjusted ultimate curvature} \]
\[\phi_y = \text{Yield curvature} \]
\[\phi'_{y1} = \text{Adjusted yield curvature} \]
\[\tau_{max} = \text{Maximum shear stress} \]
\[V_c = \text{Concrete shear strength} \]
\[v_j = \text{Joint shear stress} \]
\[V_{d,design} = \text{Design shear strength} \]
\[V_{max} = \text{Maximum shear demand} \]
\[V_n = \text{Nominal shear strength} \]
\[V_s = \text{Transverse reinforcement shear capacity (strength)} \]
\[V_{p,se} = \text{Shear strength of steel pile} \]
\[\rho_{se} = \text{Effective volume ratio of confining steel} \]
\[\rho_l = \text{Nominal principal tension} \]
\[r = \text{Radius of circular pile} \]
\[s = \text{Spacing of hoops or spiral along the pile axis} \]
\[t = \text{Pile wall thickness} \]
\[\Delta = \text{Displacement} \]
\[\Phi = 1.0 \text{ for existing structures, and } 0.85 \text{ for new design} \]
\[\alpha = \text{Angle between line joining centers of flexural compression in the deck/pile and in-ground hinges, and the pile axis} \]
\[\phi_a = \text{Allowable curvature} \]
\[\phi_m = \text{Maximum curvature} \]
\[\phi_p = \text{Plastic curvature} \]
\[\phi_u = \text{Ultimate curvature} \]
\[\phi_{u1} = \text{Adjusted ultimate curvature} \]
\[\phi_y = \text{Yield curvature} \]
\[\phi'_{y1} = \text{Adjusted yield curvature} \]
\[\tau_{max} = \text{Maximum shear stress} \]
\[V_c = \text{Concrete shear strength} \]
\[v_j = \text{Joint shear stress} \]
\[V_{d,design} = \text{Design shear strength} \]
\[V_{max} = \text{Maximum shear demand} \]
\[V_n = \text{Nominal shear strength} \]
\[V_s = \text{Transverse reinforcement shear capacity (strength)} \]
\[V_{p,se} = \text{Shear strength of steel pile} \]

3107F.6 References.

Authority: Sections 8755 and 8757, Public Resources Code.
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
Division 8

SECTION 3108F
FIRE PREVENTION, DETECTION AND SUPPRESSION

3108F.1 General. This section provides minimum standards for fire prevention, detection and suppression at MOTs. See Section 3101F.3 for definitions of “new” (N) and “existing” (E).

3108F.2 Hazard assessment and risk analysis.

3108F.2.1 Fire hazard assessment and risk analysis (N/E). A fire hazard assessment and risk analysis shall be prepared by a registered engineer or a competent fire protection professional. The plan shall consider the hazards and risks identified per Section 3108F.2.1 and shall include, but not be limited to, the elements of prefire planning as discussed in Section 9 of [8.1] and Chapter 3 of [8.2]. The fire plan shall include goals, resources, organization, strategy and tactics, including the following:

1. MOT characteristics (e.g., tanker/terminal, product pipelines, etc.)
2. Product types and fire scenarios
3. Possible collateral fire damage to adjacent facilities
4. Fire-fighting capabilities, including availability of water (flow rates and pressure), foam type and associated shelf life, proportioning equipment, and vehicular access [8.1, 8.3]
5. The selection of appropriate extinguishing agents [8.1, 8.2]
6. Calculation of water and foam capacities, as applicable, consistent with area coverage requirements [8.1]
7. Coordination of emergency efforts
8. Emergency escape routes [8.2, 8.3]
9. Requirements for fire drills, training of personnel, and the use of equipment
10. Life safety
11. Rescue for terminal and vessel personnel [8.1]
12. Cooling water for pipelines and valves exposed to the heat
13. Contingency planning when supplemental fire support is not available. Mutual aid agreements can apply to water and land-based support
14. Consideration of adverse conditions, such as electrical power failure, steam failure, fire pump failure, an earthquake or other damage to the fire water system.

The audit team shall review and field verify the fire-fighting equipment locations and condition and may check its operability.

3108F.2.3 Cargo liquid and fire hazard classifications (N/E). The cargo liquid hazard classes are defined in Table 31F-8-1, as either High \(H_C \) or Low \(L_C \), depending on the flash point.

Fire hazard classifications (Low, Medium or High) are defined in Table 31F-8-2, and are based on the cargo liquid hazard class and the sum of all stored and flowing volumes, prior to the emergency shut down system (ESD) stopping the flow of oil.

The stored volume is the sum of the \(H_C \) and \(L_C \) liquid hazard class piping volumes \(V_{SH} \) and \(V_{SL} \), if the piping is not stripped.

During a pipeline leak, a quantity of oil is assumed to spill at the maximum cargo flow rate until the ESD is fully effective. The ESD valve closure is required to be completed in 60 seconds if installed prior to November 1, 1980 or in 30 seconds if installed after that date (2 CFR 2380(h) (3)[8.3]. The flowing volume is the sum of the \(H_C \) and \(L_C \) liquid hazard class volumes \(V_{FH} \) and \(V_{FL} \), and shall be calculated as follows:

\[
V_F = Q_C \times \Delta t \times (1/3600) \tag{8-1}
\]

where:

\[
V_F = \text{Flowing Volume (} V_{FH} \text{ or } V_{FL} \text{)} \text{[bbl]} \\
Q_C = \text{Cargo Transfer Rate [bbl/hr]} \\
\Delta t = \text{ESD time, 30 or 60 seconds}
\]

3108F.3 Fire prevention.

3108F.3.1 Ignition source control.

3108F.3.1.1 Protection from ignition by static electricity, lightning or stray currents shall be in accordance with API RP 2003 [8.5](N/E).

3108F.3.1.2 Requirements to prevent electrical arcing shall be in conformity with 2 CFR 2341 [8.3] (N/E).

3108F.3.1.3 Multibearer terminal piers shall be constructed so as to provide a minimum of 100 ft between adjacent manifolds (N).

3108F.3.2 Emergency shutdown systems. An essential measure of fire prevention is communications in conjunction with the emergency shutdown. The ESD and isolation system shall conform to 2 CFR 2380(h) [8.3] and 33 CFR 154.550 [8.6]. An ESD system shall include or provide:

1. An ESD valve, located near the dock manifold connection or loading arm (N/E).
2. ESD valves, with “Local” and “Remote” actuation capabilities (N).
3. Remote actuation stations strategically located, so that ESD valve(s) may be shut within required times (N).
4. Multiple actuation stations installed at strategic locations, so that one such station is located more than 100 feet from areas classified as Class I, Group D, Division 1 or 2 [8.7]. Actuation stations shall be
TABLE 31F-8-2
CARGO LIQUID HAZARD CLASS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>CRITERION</th>
<th>REFERENCE</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (L_L)</td>
<td>Flash Point ≥ 140°F</td>
<td>ISGOTT (Chapter 1, [8.4]) — Nonvolatile</td>
<td>#6 Heavy Fuel Oil, residuals, hunker</td>
</tr>
<tr>
<td>High (H_L)</td>
<td>Flash Point < 140°F</td>
<td>ISGOTT (Chapter 1, [8.4]) — Volatile</td>
<td>Gasoline, JP4, crude oils</td>
</tr>
</tbody>
</table>

TABLE 31F-8-2
FIRE HAZARD CLASSIFICATIONS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>STORED VOLUME (bbl)</th>
<th>FLOWING VOLUME (bbl)</th>
<th>CRITERIA (bbl)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>LOW</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>HIGH</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>HIGH</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>HIGH</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
<tr>
<td>HIGH</td>
<td>Stripped V_{SL}</td>
<td>V_{SH} V_{FL}</td>
<td>V_{FH} ≤ 1200</td>
</tr>
</tbody>
</table>

y = yes
n = no
Stripped = product purged from pipeline following product transfer event.
V_{SL} = stored volume of low-hazard class product
V_{SH} = stored volume of high-hazard class product
V_{FL} = volume of low-hazard class product flowing through transfer line during 30 - 60 secs. ESD.
V_{FH} = volume of high-hazard class product flowing through transfer line during 30 - 60 secs. ESD.
V_T = V_{SL} + V_{SH} + V_{FL} + V_{FH} = Total Volume (stored and flowing)
* Quantities are based on maximum flow rate, including simultaneous transfers.

3108F.3.3 Shore Isolation valves (SIV). Shore isolation valves (SIV) shall:
1. Be located onshore for each cargo pipeline. All SIVs shall be clustered together, for easy access (N).
2. Be clearly identified together with associated pipeline (N/E).
3. Have adequate lighting (N/E).
4. Be provided with communications or control circuits to synchronize simultaneous closure of the SIV system with the shut down of loading pumps (N).
5. Have a manual reset to restore the SIV system to an operational state after each shut down event (N).
6. Be provided with thermal expansion relief to accommodate expansion of the liquid when closed. Thermal relief piping shall be properly sized and routed around the SIV, into the downstream segment of the pipeline or into other containment (N/E).
7. An alarm to indicate failure of the primary power source (N).
8. A secondary (emergency) power source (N).
9. Periodic testing of the system (N).
10. Fireproofing of motors and control-cables that are installed in areas classified as Class I, Group D, Division 1 or 2 [8.7]. Fireproofing shall, at a minimum, comply with the recommendations of API Publication 2218 (see Section 6 of [8.8]) (N).

3108F.4 Fire detection. An MOT shall have a permanently installed automated fire detection or sensing system (N).

3108F.5 Fire alarms. Automatic and manual fire alarms shall be provided at strategic locations. The fire alarm system shall be arranged to provide a visual and audible alarm that can be readily discerned by all personnel at the MOT. Additionally,
visual and audible alarms shall be displayed at the Facility's Control Center (N/E).

If the fire alarm system is integrated with the ESD system, the operation shall be coordinated with the closure of SIVs, block valves and pumps to avoid adverse hydraulic conditions (N/E).

3108F.6 Fire suppression. Table 31F-8-3 gives the minimum provisions for fire-water flow rates and fire extinguishers. The table includes consideration of the fire hazard classification (Low, Medium or High), the cargo liquid hazard class (Low or High) and the vessel or barge size. The minimum provisions may have to be augmented for multi-berth terminals or those conducting simultaneous transfers, in accordance with the risks identified in the Fire Plan.

3108F.6.1 Coverage (N/E). The fire suppression system shall provide coverage for:

1. Marine structures including the pier/wharf and approach trestle
2. Terminal cargo manifold
3. Cargo transfer system including loading arms, hoses and hose racks
4. Vessel manifold
5. Sumps
6. Pipelines
7. Control stations

3108F.6.2 Fire hydrants. Hydrants shall be located not greater than 150 ft apart, along the wharf and not more than 300 ft apart on the approach trestle [8.4] (N). Additional hose connections shall be provided at the base of fixed monitors and upstream of the water and foam isolation valves.

Connections shall be accessible to fire trucks or mutual aid equipment as identified in the fire plan.

Hydrants and hoses shall be capable of applying two independent water streams covering the cargo manifold, transfer system, sumps and vessel manifold (N/E).

3108F.6.3 Fire water. The source of fire water should be reliable and provide sufficient capacity as determined in the fire plan.

1. All wet systems shall be kept pressurized (jockey pump or other means) (N/E).
2. Wet system headers shall be equipped with a low-pressure alarm wired to the control room (N).
3. Fire pumps shall be installed at a distance of at least 100 ft from the nearest cargo manifold area (N).
4. Hose connections for fireboats or tugboats shall be provided on the MOT fire water line, and at least one connection shall be an international shore fire connection at each berth [8.4]. Connections shall be installed at a safe access distance from the high-risk areas such as sumps, manifolds and loading arms (N/E).

3108F.6.4 Foam supply (N/E). Product flammability, foam type, water flow rates and application duration shall be considered in foam supply calculations.

Fixed foam proportioning equipment shall be located at a distance of at least 100 ft from the high-risk areas such as sumps, manifolds and loading arms, except where hydraulic limits of the foam delivery system require closer proximity.

MOTs shall have a program to ensure that foam is replaced according to the manufacturer's recommendations.

TABLE 31F-8-3

<table>
<thead>
<tr>
<th>FIRE HAZARD CLASSIFICATION (From Table 31F-8-2)</th>
<th>VESSEL AND CARGO LIQUID HAZARD CLASS (From Table 31F-8-1)</th>
<th>MINIMUM PROVISIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>Barge with Lc (including drums)</td>
<td>500 gpm of water</td>
</tr>
<tr>
<td></td>
<td>2 x 20 lb portable dry chemical and 2 x 110 lb wheeled dry chemical extinguishers or the equivalent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barge with Hc (including drums)</td>
<td>1,500 gpm of water</td>
</tr>
<tr>
<td></td>
<td>Tankers < 50 KDWT, handling Lc or Hc</td>
<td>2 x 20 lb portable dry chemical and 2 x 165 lb wheeled dry chemical extinguishers or the equivalent.</td>
</tr>
<tr>
<td></td>
<td>1,500 gpm of water</td>
<td>2 x 20 lb portable dry chemical and 2 x 165 lb wheeled dry chemical extinguishers or the equivalent.</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Tankers < 50 KDWT, handling Lc</td>
<td>2,000 gpm of water</td>
</tr>
<tr>
<td></td>
<td>4 x 20 lb portable dry chemical and 2 x 165 lb wheeled dry chemical extinguishers or the equivalent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tankers < 50 KDWT, handling Hc</td>
<td>3,000 gpm of water</td>
</tr>
<tr>
<td></td>
<td>4 x 20 lb portable dry chemical and 2 x 165 lb wheeled dry chemical extinguishers or the equivalent.</td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>Tankers < 50 KDWT, handling Lc or Hc</td>
<td>3,000 gpm of water</td>
</tr>
<tr>
<td></td>
<td>6 x 20 lb portable dry chemical and 4 x 165 lb wheeled dry chemical extinguishers or the equivalent.</td>
<td></td>
</tr>
<tr>
<td>LOW, MEDIUM, HIGH</td>
<td>Tankers > 50 KDWT, handling Lc or Hc</td>
<td>3,000 gpm of water</td>
</tr>
<tr>
<td></td>
<td>6 x 20 lb portable dry chemical and 4 x 165 lb wheeled dry chemical extinguishers or the equivalent.</td>
<td></td>
</tr>
</tbody>
</table>

Notes: \(Lc \) and \(Hc \) are defined in Table 31F-8-1. KDWT = Dead Weight Tons (Thousands)
3108F.6.5 Fire monitor systems. Fire monitors shall be located to provide coverage of MOT cargo manifolds, loading arms, hoses, and vessel manifold areas. This coverage shall provide at least two independent streams of water/foam. Monitors shall be located to provide an unobstructed path between the monitor and the target area (N/E).

If the vessel manifold is more than 30 ft above the wharf deck, the following factors shall be considered, in order to determine if monitors located on elevated masts or towers are required (N/E):

1. Maximum tanker freeboard
2. Tidal variations
3. Pier/wharf/loading platform elevation
4. Winds
5. Fire water line pressure

Sprinklers and/or remotely controlled water/foam monitors shall be installed to protect personnel, escape routes, shelter locations and the fire water system (N).

Isolation valves shall be installed in the fire water and the foam lines in order to segregate damaged sections without disabling the entire system. Readily accessible isolation valves shall be installed 100 -150 ft from the manifold and the loading arm/hose area (N).

3108F.6.6 Supplemental Fire Suppression Systems (E). A supplemental system is an external waterborne or land-based source providing suppressant and equipment. Supplemental systems may not provide more than one-quarter of the total water requirements specified in the fire plan.

Additionally, supplementary systems shall not be considered in a fire plan, unless available within 20 minutes following the initiation of a fire alarm. Mutual aid may be considered as part of the supplemental system.

3108F.7 References.

[8.3] 2 CCR 2300-2407 (Title 2, California Code of Regulations, Sections 2300-2407).

3109F General. This section provides minimum engineering standards for piping, pipelines, valves, supports and related appurtenances at MOTs. This section applies to piping and pipelines used for transferring:

1. Oil (see Section 3101F.1) to or from tank vessels or barges
2. Oil within the MOT
3. Vapors, including Volatile Organic Compounds (VOCs)
4. Inerting or enriching gases to vapor control systems

Additionally, it also applies to piping or pipelines providing services, which includes stripping, sampling, venting, vapor control and fire water.

See Section 3101F.3 for definitions of “new” (N) and “existing” (E).

3109F.2 Oil piping and pipeline systems. All pressure piping and pipelines for oil service shall conform to the provisions of API Standard 2610 [9.1], ASME B31.3 [9.2] or B31.4 [9.3] as appropriate, including the following:

1. All piping/pipelines shall be documented on current P&ID’s (N/E).
2. Piping and pipeline systems shall be installed above deck (N).
3. The systems shall be arranged in a way not to obstruct access to and removal of other piping components and equipment (N).
4. Flexibility shall be achieved through adequate expansion loops or joints (N/E).
5. A guide or lateral restraint shall be provided just past the elbow where a pipe changes direction in order to minimize excessive axial stress (N).
6. Piping shall be routed to allow for movement due to thermal expansion and seismic displacement, without exceeding the allowable stresses in the supports, and anchor connections (see Section 3109F.3) (N/E).
7. Plastic piping shall not be used unless designated for oil service (N/E).
8. If a flanged connection exists within 20 pipe diameters from the end of any replaced section, the pipe shall be replaced up to and including the flange.
9. Pipelines shall be seamless, electric-resistance-welded or electric-fusion-welded (N).
10. Piping greater than 2 inches in diameter shall be butt-welded. Piping 2 inches and smaller shall be socket welded or threaded.
11. Pipeline connections directly over the water shall be welded (N). Flanged connections not over water shall have secondary containment (N).

12. Pipelines that do not have a valid and certified Static Liquid Pressure Test (SLPT) [9.4] shall be marked “OUT OF SERVICE.” Out-of-service piping and pipelines shall be purged, gas-freed and physically isolated from sources of oil.
13. If a pipeline is “out-of-service” for 3 or more years, it will require Division approval prior to re-use.

3109F.3 Pipeline stress analysis (N/E). Pipeline stress analysis shall be performed for:

1. New piping and pipelines
2. Significant rerouting/relocation of existing piping
3. Any replacement of “not in-kind” piping
4. Any significant rearrangement or replacement of “not in-kind” anchors and/or supports
5. Significant seismic displacements calculated from the structural assessment

Piping stress analysis shall be performed in accordance with ASME B31.4 [9.3], considering all relevant loads and corresponding displacements determined from the structural analysis described in Section 3104F:

Flexibility analysis for piping, considering supports, shall be performed in accordance with ASME B31.4 [9.3] by using the largest temperature differential imposed by normal operation, start-up, shutdown or abnormal conditions. Thermal loads shall be based upon maximum and minimum local temperatures; heat traced piping shall use the maximum attainable temperature of the heat tracing system.

To determine forces at sliding surfaces, the coefficients of static friction shown in Table 31F-9-1 shall be used.

<table>
<thead>
<tr>
<th>SLIDING SURFACE MATERIALS</th>
<th>COEFFICIENT OF STATIC FRICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon on Teflon</td>
<td>0.10</td>
</tr>
<tr>
<td>Plastic on Steel</td>
<td>0.35</td>
</tr>
<tr>
<td>Steel on Steel</td>
<td>0.40</td>
</tr>
<tr>
<td>Steel on Concrete</td>
<td>0.45</td>
</tr>
<tr>
<td>Steel on Timber</td>
<td>0.49</td>
</tr>
</tbody>
</table>

3109F.4 Anchors and supports. Anchors and supports shall conform to ASME B31.3 [9.2], ASME B31.4 [9.3], API Standard 2610 [9.1] and the ASCE Guidelines [9.5](N).

A seismic assessment shall be performed for existing anchors and supports using recommendations in Section 7 of CalARP [9.6] or Chapter 11 of FEMA 356 [9.7], as appropriate (E).

3109F.5 Appurtenances.

3109F.5.1 Valves and fittings. Valves and fittings shall meet the following requirements:

1. Conform to ASME B31.4 [9.3], API Standard 609 [9.8] and ASME B16.34 [9.9], as appropriate, based on their service (N).
2. Conform to Section 8 of [9.1] (N/E).
3. Stems shall be oriented in a way not to pose a hazard in operation or maintenance (N/E).

4. Nonductile iron, cast iron, and low-melting temperature metals shall not be used in any hydrocarbon service, fire water or foam service (N/E).

5. Double-block and bleed valves shall be used for manifold valves. (N/E).

7. Swing check valves shall not be installed in vertical down-flow piping (N/E).

8. Pressure relief devices shall be used in any closed piping system that has the possibility of being over pressurized due to temperature increase (thermal relief valves) or surging (N/E).

10. Discharge from pressure relief valves shall be directed into lower pressure piping for recycling or proper disposal. Discharge shall never be directed into the open environment, unless secondary containment is provided (N/E).

11. Threaded, socket-welded, flanged and welded fittings shall conform to Section 8 of [9.1] (N/E).

3109F.5.2 Valve actuators (N/E).

1. Actuators shall have a readily accessible, manually operated overriding device to operate the valve during a power loss.

2. Torque switches shall be set to stop the motor closing operation at a specified torque setting.

3. Limit switches shall be set to stop the motor opening operation at a specified limit switch setting.

4. Critical valves shall be provided with thermal insulation. The insulation shall be inspected and maintained at periodic intervals. Records of thermal insulation inspections and condition shall be maintained for at least 6 years.

5. Electrical insulation for critical valves shall be measured for resistance following installation and retested periodically. These records shall be maintained for at least 6 years.

3109F.6 Utility and auxiliary piping systems. Utility and auxiliary piping includes service for:

1. Stripping and sampling
2. Vapor control
3. Fire water and foam
4. Natural gas
5. Compressed air, venting and nitrogen

Stripping and sampling piping shall conform to Section 3109F.2 (N/E).

Firewater and foam piping and fittings shall meet the following requirements:

1. Conform to ASME B16.5 [9.14]
2. Fire mains shall be carbon steel pipe (N/E)
3. High density polyethylene (HDPE) piping may be used for buried pipelines (N/E)
4. Piping shall be color-coded (N/E)

Compressed air, venting and nitrogen piping and fittings shall conform to ASME B 31.3 [9.2] (N).

3109F.7 References.

[9.4] 2 CCR 2550 - 2556, 2560 - 2571 (Title 2, California Code of Regulations (CCR), Sections 2550-2556, 2560-2571).

Authority: Sections 8755 and 8757, Public Resources Code.
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
Section 3110F
Mechanical and Electrical Equipment

3110F.1 General. This section provides the minimum standards for mechanical and electrical equipment at MOTs.

See Section 3101F.3 for definitions of “new” (N) and “existing” (E).

3110F.2 Marine loading arms.

3110F.2.1 General criteria. Marine loading arms and ancillary systems shall conform to 2 CCR 2380 (b) [10.1], 33 CFR 154.510 [10.2] and the “Design and Construction Specification for Marine Loading Arms,” [10.3].

The following shall be considered when determining the loading arm maximum allowable extension limits:

1. Vessel sizes and manifold locations
2. Lowest-low water level (datum)
3. Highest-high water level
4. Maximum vessel surge and sway
5. Maximum width of fendering system

3110F.2.2 Electrical and hydraulic power systems.

3110F.2.2.1 Pressure and control systems (N).

1. Pressure gauges shall be mounted in accordance with ASME B40.100-1 998 [10.4].
2. The hydraulic drive cylinders shall be mounted and meet either the mounting requirements of ANSI/NFPA T3. 6.7 R2 -1 996 [10.5] or equivalent.
3. In high velocity current (> 1.5 knots) areas, all new marine loading arms shall be fitted with quick disconnect couplers and emergency quick release systems in conformance with Sections 6.0 and 7.0 of [10.3]. In complying with this requirement, attention shall be paid to the commentary and guidelines in Part III of reference [10.3].
4. Out-of-limit, balance and the approach of out-of-limit alarms shall be located at or near the loading arm console.

3110F.2.2.2 Electrical components (N). The following criteria shall be implemented:

1. Equipment shall be provided with a safety disconnecting device to isolate the entire electrical system from the electrical mains in accordance with Article 430 of the National Electric Code (NEC), [10.6].
2. Motor controllers and 3-pole motor overload protection shall be installed and sized in accordance with Article 430, NEC [10.6].
3. Control circuits shall be limited to 120 volts and shall comply with Articles 500 and 501 of the NEC [10.6]. Alternatively, intrinsically safe wiring and controls may be provided in accordance with Article 504, NEC [10.6] and ANSI/UL Std. No. 913 [10.7].
4. Grounding and bonding shall comply with the requirements of Article 430, NEC [10.6] and Section 3111F.

Section 3111F includes requirements for electrical equipment, wiring, cables, controls and electrical auxiliaries located in hazardous areas.

3110F.2.2.3 Remote operation. The remote control system, where provided, shall conform to the recommendations of the OCIMF [10.3]. The remote operation shall be facilitated by either a pendant control system or by a hand-held radio controller (N).

The pendant control system shall be equipped with a plug-in capability to an active connector located either in the vicinity of the loading arms, or at the loading arm outboard end on the triple swivel, and hard-wired into the control console. The umbilical cord running from the triple swivel to the control console shall be attached to the loading arm. Other umbilical cords shall have sufficient length to reach the maximum operational limits (N).

The radio controller if installed shall comply with 2 CCR 2370(e) [10.8] and 47 CFR Part 15 [10.9] requirements for transmitters operating in an industrial environment (N/E).

3110F.3 Oil transfer hoses (N/E). Hoses for oil transfer service shall be in compliance with 2 CCR 2380(a) [10.10] and 33 CFR 1 54.500 [10.11].

Hoses with diameters of 6 inches or larger shall have flanges that meet ANSI B1. 6.5 [10.12]. Hoses with diameters of 4 inches or less may have quick disconnect fittings provided that they meet ASTM F-1122 [10.13].

3110F.4 Lifting equipment: winches and cranes. Lifting equipment shall conform to [10.1 4], [10.15], [10.16] and [10.1 7]. Electrical equipment shall conform to the provisions of Section 3111F.

3110F.4.1 Winches.

1. Winches and ancillary equipment shall be suitable for a marine environment (N/E).
2. Winches shall be provided with a fail-safe braking system, capable of holding the load under all conditions, including a power failure (N/E).
3. Winches shall be fully reversible (N).
4. Shock, transient and abnormal loads shall be considered when selecting winch systems (N).
5. Winches shall have limit switches and automatic trip devices to prevent over-travel of the drum in either direction. Limit switches shall be tested, and demonstrated to function correctly under operating condi-
tions without inducing undue tensions or slack in the
winch cables (N/E).
6. Under all operating conditions, there shall be at least
two full turns of cable on grooved drums, and at least
three full turns on ungrooved drums (N/E).
7. Moving winch parts which present caught-in hazards
to personnel shall be guarded (N/E).
8. Winches shall have clearly identifiable and readily
accessible stop controls (N/E).

3110F.4.2 Cranes (N/E).
1. Cranes shall not be loaded in excess of the manufac-
turer’s rating except during performance tests.
2. Drums on load-hoisting equipment shall be equipped
with positive holding devices.
3. Under all operating conditions, there shall be at least
two full turns of cable on grooved drums, and at least
three full turns on ungrooved drums.
4. Braking equipment shall be capable of stopping, low-
ering, and holding a load of at least the full test load.
5. When not in use, crane booms shall be lowered to
ground level or secured to a rest support against dis-
placement by wind loads or other outside forces.
6. Safety systems including devices that affect the safe
lifting and handling, such as interlocks, limit
switches, load/moment and overload indicators with
shutdown capability, emergency stop switches,
radius and locking indicators, shall be provided
[10.18].

3110F.5 Shore-to-vessel access for personnel. This section
applies to shore-to-vessel means of access for personnel and
equipment provided by the terminal. This includes ancillary
structures and equipment, which support, supplement, deploy
and maneuver such vessel access systems.

Shore-to-vessel access for personnel shall conform to 29
CFR 1918.22 [10.19], Sections 19(b) and 21(b) of 10.20,
Chapter 16.4 of [10.21] and the following:
1. Shore-to-vessel access systems shall be designed to with-
stand the forces from dead, live, wind, vibration, impact
loads and the appropriate combination of these loads.
The design shall consider all the critical positions of the
system in the stored, maintenance, maneuvering and
deployed positions, where applicable (N).
2. The minimum live load shall be 50 psf on walkways and
25 plf with a 200 pounds minimum concentrated load in
any location or direction on handrails (N).
3. The walkway shall be not less than 36 inches in width
(N) and not less than 20 inches for existing walkways (E).
4. The shore-to-vessel access system shall be positioned so
as to not interfere with the safe passage or evacuation of
personnel (N/E).
5. Guardrails shall be provided on both sides of the access
systems with a clearance between the inner most sur-
faces of the guardrails of not less than 36 inches and
shall be maintained for the full length of the walkway
(N).
6. Guardrails shall be at a height not less than 33 inches
above the walkway surface and shall include an interme-
diate rail located midway between the walkway surface
and the top rail (N/E).
7. The walkway surface, including self-leveling treads, if so
equipped, shall be finished with a safe nonslip footing
accommodating all operating gangway inclinations
(N/E).
8. Under no circumstances shall the operating inclination of
the walkway exceed 60 degrees from the horizontal or
the maximum angle recommended by the manufacturer,
whichever is less (N/E).
9. The undersides of aluminum gangways shall be pro-
ected with hard plastic or wooden strips to prevent
being dragged or rubbed across any steel deck or com-
ponent (N/E).

3110F.6 Sumps, discharge containment and ancillary equip-
ment. Sumps, discharge containment and ancillary equipment
shall conform to 2 CCR 2380(f) [10.22], 33 CFR 1 54.530
[10.23] and the following:
1. Sumps for oil drainage shall be equipped with pres-
sure/vacuum vents, automatic draining pumps and shall
be tightly covered (N/E).
2. Sumps which provide drainage for more than one berth
should be equipped with liquid seals so that a fire on one
berth does not spread via the sump (N/E).
3. Sumps shall be located at least 25ft from the manifolds,
bases of the loading arms or hose towers (N).
4. Conduct periodic integrity testing of the sump containers
and periodic integrity and leak testing of the related
valves and piping.

3110F.7 Vapor control systems. Vapor control systems shall
conform to 33 CFR 154.800 through 154.850 [10.24] and API
Standard 2610 [10.25]. The effects of seismic, wind, dead, live
and other loads shall be considered in the analysis and design
of individual tie-downs of components, such as of steel skirts,
vessels, controls and detonation arresters. The analysis and
design shall include the load transfer to supporting deck/pile
structures or foundation elements.

3110F.8 Equipment anchors and supports. For new (N) elec-
trical and mechanical equipment, the seismic lateral loads
demand shall be calculated using the methods of Section 6.4
of FEMA 450 [10.26]. The design for load transfer to the wharf
deck shall use the same procedures as for mooring and berthing
components (see Section 3107F.5.3).

For existing (E) equipment, the seismic assessment shall be
performed in accordance with CalARP [10.27], FEMA 356
[10.28] or ASCE Guidelines [10.29].

3110F.9 References.
[10.1] 2 CCR 2380(b), Title 2, California Code of Regu-
lations, Section 2380(b), Loading Arms.
[10.2] 33 CFR 154.510, Title 33 Code of Federal Regula-
tions Section 1 54.510.

[10.8] 2 CCR2370(e), Title 2 California Code of Regulations, Section 2370(e).

[10.10] 2 CCR 2380(a), Title 2, California Code of Regulations, Section 2380(a).

[10.22] 2 CCR 2380(f), Title 2, California Code of Regulations, Section 2380(f), Small Discharge Containment.

[10.24] 33 CFR 1 54.800 through 1 54.850, Title 33 Code of Federal Regulations, Sections 1 54.800 through 1 54.850.

Authority: Sections 8755 and 8757, Public Resources Code.
Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
Division 11

SECTION 3111F
ELECTRICAL SYSTEMS

3111F.1 General. This section provides minimum standards for electrical systems at marine oil terminals.

Electrical systems include the incoming electrical service and components, the electrical distribution system, branch circuit cables and the connections. Also included are:

1. Lighting, for operations, security and navigation
2. Controls for mechanical and electrical equipment
3. Supervision and instrumentation systems for mechanical and electrical equipment
4. Grounding and bonding
5. Corrosion protection through cathodic protection
6. Communications and data handling systems
7. Fire detection systems
8. Fire alarm systems
9. Emergency shutdown systems (ESD)

All electrical systems shall conform to API RP 540 [11.1] and the National Electrical Code (NEC) [11.2].

See Section 3101F.3 for definitions of “new” (N) and “existing” (E).

3111F.2 Hazardous area designations and plans (N/E). Area classifications shall be determined in accordance with API RP 500 [11.3], API RP 540 [11.1] and the NEC, Articles 500, 501, 504, 505 and 515 [11.2]. A marine oil terminal shall have a current set of scaled plan drawings, with clearly designated areas showing the hazard class, division and group. The plan view shall be supplemented with sections, elevations and details to clearly delineate the area classification at all elevations starting from low water level. The drawings shall be certified by a professional electrical engineer. The plans shall be reviewed, and revised when modifications to the structure, product or equipment change hazardous area identifications or boundaries.

3111F.3 Identification and tagging. All electrical equipment, cables and conductors shall be clearly identified by means of tags, plates, color coding or other effective means to facilitate troubleshooting and improve safety, and shall conform to the identification carried out for the adjacent on-shore facilities (N). Topics for such identification are found in the NEC Articles 110, 200, 210, 230, 384, 480 and 504 [11.2]. Existing electrical equipment (E) shall be tagged.

Where identification is necessary for the proper and safe operation of the equipment, the marking shall be clearly visible and illuminated (N/E). A coded identification system shall apply to all circuits, carrying low or high voltage power, control, supervisory or communication (N).

3111F.4 Purged or pressurized equipment in hazardous locations (N/E). Purged or pressurized enclosures shall be capable of preventing the entry of combustible gases into such spaces, in accordance with NFPA 496 [11.4]. Special emphasis shall be placed on reliability and ease of operation. The pressurizing equipment shall be electrically monitored and alarms shall be provided to indicate failure of the pressurizing or purging systems.

3111F.5 Electrical service. Where critical circuits are used for spill prevention, fire control or life safety, an alternative service derived from a separate source and conduit system, shall be located at a safe distance from the main power service. A separate feeder from a double-ended substation or other source backed up by emergency generators will meet this requirement. An uninterrupted power service (UPS) shall be provided for control and supervisory circuits associated with ESD systems (N).

1. Electrical, instrument and control systems used to activate equipment needed to control a fire or mitigate its consequences shall be protected from fire and remain operable for 15 minutes in a 2000°F fire, unless designed to fail-safe during fire exposure. The temperature around these critical components shall not exceed 200°F during 15 minutes of fire exposure (N).
2. Wiring in fireproofed conduits shall be derated 15 percent to account for heat buildup during normal operation. Type MI (mineral insulated, metal sheathed [11.2]) cables may be used in lieu of fireproofing of wiring (N).
3. Emergency cables and conductors shall be located where they are protected from damage caused by traffic, corrosion or other sources (N).
4. Allowance shall be made for electrical faults, overvoltages and other abnormalities (N).

Where solid state motor controls are used for starting and speed control, corrective measures shall be incorporated for mitigating the possible generation of harmonic currents that may affect the ESD or other critical systems (N).

3111F.6 Grounding and bonding (N/E).

1. All electrical equipment shall be effectively grounded as per NEC Article 250 [11.2]. All noncurrent carrying metallic equipment, structures, piping and other elements shall also be effectively grounded.
2. Grounding shall be considered in any active corrosion protection system for on-shore piping, submerged support structures or other systems. Insulation barriers, including flanges or nonconducting hoses shall be used to isolate cathodic protection systems from other electrical/static sources. None of these systems shall be compromised by grounding or bonding arrangements that may interconnect the corrosion protection systems or interfere with them in any way that would reduce their effectiveness.
3. Bonding of vessels to the MOT structure is not permitted (2 CCR 2341 (f)) [11.5].
4. Whenever flanges of pipelines with cathodic protection are to be opened for repair or other work, the flanges shall be bonded prior to separation.
5. Direct wiring to ground shall be provided from all towers, loading arms or other high structures that are susceptible to lightning surges or strikes.

3111F.7 Equipment specifications (N). All electrical systems and components shall conform to National Electrical Manufacturers Association (NEMA) standards or be certified by a Nationally Recognized Testing Laboratory (NRTL).

3111F.8 Illumination (N/E). Lighting shall conform to 2 CCR 2365 [11.6] and 33 CFR 154.570 (d) [11.7].

3111F.9 Communications and control systems.

3111F.9.1 Communication systems (N/E). Communication systems shall comply with 2 CCR 2370 [11.8], and conform to Section 6 of [11.9].

3111F.9.2 Overfill monitoring and controls (N/E). Overfill protection systems shall conform to Appendix C of API RP 2350 [11.10]. These systems shall be tested before each transfer operation or monthly, whichever is less frequent. Where vessel or barge overfill sensors and alarms are provided, they shall comply with 33 CFR 154.812 [11.11].

All sumps shall be provided with level sensing devices to initiate an alarm to alert the operator at the approach of a high level condition. A second alarm shall be initiated at a high-high level to alert the operator. Unless gravity drainage is provided, sumps must have an automatic pump, programmed to start at a predetermined safe level.

3111F.10 Corrosion protection.

3111F.10.1 Corrosion assessment (N/E). An assessment shall be performed to determine the existing and potential corrosion. This assessment should include all steel or metallic components, including the structure, pipelines, supports or other ancillary equipment, with drawings and specifications for corrosion prevention/protection. The assessment shall be performed by a licensed professional engineer, using the methods and criteria prescribed in [11.12].

3111F.10.2 Inspection, testing and records (N/E). For sacrificial anode systems, periodic underwater inspections shall be performed and observations recorded. For impressed current systems, monthly rectifier readings and annual potential readings of the protected components shall be taken. If potential readings for steel structures are outside of acceptable limits (between -0.85 [11.13] and -1.10 Volts), corrective actions shall be taken. Voltage drops other than across the structure-to-electrolyte boundary must be considered for valid interpretations of potential measurement. Consideration is understood to mean the application of sound engineering practice in determining the significance of voltage drops by methods such as:

1. Measuring or calculating voltage drop(s)
2. Reviewing historical performance of the cathodic protection system (CPS)
3. Evaluating the physical and electrical characteristics of the structure and the environment
4. Determining whether or not there is physical evidence of corrosion

All isolating sections shall be tested immediately after installation or replacement, and, at a minimum, annually. Test results shall be recorded and documented. Electrical tests on isolating flanges shall make use of specialized insulator testers. These tests shall make use of RF signals, capacitive measurements or other means to clearly determine whether an insulating flange is shorted or open circuited without being affected by pipe-to-soil potentials, cathodic protection voltages or whether it is buried or exposed.

The cathodic protection inspection for buried or submerged pipelines shall conform to API 570 [11.14].

Insulating and isolating arrangements for protection against static, stray and impressed currents shall be tested in accordance with 2 CCR 2341(d) and 2380 [11.15].

3111F.11 References.

[11.5] 2 CCR 2341(f), Title 2, California Code of regulations, Section 2341(f).

[11.8] 2 CCR 2370, Title 2 California Code of Regulations, Section 2370.

[11.12] National Association of Corrosion Engineers (NACE), Standard Recommended Practice, 1994, RP01 76-1 994 “Corrosion Control of Steel Fixed
Offshore Platforms Associated with Petroleum Production,” Houston, TX.

[11.15] 2 CCR 2341(d) and 2380, Title 2, California Code of Regulations, Sections 2341(d) and 2380.

Authority: Sections 8755 and 8757, Public Resources Code.

Reference: Sections 8750, 8751, 8755 and 8757, Public Resources Code.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 32 – ENCROACHMENTS INTO THE PUBLIC RIGHT-OF-WAY

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal’s adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 32
ENCROACHMENTS INTO THE PUBLIC RIGHT-OF-WAY

SECTION 3201
GENERAL

3201.1 Scope. The provisions of this chapter shall govern the encroachment of structures into the public right-of-way.

3201.2 Measurement. The projection of any structure or portion thereof shall be the distance measured horizontally from the lot line to the outermost point of the projection.

3201.3 Other laws. The provisions of this chapter shall not be construed to permit the violation of other laws or ordinances regulating the use and occupancy of public property.

3201.4 Drainage. Drainage water collected from a roof, awning, canopy or marquee, and condensate from mechanical equipment shall not flow over a public walking surface.

SECTION 3202
ENCROACHMENTS

3202.1 Encroachments below grade. Encroachments below grade shall comply with Sections 3202.1.1 through 3202.1.3.

3202.1.1 Structural support. A part of a building erected below grade that is necessary for structural support of the building or structure shall not project beyond the lot lines, except that the footings of street walls or their supports which are located at least 8 feet (2438 mm) below grade shall not project more than 12 inches (305 mm) beyond the street lot line.

3202.1.2 Vaults and other enclosed spaces. The construction and utilization of vaults and other enclosed spaces below grade shall be subject to the terms and conditions of the applicable governing authority.

3202.1.3 Areaways. Areaways shall be protected by grates, guards or other approved means.

3202.2 Encroachments above grade and below 8 feet in height. Encroachments into the public right-of-way above grade and below 8 feet (2438 mm) in height shall be prohibited except as provided for in Sections 3202.2.1 through 3202.2.3. Doors and windows shall not open or project into the public right-of-way.

3202.2.1 Steps. Steps shall not project more than 12 inches (305 mm) and shall be guarded by approved devices not less than 3 feet (914 mm) high, or shall be located between columns or pilasters.

3202.2.2 Architectural features. Columns or pilasters, including bases and moldings shall not project more than 12 inches (305 mm). Belt courses, lintels, sills, architraves, pediments and similar architectural features shall not project more than 4 inches (102 mm).

3202.2.3 Awnings. The vertical clearance from the public right-of-way to the lowest part of any awning, including valances, shall be 7 feet (2134 mm) minimum.

3202.3 Encroachments 8 feet or more above grade. Encroachments 8 feet (2438 mm) or more above grade shall comply with Sections 3202.3.1 through 3202.3.4.

3202.3.1 Awnings, canopies, marquees and signs. Awnings, canopies, marquees and signs shall be constructed so as to support applicable loads as specified in Chapter 16. Awnings, canopies, marquees and signs with less than 15 feet (4572 mm) clearance above the sidewalk shall not extend into or occupy more than two-thirds the width of the sidewalk measured from the building. Stanchions or columns that support awnings, canopies, marquees and signs shall be located not less than 2 feet (610 mm) in from the curb line.

3202.3.2 Windows, balconies, architectural features and mechanical equipment. Where the vertical clearance above grade to projecting windows, balconies, architectural features or mechanical equipment is more than 8 feet (2438 mm), 1 inch (25 mm) of encroachment is permitted for each additional 1 inch (25 mm) of clearance above 8 feet (2438 mm), but the maximum encroachment shall be 4 feet (1219 mm).

3202.3.3 Encroachments 15 feet or more above grade. Encroachments 15 feet (4572 mm) or more above grade shall not be limited.

3202.3.4 Pedestrian walkways. The installation of a pedestrian walkway over a public right-of-way shall be subject to the approval of the applicable governing authority. The vertical clearance from the public right-of-way to the lowest part of a pedestrian walkway shall be 15 feet (4572 mm) minimum.

3202.4 Temporary encroachments. Where allowed by the applicable governing authority, vestibules and storm enclosures shall not be erected for a period of time exceeding seven months in any one year and shall not encroach more than 3 feet (914 mm) nor more than one-fourth of the width of the sidewalk beyond the street lot line. Temporary entrance awnings shall be erected with a minimum clearance of 7 feet (2134 mm) to the lowest portion of the hood or awning where supported on removable steel or other approved noncombustible support.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 33 – SAFEGUARDS DURING CONSTRUCTION

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
<td>AC</td>
<td>SS</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3306.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3307.2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3307.3</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal’s adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 33
SAFEGUARDS DURING CONSTRUCTION

SECTION 3301
GENERAL

3301.1 Scope. The provisions of this chapter shall govern safety during construction and the protection of adjacent public and private properties.

3301.2 Storage and placement. Construction equipment and materials shall be stored and placed so as not to endanger the public, the workers or adjoining property for the duration of the construction project.

SECTION 3302
CONSTRUCTION SAFEGUARDS

3302.1 Remodeling and additions. Required exits, existing structural elements, fire protection devices and sanitary safeguards shall be maintained at all times during remodeling, alterations, repairs or additions to any building or structure.

Exceptions:
1. When such required elements or devices are being remodeled, altered or repaired, adequate substitute provisions shall be made.
2. When the existing building is not occupied.

3302.2 Manner of removal. Waste materials shall be removed in a manner which prevents injury or damage to persons, adjoining properties and public rights-of-way.

SECTION 3303
DEMOLITION

3303.1 Construction documents. Construction documents and a schedule for demolition must be submitted when required by the building official. Where such information is required, no work shall be done until such construction documents or schedule, or both, are approved.

3303.2 Pedestrian protection. The work of demolishing any building shall not be commenced until pedestrian protection is in place as required by this chapter.

3303.3 Means of egress. A party wall balcony or horizontal exit shall not be destroyed unless and until a substitute means of egress has been provided and approved.

3303.4 Vacant lot. Where a structure has been demolished or removed, the vacant lot shall be filled and maintained to the existing grade or in accordance with the ordinances of the jurisdiction having authority.

3303.5 Water accumulation. Provision shall be made to prevent the accumulation of water or damage to any foundations on the premises or the adjoining property.

3303.6 Utility connections. Service utility connections shall be discontinued and capped in accordance with the approved rules and the requirements of the applicable governing authority.

SECTION 3304
SITE WORK

3304.1 Excavation and fill. Excavation and fill for buildings and structures shall be constructed or protected so as not to endanger life or property. Stumps and roots shall be removed from the soil to a depth of at least 12 inches (305 mm) below the surface of the ground in the area to be occupied by the building. Wood forms which have been used in placing concrete, if within the ground or between foundation sills and the ground, shall be removed before a building is occupied or used for any purpose. Before completion, loose or casual wood shall be removed from direct contact with the ground under the building.

3304.1.1 Slope limits. Slopes for permanent fill shall not be steeper than one unit vertical in two units horizontal (50-percent slope). Cut slopes for permanent excavations shall not be steeper than one unit vertical in two units horizontal (50-percent slope). Deviation from the foregoing limitations for cut slopes shall be permitted only upon the presentation of a soil investigation report acceptable to the building official.

3304.1.2 Surcharge. No fill or other surcharge loads shall be placed adjacent to any building or structure unless such building or structure is capable of withstanding the additional loads caused by the fill or surcharge. Existing footings or foundations which can be affected by any excavation shall be underpinned adequately or otherwise protected against settlement and shall be protected against later movement.

3304.1.3 Footings on adjacent slopes. For footings on adjacent slopes, see Chapter 18.

3304.1.4 Fill supporting foundations. Fill to be used to support the foundations of any building or structure shall comply with Section 1804.5. Special inspections of compacted fill shall be in accordance with Section 1704.7.

SECTION 3305
SANITARY

3305.1 Facilities required. Sanitary facilities shall be provided during construction, remodeling or demolition activities in accordance with the California Plumbing Code.
SECTION 3306
PROTECTION OF PEDESTRIANS

3306.1 Protection required. Pedestrians shall be protected during construction, remodeling and demolition activities as required by this chapter and Table 3306.1. Signs shall be provided to direct pedestrian traffic.

3306.2 Walkways. A walkway shall be provided for pedestrian travel in front of every construction and demolition site unless the applicable governing authority authorizes the sidewalk to be fenced or closed. Walkways shall be of sufficient width to accommodate the pedestrian traffic, but in no case shall they be less than 4 feet (1219 mm) in width. Walkways shall be provided with a durable walking surface. Walkways shall be accessible in accordance with Chapter 11A or 11B as applicable, and shall be designed to support all imposed loads and in no case shall the design live load be less than 150 pounds per square foot (psf) (7.2 kN/m²).

3306.3 Directional barricades. Pedestrian traffic shall be protected by a directional barricade where the walkway extends into the street. The directional barricade shall be of sufficient size and construction to direct vehicular traffic away from the pedestrian path.

3306.4 Construction railings. Construction railings shall be at least 42 inches (1067 mm) in height and shall be sufficient to direct pedestrians around construction areas.

3306.5 Barriers. Barriers shall be a minimum of 8 feet (2438 mm) in height and shall be placed on the side of the walkway nearest the construction. Barriers shall extend the entire length of the construction site. Openings in such barriers shall be protected by doors which are normally kept closed.

3306.6 Barrier design. Barriers shall be designed to resist loads required in Chapter 16 unless constructed as follows:

1. Barriers shall be provided with 2-inch by 4-inch (51 mm by 102 mm) top and bottom plates.
2. The barrier material shall be a minimum of 3/4-inch (19.1 mm) boards or 1/4-inch (6.4 mm) wood structural use panels.
3. Wood structural use panels shall be bonded with an adhesive identical to that for exterior wood structural use panels.
4. Wood structural use panels 1/4 inch (6.4 mm) or 1/16 inch (23.8 mm) in thickness shall have studs spaced not more than 2 feet (610 mm) on center (o.c.).
5. Wood structural use panels 3/8 inch (9.5 mm) or 1/2 inch (12.7 mm) in thickness shall have studs spaced not more than 4 feet (1219 mm) on center provided a 2-inch by 4-inch (51 mm by 102 mm) stiffener is placed horizontally at midheight where the stud spacing exceeds 2 feet (610 mm) o.c.
6. Wood structural use panels 5/8 inch (15.9 mm) or thicker shall not span over 8 feet (2438 mm).

3306.7 Covered walkways. Covered walkways shall have a minimum clear height of 8 feet (2438 mm) as measured from the floor surface to the canopy overhead. Adequate lighting shall be provided at all times. Covered walkways shall be designed to support all imposed loads. In no case shall the design live load be less than 150 psf (7.2 kN/m²) for the entire structure.

Exception: Roofs and supporting structures of covered walkways for new, light-frame construction not exceeding two stories above grade plane are permitted to be designed for a live load of 75 psf (3.6kN/m²) or the loads imposed on them, whichever is greater. In lieu of such designs, the roof and supporting structure of a covered walkway are permitted to be constructed as follows:

1. Footings shall be continuous 2-inch by 6-inch (51 mm by 152 mm) members.
2. Posts not less than 4 inches by 6 inches (102 mm by 152 mm) shall be provided on both sides of the roof and spaced not more than 12 feet (3658 mm) on center.
3. Stringers not less than 4 inches by 12 inches (102 mm by 305 mm) shall be placed on edge upon the posts.
4. Joists resting on the stringers shall be at least 2 inches by 8 inches (51 mm by 203 mm) and shall be spaced not more than 2 feet (610 mm) on center.
5. The deck shall be planks at least 2 inches (51 mm) thick or wood structural panels with an exterior exposure durability classification at least 23/32 inch (18.3 mm) thick nailed to the joists.

<p>| TABLE 3306.1 |</p>
<table>
<thead>
<tr>
<th>PROTECTION OF PEDESTRIANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT OF CONSTRUCTION</td>
</tr>
<tr>
<td>8 feet or less</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>More than 8 feet</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.
6. Each post shall be knee braced to joists and stringers by 2-inch by 4-inch (51 mm by 102 mm) minimum members 4 feet (1219 mm) long.

7. A 2-inch by 4-inch (51 mm by 102 mm) minimum curb shall be set on edge along the outside edge of the deck.

3306.8 Repair, maintenance and removal. Pedestrian protection required by this chapter shall be maintained in place and kept in good order for the entire length of time pedestrians may be endangered. The owner or the owner’s agent, upon the completion of the construction activity, shall immediately remove walkways, debris and other obstructions and leave such public property in as good a condition as it was before such work was commenced.

3306.9 Adjacent to excavations. Every excavation on a site located 5 feet (1524 mm) or less from the street lot line shall be enclosed with a barrier not less than 6 feet (1829 mm) high. Where located more than 5 feet (1524 mm) from the street lot line, a barrier shall be erected when required by the building official. Barriers shall be of adequate strength to resist wind pressure as specified in Chapter 16.

SECTION 3307
PROTECTION OF ADJOINING PROPERTY

3307.1 Protection required. Adjoining public and private property shall be protected from damage during construction, remodeling and demolition work. Protection must be provided for footings, foundations, party walls, chimneys, skylights and roofs. Provisions shall be made to control water runoff and erosion during construction or demolition activities. The person making or causing an excavation to be made shall provide written notice to the owners of adjoining buildings advising them that the excavation is to be made and that the adjoining buildings should be protected. Said notification shall be delivered not less than 10 days prior to the scheduled starting date of the excavation.

3307.2 Protection of adjoining property. [DSA-SS/CC & OSHPD 1, 2 and 4] The requirements for protection of adjoining property and depth to which protection is required shall be as defined in Section 832, Civil Code.

The owner or governing board shall be responsible to retain the services of a structural engineer and a geotechnical engineer to review the design of the support system for foundations of the existing buildings, or soil supporting any portion of the building. Where the underpinning or support system provides for the stability of the foundations of an existing hospital, or essential services building or public school building, the system shall be designed and constructed to conform to all requirements of these regulations.

3307.3 Protection of existing buildings. [DSA-SS/CC & OSHPD 1, 2 and 4] Where excavation for new construction affects the stability of the foundations or any portion of such existing building, a support system shall be provided. Such systems shall be considered a structural alteration to the existing building and shall be designed and constructed to conform to these regulations.

SECTION 3308
TEMPORARY USE OF STREETS, ALLEYS AND PUBLIC PROPERTY

3308.1 Storage and handling of materials. The temporary use of streets or public property for the storage or handling of materials or of equipment required for construction or demolition, and the protection provided to the public shall comply with the provisions of the applicable governing authority and this chapter.

3308.1.1 Obstructions. Construction materials and equipment shall not be placed or stored so as to obstruct access to fire hydrants, standpipes, fire or police alarm boxes, catch basins or manholes, nor shall such material or equipment be located within 20 feet (6096 mm) of a street intersection, or placed so as to obstruct normal observations of traffic signals or to hinder the use of public transit loading platforms.

3308.2 Utility fixtures. Building materials, fences, sheds or any obstruction of any kind shall not be placed so as to obstruct free approach to any fire hydrant, fire department connection, utility pole, manhole, fire alarm box or catch basin, or so as to interfere with the passage of water in the gutter. Protection against damage shall be provided to such utility fixtures during the progress of the work, but sight of them shall not be obstructed.

SECTION 3309
FIRE EXTINGUISHERS

[F] 3309.1 Where required. All structures under construction, alteration or demolition shall be provided with not less than one approved portable fire extinguisher in accordance with Section 906 and sized for not less than ordinary hazard as follows:

1. At each stairway on all floor levels where combustible materials have accumulated.

2. In every storage and construction shed.

3. Additional portable fire extinguishers shall be provided where special hazards exist, such as the storage and use of flammable and combustible liquids.

3309.2 Fire hazards. The provisions of this code and the California Fire Code shall be strictly observed to safeguard against all fire hazards attendant upon construction operations.
SAFEGUARDS DURING CONSTRUCTION

SECTION 3310
MEANS OF EGRESS

3310.1 Stairways required. Where a building has been constructed to a building height of 50 feet (15 240 mm) or four stories, or where an existing building exceeding 50 feet (15 240 mm) in building height is altered, at least one temporary lighted stairway shall be provided unless one or more of the permanent stairways are erected as the construction progresses.

3310.2 Maintenance of means of egress. Required means of egress shall be maintained at all times during construction, demolition, remodeling or alterations and additions to any building.

Exception: Approved temporary means of egress systems and facilities.

SECTION 3311
STANDPIPES

[F] 3311.1 Where required. In buildings required to have standpipes by Section 905.3.1, not less than one standpipe shall be provided for use during construction. Such standpipes shall be installed when the progress of construction is not more than 40 feet (12 192 mm) in height above the lowest level of fire department vehicle access. Such standpipe shall be provided with fire department hose connections at accessible locations adjacent to usable stairs. Such standpipes shall be extended as construction progresses to within one floor of the highest point of construction having secured decking or flooring.

[F] 3311.2 Buildings being demolished. Where a building is being demolished and a standpipe exists within such a building, such standpipe shall be maintained in an operable condition so as to be available for use by the fire department. Such standpipe shall be demolished with the building but shall not be demolished more than one floor below the floor being demolished.

3311.3 Detailed requirements. Standpipes shall be installed in accordance with the provisions of Chapter 9.

Exception: Standpipes shall be either temporary or permanent in nature, and with or without a water supply, provided that such standpipes conform to the requirements of Section 905 as to capacity, outlets and materials.

3311.4 Water supply. Water supply for fire protection, either temporary or permanent, shall be made available as soon as combustible material accumulates.

SECTION 3312
AUTOMATIC SPRINKLER SYSTEM

[F] 3312.1 Completion before occupancy. In buildings where an automatic sprinkler system is required by this code, it shall be unlawful to occupy any portion of a building or structure unless the automatic sprinkler system installation has been tested and approved, except as provided in Section 111.3.

[F] 3312.2 Operation of valves. Operation of sprinkler control valves shall be permitted only by properly authorized personnel and shall be accompanied by notification of duly designated parties. When the sprinkler protection is being regularly turned off and on to facilitate connection of newly completed segments, the sprinkler control valves shall be checked at the end of each work period to ascertain that protection is in service.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 34 – EXISTING STRUCTURES

Adopting agency	HCD	DSA	OSHPD	BSC	SFM	1	2	1-AC	AC	SS	SS/CC	1	2	3	4	CSA	DPH	AGR	DWR	CEC	CA	SL	SLC			
Adopt entire chapter																										
Adopt entire chapter as amended (amended sections listed below)																										
Adopt only those sections that are listed below	X	X	X	X	X																					
Chapter/Section																										
3401	X																									
3401.1	X	X	X	X																						
3401.1 (Last Paragraph only)	X																									
3401.1.1	X																									
3401.1 – 3401.3	X																									
3401.1.2	X																									
3401.3	X	X																								
3401.4																										
3401.4 – 3401.4.2	X																									
3401.4.3	X	X																								
3401.5																										
3401.6	X																									
3401.7	X																									
3402	X	X																								
3403	X																									
3403.1	X	X	X																							
3403.1 Exception	X																									
3403.1.1	X	X																								
3403.2 Equation	X																									
3403.4.1	X	X	X																							
3404	X																									
3404.1	X	X																								
3404.1 Exception	X																									
3404.1.1	X	X																								
3404.4.1	X	X																								
3404.6	X																									
3405	X																									
3405.1	X	X	X																							
3405.1 Exception	X	X	X																							
3405.1.1	X	X																								
3405.1.2	X	X																								
3406	X	X																								
3408	X	X																								
3409 (1st Paragraph)	X																									
3410.1	X	X																								
3410.2	X	X																								
3411																										

(continued)
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

CHAPTER 34 – EXISTING STRUCTURES—continued

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter/Section

- 3413
- 3414
- 3415
- 3416
- 3417
- 3418
- 3419
- 3420
- 3421

The Office of the State Fire Marshal’s adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 34
EXISTING STRUCTURES

SECTION 3401
GENERAL

3401.1 Scope. The provisions of this chapter shall control the alteration, repair, addition and change of occupancy of existing structures, including state-regulated structures in accordance with Sections 3401.1.1 and 3401.1.2.

[DSA-AC] For applications listed in Section 1.9.1 regulated by the Division of the State Architect-Access Compliance for accessibility requirements, see Chapter 11B, Section 1134B.

Exceptions:

1. Existing bleachers, grandstands and folding and telescopic seating shall comply with ICC 300-02.

2. [HCD 2] For moved buildings and maintenance, alteration, repair, addition or change of occupancy to existing buildings and accessory structures in mobilehome parks or special occupancy parks as provided in Section 1.8.2.1.3. See California Code of Regulations, Title 25, Division 1, Chapters 2 and 2.2.

3. [HCD 1] Limited-density owner-built rural dwellings.

3401.1.1 Existing state-owned structures. The provisions of Sections 3415 through 3420 establish minimum standards for earthquake evaluation and design for retrofit of existing state-owned structures, including buildings owned by the University of California and the California State University.

The provisions of Sections 3415 through 3420 may be adopted by a local jurisdiction for earthquake evaluation and design for retrofit of existing buildings.

3401.1.2 Public school buildings. [DSA-SS] The provisions of Sections 3415 through 3421 establish minimum standards for earthquake evaluation and design for the rehabilitation of existing buildings for use as public school buildings under the jurisdiction of the Division of the State Architect-Structural Safety (DSA-SS, refer to Section 1.9.2.1) where required by Sections 4-307 and 4-309(c) of the California Administrative Code.

The provisions of Section 3415 through 3421 also establish minimum standards for earthquake evaluation and design for rehabilitation of existing public school buildings currently under the jurisdiction of DSA-SS.

3401.1.3 Community college buildings. [DSA-SS/CC] The provisions of Sections 3415 through 3421 establish minimum standards for earthquake evaluation and design for the rehabilitation of existing buildings for use as community college buildings under the jurisdiction of the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC, refer to Section 1.9.2.2) where required by Sections 4-307 and 4-309(c) of the California Administrative Code.

The provisions of Section 3415 through 3421 also establish minimum standards for earthquake evaluation and design for rehabilitation of existing community college buildings currently under the jurisdiction of DSA-SS/CC.

3401.2 Maintenance. Buildings and structures, and parts thereof, shall be maintained in a safe and sanitary condition. Devices or safeguards which are required by this code shall be maintained in conformance with the code edition under which installed. The owner or the owner’s designated agent shall be responsible for the maintenance of buildings and structures. To determine compliance with this subsection, the building official shall have the authority to require a building or structure to be reinspected. The requirements of this chapter shall not provide the basis for removal or abrogation of fire protection and safety systems and devices in existing structures.

3401.3 Compliance. Alterations, repairs, additions and changes of occupancy to existing structures shall comply with the provisions for alterations, repairs, additions and changes of occupancy in the California Fire Code, California Mechanical Code, California Plumbing Code, California Residential Code, and California Electrical Code.

[HCD 1] See Chapter 34, Sections 3403.1.4.3, 3403.1.1 and 3404.1.1 and Title 25, Division 1, Chapter 1, Subchapter 1, commencing with Article 1, Section 1 for existing buildings or structures.

3401.4 Building materials. Building materials shall comply with the requirements of this section.

3401.4.1 Existing materials. Materials already in use in a building in compliance with requirements or approvals in effect at the time of their erection or installation shall be permitted to remain in use unless determined by the building code official to be dangerous to life, health or safety. Where such conditions are determined to be dangerous to life, health or safety, they shall be mitigated or made safe.

3401.4.2 New and replacement materials. Except as otherwise required or permitted by this code, materials permitted by the applicable code for new construction shall be used. Like materials shall be permitted for repairs and alterations, provided no hazard to life, health or property is created. Hazardous materials shall not be used where the code for new construction would not permit their use in buildings of similar occupancy, purpose and location.
3401.4.3 Replacement, retention and extension of original materials. [HCD1] Local ordinances or regulations shall permit the replacement, retention and extension of original materials, and the use of original methods of construction, for any building or accessory structure, provided such building or structure complied with the building code provisions in effect at the time of original construction and the building or accessory structure does not become or continue to be a substandard building. For additional information, see Health and Safety Code Sections 17912, 17920.3, 17922(d), 17922.3, 17958.8 and 17958.9.

3401.5 Adoption of ASCE 41: [OSHPD 2 & 3] All additions, alterations, repairs and seismic retrofit to the existing structures or portions thereof may be designed in accordance with the provisions of ASCE 41, as modified herein.

3401.5.1 Referenced Standards. All reference standards listed in ASCE 41 shall be replaced by referenced standards listed in Chapter 35 of this code and shall include all amendments to the reference standards in this code.

3401.5.2 ASCE 41 Section 1.4—Rehabilitation Objectives. Target building performance level shall be Life Safety (LS) Building Performance Level (3-C) as defined in Section 1.5.3.3 at Basic Safety Earthquake 1 (BSE-1) Seismic Hazard Level as defined in section 1.6.1.2 for Occupancy Category II Structures and Basic Safety Objective (BSO) Level as defined in Section 1.4.1 for Occupancy Category III Structures.

Occupancy Category IV structures shall satisfy Immediate Occupancy (IO) Building Performance Level of (1-B) as defined in Section 1.5.3.2 at Basic Safety Earthquake 1 (BSE-1) Seismic Hazard Level as defined in Section 1.6.1.2 and Collapse Prevention (CP) building performance level (5-E) per Section 1.5.3.4 at Basic Safety Earthquake 2 (BSE-2) Seismic Hazard Level as defined in Section 1.6.1.1.

3401.5.3 ASCE 41 Section 1.6 - Seismic Hazard. Response spectra and acceleration time histories shall be constructed in accordance with sections 1613 and 1803.7.

3401.5.4 Analysis procedure. The selection of a particular analysis procedure from ASCE 41 may be subject to the approval of the enforcement agent.

3401.5.5 Structural design criteria. Prior to implementation of ASCE 41 nonlinear dynamic procedures—the ground motion, analysis and design methods, material assumptions and acceptance criteria proposed by the engineer shall be reviewed by the enforcement agent.

3401.5.6 Structural observation, testing and inspections. Construction, testing, inspection and structural observation requirements shall be as required for new construction.

3401.6 Existing Group R-3 Occupancies. [SFM] For smoke alarm requirements in existing buildings see Section 907.2.11.5.

3401.7 Dangerous conditions. [BSC] Regardless of the extent of structural or nonstructural damage, the building code official shall have the authority to require the elimination of conditions deemed dangerous.
SECTION 3403
ADDITIONS

3403.1 General. Additions to any building or structure shall comply with the requirements of this code for new construction. Alterations to the existing building or structure shall be made to ensure that the existing building or structure together with the addition are no less conforming with the provisions of this code than the existing building or structure was prior to the addition. An existing building together with its additions shall comply with the height and area provisions of Chapter 5.

Exception: For state-owned buildings, including those owned by the University of California and the California State University and the Judicial Council, the requirements of Sections 3403.3 and 3403.4 are replaced by the requirements of Sections 3417 through 3425.

3403.1.1 Replacement, retention and extension of original materials. [HCD1] Local ordinances or regulations shall permit the replacement, retention and extension of original materials, and the use of original methods of construction, for any building or accessory structure, provided such building or structure complied with the building code provisions in effect at the time of original construction and the building or accessory structure does not become or continue to be a substandard building. For additional information, see Health and Safety Code Sections 17912, 17920.3, 17922(d), 17922.3, 17958.8 and 17958.9.

3403.2 Flood hazard areas. For buildings and structures in flood hazard areas established in Section 1612.3, any addition that constitutes substantial improvement of the existing structure, as defined in Section 1612.2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612.3, any additions that do not constitute substantial improvement or substantial damage of the existing structure, as defined in Section 1612.2, are not required to comply with the flood design requirements for new construction.

3403.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load-carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404.3. Any existing element that will form part of the lateral load path for any part of the addition shall be considered an existing lateral load-carrying structural element subject to the requirements of Section 3404.4.

3403.3.1 Design live load. Where the addition does not result in increased design live load, existing gravity load-carrying structural elements shall be permitted to be evaluated and designed for live loads approved prior to the addition. If the approved live load is less than that required by Section 1607, the area designed for the nonconforming live load shall be posted with placards of approved design indicating the approved live load. Where the addition does result in increased design live load, the live load required by Section 1607 shall be used.

3403.4 Existing structural elements carrying lateral load. Where the addition is structurally independent of the existing structure, existing lateral load-carrying structural elements shall be permitted to remain unaltered. Where the addition is not structurally independent of the existing structure, the existing structure and its addition acting together as a single structure shall be shown to meet the requirements of Sections 1609 and 1613.

Exception: Any existing lateral load-carrying structural element whose demand-capacity ratio with the addition considered is no more than 10 percent greater than its demand-capacity ratio with the addition ignored shall be permitted to remain unaltered. For purposes of calculating demand-capacity ratios, the demand shall consider applicable load combinations with design lateral loads or forces in accordance with Sections 1609 and 1613. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads, forces and capacities shall account for the cumulative effects of additions and alterations since original construction.

3403.4.1 Seismic. Seismic requirements for alterations shall be in accordance with this section. Where the existing seismic force-resisting system is a type that can be designated ordinary, values of R, \(\Omega_k \), and \(C_p \) for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed intermediate or special system.

SECTION 3404
ALTERATIONS

3404.1 General. Except as provided by Section 3401.4 or this section, alterations to any building or structure shall comply with the requirements of the code for new construction. Alterations shall be such that the existing building or structure is no less complying with the provisions of this code than the existing building or structure was prior to the alteration.

Exceptions:

1. An existing stairway shall not be required to comply with the requirements of Section 1009 where the existing space and construction does not allow a reduction in pitch or slope.

2. Handrails otherwise required to comply with Section 1009.12 shall not be required to comply with the requirements of Section 1012.6 regarding full extension of the handrails where such extensions would be hazardous due to plan configuration.

3. For state-owned buildings, including those owned by the University of California and the California State University and the Judicial Council, the requirements of Sections 3404.3 through 3404.5 are replaced by the requirements of Sections 3417 through 3423.
3404.1 Replacement, retention and extension of original materials. [HCD1] Local ordinances or regulations shall permit the replacement, retention and extension of original materials, and the use of original methods of construction, for any building or accessory structure, provided such building or structure complied with the building code provisions in effect at the time of original construction and the building or accessory structure does not become or continue to be a substandard building. For additional information, see Health and Safety Code Sections 17912, 17920.3, 17922(d), 17922.3, 17958.8 and 17958.9.

3404.2 Flood hazard areas. For buildings and structures in flood hazard areas established in Section 1612.3, any alteration that constitutes substantial improvement of the existing structure, as defined in Section 1612.2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612.3, any alterations that do not constitute substantial improvement or substantial damage of the existing structure, as defined in Section 1612.2, are not required to comply with the flood design requirements for new construction.

3404.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an alteration causes an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased gravity load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load-carrying capacity is decreased as part of the alteration shall be shown to have the capacity to resist the applicable design gravity loads required by this code for new structures.

3404.3.1 Design live load. Where the alteration does not result in increased design live load, existing gravity load-carrying structural elements shall be permitted to be evaluated and designed for live loads approved prior to the alteration. If the approved live load is less than that required by Section 1607, the area designed for the nonconforming live load shall be posted with placards of approved design indicating the approved live load. Where the alteration does result in increased design live load, the live load required by Section 1607 shall be used.

3404.4 Existing structural elements carrying lateral load. Except as permitted by Section 3404.5, where the alteration increases design lateral loads in accordance with Section 1609 or 1613, or where the alteration results in a structural irregularity as defined in ASCE 7, or where the alteration decreases the capacity of any existing lateral load-carrying structural element, the structure of the altered building or structure shall be shown to meet the requirements of Sections 1609 and 1613. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads, forces, and capacities shall account for the cumulative effects of additions and alterations since original construction.

3404.4.1 Seismic. Seismic requirements for alterations shall be in accordance with this section. Where the existing seismic force-resisting system is a type that can be designated ordinary, values of R, Ω_s and C_s for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed intermediate or special system.

3404.5 Voluntary seismic improvements. Alterations to existing structural elements or additions of new structural elements that are not otherwise required by this chapter and are initiated for the purpose of improving the performance of the seismic force-resisting system of an existing structure or the performance of seismic bracing or anchorage of existing nonstructural elements shall be permitted, provided that an engineering analysis is submitted demonstrating the following:

1. The altered structure and the altered nonstructural elements are no less in compliance with the provisions of this code with respect to earthquake design than they were prior to the alteration.

2. New structural elements are detailed and connected to the existing structural elements as required by Chapter 16.

3. New or relocated nonstructural elements are detailed and connected to existing or new structural elements as required by Chapter 16.

4. The alterations do not create a structural irregularity as defined in ASCE 7 or make an existing structural irregularity more severe.

3404.6 Means of egress capacity factors. Alterations to any existing building or structure shall not be affected by the egress width factors in Section 1005.1 for new construction in determining the minimum egress widths or the minimum number of exits in an existing building or structure. The minimum egress widths for the components of the means of egress shall be based on the means of egress width factors in the building code under which the building was constructed, and shall be considered as complying means of egress for any alteration if, in the opinion of the building code official, they do not constitute a distinct hazard to life.

SECTION 3405 REPAIRS

3405.1 General. Buildings and structures, and parts thereof, shall be repaired in compliance with Section 3401.2. Work on nondamaged components that is necessary for the required repair of damaged components shall be considered part of the repair and shall not be subject to the requirements for alterations in this chapter. Routine maintenance required by Section 3401.2, ordinary repairs exempt from permit in accordance with Section 105.2, and abatement of wear due to normal ser-
3405.2 Substantial structural damage to vertical elements of the lateral force-resisting system. A building that has sustained substantial structural damage to the vertical elements of its lateral force-resisting system shall be evaluated and repaired in accordance with the applicable provisions of Sections 3405.2.1 through 3405.2.3.

3405.2.1 Evaluation. The building shall be evaluated by a registered design professional, and the evaluation findings shall be submitted to the code official. The evaluation shall establish whether the damaged building, if repaired to its predamage state, would comply with the provisions of this code for wind and earthquake loads. Evaluation for earthquake loads shall be required if the substantial structural damage was caused by or related to earthquake effects or if the building is in Seismic Design Category C, D, E or F.

Wind loads for this evaluation shall be those prescribed in Section 1609. Earthquake loads for this evaluation, if required, shall be permitted to be 75 percent of those prescribed in Section 1613. Values of R, W_o and C_j for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of an intermediate or special system.

3405.2.2 Extent of repair for compliant buildings. If the evaluation establishes compliance of the predamage building in accordance with Section 3405.2.1, then repairs shall be permitted that restore the building to its predamage state using materials and strengths that existed prior to the damage.

3405.2.3 Extent of repair for noncompliant buildings. If the evaluation does not establish compliance of the predamage building in accordance with Section 3405.2.1, then the building shall be rehabilitated to comply with applicable provisions of this code for load combinations, including wind or seismic loads. The wind loads for the repair shall be as required by the building code in effect at the time of original construction, unless the damage was caused by wind, in which case the wind loads shall be as required by the code in effect at the time of original construction or as required by this code, whichever are greater. Earthquake loads for this rehabilitation design shall be those required for the design of the predamage building, but not less than 75 percent of those prescribed in Section 1611. New structural members and connections required by this rehabilitation design shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405.3 Substantial structural damage to gravity load-carrying components. Gravity load-carrying components that have sustained substantial structural damage shall be rehabilitated to comply with the applicable provisions of this code for dead and live loads. Snow loads shall be considered if the substantial structural damage was caused by or related to snow loads. Existing gravity load-carrying structural elements shall be permitted to be designed for live loads approved prior to the damage. Nondamaged gravity load-carrying components that receive dead, live or snow loads from rehabilitated components shall also be rehabilitated or shown to have the capacity to carry the design loads of the rehabilitation design. New structural members and connections required by this rehabilitation design shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405.3.1 Lateral force-resisting elements. Regardless of the level of damage to vertical elements of the lateral force-resisting system, if substantial structural damage to gravity load-carrying components was caused primarily by wind or earthquake effects, then the building shall be evaluated in accordance with Section 3405.2.1 and, if noncompliant, rehabilitated in accordance with Section 3405.2.3.

3405.4 Less than substantial structural damage. For damage less than substantial structural damage, repairs shall be allowed that restore the building to its predamage state using materials and strengths that existed prior to the damage. New structural members and connections used for this repair shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405.5 Flood hazard areas. For buildings and structures in flood hazard areas established in Section 1612.3, any repair that constitutes substantial improvement of the existing structure, as defined in Section 1612.2, shall comply with the flood design requirements for new construction, and all aspects of
SECTION 3406
FIRE ESCAPES

3406.1 Where permitted. Fire escapes shall be permitted only as provided for in Sections 3406.1.1 through 3406.1.4.

3406.1.1 New buildings. Fire escapes shall not constitute any part of the required means of egress in new buildings.

3406.1.2 Existing fire escapes. Existing fire escapes shall be continued to be accepted as a component in the means of egress in existing buildings only.

3406.1.3 New fire escapes. New fire escapes for existing buildings shall be permitted only where exterior stairs cannot be utilized due to lot lines limiting stair size or due to the sidewalks, alleys or roads at grade level. New fire escapes shall not incorporate ladders or access by windows.

3406.1.4 Limitations. Fire escapes shall comply with this section and shall not constitute more than 50 percent of the required number of exits nor more than 50 percent of the required exit capacity.

3406.2 Location. Where located on the front of the building and where projecting beyond the building line, the lowest landing shall not be less than 7 feet (2134 mm) or more than 12 feet (3658 mm) above grade, and shall be equipped with a counterbalanced stairway to the street. In alleyways and thoroughfares less than 30 feet (9144 mm) wide, the clearance under the lowest landing shall not be less than 12 feet (3658 mm).

3406.3 Construction. The fire escape shall be designed to support a live load of 100 pounds per square foot (4788 Pa) and shall be constructed of steel or other approved noncombustible materials. Fire escapes constructed of wood not less than nominal 2 inches (51 mm) thick are permitted on buildings of Type 5 construction. Walkways and railings located over or supported by combustible roofs in buildings of Type 3 and 4 construction are permitted to be of wood not less than nominal 2 inches (51 mm) thick.

3406.4 Dimensions. Stairs shall be at least 22 inches (559 mm) wide with risers not more than, and treads not less than, 8 inches (203 mm) and landings at the foot of stairs not less than 40 inches (1016 mm) wide by 36 inches (914 mm) long, located not more than 8 inches (203 mm) below the door.

3406.5 Opening protectives. Doors and windows along the fire escape shall be protected with 1/4-hour opening protectives.

SECTION 3407
GLASS REPLACEMENT

3407.1 Conformance. The installation or replacement of glass shall be as required for new installations.

SECTION 3408
CHANGE OF OCCUPANCY

3408.1 Conformance. No change shall be made in the use or occupancy of any building that would place the building in a different division of the same group of occupancies or in a different group of occupancies, unless such building is made to comply with the requirements of this code for such division or group of occupancies. Subject to the approval of the building official, the use or occupancy of existing buildings shall be permitted to be changed and the building is allowed to be occupied for purposes in other groups without conforming to all the requirements of this code for those groups, provided the new or proposed use is less hazardous, based on life and fire risk, than the existing use.

3408.2 Certificate of occupancy. A certificate of occupancy shall be issued where it has been determined that the requirements for the new occupancy classification have been met.

3408.3 Stairways. Existing stairways in an existing structure shall not be required to comply with the requirements of a new stairway as outlined in Section 1009 where the existing space and construction will not allow a reduction in pitch or slope.

3408.4 Change of occupancy. When a change of occupancy results in a structure being reclassified to a higher occupancy category, the structure shall conform to the seismic requirements for a new structure of the higher occupancy category. Where the existing seismic force-resisting system is a type that can be designated ordinary, values of R, Ω, and C_f for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed, intermediate or special system.

Exceptions:

1. Specific seismic detailing requirements of this code or Section 1613 for a new structure shall not be required to be met where it can be shown that the level of performance and seismic safety is equivalent to that of a new structure. Such analysis shall consider the regularity, over strength, redundancy and ductility of the structure within the context of the existing and retrofit (if any) detailing provided.

2. When a change of use results in a structure being reclassified from Occupancy Category I or II to Occupancy Category III and the structure is located in a seismic map area where $S_{05} < 0.33$, compliance with the seismic requirements of this code and Section 1613 are not required.
SECTION 3409
HISTORIC BUILDINGS

[DSA-AC] For applications listed in Section 1.9.1 regulated by the Division of the State Architect-Access Compliance for Qualified Historical Buildings, see California Code of Regulations, Title 24, Part 8 (California Historical Building Code).

3409.1 Historic buildings. The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of structures, and change of occupancy shall not be mandatory for historic buildings where such buildings are judged by the building official to not constitute a distinct life safety hazard.

3409.2 Flood hazard areas. Within flood hazard areas established in accordance with Section 1612.3, where the work proposed constitutes substantial improvement as defined in Section 3409.2 Flood hazard areas. Within flood hazard areas established in accordance with Section 1612.3, where the work proposed constitutes substantial improvement as defined in Section 1612.2, the building shall be brought into compliance with Section 1612.

Exception: Historic buildings that are:
1. Listed or preliminarily determined to be eligible for listing in the National Register of Historic Places;
2. Determined by the Secretary of the U.S. Department of Interior as contributing to the historical significance of a registered historic district or a district preliminarily determined to qualify as an historic district; or
3. Designated as historic under a state or local historic preservation program that is approved by the Department of Interior.

SECTION 3410
MOVED STRUCTURES

3410.1 Conformance. Structures moved into or within the jurisdiction shall comply with the provisions of this code for new structures.

Exception: [HCD 1 & HCD 2] After July 1, 1978, local ordinances or regulations for moved apartment houses and dwellings shall permit the retention of existing materials and methods of construction, provided the apartment house or dwelling complies with the building standards for foundations applicable to new construction and does not become or continue to be a substandard building. For additional information, see Health and Safety Code Section 17958.9.

SECTION 3411
ACCESSIBILITY FOR EXISTING BUILDINGS

3411.1 Scope. The provisions of Sections 3411.1 through 3411.9 apply to maintenance, change of occupancy, additions and alterations to existing buildings, including those identified as historic buildings.

Exception: Type B dwelling or sleeping units required by Chapter 11A or 11B as applicable of this code are not required to be provided in existing buildings and facilities being altered or undergoing a change of occupancy.

3411.2 Maintenance of facilities. A building, facility or element that is constructed or altered to be accessible shall be maintained accessible during occupancy.

3411.3 Extent of application. An alteration of an existing element, space or area of a building or facility shall not impose a requirement for greater accessibility than that which would be required for new construction.

Alterations shall not reduce or have the effect of reducing accessibility of a building, portion of a building or facility.

3411.4 Change of occupancy. Existing buildings that undergo a change of group or occupancy shall comply with this section.

3411.4.1 Partial change in occupancy. Where a portion of the building is changed to a new occupancy classification, any alterations shall comply with Sections 3411.6, 3411.7 and 3411.8.

3411.4.2 Complete change of occupancy. Where an entire building undergoes a change of occupancy, it shall comply with Section 3411.4.1 and shall have all of the following accessible features:

1. At least one accessible building entrance.
2. At least one accessible route from an accessible building entrance to primary function areas.
3. Signage complying with Chapter 11A or 11B as applicable.
4. Accessible parking, where parking is being provided.
5. At least one accessible passenger loading zone, when loading zones are provided.
6. At least one accessible route connecting accessible parking and accessible passenger loading zones to an accessible entrance.

Where it is technically infeasible to comply with the new construction standards for any of these requirements for a change of group or occupancy, the above items shall conform to the requirements to the maximum extent technically feasible.

3411.5 Additions. Provisions for new construction shall apply to additions. An addition that affects the accessibility to, or contains an area of, a primary function shall comply with the requirements in Section 3411.7.

3411.6 Alterations. A building, facility or element that is altered shall comply with the applicable provisions in Chapter 11A or 11B as applicable of this code and ICC A117.1, unless technically infeasible. Where compliance with this section is technically infeasible, the alteration shall provide access to the maximum extent technically feasible.

Exceptions:

1. The altered element or space is not required to be on an accessible route, unless required by Section 3411.7.
2. Accessible means of egress required by Chapter 10 are not required to be provided in existing buildings and facilities.
3411.7 Alterations affecting an area containing a primary function. Where an alteration affects the accessibility to, or contains an area of primary function, the route to the primary function area shall be accessible. The accessible route to the primary function area shall include toilet facilities or drinking fountains serving the area of primary function.

Exceptions:

1. The costs of providing the accessible route are not required to exceed 20 percent of the costs of the alterations affecting the area of primary function.
2. This provision does not apply to alterations limited solely to windows, hardware, operating controls, electrical outlets and signs.
3. This provision does not apply to alterations limited solely to mechanical systems, electrical systems, installation or alteration of fire protection systems and abatement of hazardous materials.
4. This provision does not apply to alterations undertaken for the primary purpose of increasing the accessibility of an existing building, facility or element.

3411.8 Scoping for alterations. The provisions of Sections 3411.8.1 through 3411.8.14 shall apply to alterations to existing buildings and facilities.

3411.8.1 Entrances. Accessible entrances shall be provided in accordance with Chapter IIA or IIB as applicable.

Exception: Where an alteration includes alterations to an entrance, and the building or facility has an accessible entrance, the altered entrance is not required to be accessible, unless required by Section 3411.7. Signs complying with Chapter IIA or IIB as applicable shall be provided.

3411.8.2 Elevators. Altered elements of existing elevators shall comply with ASME A17.1 and ICC A117.1. Such elements shall also be altered in elevators programmed to respond to the same hall call control as the altered elevator.

3411.8.3 Platform lifts. Platform (wheelchair) lifts complying with ICC A117.1 and installed in accordance with ASME A18.1 shall be permitted as a component of an accessible route.

3411.8.4 Stairs and escalators in existing buildings. In alterations, change of occupancy or additions where an escalator or stair is added where none existed previously and major structural modifications are necessary for installation, an accessible route shall be provided between the levels served by the escalator or stairs in accordance with Chapter IIA or IIB as applicable.

3411.8.5 Ramps. Where slopes steeper than allowed by Section 1010.2 are necessitated by space limitations, the slope of ramps in or providing access to existing buildings or facilities shall comply with Table 3411.8.5.

Table 3411.8.5

<table>
<thead>
<tr>
<th>Slope</th>
<th>Maximum Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steeper than 1:10 but not steeper than 1:8</td>
<td>3 inches</td>
</tr>
<tr>
<td>Steeper than 1:12 but not steeper than 1:10</td>
<td>6 inches</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

3411.8.6 Performance areas. Where it is technically infeasible to alter performance areas to be on an accessible route, at least one of each type of performance area shall be made accessible.

3411.8.7 Accessible dwelling or sleeping units. Where Group I-I, I-2, I-3, R-1, R-2 or R-4 dwelling or sleeping units are being altered or added, the requirements of Chapter IIA or IIB as applicable for Accessible units apply only to the quantity of spaces being altered or added.

3411.8.8 Type A dwelling or sleeping units. Where more than 20 Group R-2 dwelling or sleeping units are being added, the requirements of Chapter IIA or IIB as applicable for Type A units apply only to the quantity of the spaces being added.

3411.8.9 Type B dwelling or sleeping units. Where four or more Group I-1, I-2, R-1, R-2, R-3 or R-4 dwelling or sleeping units are being added, the requirements of Chapter IIA or IIB as applicable for Type B units apply only to the quantity of the spaces being added.

3411.8.10 Jury boxes and witness stands. In alterations, accessible wheelchair spaces are not required to be located within the defined area of raised jury boxes or witness stands and shall be permitted to be located outside these spaces where the ramp or lift access restricts or projects into the means of egress.

3411.8.11 Toilet rooms. Where it is technically infeasible to alter existing toilet and bathing facilities to be accessible, an accessible family or assisted-use toilet or bathing facility constructed in accordance with Chapter IIA or IIB as applicable is permitted. The family or assisted-use facility shall be located on the same floor and in the same area as the existing facilities.

3411.8.12 Dressing, fitting and locker rooms. Where it is technically infeasible to provide accessible dressing, fitting or locker rooms at the same location as similar types of rooms, one accessible room on the same level shall be provided. Where separate-sex facilities are provided, accessible rooms for each sex shall be provided. Separate-sex facilities are not required where only unisex rooms are provided.

3411.8.13 Fuel dispensers. Operable parts of replacement fuel dispensers shall be permitted to be 54 inches (1370 mm) maximum measured from the surface of the vehicular way where fuel dispensers are installed on existing curbs.

3411.8.14 Thresholds. The maximum height of thresholds at doorways shall be \(\frac{3}{4} \) inch (19.1 mm). Such thresholds shall have beveled edges on each side.

3411.9 Historic buildings. These provisions shall apply to buildings and facilities designated as historic structures that
undergo alterations or a change of occupancy, unless technically infeasible. Where compliance with the requirements for accessible routes, entrances or toilet facilities would threaten or destroy the historic significance of the building or facility, as determined by the applicable governing authority, the alternative requirements of Sections 3411.9.1 through 3411.9.4 for that element shall be permitted.

3411.9.1 Site arrival points. At least one accessible route from a site arrival point to an accessible entrance shall be provided.

3411.9.2 Multilevel buildings and facilities. An accessible route from an accessible entrance to public spaces on the level of the accessible entrance shall be provided.

3411.9.3 Entrances. At least one main entrance shall be accessible.

Exceptions:

1. If a main entrance cannot be made accessible, an accessible nonpublic entrance that is unlocked while the building is occupied shall be provided; or
2. If a main entrance cannot be made accessible, a locked accessible entrance with a notification system or remote monitoring shall be provided.

Signs complying with Chapter 11A or 11B as applicable shall be provided at the primary entrance and the accessible entrance.

3411.9.4 Toilet and bathing facilities. Where toilet rooms are provided, at least one accessible family or assisted-use toilet room complying with Chapter 11A or 11B as applicable shall be provided.

SECTION 3412

COMPLIANCE ALTERNATIVES

3412.1 Compliance. The provisions of this section are intended to maintain or increase the current degree of public safety, health and general welfare in existing buildings while permitting repair, alteration, addition and change of occupancy without requiring full compliance with Chapters 2 through 33, or Sections 3401.3, and 3403 through 3409, except where compliance with other provisions of this code is specifically required in this section.

3412.2 Applicability. Structures existing prior to January 1, 2011, in which there is work involving additions, alterations or changes of occupancy shall be made to comply with the requirements of this section or the provisions of Sections 3403 through 3409. The provisions in Sections 3412.2.1 through 3412.2.5 shall apply to existing occupancies that will continue to be, or are proposed to be, in Groups A, B, E, F, M, R, S and U. These provisions shall not apply to buildings with occupancies in Group H or I.

3412.2.1 Change in occupancy. Where an existing building is changed to a new occupancy classification and this section is applicable, the provisions of this section for the new occupancy shall be used to determine compliance with this code.

3412.2.2 Partial change in occupancy. Where a portion of the building is changed to a new occupancy classification, and that portion is separated from the remainder of the building with fire barriers or horizontal assemblies having a fire-resistance rating as required by Table 508.4 for the separate occupancies, or with approved compliance alternatives, the portion changed shall be made to comply with the provisions of this section.

Where a portion of the building is changed to a new occupancy classification, and that portion is not separated from the remainder of the building with fire barriers or horizontal assemblies having a fire-resistance rating as required by Table 508.4 for the separate occupancies, or with approved compliance alternatives, the provisions of this section which apply to each occupancy shall apply to the entire building. Where there are conflicting provisions, those requirements which secure the greater public safety shall apply to the entire building or structure.

3412.2.3 Additions. Additions to existing buildings shall comply with the requirements of this code for new construction. The combined height and area of the existing building and the new addition shall not exceed the height and area allowed by Chapter 5. Where a fire wall that complies with Section 706 is provided between the addition and the existing building, the addition shall be considered a separate building.

3412.2.4 Alterations and repairs. An existing building or portion thereof, which does not comply with the requirements of this code for new construction, shall not be altered or repaired in such a manner that results in the building being less safe or sanitary than such building is currently. If, in the alteration or repair, the current level of safety or sanitation is to be reduced, the portion altered or repaired shall conform to the requirements of Chapters 2 through 12 and Chapters 14 through 33.

3412.2.4.1 Flood hazard areas. For existing buildings located in flood hazard areas established in Section 1612.3, if the alterations and repairs constitute substantial improvement of the existing building, the existing building shall be brought into compliance with the requirements for new construction for flood design.

3412.2.5 Accessibility requirements. All portions of the buildings proposed for change of occupancy shall conform to the accessibility provisions of Section 3411.

3412.3 Acceptance. For repairs, alterations, additions and changes of occupancy to existing buildings that are evaluated in accordance with this section, compliance with this section shall be accepted by the building official.

3412.3.1 Hazards. Where the building official determines that an unsafe condition exists, as provided for in Section 116, such unsafe condition shall be abated in accordance with Section 116.

3412.3.2 Compliance with other codes. Buildings that are evaluated in accordance with this section shall comply with the California Fire Code and the California Property Maintenance Code.

3412.4 Investigation and evaluation. For proposed work covered by this section, the building owner shall cause the existing
building to be investigated and evaluated in accordance with the provisions of this section.

3412.4.1 Structural analysis. The owner shall have a structural analysis of the existing building made to determine adequacy of structural systems for the proposed alteration, addition or change of occupancy. The analysis shall demonstrate that the building with the work completed is capable of resisting the loads specified in Chapter 16.

3412.4.2 Submittal. The results of the investigation and evaluation as required in Section 3412.4, along with proposed compliance alternatives, shall be submitted to the building official.

3412.4.3 Determination of compliance. The building official shall determine whether the existing building, with the proposed addition, alteration or change of occupancy, complies with the provisions of this section in accordance with the evaluation process in Sections 3412.5 through 3412.9.

3412.5 Evaluation. The evaluation shall be comprised of three categories: fire safety, means of egress and general safety, as defined in Sections 3412.5.1 through 3412.5.3.

3412.5.1 Fire safety. Included within the fire safety category are the structural fire resistance, automatic fire detection, fire alarm and fire suppression system features of the facility.

3412.5.2 Means of egress. Included within the means of egress category are the configuration, characteristics and support features for means of egress in the facility.

3412.5.3 General safety. Included within the general safety category are the fire safety parameters and the means of egress parameters.

3412.6 Evaluation process. The evaluation process specified herein shall be followed in its entirety to evaluate existing buildings. Table 3412.7 shall be utilized for tabulating the results of the evaluation. References to other sections of this code indicate that compliance with those sections is required in order to gain credit in the evaluation herein outlined. In applying this section to a building with mixed occupancies, the separation between the mixed occupancies does not qualify for any category indicated in Section 3412.6.16, the score for each occupancy shall be determined and the lower score determined for each section of the evaluation process shall apply to the entire building.

Where the separation between mixed occupancies qualifies for any category indicated in Section 3412.6.16, the score for each occupancy shall apply to each portion of the building based on the occupancy of the space.

3412.6.1 Building height. The value for building height shall be the lesser value determined by the formula in Section 3412.6.1.1. Chapter 5 shall be used to determine the allowable height of the building, including allowable increases due to automatic sprinklers as provided for in Section 504.2. Subtract the actual building height in feet from the allowable and divide by 12 1/2 feet. Enter the height value and its sign (positive or negative) in Table 3412.7 under Safety Parameter 3412.6.1, Building Height, for fire safety, means of egress and general safety. The maximum score for a building shall be 10.

3412.6.1.1 Height formula. The following formulas shall be used in computing the building height value.

$$\text{Height value, feet} = \frac{(AH) - (EBH)}{12.5} \times CF$$

(Equation 34-1)

where:

- $AH =$ Allowable height in feet from Table 503.
- $EBH =$ Existing building height in feet.
- $AS =$ Allowable height in stories from Table 503.
- $EBS =$ Existing building height in stories.
- $CF =$ Construction-type factor shown in Table 3412.6.6(2) if $(AH) - (EBH)$ is positive.
- $CF =$ Construction-type factor shown in Table 3412.6.6(2) if $(AH) - (EBH)$ is negative.

Note: Where mixed occupancies are separated and individually evaluated as indicated in Section 3412.6, the values AH, AS, EBH and EBS shall be based on the height of the occupancy being evaluated.

3412.6.2 Building area. The value for building area shall be determined by the formula in Section 3412.6.2.2. Section 503 and the formula in Section 3412.6.2.1 shall be used to determine the allowable area of the building. This shall include any allowable increases due to frontage and automatic sprinklers as provided for in Section 506. Subtract the actual building area in square feet from the allowable area and divide by 1,200 square feet. Enter the area value and its sign (positive or negative) in Table 3412.7 under Safety Parameter 3412.6.2, Building Area, for fire safety, means of egress and general safety. In determining the area value, the maximum permitted positive value for area is 50 percent of the fire safety score as listed in Table 3412.8, Mandatory Safety Scores.

3412.6.2.1 Allowable area formula. The following formula shall be used in computing allowable area:

$$A_a = (1 + I_f + I_i) \times A_r$$

(Equation 34-2)

where:

- $A_a =$ Allowable area.
- $A_r =$ Tabular area per story in accordance with Table 503 (square feet)
- $I_f =$ Area increase factor for sprinklers (Section 506.3).
- $I_i =$ Area increase factor for frontage (Section 506.2).
3412.6.3 Compartmentation

Evaluate the compartments created by fire barriers or horizontal assemblies which comply with Sections 3412.6.3.1 and 3412.6.3.2 and which are exclusive of the wall elements considered under Sections 3412.6.4 and 3412.6.5. Conforming compartments shall be figured as the net area and do not include shafts, chases, stairways, walls or columns. Using Table 3412.6.3, determine the appropriate compartmentation value (CV) and enter that value in Table 3412.7 under Safety Parameter 3412.6.3, Compartmentation, for fire safety, means of egress and general safety.

3412.6.3.1 Wall construction

A wall used to create separate compartments shall be a fire barrier conforming to Section 707 with a fire-resistance rating of not less than 2 hours. Where the building is not divided into more than one compartment, the compartment size shall be taken as the total floor area on all floors. Where there is more than one compartment within a story, each compartmented area on such story shall be provided with a horizontal exit conforming to Section 1025. The fire door serving as the horizontal exit between compartments shall be so installed, fitted and gasketed that such fire door will provide a substantial barrier to the passage of smoke.

3412.6.3.2 Floor/ceiling construction

A floor/ceiling assembly used to create compartments shall conform to Section 712 and shall have a fire-resistance rating of not less than 2 hours.

3412.6.4 Tenant and dwelling unit separations

Evaluate the fire-resistance rating of floors and walls separating tenants, including dwelling units, and not evaluated under Sections 3412.6.3 and 3412.6.5. Under the categories and occupancies in Table 3412.6.4, determine the appropriate value and enter that value in Table 3412.7 under Safety Parameter 3412.6.4, Tenant and Dwelling Unit Separations, for fire safety, means of egress and general safety.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>A-1, A-3</td>
<td>0</td>
</tr>
<tr>
<td>A-2</td>
<td>-5</td>
</tr>
<tr>
<td>A-3, A-4, B, E, F, M, S-I</td>
<td>-4</td>
</tr>
<tr>
<td>R</td>
<td>-4</td>
</tr>
<tr>
<td>S-2</td>
<td>-5</td>
</tr>
</tbody>
</table>

3412.6.4.1 Categories

The categories for tenant and dwelling unit separations are:

1. Category a—No fire partitions; incomplete fire partitions; no doors; doors not self-closing or automatic-closing.
2. Category b—Fire partitions or floor assemblies with less than a 1-hour fire-resistance rating or not constructed in accordance with Sections 709 or 712, respectively.
3. Category c—Fire partitions with a 1-hour or greater fire-resistance rating constructed in accordance with Section 709 and floor assemblies with a 1-hour but less than 2-hour fire-resistance rating constructed in accordance with Section 712, or with only one tenant within the floor area.
4. Category d—Fire barriers with a 1-hour but less than 2-hour fire-resistance rating constructed in accordance with Section 707 and floor assemblies with a 2-hour or greater fire-resistance rating constructed in accordance with Section 712.
5. Category e—Fire barriers and floor assemblies with a 2-hour or greater fire-resistance rating and constructed in accordance with Sections 707 and 712, respectively.

Table 3412.6.3

Compartmentation Values

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>A-1, A-3</td>
<td>0</td>
</tr>
<tr>
<td>A-2</td>
<td>0</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>0</td>
</tr>
<tr>
<td>F, M, R, S-1</td>
<td>0</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.093 m².

a. For areas between categories, the compartmentation value shall be obtained by linear interpolation.
3412.6.5 Corridor walls. Evaluate the fire-resistance rating and degree of completeness of walls which create corridors serving the floor, and constructed in accordance with Section 1018. This evaluation shall not include the wall elements considered under Sections 3412.6.3 and 3412.6.4. Under the categories and groups in Table 3412.6.5, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.5, Corridor Walls, for fire safety, means of egress and general safety.

TABLE 3412.6.5

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>-10</td>
<td>-4</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>-30</td>
<td>-12</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A-3, F, M, R, S-1</td>
<td>-7</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>-5</td>
<td>-2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

A. Corridors not providing at least one-half the travel distance for all occupants on a floor shall use Category b.

3412.6.5.1 Categories. The categories for Corridor Walls are:

1. Category a—No fire partitions; incomplete fire partitions; no doors; or doors not self-closing.
2. Category b—Less than 1-hour fire-resistance rating or not constructed in accordance with Section 709.4.
3. Category c—1-hour to less than 2-hour fire-resistance rating, with doors conforming to Section 715 or without corridors as permitted by Section 1018.
4. Category d—2-hour or greater fire-resistance rating, with doors conforming to Section 715.

3412.6.6 Vertical openings. Evaluate the fire-resistance rating of exit enclosures, hoistways, escalator openings and other shaft enclosures within the building, and openings between two or more floors. Table 3412.6.6(1) contains the appropriate protection values. Multiply that value by the construction type factor found in Table 3412.6.6(2). Enter the vertical opening value and its sign (positive or negative) in Table 3412.7 under Safety Parameter 3412.6.6, Vertical Openings, for fire safety, means of egress, and general safety. If the structure is a one-story building or if all the other shaft enclosures within the building, and openings between two or more floors. Table 3412.7 under Safety Parameter 3412.6.7, HVAC Systems, for fire safety, means of egress and general safety.

3412.6.6.1 Vertical opening formula. The following formula shall be used in computing vertical opening value.

\[VO = PV \times CF \]

(Equation 34-4)

Where:

- \(VO \) = Vertical opening value.
- \(PV \) = Protection value [Table 3412.6.6(1)].
- \(CF \) = Construction type factor [Table 3412.6.6(2)].

TABLE 3412.6.6(1)

<table>
<thead>
<tr>
<th>PROTECTION VALUE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (unprotected opening)</td>
<td>-2 times number floors connected</td>
</tr>
<tr>
<td>Less than 1 hour</td>
<td>-1 times number floors connected</td>
</tr>
<tr>
<td>1 to less than 2 hours</td>
<td>1</td>
</tr>
<tr>
<td>2 hours or more</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 3412.6.6(2)

<table>
<thead>
<tr>
<th>CONSTRUCTION-TYPE FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF CONSTRUCTION</td>
</tr>
<tr>
<td>IA</td>
</tr>
<tr>
<td>FACTOR</td>
</tr>
</tbody>
</table>

3412.6.7 HVAC systems. Evaluate the ability of the HVAC system to resist the movement of smoke and fire beyond the point of origin. Under the categories in Section 3412.6.7.1, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.7, HVAC Systems, for fire safety, means of egress and general safety.

3412.6.7.1 Categories. The categories for HVAC systems are:

1. Category a—Plenums not in accordance with Section 602 of the *California Mechanical Code*. -10 points.
2. Category b—Air movement in egress elements not in accordance with Section 1018.5. -5 points.
3. Category c—Both categories a and b are applicable. -15 points.
4. Category d—Compliance of the HVAC system with Section 1018.5 and Section 602 of the *California Mechanical Code*. 0 points.
5. Category e—Systems serving one story; or a central boiler/chiller system without ductwork connecting two or more stories. 5 points.

3412.6.8 Automatic fire detection. Evaluate the smoke detection capability based on the location and operation of automatic fire detectors in accordance with Section 907 and the *California Mechanical Code*. Under the categories and occupancies in Table 3412.6.8, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.8, Automatic Fire Detection, for fire safety, means of egress and general safety.

TABLE 3412.6.8

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3, F, M, R, S-1</td>
<td>-10</td>
</tr>
<tr>
<td>A-2</td>
<td>-25</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>-4</td>
</tr>
</tbody>
</table>
3412.6.8.1 Categories. The categories for automatic fire detection are:

1. Category a—None.
2. Category b—Existing smoke detectors in HVAC systems and maintained in accordance with the California Fire Code.
3. Category c—Smoke detectors in HVAC systems. The detectors are installed in accordance with the requirements for new buildings in the California Mechanical Code.
4. Category d—Smoke detectors throughout all floor areas other than individual sleeping units, tenant spaces and dwelling units.
5. Category e—Smoke detectors installed throughout the floor area.

3412.6.9 Fire alarm systems. Evaluate the capability of the fire alarm system in accordance with Section 907. Under the categories and occupancies in Table 3412.6.9, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.9, Fire Alarm Systems, for fire safety, means of egress and general safety.

<table>
<thead>
<tr>
<th>TABLE 3412.6.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE ALARM SYSTEM VALUES</td>
</tr>
<tr>
<td>OCCUPANCY</td>
</tr>
<tr>
<td>A-1, A-2, A-3, A-4, B, E, R</td>
</tr>
<tr>
<td>F, M, S</td>
</tr>
</tbody>
</table>

a. For buildings equipped throughout with an automatic sprinkler system, add 2 points for activation by a sprinkler waterflow device.

3412.6.9.1 Categories. The categories for fire alarm systems are:

1. Category a—None.
2. Category b—Fire alarm system with manual fire alarm boxes in accordance with Section 907.3 and alarm notification appliances in accordance with Section 907.5.2.
3. Category c—Fire alarm system in accordance with Section 907.
4. Category d—Category c plus a required emergency voice/alarm communications system and a fire command center that conforms to Section 403.4.5 and contains the emergency voice/alarm communications system controls, fire department communication system controls and any other controls specified in Section 911 where those systems are provided.

3412.6.10 Smoke control. Evaluate the ability of a natural or mechanical venting, exhaust or pressurization system to control the movement of smoke from a fire. Under the categories and occupancies in Table 3412.6.10, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.10, Smoke Control, for means of egress and general safety.

<table>
<thead>
<tr>
<th>TABLE 3412.6.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOKE CONTROL VALUES</td>
</tr>
<tr>
<td>OCCUPANCY</td>
</tr>
<tr>
<td>A-1, A-2, A-3</td>
</tr>
<tr>
<td>A-4, E</td>
</tr>
<tr>
<td>B, M, R</td>
</tr>
<tr>
<td>F, S</td>
</tr>
</tbody>
</table>

a. This value shall be 0 if compliance with Category d or e in Section 3412.6.8.1 has not been obtained.

3412.6.10.1 Categories. The categories for smoke control are:

1. Category a—None.
2. Category b—The building is equipped throughout with an automatic sprinkler system. Openings are provided in exterior walls at the rate of 20 square feet (1.86 m^2) per 50 linear feet (15 240 mm) of exterior wall in each story and distributed around the building perimeter at intervals not exceeding 50 feet (15 240 mm). Such openings shall be readily openable from the inside without a key or separate tool and shall be provided with ready access thereto. In lieu of operable openings, clearly and permanently marked tempered glass panels shall be used.
3. Category c—One enclosed exit stairway, with ready access thereto, from each occupied floor of the building. The stairway has operable exterior windows and the building has openings in accordance with Category b.
4. Category d—One smokeproof enclosure and the building has openings in accordance with Category b.
5. Category e—The building is equipped throughout with an automatic sprinkler system. Each floor area is provided with a mechanical air-handling system designed to accomplish smoke containment. Return and exhaust air shall be moved directly to the outside without recirculation to other floor areas of the building under fire conditions. The system shall exhaust not less than six air changes per hour from the floor area. Supply air by mechanical means to the floor area is not required. Containment of smoke shall be considered as confining smoke to the fire area involved without migration to other floor areas. Any other tested and approved design which will adequately accomplish smoke containment is permitted.
6. Category f—Each stairway shall be one of the following: a smokeproof enclosure in accordance with Section 1022.9; pressurized in accordance with Section 909.20.5 or shall have operable exterior windows.

3412.6.11 Means of egress capacity and number. Evaluate the means of egress capacity and the number of exits available to the building occupants. In applying this section,
the means of egress are required to conform to the following sections of this code: 1003.7, 1004, 1005.1, 1014.2, 1014.3, 1015.2, 1021, 1025.1, 1027.2, 1027.6, 1028.2, 1028.3, 1028.4 and 1029 [except that the minimum width required by this section shall be determined solely by the width for the required capacity in accordance with Table 3412.6.11(1)]. The number of exits credited is the number that is available to each occupant of the area being evaluated. Existing fire escapes shall be accepted as a component in the means of egress when conforming to Section 3406. Under the categories and occupancies in Table 3412.6.11(2), determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.11, Means of Egress Capacity, for means of egress and general safety.

3412.6.11.1 Categories. The categories for Means of Egress Capacity and number of exits are:

1. Category a—Compliance with the minimum required means of egress capacity or number of exits is achieved through the use of a fire escape in accordance with Section 3406.

2. Category b—Capacity of the means of egress complies with Section 1004 and the number of exits complies with the minimum number required by Section 1021.

3. Category c—Capacity of the means of egress is equal to or exceeds 125 percent of the required means of egress capacity, the means of egress complies with the minimum required width dimensions specified in the code and the number of exits complies with the minimum number required by Section 1021.

4. Category d—The number of exits provided exceeds the number of exits required by Section 1021. Exits shall be located a distance apart from each other equal to not less than that specified in Section 1015.2.

5. Category e—The area being evaluated meets both Categories c and d.

3412.6.12 Dead ends. In spaces required to be served by more than one means of egress, evaluate the length of the exit access travel path in which the building occupants are confined to a single path of travel. Under the categories and occupancies in Table 3412.6.12, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.12, Dead Ends, for means of egress and general safety.

3412.6.12.1 Categories. The categories for dead ends are:

1. Category a—Dead end of 35 feet (10670 mm) in nonsprinklered buildings or 70 feet (21 340 mm) in sprinklered buildings.

2. Category b—Dead end of 20 feet (6096 mm); or 50 feet (15 240 mm) in Group B in accordance with Section 1018.4, exception 2.

3. Category c — No dead ends; or ratio of length to width (l/w) is less than 2.5:1.

TABLE 3412.6.11(1)
EGRESS WIDTH PER OCCUPANT SERVED

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>WITHOUT SPRINKLER SYSTEM</th>
<th>WITH SPRINKLER SYSTEM a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stairways (inches per occupant)</td>
<td>Other egress components (inches per occupant)</td>
</tr>
<tr>
<td>Occupancies other than those listed below</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Hazardous: H-1, H-2, H-3 and H-4</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>Institutional: I-2</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2.
3412.6.13 Maximum exit access travel distance. Evaluate the length of exit access travel to an approved exit. Determine the appropriate points in accordance with the following equation and enter that value into Table 3412.7 under Safety Parameter 3412.6.13, Maximum Exit Access Travel Distance, for means of egress and general safety. The maximum allowable exit access travel distance shall be determined in accordance with Section 1016.1.

\[
\text{Maximum allowable } = \frac{\text{Maximum actual travel distance}}{\text{Max. allowable travel distance}}
\]

3412.6.14 Elevator control. Evaluate the passenger elevator equipment and controls that are available to the fire department to reach all occupied floors. Elevator recall controls shall be provided in accordance with the California Fire Code. Under the categories and occupancies in Table 3412.6.14, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.14, Elevator Control, for fire safety, means of egress and general safety. The values shall be zero for a single-story building.

3412.6.15 Means of egress emergency lighting. Evaluate the presence of and reliability of means of egress emergency lighting. Under the categories and occupancies in Table 3412.6.15, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.15, Means of Egress Emergency Lighting, for means of egress and general safety.

TABLE 3412.6.14
ELEVATOR CONTROL VALUES

<table>
<thead>
<tr>
<th>ELEVATOR TRAVEL</th>
<th>CATEGORIES</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 25 feet of travel above or below the primary level of elevator access for emergency fire-fighting or rescue personnel</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>+2</td>
<td></td>
</tr>
<tr>
<td>Travel of 25 feet or more above or below the primary level of elevator access for emergency fire-fighting or rescue personnel</td>
<td>-4</td>
<td>NP</td>
<td>0</td>
<td>+4</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

3412.6.14.1 Categories. The categories for elevator controls are:

1. Category a—No elevator.
2. Category b—Any elevator without Phase I and II recall.
3. Category c—All elevators with Phase I and II recall as required by the California Fire Code.
4. Category d—All meet Category c; or Category b where permitted to be without recall; and at least one elevator that complies with new construction requirements serves all occupied floors.

3412.6.15.1 Categories. The categories for means of egress emergency lighting are:

1. Category a—Means of egress lighting and exit signs not provided with emergency power in accordance with Chapter 27.
2. Category b—Means of egress lighting and exit signs provided with emergency power in accordance with Chapter 27.
3. Category c—Emergency power provided to means of egress lighting and exit signs which provides protection in the event of power failure to the site or building.

3412.6.16 Mixed occupancies. Where a building has two or more occupancies that are not in the same occupancy classification, the separation between the mixed occupancies shall be evaluated in accordance with this section. Where there is no separation between the mixed occupancies or the separation between mixed occupancies does not qualify for any of the categories indicated in Section 3412.6.16.1, the building shall be evaluated as indicated in Section 3412.6 and the value for mixed occupancies shall be zero. Under the categories and occupancies in Table 3412.6.16, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.16, Mixed Occupancies, for fire safety and general safety. For buildings without mixed occupancies, the value shall be zero.

TABLE 3412.6.16
MIXED OCCUPANCY VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-2, R</td>
<td>-10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>A-3, A-4, B, E, F, M, S</td>
<td>-5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

a. For fire-resistance ratings between categories, the value shall be obtained by linear interpolation.

3412.6.16.1 Categories. The categories for mixed occupancies are:

1. Category a—Occupancies separated by minimum 1-hour fire barriers or minimum 1-hour horizontal assemblies, or both.
2. Category b—Separations between occupancies in accordance with Section 508.4.
3. Category c—Separations between occupancies having a fire-resistance rating of not less than twice that required by Section 508.3.3.

3412.6.17 Automatic sprinklers. Evaluate the ability to suppress a fire based on the installation of an automatic sprinkler system.
EXISTING STRUCTURES

sprinkler system in accordance with Section 903.3.1.1. “Required sprinklers” shall be based on the requirements of this code. Under the categories and occupancies in Table 3412.6.17, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.17, Automatic Sprinklers, for fire safety, means of egress divided by 2 and general safety.

TABLE 3412.6.17
SPRINKLER SYSTEM VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3, F, M, R, S-1</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>A-2</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>-12</td>
<td>-6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

3412.6.17.1 Categories. The categories for automatic sprinkler system protection are:

1. Category a—Sprinklers are required throughout; sprinkler protection is not provided or the sprinkler system design is not adequate for the hazard protected in accordance with Section 903.
2. Category b—Sprinklers are required in a portion of the building; sprinkler protection is not provided or the sprinkler system design is not adequate for the hazard protected in accordance with Section 903.
3. Category c—Sprinklers are not required; none are provided.
4. Category d—Sprinklers are required in a portion of the building; sprinklers are provided in such portion; the system is one which complied with the code at the time of installation and is maintained and supervised in accordance with Section 903.
5. Category e—Sprinklers are required throughout; sprinklers are provided throughout in accordance with Chapter 9.
6. Category f—Sprinklers are not required throughout; sprinklers are provided throughout in accordance with Chapter 9.

3412.6.18 Standpipes. Evaluate the ability to initiate attack on a fire by making a supply of water available readily through the installation of standpipes in accordance with Section 905. Required standpipes shall be based on the requirements of this code. Under the categories and occupancies in Table 3412.6.18, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.18, Standpipes, for fire safety, means of egress and general safety.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3, F, M, R, S-1</td>
<td>-6</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>A-2</td>
<td>-4</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>-12</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

a. This option cannot be taken if Category a or b in Section 3412.6.17 is used.

3412.6.19 Incidental accessory occupancy. Evaluate the protection of incidental accessory occupancies in accordance with Section 508.2.5. Do not include those where this code requires suppression throughout the buildings, including covered mall buildings, high-rise buildings, public garages and unlimited area buildings. Assign the lowest score from Table 3412.6.19 for the building or floor area being evaluated and enter that value into Table 3412.7 under Safety Parameter 3412.6.19, Incidental Accessory Occupancy, for fire safety, means of egress and general safety. If there are no specific occupancy areas in the building or floor area being evaluated, the value shall be zero.

<table>
<thead>
<tr>
<th>AREA</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Hour, or AFSS</td>
</tr>
<tr>
<td></td>
<td>1 Hour, AFSS</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>1 Hour, or AFSS</td>
<td>-4</td>
</tr>
<tr>
<td>1 Hour, AFSS</td>
<td>-3</td>
</tr>
<tr>
<td>1 Hour</td>
<td>-1</td>
</tr>
<tr>
<td>AFSS with SP</td>
<td>-1</td>
</tr>
<tr>
<td>AFSS with SP</td>
<td>-1</td>
</tr>
</tbody>
</table>

a. AFSS = Automatic fire suppression system; SP = Smoke partitions (See Section 508.2.5).

Note: For Table 3412.7, see next page.

3412.7 Building score. After determining the appropriate data from Section 3412.6, enter those data in Table 3412.7 and total the building score.
TABLE 3412.7
SUMMARY SHEET — BUILDING CODE

<table>
<thead>
<tr>
<th>Existing occupancy:</th>
<th>Proposed occupancy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year building was constructed:</td>
<td>Number of stories:</td>
</tr>
<tr>
<td>Type of construction:</td>
<td>Area per floor:</td>
</tr>
<tr>
<td>Percentage of open perimeter increase:</td>
<td>___ %</td>
</tr>
<tr>
<td>Completely suppressed: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Compartmentation: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fire-resistance rating of vertical opening enclosures:</td>
<td></td>
</tr>
<tr>
<td>Type of HVAC system:</td>
<td>, serving number of floors:</td>
</tr>
<tr>
<td>Automatic fire detection: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fire alarm system: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Smoke control: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Adequate exit routes: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Maximum exit access travel distance:</td>
<td></td>
</tr>
<tr>
<td>Means of egress emergency lighting: Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mixed occupancies: Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

SAFETY PARAMETERS

- **3412.6.1 Building Height**
- **3412.6.2 Building Area**
- **3412.6.3 Compartmentation**
- **3412.6.4 Tenant and Dwelling Unit Separations**
- **3412.6.5 Corridor Walls**
- **3412.6.6 Vertical Openings**
- **3412.6.7 HVAC Systems**
- **3412.6.8 Automatic Fire Detection**
- **3412.6.9 Fire Alarm Systems**
- **3412.6.10 Smoke Control**
- **3412.6.11 Means of Egress Capacity**
- **3412.6.12 Dead Ends**
- **3412.6.13 Maximum Exit Access Travel Distance**
- **3412.6.14 Elevator Control**
- **3412.6.15 Means of Egress Emergency Lighting**
- **3412.6.16 Mixed Occupancies**
- **3412.6.17 Automatic Sprinklers**
- **3412.6.18 Standpipes**
- **3412.6.19 Incidental Accessory Occupancy**

FIRE SAFETY (FS)

- **3412.6.10 Smoke Control**
- **3412.6.11 Means of Egress Capacity**
- **3412.6.12 Dead Ends**

MEANS OF EGRESS (ME)

- **3412.6.13 Maximum Exit Access Travel Distance**
- **3412.6.14 Elevator Control**
- **3412.6.15 Means of Egress Emergency Lighting**

GENERAL SAFETY (GS)

- **3412.6.16 Mixed Occupancies**
- **3412.6.17 Automatic Sprinklers**
- **3412.6.18 Standpipes**
- **3412.6.19 Incidental Accessory Occupancy**

Building score — total value

* ***No applicable value to be inserted.*
3412.8 Safety scores. The values in Table 3412.8 are the required mandatory safety scores for the evaluation process listed in Section 3412.6.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>FIRE SAFETY (MFS)</th>
<th>MEANS OF EGRESS (MME)</th>
<th>GENERAL SAFETY (MGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>16</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>A-2</td>
<td>19</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>A-3</td>
<td>18</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>A-4, E</td>
<td>23</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>M</td>
<td>19</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>R</td>
<td>17</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>S-1</td>
<td>15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>S-2</td>
<td>23</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

a. MFS = Mandatory Fire Safety; MME = Mandatory Means of Egress; MGS = Mandatory General Safety.

3412.9 Evaluation of building safety. The mandatory safety score in Table 3412.8 shall be subtracted from the building score in Table 3412.7 for each category. Where the final score for any category equals zero or more, the building is in compliance with the requirements of this section for that category. Where the final score for any category is less than zero, the building is not in compliance with the requirements of this section.

3412.9.1 Mixed occupancies. For mixed occupancies, the following provisions shall apply:

1. Where the separation between mixed occupancies does not qualify for any category indicated in Section 3412.6.16, the mandatory safety scores for the occupancy with the lowest general safety score in Table 3412.8 shall be utilized (see Section 3412.6).

2. Where the separation between mixed occupancies qualifies for any category indicated in Section 3412.6.16, the mandatory safety scores for each occupancy shall be placed against the evaluation scores for the appropriate occupancy.

SECTION 3413
EXISTING GROUP R-1 AND GROUP R-2 OCCUPANCIES [SFM]

3413.1 Scope. The provisions of this section are intended to maintain or increase the current degree of public safety, health and general welfare in existing buildings classified as Group R Occupancies.

3413.1.1 Application. In accordance with Health and Safety Code Section 13143.2, the provisions of Sections 3413.2 through 3413.12 shall only apply to multiple-story structures existing on January 1, 1975, let for human habitation, including, and limited to, apartment houses, hotels, and motels wherein rooms used for sleeping are let above the ground floor.

3413.2 Number of exits. Every apartment and every other sleeping room shall have access to not less than two exits when the occupant load is 10 or more (exits need not be directly from the apartment or sleeping room). A fire escape as specified herein may be used as one required exit.

Subject to approval of the authority having jurisdiction, a ladder device as specified herein may be used in lieu of a fire escape when the construction feature or the location of the building on the property cause the installation of a fire escape to be impractical.

3413.3 Stair construction. All stairs shall have a minimum run of 9 inches (229 mm) and a maximum rise of 8 inches (203 mm) and a minimum width exclusive of handrails of 30 inches (762 mm). Every stairway shall have at least one handrail. A landing having a minimum horizontal dimension of 30 inches (762 mm) shall be provided at each point of access to the stairway.

<table>
<thead>
<tr>
<th>FORMULA</th>
<th>T.3410.7</th>
<th>T.3410.8</th>
<th>SCORE</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-MFS ≥ 0</td>
<td>(FS)</td>
<td>(MFS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-MME ≥ 0</td>
<td>(ME)</td>
<td>(MME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-MGS ≥ 0</td>
<td>(GS)</td>
<td>(MGS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. FS = Fire Safety MFS = Mandatory Fire Safety
ME = Means of Egress MME = Mandatory Means of Egress
GS = General Safety MGS = Mandatory General Safety
3413.4 Interior stairways. Every interior stairway shall be enclosed with walls of not less than one-hour fire-resistive construction. Where existing partitions form part of a stairwell enclosure, wood lath and plaster in good condition will be acceptable in lieu of one-hour fire-resistive construction. Doors to such enclosures shall be protected by a self-closing door equivalent to a solid wood door with a thickness of not less than 1 1/4 inches (44.5 mm).

Enclosures shall include all landings between flights and any corridors, passageways or public rooms necessary for continuous exit to the exterior of the buildings. The stairway need not be enclosed in a continuous shaft if cut off at each story by the fire-resistive construction required by this subsection for stairwell enclosures. Enclosures shall not be required if an automatic sprinkler system is provided for all portions of the building except bedrooms, apartments and rooms accessory thereto. Interior stairs and vertical openings need not be enclosed in two-story buildings.

3413.5 Exterior stairways. Exterior stairways shall be noncombustible or of wood of not less than 2-inch (51 mm) nominal thickness with solid treads and risers.

3413.6 Fire escapes, exit ladder devices. Fire escapes may be used as one means of egress if the pitch does not exceed 60 degrees, the width is not less than 18 inches (457 mm), the treads are not less than 4 inches (102 mm) wide, and they extend to the ground or are provided with counterbalanced stairs reaching to the ground. Access shall be by an opening having a minimum dimension of 29 inches (737 mm) when open. The sill shall not be more than 30 inches (762 mm) above the floor and landing.

A ladder device, when used in lieu of a fire escape, shall conform to Section 3413.6.1 and the following:

Serves an occupant load of nine people or less or a single dwelling unit or hotel room.

The building does not exceed three stories in height.

The access is adjacent to an opening as specified for emergency egress or rescue or from a balcony.

The device does not pass in front of any building opening below the unit being served.

The availability of activating the ladder device is accessible only to the opening or balcony served.

The device as installed will not cause a person using it to be within 12 feet (3658 mm) of exposed energized high-voltage conductors.

3413.6.1 Exit ladder devices.

3413.6.1.1 Scope. This standard for exit ladder devices is applicable where such devices are permitted by the building official for installation on existing apartment houses and hotels in conformance with the California Building Code.

3413.6.1.2 Instructions. Installation shall be in accordance with the manufacturer’s instructions. Instructions shall be illustrated and shall include directions and information adequate for attaining proper and safe installation of the product. Where exit ladder devices are intended for mounting on different support surfaces, specific installation instructions shall be provided for each surface.

3413.6.1.3 General design. All load-bearing surfaces and supporting hardware shall be of noncombustible materials. Exit ladder devices shall have a minimum width of 12 inches (305 mm) when in the position intended for use. The design load shall not be less than 400 pounds (1780 N) for 16-foot (4877 mm) length and 600 pounds (2699 N) for 25-foot (7620 mm) length.

3413.6.1.4 Performance.

3413.6.1.4.1 Exit ladder devices shall be capable of withstanding an applied load of four times the design load when installed in the manner intended for use. Test loads shall be applied for a period of one hour.

3413.6.1.4.2 Exit ladder devices of the retractable type shall, in addition to the static load requirements of Section 413.6.1.4.1, be capable of withstanding the following tests:

1. Rung strength
2. Rung-to-side-rail shear strength
3. Release mechanism
4. Low temperature

3413.6.1.5 Rung-strength test. Rungs of retractable exit ladder devices shall be capable of withstanding a load of 1,000 pounds (4448 N) when applied to a 3/4-inch-wide (89 mm) block resting at the center of the rung. The test load shall be applied for a period of one hour. The ladder shall remain operational following this test.

3413.6.1.6 Rung-to-side-rail shear test. Rungs of retractable exit ladder devices shall be capable of withstanding 1,000 (4448 N) when applied to a 3/4-inch-wide (89 mm) block resting on the center rung as near the side rail as possible. The test load shall be applied for a period of one hour. Upon removal of the test load the fasteners attaching the rung to the side rail shall show no evidence of failure. The ladder shall remain operational following the test.

3413.6.1.7 Release mechanism test. The release mechanism of retractable exit ladder devices shall operate with an average applied force of not more than 5 pounds (22.2 N) for hand-operated releasing mechanisms and an average applied force of not more than 25 pounds (111 N) for foot-pedal types of releasing mechanisms. For these tests, a force gauge shall be applied to the release mechanism, and the average of three consecutive readings shall be computed.

3413.6.1.8 Low temperature operation test. Representative samples of the exit ladder devices shall be subjected to a temperature of -40°F in an environmental chamber for a period of 24 hours. The release mechanism shall be operated immediately upon removal from the chamber. The ladder device shall function as intended without any restriction of operation.
3413.7 Doors and openings. Exit doors and openings shall meet the requirements of Sections 1008.1.2, 1008.8.1.8, 1008.1.9 and 708.6. Doors shall not reduce the required width of stairway more than 6 inches (152 mm) when open. Transoms and openings other than doors from corridors to rooms shall be fixed closed and shall be covered with a minimum of 1/4-inch (19 mm) plywood or 1/2-inch (13 mm) gypsum wallboard or equivalent material.

Exceptions:
1. Existing solid-bonded wood-core doors 1 1/4 inches thick (34.9 mm), or their equivalent may be continued in use.
2. Where the existing frame will not accommodate a door complying with Section 708.6, a 1 1/6-inch-thick (35 mm) solid-bonded wood-core door may be used.

3413.8 Exit signs. Every exit doorway or change of direction of a corridor shall be marked with a well-lighted exit sign having letters at least 5 inches (127 mm) high.

3413.9 Enclosure of vertical openings. Elevators, shafts, ducts and other vertical openings shall be enclosed as required for stairways in Section 3413.5 or by wired glass set in metal frames. Doors shall be noncombustible or as regulated in Section 3413.5.

3413.10 Separation of occupancies. Occupancy separations shall be provided as specified in Section 508. Lobbies and public dining rooms, not including cocktail lounges, shall require a separation if the kitchen is so separated from the dining room. Every room containing a boiler or central heating plant shall be separated from the rest of the building by not less than a one-hour fire-resistant occupancy separation.

Exception: A separation shall not be required for such rooms with equipment serving only one dwelling unit.

3413.11 Equivalent protection. In lieu of the separation of occupancies required by Section 3413.10, equivalent protection may be permitted when approved by the enforcement agency.

Exception: The provisions of Sections 3413.3 through 3413.11 above shall not apply to any existing apartment house, hotel or motel having floors (as measured from the top of the floor surface) used for human occupancy located more than 75 feet (22 860 mm) above the lowest floor level having building access which is subject to the provisions of Section 33414, California Building Code, relating to existing high-rise buildings.

Note: In accordance with Health and Safety Code Section 17920.7, the provisions of Sections 3413.3 through 3413.11 above shall apply only to multiple-story structures existing on January 1, 1975, let for human habitation including, and limited to, apartments, houses, hotels and motels wherein rooms used for sleeping are let above the ground floor.

3413.12 Fire alarms.

3413.12.1 General. Every apartment house three or more stories in height or containing more than 15 apartments, every hotel three or more stories in height or containing 20 or more guest rooms, shall have installed therein an automatic or manually operated fire alarm system. Such fire alarm systems shall be so designed that all occupants of the building may be warned simultaneously and shall be in accordance with the California Fire Code. See Section 3414.14 for special requirements in buildings over 75 feet (22 860 mm) in height.

Exception: A fire alarm system need not be installed provided such apartment house or hotel is separated by an unperforated wall of not less than four-hour fire resistance in buildings of Type IA, Type IIB, Type III or Type IV construction and two-hour fire resistance in buildings of all other types of construction provided:
1. Areas do not exceed the number of apartments or guest rooms stipulated.
2. The fire-resistant wall conforms to the requirements of Section 706.6.
3. The wall complies with all other applicable provisions of the California Building Code.
4. The wall extends to all outer edges of horizontal projecting elements, such as balconies, roof overhangs, canopies, marquees or architectural projections.
5. No openings are permitted for air ducts or similar penetrations, except that openings for pipes, conduits and electrical outlets of copper, sheet steel or ferrous material shall be permitted through such wall and need not be protected, provided they do not unduly impair the required fire resistance of the assembly.
6. Tolerances around such penetrations shall be filled with approved noncombustible materials.

3413.12.2 Installation. The installation of all fire alarm equipment shall be in accordance with the California Fire Code.

3413.13 Existing Group R Occupancy high-rise buildings.

3413.13.1 General. Regardless of other provisions of these regulations relating to existing high-rise buildings, requirements relative to existing Group R-1 or Group R-2 Occupancies shall not be less restrictive than those established pursuant to Health and Safety Code Section 13143.2.

3413.13.2 Corridor openings. Openings in corridor walls and ceilings shall be protected by not less than 1/4-inch (6.4 mm) solid-bonded wood-core doors, 1/2-inch-thick (12.7 mm) wired glass conforming to Section 715.1, by approved fire dampers or by equivalent protection in lieu of any of these items. Transoms shall be fixed closed with material having a fire-resistive rating equal to 1/2-inch (12.7 mm) Type X gypsum wallboard or equivalent material installed on both sides of the opening.

3413.13.3 Fire alarm systems. Notwithstanding the provisions of Section 403, every existing high-rise building used for the housing of a Group R-1 or Group R-2 Occupancies shall have installed therein a fire alarm system conforming to this subsection.
3413.13.3.1 General. Every apartment house and every hotel shall have installed therein an automatic or manually operated fire alarm system. Such fire alarm systems shall be so designed that all occupants of the building may be warned simultaneously.

3413.13.3.2 Installation. The installation of all fire alarm equipment shall be in accordance with the California Fire Code.

3413.13.3.3 Fire-extinguishing systems. Automatic fire-extinguishing systems installed in any structure subject to these regulations shall have an approved flow indicator electrically interconnected to the required fire alarm system.

SECTION 3414
EXISTING HIGH-RISE BUILDINGS [SFM]

3414.1 Scope and definition. The provisions of Sections 3414.1 through 3414.27 shall apply to every existing high-rise building of any type of construction or occupancy having floors (as measured from the top of the floor surface) used for human occupancy located more than 75 feet (22 860 mm) above the lowest floor level having building access.

Exceptions:

1. Hospitals, as defined in Section 1250 of the Health and Safety Code.

2. The following structures, while classified as high-rise buildings, shall not be subject to the provisions of Sections 3414.1 through 3414.27, but shall conform to all applicable provisions of these regulations.

2.1 Building used exclusively as open parking garages.

2.2 Buildings where all floors above the 75 foot (22 860 mm) level are used exclusively as open parking garages.

2.3 Floors of buildings used exclusively as open parking garages and located above all other floors used for human occupancy.

2.4 Buildings such as power plants, look-out towers, steeples, grain houses, and similar structures, when so determined by the enforcing agency.

2.5 Buildings used exclusively for jails and prisons.

For the purposes of this section, “building access” shall mean an exterior door opening conforming to all of the following:

1. Suitable and available for fire department use.

2. Located not more than 2 feet (610 mm) above the adjacent ground level.

3. Leading to a space, room or area having foot traffic communication capabilities with the remainder of the building.

4. Designed to permit penetration through the use of fire department forcible-entry tools and equipment unless other approved arrangements have been made with the fire authority having jurisdiction.

“Existing high-rise structure” means a high-rise structure, the construction of which is commenced or completed prior to July 1, 1974.

For the purpose of this section, construction shall be deemed to have commenced when plans and specifications are more than 50 percent complete and have been presented to the local jurisdiction prior to July 1, 1974. Actual construction of such buildings shall commence on or before January 1, 1976, unless all provisions for new buildings have been met.

Note: it is the intent of this section that, in determining the level form which the highest occupied floor is to be measured, the enforcing agency should exercise reasonable judgment, including consideration of overall accessibility to the building by fire department personnel and vehicular equipment. When a building is situated on sloping terrain and there is building access on more than one level, the enforcing agency may select the level which provides the most logical and adequate fire department access.

3414.2 Compliance data. Except as may be otherwise specified, existing high-rise building shall conform to the applicable requirements of these regulations by April 26, 1979.

Exception: The period of compliance may be extended upon showing of good cause for such extension if a systematic and progressive plan of correction is submitted to, and approved by, the enforcing agency. Such extension shall not exceed two years from the date of approval of such plan. Any plan of correction submitted pursuant to this exception shall be submitted and approved on or before April 26, 1979.

3414.3 Continued use. Existing high-rise building may have their use continued if they conform, or are made to conform, to the intent of the provisions of Sections 3414.5 through 3414.27 to provide for the safety of the occupants of the high-rise buildings and person involved in fire-suppression activities.

3414.4 Alternate protection. Alternate means of egress, fire walls or fire barriers, smoke barriers, automatic fire detection or fire-extinguishing systems, or other fire-protection devices, equipment or installations may be approved by the enforcing agency to provide reasonable and adequate life safety as intended by Sections 3414.5 through 3414.27 for existing high-rise buildings.

3414.5 Basic provisions. The provisions outlined in Sections 3414.1 through 3414.27 are applicable to every existing high-rise building.

3414.6 Minimum construction. Existing wood lath and plaster, existing 1/2-inch (12.7 mm) gypsum wallboard, existing installations of 1/2-inch thick (12.7 mm) wired glass which are or are rendered inoperative and fixed in a closed position, or other existing materials having similar fire-resistant capabilities shall be acceptable. All such assemblies shall be in good repair, free of any condition which would diminish their original fire-resistant characteristics.
EXISTING STRUCTURES

Where 13/8-inch (44.5 mm) solid-bonded wood-core doors are specified in these regulations for existing high-rise buildings, new or existing 13/8-inch (34.9 mm) doors shall be acceptable where existing framing will not accommodate a 13/8-inch (44.5 mm) door.

Note: It is the intent of this provision that existing wood frames may have their use continued.

3414.7 New construction. All new construction shall be composed of materials and assemblies of materials conforming to the fire-resistive provisions of these regulations. In no case shall enclosure walls be required to be of more than one-hour fire-resistive construction.

Exception: When approved by the enforcing agency, materials specified in Section 3414.6 may be used for new construction when necessary to maintain continuity of design and measurement of existing construction.

3414.8 Exits. Every floor from an existing high-rise building shall have access to two separate means of egress, one of which, when approved by the enforcing agency, may be an existing exterior fire escape.

New installations of smoke-proof enclosures shall not be required.

Note: In determining the adequacy of exits and their design, Chapter 10 may be used as a guide. It is the intent of this section that every existing high-rise building need not mandatorily conform or be made to conform with the requirements for new high-rise buildings. Reasonable judgment in the application of requirements must be exercised by the enforcing agency.

3414.9 Fire escapes. An existing fire escape in good structural condition may be acceptable as one of the required means of egress from each floor. Access to such fire escapes may be by any one of the following:

Through a room between the corridor and the fire escape if the door to the room is operable from the corridor side without the use of any key, special knowledge or effort.

By a door operable to a fire escape from the interior without the use of any key, special knowledge or effort.

By a window operable from the interior. Such window shall have a minimum dimension of 29 inches (737 mm) when open. The sill shall not be more than 30 inches (762 mm) above the floor and landing.

3414.10 Protection of exterior openings. When an existing fire escape is accepted as one of the required means of egress, openings onto the fire escape landing and openings within 5 feet (1524 mm) horizontally of the landings shall be protected in a manner acceptable to the enforcing agency.

3414.11 Locking of stairway doors. When exit doors from corridors to exit stairways are locked to prohibit access from the stairway side, the locking mechanisms shall be retracted upon failure of electrical power and a telephone or other two-way communication system connected to an approved emergency service that operates continuously shall be provided at not less than every fifth floor in each required stairway. In lieu thereof, master keys which will unlock all such doors from the stairway side shall be provided in such numbers and locations as approved by the enforcing agency.

3414.12 Enclosures. Interior vertical shafts, including but not limited to, elevators, stairway and utility, shall be enclosed with construction as set forth in Section 3414.6.

3414.13 Opening protection. Doors in other than elevators, which shall be of a type acceptable to the enforcing agency, shall be provided one-hour, fire-rated, tight-fitting or gasketed doors or equivalent protection, and shall be of the normally closed type, self-closing or a type which will close automatically in accordance with Section 715.

Exception: In lieu of stairway enclosures, smoke barriers may be provided in such a manner that fire and smoke will not spread to other floors or otherwise impair exit facilities.

In these instances, smoke barriers shall not be less than one-hour fire resistive with openings protected by not less than approved one-third-hour, fire-rated, tight-fitting or gasketed doors. Such doors shall be of the self-closing type or of a type which will close automatically in the manner specified in Section 715.

Doors crossing corridors shall be provided with wired-glass vision panels set in approved steel frames.

Doors for elevators shall not be of the open-grille type.

3414.14 Fire alarm system. Every existing high-rise building shall be provided with an approved fire alarm system. In department stores, retail sales stores and similar occupancies where the general public is admitted, such systems shall be of a type capable of alerting staff and employees. In office buildings and all other high-rise buildings, such systems shall be of a type capable of alerting all occupants simultaneously.

Exceptions:

1. In areas of public assemblage, the type and location of audible appliances shall be as determined by the enforcing agency.

2. When acceptable to the enforcing agency, the occupant voice notification system required by Section 3414.17 may be used in lieu of the fire alarm system required by Section 3414.14.

3414.15 Existing systems. Existing fire systems, when acceptable to the enforcing agency, shall be deemed as conforming to the provisions of these regulations. For requirements for existing Group R-1 Occupancies, see Section 3412.13.

3414.16 Annunciation. When a new fire alarm system is installed, it shall be connected to an annunciator panel installed in a location approved by the enforcing agency.

For purposes of annunciation, zoning shall be in accordance with Section 907.6.3.

3414.17 Monitoring. Shall be in accordance with Section 907.6.5.

3414.18 Systems interconnection. When an automatic fire detection system or automatic extinguishing system is installed, activation of such system shall cause the sounding of the fire alarm notification appliances at locations designated by the enforcing agency.
3414.19 Manual fire alarm boxes. A manual fire alarm box shall be provided in the locations designated by the enforcing agency. Such locations shall be where boxes are readily accessible and visible and in normal paths of daily travel by occupants of the building.

3414.20 Emergency voice/alarm communication system. An approved emergency voice/alarm system shall be provided in every existing high-rise building which exceeds 150 feet (45 720 mm) in height measured in the manner set forth in Section 3412.1. Such system shall provide communication from a location available to and designated by the enforcing agency to not less than all public areas.

The emergency voice/alarm system may be combined with a fire alarm system provide the combined system has been approved and listed by the State Fire Marshal. The sounding of a fire alarm signal in any given area or floor shall not prohibit voice communication to other areas of floors. Combination systems shall be designed to permit voice transmission to override the fire alarm signal, but the fire alarm signal shall not terminate in less than three minutes.

3414.21 Fire department system. When it is determined by test that portable fire department communication equipment is ineffective, a communication system acceptable to the enforcing agency shall be installed within the building to permit emergency communication between fire-suppression personnel.

3414.22 Interior wall and ceiling finish. Interior wall and ceiling finish of exits ways shall conform to the provisions of Chapter 8. Where the materials used in such finishes do not conform to the provisions of Chapter 8, such finishes may be surfaced with an approved fire-retardant coating.

3414.23 Ventilation. Natural or mechanical ventilation for the removal of products of combustion shall be provided in every story of an existing high-rise building. Such ventilation shall be any one or combination of the following:

- Panels or windows in the exterior wall which can be opened. Such venting facilities shall be provided at the rate of at least 20 square feet (1.86 m²) of opening per 50 lineal feet (15 240 lineal mm) of exterior wall in each story, distributed around the perimeter at not more than 50-foot (15 240 mm) intervals on at least two sides of the building.

- Approved fixed tempered glass may be used in lieu of openable panels or windows. When only selected panels or windows are of tempered glass, they shall be clearly identified as required by the enforcing agency. Any other design which will produce equivalent results.

3414.24 Smoke control systems. Existing air-circulation systems shall be provided with an override switch in a location approved by the enforcing agency which will allow for the manual control of shutdown of the systems.

Exception: Systems which serve only a single floor, or portion thereof, without any penetration by ducts or other means into adjacent floors.

3414.25 Elevator recall smoke detection. Smoke detectors for emergency operation of elevators shall be provided as required by Section 3003.

3414.26 Exit signs and illumination. Exits and stairways shall be provided with exit signs and illumination as required by Sections 1011.1 and 1011.2.

3414.27 Automatic sprinkler system—Existing high-rise buildings. Regardless of any other provisions of these regulations, every existing high-rise building of Type II-B, Type III-B or Type V-B construction shall be provided with an approved automatic sprinkler system conforming to NFPA 13.

SECTION 3415
EXISTING GROUP I OCCUPANCIES [SFM]

3415.1 General. Existing buildings housing existing protective social-care homes or facilities established prior to March 4, 1972 may have their use continued if they conform, or are made to conform, to the following provisions:

- **Nonambulatory**—first floor only;
- **Ambulatory**—not higher than the third-floor level, provided walls and partitions are constructed of materials equal in fireresistive quality to that of wood lath and plaster in good repair and all walls are firestopped at each floor level.

3415.3 Enclosure of exits and vertical openings. Except for two-story structures housing ambulatory guests, all interior stairs shall be enclosed in accordance with Chapter 10. In lieu of stairway enclosures, floor separations or smoke barriers may be provided in such a manner that fire and smoke will not spread rapidly to floors above or otherwise impair exit facilities. In these instances, floor separations or smoke barriers shall have a fire resistance equal to not less than 1/2-inch (13 mm) gypsum wall board on each side of wood studs with openings protected by not less than a 1/2-inch (44.5 mm) solid bonded wood-core door of the self-closing type. All other vertical openings shall be enclosed in accordance with the provisions of Section 3414.6 and 3414.13.

3415.4 Exit access. Each floor or portion thereof of buildings used for the housing of existing protective social-care homes or facilities shall have access to not less than two exits in such a manner as to furnish egress from the building or structure in the event of an emergency substantially equivalent to the provisions of Chapter 10.

3415.5 Corridor openings. Openings from rooms to interior corridors shall be protected by not less than 1/2-inch (44.5 mm) solid-bonded wood-core doors. Transoms and other similar openings shall be sealed with materials equivalent to existing corridor wall construction.
3415.6 Interior finishes. Interior wall and ceiling finishes shall conform to the requirements for a Group R-1 Occupancy as specified in Chapter 8.

3415.7 Automatic fire sprinklers. Automatic sprinkler systems shall be installed in existing protective social-care occupancies in accordance with the provisions of Section 903.2.6.

3415.8 Fire alarm systems. Automatic fire alarm systems shall be installed in existing protective social-care homes or facilities in accordance with the provisions of Section 907.2.6.

Exception: When an approved automatic sprinkler system conforming to Section 903.2.6 is installed, a separate fire alarm system as specified in this section need not be provided.

SECTION 3416 EXISTING GROUP L OCCUPANCIES [SFM]

3416 Existing Group L Occupancies.

3416.1 Repairs general. Additions, alterations or repairs may be made to any building or structure without requiring the existing building or structure to comply with all the requirements of this code section, provided the addition, alteration, or repair conforms to the requirements of this section.

3416.2 Unsafe condition. Additions, repairs or alterations shall not be made to an existing building or structure that will cause the existing building or structure to be in violation of any of the provisions of this code, nor shall such additions or alterations cause the existing building or structure to become unsafe, or to be in violation of any of the provisions of this code. An unsafe condition shall be deemed to have been created if an addition or alteration will cause the existing building or structure to become structurally unsafe or overloaded; will not provide adequate egress in compliance with the provisions of this code or will obstruct existing exits; will create a fire hazard; will reduce required fire resistance or will otherwise create conditions dangerous to human life.

3416.3 Changes in use or occupancy. Any buildings that have alterations or additions, which involves a change in use or occupancy, shall not exceed the height, number of stories and area permitted for new buildings.

3416.4 Buildings not in compliance with code. Additions or alterations shall not be made to an existing building or structure when such existing building or structure is not in full compliance with the provisions of this code except when such addition or alteration will result in the existing building or structure being no more hazardous, based on life safety, fire safety and sanitation, than before such additions or alterations are undertaken.

3416.5 Maintenance of structural and fire resistive integrity. Alterations or repairs to an existing building or structure that are nonstructural and do not adversely affect any structural member of any part of the building or structure having required fire resistance may be made with the same materials of which the building or structure is constructed. The installation or replacement of glass shall be as required for new installations.

3416.6 Continuation of existing use. Buildings in existence at the time of the adoption of this code may have their existing use or occupancy continued if such use or occupancy was legal at the time of the adoption of this code, provided such continued use is not dangerous to life.

3416.7 Maximum allowable quantities. Laboratory suites approved prior to January 1, 2008 shall not exceed the maximum allowable quantities listed in Tables 3416.1 and 3416.2.

SECTION 3417 EARTHQUAKE EVALUATION AND DESIGN FOR RETROFIT OF EXISTING BUILDINGS

3417.1 Purpose.

3417.1.1 Existing state-owned structures. The provisions of Sections 3417 through 3423 establish minimum standards for earthquake evaluation and design for retrofit of existing state-owned structures, including buildings owned by the University of California and the California State University.

The provisions of Sections 3417 through 3423 may be adopted by a local jurisdiction for earthquake evaluation and design for retrofit of existing buildings.

3417.1.2 Public school buildings. The provisions of Sections 3417 through 3423 establish minimum standards for earthquake evaluation and design for the rehabilitation of existing buildings for use as public school buildings under the jurisdiction of the Division of the State Architect-Structural Safety (DSA-SS), refer to Section 1.9.2.1.

The provisions of Section 3417 through 3423 also establish minimum standards for earthquake evaluation and design for rehabilitation of existing public buildings currently under the jurisdiction of DSA-SS.

3417.1.2.1 Reference to other chapters. For public schools, where reference within this chapter is made to sections in Chapters 16, 17, 19, 21 or 22, the provisions in Chapters 16A, 17A, 18A, 19A, 21A and 22A respectively shall apply instead.

3417.1.3 Community college buildings. The provisions of Sections 3417 through 3423 establish minimum standards for earthquake evaluation and design for the rehabilitation of existing buildings for use as community college buildings under the jurisdiction of the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC), refer to Section 1.9.2.2.

The provisions of Section 3417 through 3423 also establish minimum standards for earthquake evaluation and design for rehabilitation of existing community college buildings currently under the jurisdiction of DSA-SS/CC.

3417.1.3.1 Reference to other chapters. For community colleges, where reference within this chapter is made to sections in Chapters 17 or 18, the provisions in Chapters 17A and 18A respectively shall apply instead.

3417.2 Scope. All modifications, structurally connected additions and/or repairs to existing structures or portions thereof
TABLE 3416.7(1)

EXISTING STRUCTURES

EXEMPT AMOUNTS OF HAZARDOUS MATERIALS, LIQUIDS AND CHEMICALS

PRESENTING A PHYSICAL HAZARD

BASIC QUANTITIES PER LABORATORY SUITE

When two units are given, values within parentheses are in cubic feet (cu. ft) or pounds (lb).

<table>
<thead>
<tr>
<th>CONDITION STORAGE</th>
<th>USE CLOSED SYSTEMS</th>
<th>USE OPEN SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL</td>
<td>CLASS</td>
<td>Solid Pounds (cu. ft)</td>
</tr>
<tr>
<td>1.1 Combustible liquid</td>
<td>II</td>
<td>120²</td>
</tr>
<tr>
<td></td>
<td>III-A</td>
<td>330²</td>
</tr>
<tr>
<td></td>
<td>III-B</td>
<td>13,200²</td>
</tr>
<tr>
<td>1.2 Combustible dust lbs./1000 cu. ft.</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>1.3 Combustible fiber (loose)</td>
<td>(100)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(baled)</td>
<td>(1,000)</td>
</tr>
<tr>
<td>1.4 Cryogenic, flammable or oxidizing</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>2.1 Explosives</td>
<td>12</td>
<td>(1)²</td>
</tr>
<tr>
<td>3.1 Flammable solid</td>
<td>125²</td>
<td>—</td>
</tr>
<tr>
<td>3.2 Flammable gas (gaseous)</td>
<td>15²</td>
<td>750²</td>
</tr>
<tr>
<td></td>
<td>(liquefied)</td>
<td>30²</td>
</tr>
<tr>
<td>3.3 Flammable liquid Combination</td>
<td>I-A</td>
<td>30²</td>
</tr>
<tr>
<td></td>
<td>I-B</td>
<td>60²</td>
</tr>
<tr>
<td></td>
<td>I-C</td>
<td>90²</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>120²</td>
</tr>
<tr>
<td>4.1 Organic peroxide, unclassified detonatable</td>
<td>1²</td>
<td>(1)²</td>
</tr>
<tr>
<td>4.2 Organic peroxide</td>
<td>I</td>
<td>5²</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>50²</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>125²</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>500²</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>N.L.</td>
</tr>
<tr>
<td>4.3 Oxidizer</td>
<td>4</td>
<td>1²</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10²</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>250²</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,000²</td>
</tr>
<tr>
<td>4.4 Oxidizer Gas (gaseous)</td>
<td>1,500²</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(liquefied)</td>
<td>—</td>
</tr>
<tr>
<td>5.1 Pyrophoric</td>
<td>4²</td>
<td>(4²)</td>
</tr>
<tr>
<td>6.1 Unstable (reactive)</td>
<td>1²</td>
<td>(1²)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5²</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>50²</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>125²</td>
</tr>
<tr>
<td>7.1 Water (reactive)</td>
<td>3</td>
<td>5²</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>50²</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>125²</td>
</tr>
</tbody>
</table>

1. A laboratory suite is a space up to 10,000 square feet (929 m²) bounded by not less than a one-hour fire-resistant occupancy separation within which the exempt amounts of hazardous materials may be stored, dispersed, handled or used. Up through the third floor and down through the first basement floor, the quantity in this table shall apply. Fourth, fifth and sixth floors and the second and third basement floor level quantity shall be reduced to 75 percent of this table. The seventh through 10th floor and below the third basement floor level quantity shall be reduced to 50 percent of this table.

2. Quantities may be increased 100 percent when stored in approved exhausted gas cabinets, exhausted enclosures or fume hoods.
shall, at a minimum, be designed and constructed to resist the effects of seismic ground motions as provided in this section. The structural system shall be evaluated by a registered design professional and, if not meeting or exceeding the minimum seismic design performance requirements of this section, shall be retrofitted in compliance with these requirements.

Exception: Those structures for which Section 3417.3 determines that assessment is not required, or for which Section 3417.4 determines that retrofit is not needed, then only the requirements of Section 3417.11 apply.

3417.3 Applicability.

3417.3.1 Existing state-owned buildings. For existing state-owned structures including all buildings owned by the University of California and the California State University, the requirements of Section 3417 apply whenever the structure is to be retrofitted, repaired or modified and any of the following apply:

1. Total construction cost, not including cost of furnishings, fixtures and equipment, or normal maintenance, for the building exceeds 25 percent of the construction cost for the replacement of the existing building.

 The changes are cumulative for past modifications to the building that occurred after adoption of the 1995 California Building Code and did not require seismic retrofit.

2. There are changes in occupancy category.

3. The modification to the structural components increases the seismic forces in or strength requirements of any structural component of the existing structure by more than 10 percent cumulative since the original construction, unless the component has the capacity to resist the increased forces determined in accordance with Section 3419. If the building’s seismic base shear capacity has been increased since the original construction, the percent change in base shear may be calculated relative to the increased value.

4. Structural elements need repair where the damage has reduced the lateral-load-resisting capacity of the structural system by more than 10 percent.

5. Changes in live or dead load increase story shear by more than 10 percent.

3417.3.2 Public school buildings. For public schools, the provisions of Section 3417 apply when required in accordance with Sections 4-307 and 4-309(c), Title 24, Part 1.

3417.3.3 Community college buildings. For community colleges, the provisions of Section 3417 apply when required in accordance with Sections 4-307 and 4-309(c), Title 24, Part 1.

3417.4 Evaluation required. If the criteria in Section 3417.3 apply to the project under consideration, the design professional of record shall provide an evaluation in accordance with Section 3417 to determine the seismic performance of the building in its current configuration and condition. If the structure’s seismic performance as required by Section 3417.5 is evaluated as satisfactory and the peer reviewer(s), when Method B of Section 3421 is used, concur, then no structural retrofit is required.

3417.5 Minimum seismic design performance levels for structural and nonstructural components. Following the notations of ASCE 41, the seismic requirements for design and assessment are based upon a prescribed Earthquake Hazard Level (BSE-1, BSE-2, BSE-R or BSE-C), a specified structural performance level (S-1 through S-5) and a non-structural performance level (N-A through N-E). The minimum seismic performance criteria are given in Table 3417.5 according to the Building Regulatory Authority and the Occupancy Category as determined in Chapter 16 or by the regulatory authority. The building shall be evaluated at both the Level 1 and Level 2 performance levels, and the more restrictive requirements shall apply.

TABLE 3416.7(2)

EXEMPT AMOUNTS OF HAZARDOUS MATERIALS, LIQUIDS AND CHEMICALS PRESENTING A HEALTH HAZARD MAXIMUM QUANTITIES ER LABORATORY SUITE

When two units are given, values within parentheses are in pounds (lbs.).

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STORAGE</th>
<th>USE CLOSED SYSTEMS</th>
<th>USE OPEN SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solid lb</td>
<td>Liquid Gallons (lb)</td>
<td>Gas cu. ft</td>
</tr>
<tr>
<td>CORROSIVES</td>
<td>5,000</td>
<td>500</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>2a. Highly toxics²</td>
<td>40</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>2b. Toxics</td>
<td>500</td>
<td>50</td>
<td>650²</td>
</tr>
<tr>
<td>3. Irritants</td>
<td>5,000</td>
<td>500</td>
<td>650</td>
</tr>
<tr>
<td>4. Sensitizers</td>
<td>5,000</td>
<td>500</td>
<td>650</td>
</tr>
<tr>
<td>5. Other hazard healths</td>
<td>5,000</td>
<td>500</td>
<td>650</td>
</tr>
</tbody>
</table>

1. A laboratory suite is a space up to 10,000 square feet (929 m²) bounded by not less than a one-hour fire-resistive occupancy separation within which the exempt amounts of hazardous materials may be stored, dispensed, handled or used. Up through the third floor and down through the first basement floor, the quantity in this table shall apply. Fourth, fifth and sixth floors and the second and third basement floor level quantity shall be reduced to 75 percent of this table. The seventh through 10th floor and below the third basement floor level quantity shall be reduced to 50 percent of this table.

2. Permitted only when stored or used in approved exhausted gas cabinets, exhausted enclosures or fume hoods. Quantities of high toxic in use in open systems need not be reduced above the third floor or below the first basement floor level. Individual container size shall be limited to 2 pounds (0.91 kg) for solids and 1/4 gallon (0.95 L) for liquids.
Exception: If the floor area of an addition is greater than the larger of 50 per cent of the floor area of the original building or 1,000 square feet (93 m²), then the Table 3417.5 entries for BSE-R and BSE-C are replaced by BSE-1 and BSE-2, respectively.

3417.6 Retrofit required. Where the evaluation indicates the building does not meet the required performance objectives of this section, the owner shall take appropriate steps to ensure that the building’s structural system is retrofitted in accordance with the provisions of Section 3415. Appropriate steps are either: 1) undertake the seismic retrofit as part of the additions, modifications and/or repairs of the structure; or 2) provide a plan, acceptable to the building official, to complete the seismic retrofit in a timely manner. The relocation or moving of an existing building is considered to be an alteration requiring filing of the plans and specifications approved by the building official.

3417.7 The additions, modification or repair to any existing building are permitted to be prepared in accordance with the requirements for a new building, Chapter 16, Part 2, Title 24, C.C.R., 2007 edition, applied to the entire building.

3417.8 The requirements of ASCE 41 Chapter 9 are to apply to the use of seismic isolation or passive energy systems for the repair, modification or retrofit of an existing structure. When seismic isolation or passive energy dissipation is used, the project must have project peer review as prescribed in Section 3420.

3417.9 Any construction required by this chapter shall include structural observation by the registered design professional who is responsible for the structural design in accordance with Section 3417.10.

3417.10 Where Method B of Section 3419 is used or is required by Section 3415.8, the proposed method of building evaluation and design procedures must be accepted by the building official prior to the commencement of the work.

3417.11 Voluntary lateral-force-resisting system modifications. Where the exception of Section 3415.2 applies, modifications of existing structural components and additions of new structural components that are initiated for the purpose of improving the seismic performance of an existing structure and that are not required by other portions of this chapter are permitted under the requirements of Section 3417.12.

SECTION 3418
DEFINITIONS

3418.1. For the purposes of this chapter, certain terms are defined as follows:

ADDITION means any work that increases the floor or roof area or the volume of enclosed space of an existing building, and is structurally attached to the existing building by connections that are required for transmitting vertical or horizontal loads between the addition and the existing structure.

ALTERATION means any change within or to an existing building, which does not increase and may decrease the floor or roof area or the volume of enclosed space.

BSE-C RESPONSE ACCELERATION PARAMETERS are the parameters (SXS and SX1) as determined either: according to ASCE 41, Section 1.6.1.3 for a mean return period PR equal to 975 years; or by a Site Specific Response Spectrum developed according to ASCE 41, Section 1.6.2 for an Earthquake Hazard Level of 5-percent/50-years probability of exceedance, equivalent to a mean return period of 975 years.

BSE-R RESPONSE ACCELERATION PARAMETERS are the parameters (SXS and SX1) as determined either: according to ASCE 41, Section 1.6.1.3 for a mean return period PR

TABLE 3417.5
SEISMIC PERFORMANCE REQUIREMENTS BY BUILDING REGULATORY AUTHORITY AND OCCUPANCY CATEGORY. ALL BUILDINGS NOT REGULATED BY DSA ARE ASSIGNED AS "STATE-OWNED."

<table>
<thead>
<tr>
<th>Building Regulatory Authority</th>
<th>Occupancy Category</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-Owned</td>
<td>IV</td>
<td>BSE-R, S-2, N-B</td>
<td>BSE-C, S-4, N-C</td>
</tr>
<tr>
<td>Division of the State Architect - Public schools</td>
<td>I</td>
<td>BSE-1, S-3, N-C</td>
<td>BSE-2, S-5, N-E</td>
</tr>
<tr>
<td>Division of the State Architect - Public schools</td>
<td>II, III</td>
<td>BSE-1, S-2, N-C</td>
<td>BSE-2, S-4, N-D</td>
</tr>
<tr>
<td>Division of the State Architect - Public schools</td>
<td>IV</td>
<td>BSE-1, S-2, N-C</td>
<td>BSE-2, S-4, N-C</td>
</tr>
<tr>
<td>Division of the State Architect - Community college</td>
<td>I, II, III</td>
<td>BSE-R, S-3, N-D</td>
<td>BSE-2, S-5, N-E</td>
</tr>
<tr>
<td>Division of the State Architect - Community college</td>
<td>IV</td>
<td>BSE-R, S-2, N-B</td>
<td>BSE-2, S-4, N-C</td>
</tr>
</tbody>
</table>

1. ASCE 41 provides acceptance criteria (e.g. m, rotation) for Immediate Occupancy (S1), Life Safety (S3), and Collapse Prevention (S5), and specifies that values for S-2 and S-4 are to be determined by interpolation between the adjacent performance level values.

The required method of interpolation is as follows:
For level S-2, the acceptance value is \(\frac{1}{2} \times (g_{\text{S-3}} + g_{\text{S-1}}) \) for Immediate Occupancy (IO level), and twice the tabulated value for the Life Safety (LS level).
For level S-4, the acceptance value is \(\frac{1}{2} \times (g_{\text{S-5}} + g_{\text{S-3}}) \) for Immediate Occupancy (IO level), and twice the tabulated value for the Collapse Prevention (CP) level.
For nonstructural components, N-A corresponds to the IO level, N-C to the LS level, and N-D to the Hazards Reduced (HR level).
For evaluation procedures, N-B shall be the same as for N-A. Where numerical values are used, the values for N-B are one half the sum of the appropriate IO and LS values. Where IO or CP values are not given by ASCE 41, then the LS values are permitted to be substituted.

2. Buildings evaluated and retrofitted to meet the requirements for a new building, Chapter 16, Part 2, Title 24, in accordance with the exception in Section 3419.1, are deemed to meet the seismic performance requirements of this section.
equal to 225 years; or by a Site Specific Response Spectrum developed according to ASCE 41, Section 1.6.2 for an Earthquake Hazard Level of 20-percent /50-years probability of exceedance, equivalent to a mean return period of 225 years.

BUILDING OFFICIAL is that individual within the agency or organization charged with responsibility for compliance with the requirements of this code. For some agencies this person is termed the "enforcement agent."

DESIGN is the procedure that includes both the evaluation and retrofit design of an existing component, element or structural system, and design of a new component, element or structural system.

ENFORCEMENT AGENCY (Authority Having Jurisdiction in ASCE 41) is the agency or organization charged with responsibility for agency or organization compliance with the requirements of this code.

METHOD A refers to the procedures prescribed in Section 3418.

METHOD B refers to the procedures allowed in Section 3419.

MODIFICATIONS. For this chapter, modification is taken to include repairs to structures that have been damaged.

N-A, N-B, N-C, N-D, N-E are seismic nonstructural component performance measures as defined in ASCE 41. N-A corresponds to the highest performance level, and N-D the lowest, while N-E is not considered.

PEER REVIEW refers to the procedures contained in Section 3420.

REPAIR as used in this chapter means the design and construction work undertaken to restore or enhance the structural and nonstructural load-resisting system participating in the lateral response and stability of a structure that has experienced damage from earthquakes or other destructive events.

S-1, S-2, S-3, S-4, S-5, S-6 are seismic structural performance measures as defined in ASCE 41. S-1 corresponds to the highest performance level, and S-5 the lowest, while S-6 is not considered.

SPECIFIC PROCEDURES are the procedures listed in Section 3417.1.1.

STRUCTURAL REPAIRS are any changes affecting existing or requiring new structural components primarily intended to correct the effects of damage, deterioration or impending or actual failure, regardless of cause.

SECTION 3419

SEISMIC CRITERIA SELECTION FOR EXISTING BUILDINGS

3419.1 Basis for evaluation and design. This section determines what technical approach is to be used for the seismic evaluation and design for existing buildings. For those buildings or portions of buildings for which Section 3417 requires action, the procedures and limitations for the evaluation of existing buildings and design of retrofit systems and/or repair thereof shall be implemented in accordance with this section.

One of the following approaches must be used:

1. Method A of Section 3420;
2. Method B of Section 3421, with independent review of a peer reviewer as required in Section 3420; or
3. For state-owned buildings only, the use of one of the specific procedures listed in Section 3419.1.1.

When Method B is chosen it must be approved by the building official, and, where applicable, by the peer reviewer. All referenced standards in ASCE 41 shall be replaced by referenced standards listed in Chapter 35 of this code.

Exception: For buildings constructed to the requirements of California Building Code, 1998 or later edition as adopted by the governing jurisdiction, that code is permitted to be used in place of those specified in Section 3419.1.

3419.1.1 Specific procedures. For state-owned buildings, the following specific procedures taken from the International Existing Building Code (IEBC) Appendix A may be used, without peer review, for their respective types of construction to comply with the seismic performance requirements for Occupancy Category I, II or III buildings:

3. Earthquake Hazard Reduction in Existing Reinforced Concrete and Reinforced Masonry Wall Buildings with Flexible Diaphragms (Chapter A2 of the IEBC).

3419.1.2 When a design project is begun under Method B the selection of the peer reviewer is subject to the approval of the building official. Following approval by the peer reviewer, the seismic criteria for the project and the planned evaluation provisions must be approved by the building official. The approved seismic criteria and evaluation provisions shall apply. Upon approval of the building official these are permitted to be modified.

3419.1.3 For state-owned and community college buildings, where unreinforced masonry is not bearing, it may be used only to resist applied lateral loads. Where unreinforced masonry walls are part of the structure they must be assessed for stability under the applicable nonstructural evaluation procedure.

3419.1.4 Public schools. For public schools, unreinforced masonry shall not be used to resist in-plane or out-of-plane seismic forces or superimposed gravity loads.

3419.1.5 Public schools. For public schools of light-frame construction, horizontal diaphragms and vertical shear walls shall consist of either diagonal lumber sheathing or structural panel sheathing. Braced horizontal diaphragms may be acceptable when approved by DSA. Straight lumber sheathing may be used in combination with diagonal or structural panel sheathing as diaphragms or shear walls.
3419.2 Existing conditions. The existing condition and properties of the entire structure must be determined and documented by thorough inspection of the structure and site, review of all available related construction documents, review of geotechnical and engineering geologic reports, and performance of necessary testing and investigation. Where samples from the existing structure are taken or in situ tests are performed, they shall be selected and interpreted in a statistically appropriate manner to ensure that the properties determined and used in the evaluation or design are representative of the conditions and structural circumstances likely to be encountered in the structure as a whole. Adjacent structures or site features that may affect the retrofit design shall be identified.

The entire load path of the seismic-force-resisting system shall be determined, documented and evaluated. The load path includes all the horizontal and vertical elements participating in the structural response: such as diaphragms, diaphragm chords, diaphragm collectors, vertical elements such as walls, frames, braces; foundations and the connections between the components and elements of the load path. Repaired or retrofitted elements and the standards under which the work was constructed shall be identified.

Data collection in accordance with ASCE 41 Section 2.2 shall meet the following minimum levels:

1. For state-owned buildings, the requirements shall be met following the data collection requirements of ASCE 41, Section 2.2.

2. For public schools, the "Comprehensive" level as defined in ASCE 41, Section 2.2.6.3.

3. For community college buildings constructed in conformance with the Field Act, the "Usual" level as defined in ASCE 41, Section 2.2.6.2.

4. For community college buildings not constructed in conformance with the Field Act, the "Comprehensive" level as defined in ASCE 41, Section 2.2.6.3.

Qualified test data from the original construction may be accepted, in part or in whole, by the enforcement agency to fulfill the data collection requirements.

Exceptions:

1. The number of samples for data collection may be adjusted with approval of the enforcement agency when it has been determined that adequate information has been obtained or additional information is required.

2. Welded steel moment frame connections of buildings that may have experienced potentially damaging ground motions shall be inspected in accordance with Chapters 3 and 4, FEMA 352, Recommended Post Earthquake Evaluation and Repair Criteria for Welded Moment-Frame Construction for Seismic Applications (July 2000).

Where original building plans and specifications are not available, "as-built" plans shall be prepared that depict the existing vertical and lateral structural systems, exterior elements, foundations and nonstructural systems in sufficient detail to complete the design.

Data collection shall be directed and observed by the project structural engineer or design professional in charge of the design.

3419.3 Site geology and soil characteristics. Soil profile shall be assigned in accordance with the requirements of Chapter 18.

3419.4 Occupancy categories. For purposes of earthquake-resistant design, each structure shall be placed in one of the occupancy categories in accordance with the requirements of this code.

3419.5 Configuration requirements. Each structure shall be designated structurally regular or irregular in accordance with the requirements of ASCE 41, Sections 2.4.1.1.1 to 2.4.1.1.4.

3419.6 General selection of the design method. The requirements of Method B (Section 3419) may be used for any existing building.

3419.7 Prescriptive selection of the design method. The requirements of Method A (Section 3418) or the specific procedures for applicable building types given in Section 3417.1.1 are permitted to be used except under the following conditions, where the requirements of Method B (Section 3419) must be used.

3419.7.1 When the building contains prestressed or posttensioned structural components (beams, columns, walls or slabs) or contains precast structural components (beams, columns, walls or flooring systems).

3419.7.2 When the building is classified as irregular in vertical or horizontal plane by application of ASCE/SEI 7-05 Section 12.3 and/or ASCE 41, Sections 2.4.1.1.1 to 2.4.1.1.4, unless the irregularity is demonstrated not to affect the seismic performance of the building.

Exception: If the retrofit design removes the configurational attributes that caused the building to be classified as irregular, then Section 3419.7.2 does not apply and Method A may be used.

3419.7.3 For any building that is assigned to Occupancy Category IV.

3419.7.4 For any building using undefined or hybrid structural systems.

3419.7.5 When seismic isolation or energy dissipation systems are used in the retrofit or repair, either as part of the existing structure or as part of the modifications.

3419.7.6 When the height of the structure exceeds 240 feet (73 152 mm).

3419.8 Strength requirements. All components of the lateral-force-resisting system must have the strength to meet the acceptance criteria prescribed in ASCE 41, Chapter 3, or as prescribed in the applicable Appendix A chapter of the IEBC if
for testing and inspection shall be submitted to the building official for review and approval with the application for permit.

Additional requirements: For public schools and community colleges, construction material testing, inspection and observation during construction shall also comply with Section 4-333, Part 1, Title 24.

3419.10 Structural observation, testing and inspection.

Structural, geotechnical and construction observation, testing and inspection as used in this section shall mean meeting the requirements of Chapter 17, with a minimum allowable level of investigation corresponding to seismic design category (SDC) D. At a minimum the project site will be visited by the responsible design professional to observe existing conditions and to review the construction work for general compliance with approved plans, specifications and applicable structural regulations. Such visits shall occur at significant construction stages and at the completion of the structural retrofit. Structural observation shall be provided for all structures. The plan for testing and inspection shall be submitted to the building official for review and approval with the application for permit.

3419.9 Nonstructural component requirements.

Where the nonstructural performance levels required by Section 3417, Table 3417.5 are N-D or higher, mechanical, electrical and plumbing components shall comply with the provisions of ASCE 41, Chapter 11, Section 11.2.

Exception: Modifications to the procedures and criteria may be made subject to approval by the building official, and concurrence of the peer reviewer if applicable. All reports and correspondence shall also be forwarded to the building official.

3419.11 Temporary actions.

When compatible with the building use, and the time phasing for both use and the retrofit program, temporary shoring or other structural support is permitted to be considered. Temporary bracing, shoring and prevention of falling hazards are permitted to be used to qualify for Exception 1 in Section 3417.9 that allows inadequate capability in some existing components, as long as the required performance levels given in Section 3415 can be provided by the permanent structure. The consideration for such temporary actions shall be noted in the design documents.

3419.12 Voluntary modifications to the lateral-force resisting system.

Where modifications of existing structural components and additions of new structural components are initiated for the purpose of improving the lateral-force resisting strength or stiffness of an existing structure and they are not required by other sections of this code, then they are permitted to be designed to meet an approved seismic performance criteria provided that an engineering analysis is submitted that follows:

1. The capacity of existing structural components required to resist forces is not reduced, unless it can be demonstrated that reduced capacity meets the requirements of Section 3419.8.

2. The lateral loading to or strength requirement of existing structural components is not increased beyond their capacity.

3. New structural components are detailed and connected to the existing structural components as required by this code for new construction.

4. New or relocated nonstructural components are detailed and connected to existing or new structural components as required by this code for new construction.

5. A dangerous condition is not created.

3419.12.1 State-owned buildings.

Voluntary modifications to lateral-force-resisting systems conducted in accordance
with Appendix A of the IEBC and the referenced standards of this code shall be permitted.

3419.12.1 Design documents. When Section 3419.12 is the basis for structural modifications, the approved design documents must clearly state the scope of the seismic modifications and the accepted criteria for the design. The approved design documents must clearly have the phrase “The seismic requirements of Chapter 34 for existing buildings have not been checked to determine if these structural modifications meet CBC requirements: the modifications proposed are to a different seismic performance standard that would be required in Section 3419 if they were not voluntary as allowed in Section 3419.12.”

3419.12.2 Public schools and community colleges. When Section 3419.12 is the basis for structural modifications, the approved design documents must clearly indicate the scope of modifications and the acceptance criteria for the design.

SECTION 3420
METHOD A

3420.1 General. The retrofit design shall employ the Linear Static or Linear Dynamic Procedures of ASCE 41, Section 3.3.1 or 3.3.2, and comply with the applicable general requirements of ASCE 41, Chapters 2 and 3. The earthquake hazard level and performance level given in Section 3417.5 for the building’s occupancy type shall be used. Structures shall be designed for seismic forces coming from any horizontal direction.

Exception: The ASCE 41 Simplified Rehabilitation Method of Chapter 10 may be used if the Level 1 seismic performance level is S-3 or lower, the building’s structural system is one of the primary building types described in ASCE 41, Table 10-2, and ASCE 41, Table 10-1 permits it use for the building height.

SECTION 3421
METHOD B

3421.1 The existing or retrofitted structure shall be demonstrated to have the capability to sustain the deformation response due to the specified earthquake ground motions and meet the seismic performance requirements of Section 3417. The registered design professional shall provide an evaluation of the response of the existing structure in its modified configuration and condition to the ground motions specified. If the building’s seismic performance is evaluated as satisfactory and the peer reviewer(s) and the enforcement agency concur, then no further structural modifications of the lateral-load-resisting system are required.

When the evaluation indicates the building does not meet the required performance levels given in Table 3417.5 for the occupancy type, then a retrofit and/or repair design shall be prepared that provides a structure that meets these performance objectives and reflects the appropriate consideration of existing conditions. Any approach to analysis and design is permitted to be used, provided that the approach shall be rational, shall be consistent with the established principals of mechanics and shall use the known performance characteristics of materials and assemblages under reversing loads typical of severe earthquake ground motions.

Exception: Further consideration of the structure’s seismic performance may be waived by the enforcement agency if both the registered design professional and peer reviewer(s) conclude that the structural system can be expected to perform at least as well as required by the provisions of this section without completing an analysis of the structure’s compliance with these requirements. A detailed report shall be submitted to the responsible building official that presents the reasons and basis for this conclusion. This report shall be prepared by the registered design professional. The peer reviewer(s) shall concur in this conclusion and affirm to it in writing. The building official shall either approve this decision or require completion of the indicated work specified in this section prior to approval.

3421.2 The approach, models, analysis procedures, assumptions on material and system behavior and conclusions shall be peer reviewed in accordance with the requirements of Section 3420 and accepted by the peer reviewer(s).

Exceptions:

1. The enforcement agency may perform the work of peer review when qualified staff is available within the jurisdiction.

2. The enforcement agency may modify or waive the requirements for peer review when appropriate.

3421.2.1 The approach used in the development of the design shall be acceptable to the peer reviewer and the enforcement agency and shall be the same method as used in the evaluation of the building. Approaches that are specifically tailored to the type of building, construction materials and specific building characteristics may be used, if they are acceptable to the independent peer reviewer. The use of Method A allowed procedures may also be used under Method B.

3421.2.2 Any method of analysis may be used, subject to acceptance by the peer reviewer(s) and the building official. The general requirements given in ASCE 41, Chapter 2, shall be complied with unless exceptions are accepted by the peer reviewer(s) and building official. Use of other than ASCE 41 procedures in Method B requires building official concurrence before implementation.

3421.2.3 Prior to implementation, the procedures, methods, material assumptions and acceptance/rejection criteria proposed by the registered design professional will be peer reviewed as provided in Section 3422. Where nonlinear procedures are used, prior to any analysis, the representation of the seismic ground motion shall be reviewed and approved by the peer reviewer(s) and the building official.

3421.2.4 The conclusions and design decisions shall be reviewed and accepted by the peer reviewer(s) and the building official.
SECTION 3422
PEER REVIEW REQUIREMENTS

3422.1 General. Independent peer review is an objective, technical review by knowledgeable reviewer(s) experienced in the structural design, analysis and performance issues involved. The reviewer(s) shall examine the available information on the condition of the building, the basic engineering concepts employed and the recommendations for action.

3422.2 Timing of independent review. The independent reviewer(s) shall be selected prior to initiation of substantial portions of the design and/or analysis work that is to be reviewed, and review shall start as soon as practical after Method B is adopted and sufficient information defining the project is available.

3422.3 Qualifications and terms of employment. The reviewer(s) shall be independent from the design and construction team.

3422.3.1 The reviewer(s) shall have no other involvement in the project before, during or after the review, except in a review capacity.

3422.3.2 The reviewer(s) shall be selected and paid by the owner and shall have technical expertise in the evaluation and retrofit of buildings similar to the one being reviewed, as determined by the enforcement agency.

3422.3.3 The reviewer (or in the case of review teams, the chair) shall be a California-licensed structural engineer who is familiar with the technical issues and regulations governing the work to be reviewed.

Exception: Other individuals with acceptable qualifications and experience may be a peer reviewer(s) with the approval of the building official.

3422.3.4 The reviewer shall serve through completion of the project and shall not be terminated except for failure to perform the duties specified herein. Such termination shall be in writing with copies to the enforcement agency, owner and the registered design professional. When a reviewer is terminated or resigns, a qualified replacement shall be appointed within 10 working days, and the reviewer shall submit copies of all reports, notes and correspondence to the responsible building official, the owner and the registered design professional within 10 working days of such termination.

3422.3.5 The peer reviewer shall have access in a timely manner to all documents, materials and information deemed necessary by the peer reviewer to complete the peer review.

3422.4 Scope of review. Review activities shall include, where appropriate, available construction documents, design criteria and representative observations of the condition of the structure, all inspection and testing reports, including methods of sampling, analytical models and analyses prepared by the registered design professional and consultants, and the retrofit or repair design. Review shall include consideration of the proposed design approach, methods, materials, details and constructability.

Changes observed during construction that affect the seismic-resisting system shall be reported to the reviewer in writing for review and recommendation.

3422.5 Reports. The reviewer(s) shall prepare a written report to the owner and building official that covers all aspects of the review performed, including conclusions reached by the reviewer(s). Reports shall be issued after the schematic phase, during design development, and at the completion of construction documents but prior to submittal of the project plans to the enforcement agency for plan review. When acceptable to the building official, the requirement for a report during a specific phase of the project development may be waived.

Such reports should include, at the minimum, statements of the following:

1. Scope of engineering design peer review with limitations defined.
2. The status of the project documents at each review stage.
3. Ability of selected materials and framing systems to meet performance criteria with given loads and configuration.
4. Degree of structural system redundancy and the deformation compatibility among structural and nonstructural components.
5. Basic constructibility of the retrofit or repair system.
6. Other recommendations that would be appropriate to the specific project.
7. Presentation of the conclusions of the reviewer identifying any areas that need further review, investigation and/or clarification.
8. Recommendations.

The last report prepared prior to submittal of permit documents to the enforcement agency shall include a statement indicating that the design is in conformance with the approved evaluation and design criteria.

3422.6 Response and resolutions. The registered design professional shall review the report from the reviewer(s) and shall develop corrective actions and responses as appropriate. Changes observed during construction that affect the seismic-resisting system shall be reported to the reviewer in writing for review and recommendations. All reports, responses and resolutions prepared pursuant to this section shall be submitted to the responsible enforcement agency and the owner along with other plans, specifications and calculations required. If the reviewer resigns or is terminated prior to completion of the project, then the reviewer shall submit copies of all reports, notes and correspondence to the responsible building official, the owner and the registered design professional within 10 working days of such termination.
3422.7 Resolution of conflicts. When the conclusions and recommendations of the peer reviewer conflict with the registered design professional's proposed design, the enforcement agency shall make the final determination of the requirement for the design.

SECTION 3423
ADDITIONAL REQUIREMENTS FOR PUBLIC SCHOOLS AND COMMUNITY COLLEGES

The requirements of Section 3423 apply only to public schools under the jurisdiction of the Division of the State Architect-Structural Safety (DSA-SS, refer to Section 1.9.2.1) and community colleges under the jurisdiction of the Division of the State Architect-Structural Safety/Community Colleges (DSA-SS/CC). Refer to Section 1.9.2.2.

3423.1 Evaluation and design criteria report. During the schematic phase of the project, the owner or the registered design professional in charge of the design shall prepare and sign an Evaluation and Design Criteria Report in accordance with Part 1, Title 24, C. C. R., Section 4-307(a). The report shall be submitted to the DSA for review and approval prior to proceeding with design development of the rehabilitation.

The Evaluation and Design Criteria Report shall:

1. Identify the building(s) structural and nonstructural systems, potential deficiencies in the elements or systems and the proposed method for retrofit.
2. Identify geological and site-related hazards.
3. Propose the methodology for evaluation and retrofit design.
4. Propose the complete program for data collection (Section 3418.2).
5. Include existing or "as-built" building plans, reports and associated documents of the existing construction.

3423.2 Rehabilitation involving only portions of structures. Where only a portion(s) of a structure is to be rehabilitated, the public school or community college portion of the structure shall:

1. Be seismically separated from the unrebuilt portion in accordance with Chapter 16 of Part 2, Title 24, or the entire structure shall be rehabilitated in accordance with this Section. For structures in which the unrebuilt portion is above or below the school or community college portion, the entire structure shall be rehabilitated in accordance with this division.
2. Be retrofitted as necessary to protect the occupants from falling hazards of the unrebuilt portion of the building, and;
3. Be retrofitted as necessary to protect required exitways being blocked by collapse or falling hazards of the unrebuilt portion.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 34A – EXISTING STRUCTURES

Adopting agency	BSC	SFM	HCD 1	HCD 2	HCD 1-AC	DSA 1	DSA 2	DSA SS	DSA SS/CC	OSHPD 1	OSHPD 2	OSHPD 3	OSHPD 4	CSA	DPH	AGR	DWR	CEC	CA	SL	SLC	
Adopt entire chapter	X	X																				
Adopt entire chapter as amended (amended sections listed below)																						
Adopt only those sections that are listed below																						
Chapter/Section																						

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>2010 CALIFORNIA BUILDING CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>625</td>
</tr>
</tbody>
</table>
CHAPTER 34A
EXISTING STRUCTURES

SECTION 3401A
GENERAL

3401A.1 Scope. The provisions of this chapter shall control the alteration, repair, addition and change of occupancy of existing structures for applications listed in Sections 1.10.1 (OSHPD 1) and 1.10.4 (OSHPD 4) regulated by the Office of Statewide Health Planning and Development (OSHPD).

These applications include hospitals, skilled nursing facilities, intermediate care facilities and correctional treatment centers.

Exception: [OSHPD 2] Single-story Type V skilled nursing or intermediate care facilities utilizing wood-frame or light-steel-frame construction as defined in Health and Safety Code Section 129725, which shall comply with Chapter 34 and any applicable amendments therein.

[DSA-AC] For applications listed in Section 1.9.1 regulated by the Division of the State Architect-Access Compliance for accessibility requirements, see Chapter 11B, Section 1134B.

3401A.2 Maintenance. Buildings and structures, and parts thereof, shall be maintained in a safe and sanitary condition. Devices or safeguards which are required by this code shall be maintained in conformance with the code edition under which installed. The owner or the owner's designated agent shall be responsible for the maintenance of buildings and structures. To determine compliance with this subsection, the building official shall have the authority to require a building or structure to be reinspected. The requirements of this chapter shall not provide the basis for removal or abrogation of fire protection and safety systems and devices in existing structures.

3401A.3 Compliance. Alterations, repairs, additions and changes of occupancy to existing structures shall comply with the provisions for alterations, repairs, additions and changes of occupancy in the California Fire Code, California Mechanical Code, California Plumbing Code and California Electrical Code.

3401A.4 Building materials. Building materials shall comply with the requirements of this section.

3401A.4.1 Existing materials. Materials already in use in a building in compliance with requirements or approvals in effect at the time of their erection or installation shall be permitted to remain in use unless determined by the building code official to be dangerous to life, health or safety. Where such conditions are determined to be dangerous to life, health or safety, they shall be mitigated or made safe.

3401A.4.2 New and replacement materials. Except as otherwise required or permitted by this code, materials permitted by the applicable code for new construction shall be used. Like materials shall be permitted for repairs and alterations, provided no hazard to life, health or property is created. Hazardous materials shall not be used where the code for new construction would not permit their use in buildings of similar occupancy, purpose and location.

SECTION 3402A
DEFINITIONS

3402A.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in the code, have the meanings shown herein. Definitions provided in Section 1613A.2, ASCE 7 Section 11.2 and ASCE 41 shall apply when appropriate in addition to terms defined in this section:

ASSOCIATED STRUCTURAL ALTERATIONS means any change affecting existing structural elements or requiring new structural elements for vertical or lateral support of an otherwise nonstructural alteration.

DANGEROUS. Any building or structure or portion thereof that meets any of the conditions described below shall be deemed dangerous:

1. The building or structure has collapsed, partially collapsed, moved off its foundation or lacks the support of ground necessary to support it.
2. There exists a significant risk of collapse, detachment or displacement of any portion, member, appurtenance or ornamentation of the building or structure under service loads.

EXISTING STRUCTURE. A structure erected prior to the date of adoption of the appropriate code, or one for which a legal building permit has been issued.

GENERAL ACUTE CARE HOSPITAL as used in this chapter means a hospital building as defined in Section 129725 of the Health and Safety Code and that is also licensed pursuant to Subdivision (a) of Section 1250 of the Health and Safety Code, but does not include these buildings if the beds licensed pursuant to subdivision (a) of Section 1250 of the Health and Safety Code, comprise 10 percent or less of the total licensed beds of the total physical plant, and does not include facilities owned or operated, or both, by the Department of Corrections. It also precludes hospital buildings that may be licensed under the above mentioned code sections, but provide skilled nursing, intermediate care or acute psychiatric services only.

INCIDENTAL STRUCTURAL ALTERATIONS, ADDITIONS OR REPAIRS are alterations, additions or repairs which would not reduce the story lateral shear force-resisting capacity by more than 5 percent or increase the story shear by more than 5 percent in any existing story.

MAJOR STRUCTURAL ALTERATIONS, ADDITIONS OR REPAIRS are those alterations, or additions or repairs of greater extent than minor structural alterations or additions.

MINOR STRUCTURAL ALTERATIONS, ADDITIONS OR REPAIRS are alterations, additions or repairs of greater extent than incidental structural additions or alterations which would not reduce the story shear lateral-force-resisting...
EXISTING STRUCTURES

capacity by more than 10 percent or increase base shear by more than 10 percent.

NONSTRUCTURAL ALTERATION is any alteration which neither affects existing structural elements nor requires new structural elements for vertical or lateral support and which does not increase the lateral shear force in any story by more than 5 percent.

NPC 1, NPC 2, NPC 3/NPC 3R, NPC 4 and NPC 5 are the building nonstructural performance categories for Hospital Buildings defined in Table 11.1 of California Administrative Code (Part 1, Title 24 CCR), Chapter 6.

PEER REVIEW refers to procedure contained in Section 3414A.

PRIMARY FUNCTION. A primary function is a major activity for which the facility is intended. Areas that contain a primary function include, but are not limited to, the customer service lobby of a bank, the dining area of a cafeteria, the meeting rooms in a conference center, as well as offices and other work areas in which the activities of the public accommodation or other private entity using the facility are carried out. Mechanical rooms, boiler rooms, supply storage rooms, employee lounges or locker rooms, janitorial closets, entrances, corridors and restrooms are not areas containing a primary function.

REPAIR as used in this chapter means all the design and construction work affecting existing or requiring new structural elements undertaken to restore or enhance the structural and nonstructural load resisting system participating in vertical or lateral response of a structure primarily intended to correct the effects of deterioration or impending or actual failure, regardless of cause.

SPC 1, SPC 2, SPC 3, SPC 4 and SPC 5 are the building structural performance categories for Hospital Buildings defined in Table 2.5.3 of California Administrative Code (Part 1, Title 24 CCR), Chapter 6.

SUBSTANTIAL STRUCTURAL DAMAGE. A condition where:

1. In any story, the vertical elements of the lateral force-resisting system have suffered damage such that the lateral load-carrying capacity of the structure in any horizontal direction has been reduced by more than 10 percent from its predamage condition; or

2. The capacity of any vertical gravity load-carrying component, or any group of such components, that supports more than 30 percent of the total area of the structure’s floor(s) and roof(s) has been reduced more than 10 percent from its predamage condition and the remaining capacity of such affected elements, with respect to all dead and live loads, is less than 75 percent of that required by this code for new buildings of similar structure, purpose and location.

TECHNICALLY INFEASIBLE. An alteration of a building or a facility that has little likelihood of being accomplished because the existing structural conditions require the removal or alteration of a load-bearing member that is an essential part of the structural frame, or because other existing physical or site constraints prohibit modification or addition of elements, spaces or features which are in full and strict compliance with the minimum requirements for new construction and which are necessary to provide accessibility.

VOLUNTARY STRUCTURAL ALTERATION is any alteration of existing structural element or provision of new structural elements which is not necessary for vertical or lateral support of other work and is initiated by the applicant primarily for the purpose of increasing the vertical or lateral load-carrying strength or stiffness of an existing building.

SECTION 3403A ADDITIONS

3403A.1 General. Additions to any building or structure shall comply with the requirements of this code for new construction. Alterations to the existing building or structure shall be made to ensure that the existing building or structure together with the addition are no less conforming with the provisions of this code than the existing building or structure was prior to the addition. An existing building together with its additions shall comply with the height and area provisions of Chapter 5.

3403A.2 Flood hazard areas. For buildings and structures in flood hazard areas established in Section 1612A.3, any addition that constitutes substantial improvement of the existing structure, as defined in Section 1612A.2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612A.3, any additions that do not constitute substantial improvement or substantial damage of the existing structure, as defined in Section 1612A.2, are not required to comply with the flood design requirements for new construction.

3403A.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load-carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404A.3. Any existing element that will form part of the lateral load path for any part of the addition shall be considered an existing lateral load-carrying structural element subject to the requirements of Section 3403A.4.

3403A.3.1 Design live load. Where the addition does not result in increased design live load, existing gravity load-carrying structural elements shall be permitted to be evaluated and designed for live loads approved prior to the addition. If the approved live load is less than that required by Section 1607A, the area designed for the nonconforming live load shall be posted with placards of approved design indicating the approved live load. Where the addition does result in increased design live load, the live load required by Section 1607A shall be used.
EXISTING STRUCTURES

3403A.4 Existing structural elements carrying lateral load. Where the addition is structurally independent of the existing structure, existing lateral load-carrying structural elements shall be permitted to remain unaltered. Where the addition is not structurally independent of the existing structure, the existing structure and its addition acting together as a single structure shall be shown to meet the requirements of Sections 1609A and 1613A.

Exception: Any existing lateral load-carrying structural element whose demand-capacity ratio with the addition considered is no more than 10 percent greater than its demand-capacity ratio with the addition ignored shall be permitted to remain unaltered. For purposes of calculating demand-capacity ratios, the demand shall consider applicable load combinations with design lateral loads or forces in accordance with Sections 1609A and 1613A. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads, forces and capacities shall account for the cumulative effects of additions and alterations since original construction.

3403A.4.1 Seismic. Seismic requirements for alterations shall be in accordance with this section. Where the existing seismic force-resisting system is a type that can be designated ordinary or is a welded steel moment frame constructed under a permit issued prior to October 25, 1994, values of \(R \), \(Q \), and \(C_f \) for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed intermediate or special system.

SECTION 3404A

ALTERATIONS

3404A.1 General. Except as provided by this section, alterations to any building or structure shall comply with the requirements of the code for new construction. Alterations shall be such that the existing building or structure is no less complying with the provisions of this code than the existing building or structure was prior to the alteration.

Exceptions:

1. An existing stairway shall not be required to comply with the requirements of Section 1009 where the existing space and construction does not allow a reduction in pitch or slope.

2. Handrails otherwise required to comply with Section 1009.12 shall not be required to comply with the requirements of Section 1012.6 regarding full extension of the handrails where such extensions would be hazardous due to plan configuration.

3404A.2 Flood hazard areas. For buildings and structures in flood hazard areas established in Section 1612A.3, any alteration that constitutes substantial improvement of the existing structure, as defined in Section 1612A.2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612A.3, any alterations that do not constitute substantial improvement or substantial damage of the existing structure, as defined in Section 1612A.2, are not required to comply with the flood design requirements for new construction.

3404A.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an alteration causes an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased gravity load required by this code for new structures. Any existing gravity load-carrying structural element whose gravity load-carrying capacity is decreased as part of the alteration shall be shown to have the capacity to resist the applicable design gravity loads required by this code for new structures.

3404A.3.1 Design live load. Where the alteration does not result in increased design live load, existing gravity load-carrying structural elements shall be permitted to be evaluated and designed for live loads approved prior to the alteration. If the approved live load is less than that required by Section 1607A, the area designed for the nonconforming live load shall be posted with placards of approved design indicating the approved live load. Where the alteration does result in increased design live load, the live load required by Section 1607A shall be used.

3404A.4 Existing structural elements carrying lateral load. Except as permitted by Section 3404A.5, where the alteration increases design lateral loads in accordance with Section 1609A or 1613A, or where the alteration results in a structural irregularity as defined in ASCE 7, or where the alteration decreases the capacity of any existing lateral load-carrying structural element, the structure of the altered building or structure shall be shown to meet the requirements of Sections 1609A and 1613A.

Exception: Any existing lateral load-carrying structural element whose demand-capacity ratio with the alteration considered is no more than 10 percent greater than its demand-capacity ratio with the alteration ignored shall be permitted to remain unaltered. For purposes of calculating demand-capacity ratios, the demand shall consider applicable load combinations with design lateral loads or forces per Sections 1609A and 1613A. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads, forces, and capacities shall account for the cumulative effects of additions and alterations since original construction.

3404A.4.1 Seismic. Seismic requirements for alterations shall be in accordance with this section. Where the existing seismic force-resisting system is a type that can be designated ordinary or is a welded steel moment frame constructed under a permit issued prior to October 25, 1994, values of \(R \), \(Q \), and \(C_f \) for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed intermediate or special system.
3404A.5 Voluntary seismic improvements. Alterations to existing structural elements or additions of new structural elements that are not otherwise required by this chapter and are initiated for the purpose of improving the performance of the seismic force-resisting system of an existing structure or the performance of seismic bracing or anchorage of existing nonstructural elements shall be permitted, provided that an engineering analysis is submitted demonstrating the following:

1. The altered structure, and the altered structural and nonstructural elements are no less in compliance with the provisions of this code with respect to earthquake design than they were prior to the alteration.

2. New structural elements are designed, detailed and connected to the existing structural elements as required by Chapter 16A. Alterations of existing structural elements shall be based on design demand required by Chapter 16A but need not exceed the maximum load effect that can be transferred to the elements by the system.

Exception: Seismic design in accordance with Sections 3411A and 3412A shall be permitted.

3. New or relocated nonstructural elements are designed, detailed and connected to existing or new structural elements as required by Chapter 16A.

4. The alterations do not create a structural irregularity as defined in ASCE 7 or make an existing structural irregularity more severe.

3404A.6 Means of egress capacity factors. Alterations to any existing building or structure shall not be affected by the egress width factors in Section 1005.1 for new construction in determining the minimum egress widths or the minimum number of exits in an existing building or structure. The minimum egress widths for the components of the means of egress shall be based on the means of egress width factors in the building code under which the building was constructed, and shall be considered as complying means of egress for any alteration if, in the opinion of the building code official, they do not constitute a distinct hazard to life.

SECTION 3405A REPAIRS

3405A.1 General. Buildings and structures, and parts thereof, shall be repaired in compliance with Section 3401A.2. Work on nondamaged components that is necessary for the required repair of damaged components shall be considered part of the repair and shall not be subject to the requirements for alterations in this chapter. Routine maintenance required by Section 3401A.2, ordinary repairs exempt from permit in accordance with Section 105.2, and abatement of wear due to normal service conditions shall not be subject to the requirements for repairs in this section.

3405A.1.1 Dangerous conditions. Regardless of the extent of structural or nonstructural damage, the building code official shall have the authority to require the elimination of conditions deemed dangerous.

3405A.2 Substantial structural damage to vertical elements of the lateral force-resisting system. A building that has sustained substantial structural damage to the vertical elements of its lateral force-resisting system shall be evaluated and repaired in accordance with the applicable provisions of Sections 3405A.2.1 through 3405A.2.3.

3405A.2.1 Evaluation. The building shall be evaluated by a registered design professional, and the evaluation findings shall be submitted to the code official. The evaluation shall establish whether the damaged building, if repaired to its predamage state, would comply with the provisions of this code for wind and earthquake loads. Evaluation for earthquake loads shall be required if the substantial structural damage was caused by or related to earthquake effects or if the building is in Seismic Design Category D, E or F.

Wind loads for this evaluation shall be those prescribed in Section 1609A. Earthquake loads for this evaluation, if required, shall be permitted to be 75 percent of those prescribed in Section 1613A. Where the existing seismic force-resisting system is a type that can be designated ordinary or is a welded steel moment frame constructed under a permit issued prior to October 25, 1994, values of R, Ω, and C_d for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of an intermediate or special system.

3405A.2.2 Extent of repair for compliant buildings. If the evaluation establishes compliance of the predamage building in accordance with Section 3405A.2.1, then repairs shall be permitted that restore the building to its predamage state using materials and strengths that existed prior to the damage.

3405A.2.3 Extent of repair for noncompliant buildings. If the evaluation does not establish compliance of the predamage building in accordance with Section 3405A.2.1, then the building shall be rehabilitated to comply with applicable provisions of this code for load combinations, including wind or seismic loads. The wind loads for the repair shall be as required by the building code in effect at the time of original construction, unless the damage was caused by wind, in which case the wind loads shall be as required by the code in effect at the time of original construction or as required by this code, whichever are greater. Earthquake loads for this rehabilitation design shall be those required for the design of the predamage building, but not less than ninety percent of those prescribed in Section 1613A. New structural members and connections required by this rehabilitation design shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405A.3 Substantial structural damage to gravity load-carrying components. Gravity load-carrying components that have sustained substantial structural damage shall be rehabilitated to comply with the applicable provisions of this code for dead and live loads. Snow loads shall be considered if the substantial structural damage was caused by or related to snow load effects. Existing gravity load-carrying structural elements shall be permitted to be designed for live loads approved prior to the damage. Nondamaged gravity load-carrying compo-
ments that receive dead, live or snow loads from rehabilitated components shall also be rehabilitated or shown to have the capacity to carry the design loads of the rehabilitation design. New structural members and connections required by this rehabilitation design shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405A.3.1 Lateral force-resisting elements. Regardless of the level of damage to vertical elements of the lateral force-resisting system, if substantial structural damage to gravity load-carrying components was caused primarily by wind or earthquake effects, then the building shall be evaluated in accordance with Section 3405A.2.1 and, if noncompliant, rehabilitated in accordance with Section 3405A.2.3.

3405A.4 Less than substantial structural damage. For damage less than substantial structural damage, repairs shall be allowed that restore the building to its predamage state using materials and strengths that existed prior to the damage. New structural members and connections used for this repair shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405A.5 Flood hazard areas. For buildings and structures in flood hazard areas established in Section 1612A.3, any repair that constitutes substantial improvement of the existing structure, as defined in Section 1612A.2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612A.3, any repairs that do not constitute substantial improvement or substantial damage of the existing structure, as defined in Section 1612A.2, are not required to comply with the flood design requirements for new construction.

SECTION 3406A
FIRE ESCAPES

3406A.1 Where permitted. Fire escapes shall be permitted only as provided for in Sections 3406A.1.1 through 3406A.1.4.

3406A.1.1 New buildings. Fire escapes shall not constitute any part of the required means of egress in new buildings.

3406A.1.2 Existing fire escapes. Existing fire escapes shall be continued to be accepted as a component in the means of egress in existing buildings only.

3406A.1.3 New fire escapes. New fire escapes for existing buildings shall be permitted only where exterior stairs cannot be utilized due to lot lines limiting stair size or due to the sidewalks, alleys or roads at grade level. New fire escapes shall not incorporate ladders or access by windows.

3406A.1.4 Limitations. Fire escapes shall comply with this section and shall not constitute more than 50 percent of the required number of exits nor more than 50 percent of the required exit capacity.

3406A.2 Location. Where located on the front of the building and where projecting beyond the building line, the lowest land-

3406A.3 Construction. The fire escape shall be designed to support a live load of 100 pounds per square foot (4788 Pa) and shall be constructed of steel or other approved noncombustible materials. Fire escapes constructed of wood not less than nominal 2 inches (51 mm) thick are permitted on buildings of Type 5 construction. Walkways and railings located over or supported by combustible roofs in buildings of Type 3 and 4 construction are permitted to be of wood not less than nominal 2 inches (51 mm) thick.

3406A.4 Dimensions. Stairs shall be at least 22 inches (559 mm) wide with risers not more than, and treads not less than, 8 inches (203 mm) and landings at the foot of stairs not less than 40 inches (1016 mm) wide by 36 inches (914 mm) long, located not more than 8 inches (203 mm) below the door.

3406A.5 Opening protectives. Doors and windows along the fire escape shall be protected with 2 1/2-hour opening protectives.

SECTION 3407A
GLASS REPLACEMENT

3407A.1 Conformance. The installation or replacement of glass shall be as required for new installations.

SECTION 3408A
CHANGE OF OCCUPANCY

3408A.1 Conformance. No change shall be made in the use or occupancy of any building that would place the building in a different division of the same group of occupancies or in a different group of occupancies, unless such building is made to comply with the requirements of this code for such division or group of occupancies. Subject to the approval of the building official, the use or occupancy of existing buildings shall be permitted to be changed and the building is allowed to be occupied for purposes in other groups without conforming to all the requirements of this code for those groups, provided the new or proposed use is less hazardous, based on life and fire risk, than the existing use.

3408A.2 Certificate of occupancy. A certificate of occupancy shall be issued where it has been determined that the requirements for the new occupancy classification have been met.

3408A.3 Stairways. Existing stairways in an existing structure shall not be required to comply with the requirements of a new stairway as outlined in Section 1009 where the existing space and construction will not allow a reduction in pitch or slope.

3408A.4 Change of occupancy. When a change of occupancy results in a structure being reclassified to a higher occupancy category, the structure shall conform to the seismic requirements for a new structure of the higher occupancy category. Where the existing seismic force-resisting system is a type that can be designated ordinary or is a welded steel moment frame constructed under a permit issued prior to October 25, 1994,
values of R, Q_0, and C_r for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed, intermediate or special system.

Exception: Specific seismic detailing requirements of this code or Section 1613A for a new structure shall not be required to be met where it can be shown that the level of performance and seismic safety is equivalent to that of a new structure. Such analysis shall consider the regularity, over strength, redundancy and ductility of the structure within the context of the existing and retrofit (if any) detailing provided.

SECTION 3409A

HISTORIC BUILDINGS

3409A.1 **Historic buildings.** The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of structures, and change of occupancy shall not be mandatory for historic buildings where such buildings are judged by the building official to not constitute a distinct life safety hazard.

3409A.2 **Flood hazard areas.** Within flood hazard areas established in accordance with Section 1612.3, where the work proposed constitutes substantial improvement as defined in Section 1612.2, the building shall be brought into compliance with Section 1612.

Exception: Historic buildings that are:

1. Listed or preliminarily determined to be eligible for listing in the National Register of Historic Places;
2. Determined by the Secretary of the U.S. Department of Interior as contributing to the historical significance of a registered historic district or a district preliminarily determined to qualify as an historic district; or
3. Designated as historic under a state or local historic preservation program that is approved by the Department of Interior.

SECTION 3410A

MOVED STRUCTURES

3410A.1 **Conformance.** Structures moved into or within the jurisdiction shall comply with the provisions of this code for new structures.

SECTION 3411A

ADDITIONS, ALTERATIONS, REPAIRS AND SEISMIC RETROFIT TO EXISTING BUILDINGS OR STRUCTURES DESIGNED IN ACCORDANCE WITH PRE-1973 BUILDING CODE

3411A.1 **Seismic retrofit.** Any seismic retrofit of hospital building required by Article 2 or Article 11, Chapter 6, Part 1, Title 24, shall meet the requirements of Section 3412A.2.

Exception: Hospital buildings evaluated to SPC 1 due to deficiencies identified by Article 10, Chapter 6, Part 1, Title 24, may be upgraded to SPC 2 by altering, repairing or seismically retrofitting these conditions in accordance with the requirements of Sections 3404A or 3412A.2.

3411A.2 **Alterations, additions and repairs to existing buildings or structures not required by Chapter 6, Part 1, Title 24.**

3411A.2.1 **General.** Provisions of this section shall apply to hospital buildings which were originally designed to pre-1973 building code and not designated as SPC 3 or higher in accordance with Chapter 6, Part 1, Title 24.

3411A.2.2 **Incidental structural alterations, additions or repairs.** Incidental structural alterations shall be permitted provided the alterations meet this code for new construction using importance factor, I, equal to or greater than 1.0. Alterations or repairs to the existing afeacted lateral load resisting elements shall meet the requirements of Sections 3404A or 3405A respectively.

3411A.2.3 **Minor structural alteration, additions or repairs.** Minor structural additions shall be permitted provided the additions meet this code for new construction using importance factor, I, equal to or greater than 1.0. Alterations, or repair to existing gravity and lateral load resisting systems shall be made to conform to the requirements of Sections 3404A or 3405A respectively.

3411A.2.4 **Major structural alteration, additions or repairs.** Major structural alterations, additions or repairs shall be in accordance with Section 3403A, 3404A or 3405A respectively.

SECTION 3412A

COMPLIANCE ALTERNATIVES FOR ADDITIONS, ALTERATIONS, REPAIRS AND SEISMIC RETROFIT TO EXISTING STRUCTURES

3412A.1 **Adoption of ASCE 41.** Except for the modifications as set forth in Sections 3412A and 3413A all additions, alterations, repairs and seismic retrofit to existing structures or portions thereof shall be permitted to be designed in accordance with the provisions of ASCE 41.

3412A.1.1 **Referenced standards.** All reference standards listed in ASCE 41 shall be replaced by referenced standards listed in Chapter 35 of this code and shall include all amendments to the reference standards in this code.

3412A.1.2 **ASCE 41 Section 1.4 – Rehabilitation Objectives.** Target building performance level shall be as follows:

a. For general acute care hospitals along with all structures required for their continuous operation or access/egress – Immediate Occupancy (IO) Structural Performance Level (S-1) as defined in Section 1.5.1.1 at Basic Safety Earthquake 1 (BSE-1) Seismic Hazard Level as defined in Section 1.6.1.2 and Collapse Prevention (CP) Structural performance level (S-5) per Section 1.5.1.5 at Basic Safety Earthquake 2 (BSE-2) Seismic Hazard Level as defined in Section
1.6.1.1. The nonstructural performance level shall satisfy the requirements of this code for new hospital buildings.

Exceptions: Buildings satisfying requirements of Sections 3411A or 3412A.2.

b. For pre-1973 buildings which will not be used for general acute care services after January 1, 2030 – Basic Safety Objective (BSO) Level as defined in Section 1.4.1. BSO level includes Life Safety Building Performance (3-C) Level as defined in Section 1.5.3.3 at the Basic Safety Earthquake 1 (BSE-1) Seismic Hazard Level as defined in section 1.6.1.2 and Collapse Prevention (CP) building performance level (S-E) per Section 1.5.3.4 at the Basic Safety Earthquake 2 (BSE-2) Seismic Hazard Level as defined in Section 1.6.1.1.

Exceptions: Buildings satisfying requirements of Sections 3411A or 3412A.2.

c. All Others – Immediate Occupancy (IO) Building Performance Level of (1-B) as defined in Section 1.5.3.2 at Basic Safety Earthquake 1 (BSE-1) Seismic Hazard Level as defined in Section 1.6.1.2 and Collapse Prevention (CP) building performance level (S-E) per Section 1.5.3.4 at Basic Safety Earthquake 2 (BSE-2) Seismic Hazard Level as defined in Section 1.6.1.1.

3412A.1.3 Material testing required. Use of material properties based on historical information as default values shall not be permitted.

3412A.1.4 Analysis procedure. The selection of a particular analysis procedure from ASCE 41 shall be subject to the approval of the enforcement agent.

3412A.1.5 Structural design criteria. Prior to implementation of ASCE 41 Nonlinear Dynamic Procedure, the ground motion, analysis and design methods, material assumptions and acceptance criteria proposed by the engineer shall be reviewed by the enforcement agent.

3412A.1.6 Structural observation, testing and inspections. Construction, testing, inspection and structural observation requirements shall be as required for new construction.

3412A.2 Seismic evaluation and retrofit of general acute care hospitals. Not withstanding any other requirements of this code, all existing general acute care hospitals shall comply with the requirements specified in Chapter 6, Part 1, Title 24.

3412A.2.1 SPC 5 and NPC 4/NPC 5. Structures and nonstructural components and systems satisfying the requirements of this code for new buildings for Occupancy Category IV shall be considered to satisfy the requirements of SPC 5 and NPC 4. NPC 4 buildings satisfying operational requirements for NPC 5 of Table 11.1, Chapter 6, Part 1, Title 24, shall be placed in nonstructural performance category NPC 5.

3412A.2.2 SPC 5 using ASCE 41. Structures satisfying the requirements of immediate occupancy structural performance level (S-1) per Section 1.5.1.1 of ASCE 41 at BSE-1, Collapse prevention performance level S-5 per Section 1.5.1.5 of ASCE 41 at BSE-2 and items identified in Chapter 6, Article 10, Part 1, Title 24, satisfying the requirements of Immediate Occupancy Nonstructural performance level (N-B) per Section 1.5.2.2 of ASCE 41 at BSE-1 shall be considered to comply with SPC 5 requirements of Table 2.5.3, Chapter 6, Part 1, Title 24.

3412A.2.3 SPC 2 using ASCE 41. Structures satisfying the requirements of life safety structural performance level (S-3) per Section 1.5.1.3 of ASCE 41 at BSE-1 and items identified in Chapter 6, Article 10, Part 24, 1 satisfying the requirements of life safety nonstructural performance level (N-C) per Section 1.5.2.3 of ASCE 41 at BSE-1, shall be considered to comply with SPC 2 requirements of Table 2.5.3, Chapter 6, Part 1, Title 24.

3412A.2.4 NPC. Nonstructural components for immediate occupancy nonstructural performance level (N-B) in Section 1.5.2.2 shall meet the requirements of this code for new buildings. Nonstructural components for operational nonstructural performance level (N-A) in Section 1.5.2.1 shall meet performance level N-B and Section 3413A.1.30. Building satisfying the requirements of nonstructural performance level N-A and N-B as described in this section shall be considered to satisfy the requirements of NPC 5 & NPC 4 of Table 11.1, Chapter 6, Part 1, Title 24 respectively.

Immediate occupancy nonstructural performance level (N-B) in Section 1.5.2.2 and life safety nonstructural performance level (N-C) in Section 1.5.2.3 of ASCE 41 at BSE-1 shall be considered equivalent to NPC 3/NPC 2 and NPC 3R requirements respectively of Table 11.1, Chapter 6, Part 1, Title 24. For NPC 3/NPC 3R/NPC 2, only components listed in Table 11.1, Chapter 6, Part 1, Title 24, for NPC 3/NPC 3R/NPC 2 need to satisfy the requirements specified above.

Exceptions:

1) Evaluation procedure in Article 11, Chapter 6, Part 1, Title 24 shall be used for seismic evaluation of NPC 2, NPC 3/NPC 3R, NPC 4 and NPC 5, where specific procedure is not outlined in ASCE 41. Administrative and permitting provisions outlined in Article 11, Chapter 6, Part 1, Title 24 shall apply.

2) Anchorage and bracing of nonstructural components in buildings in seismic performance categories SPC 1 and SPC 2 with a performance level of NPC 3R may comply with the provisions of Section 1630A of the 1995 California Building Code using an importance factor I_p = 1.0. The capacity of welds, anchors and fasteners shall be determined in accordance with requirements of this code.

3) Anchorage and bracing of nonstructural components in buildings in seismic performance categories SPC 1 or SPC 2 with a performance level of NPC 3 or higher, and SPC 3 or SPC 4, may comply with the provisions of Section 1630B of the 1998 California Building Code using an importance factor I_p = 1.5. The capacity of welds, anchors and fasteners shall be determined in accordance with requirements of this code.
A continuous load path of sufficient strength and stiffness between the component and the supporting structure shall be verified. Local elements of the supporting structure shall be verified for the component loads where they control the design of the elements or their connections. Increases in F_p due to anchorage conditions (for example shallow anchors) need not be considered. For NPC 3R, the adequacy of load path for nonstructural elements need only be verified when the total reaction at the point of support (including the application of F_p) exceeds the following limits:

1. 250 pounds for components or equipment attached to light frame walls. For the purposes of this requirement, the sum of the absolute value of all reactions due to component loads on a single stud shall not exceed 250 pounds.
2. 1,000 pounds for components or equipment attached to roofs, or walls of reinforced concrete or masonry construction.
3. 2,000 pounds for components or equipment attached to floors or slabs-on-grade.

Exception: If the anchorage or bracing is configured in a manner that results in significant torsion on a supporting structural element, the effects of the nonstructural reaction force on the structural element shall be considered in the anchorage design.

SECTION 3413A

MODIFICATIONS TO ASCE 41

3413A.1 General. The text of ASCE 41 shall be modified as indicated in Sections 3413A.1.1 through 3413A.1.32.

References in ASCE 41 shall comply with requirements of Sections 102.4.1 and 102.4.2.

3413A.1.1 ASCE 41 Section 1.1. Modify ASCE 41 Section 1.1 with the following:

Seismic evaluations shall be performed using procedure and criteria of ASCE 41 except for general acute care hospitals, which shall be evaluated per Chapter 6, Part 1, Title 24 when required per provision of that chapter.

3413A.1.2 ASCE 41 Section 1.6 Seismic Hazard. Modify ASCE 41 Section 1.6 with the following:

Response spectra and acceleration time histories shall be constructed in accordance with Sections 1613A, 1613A and 1803A.6. Basic Safety Earthquake 2 (BSE-2) in ASCE 41 shall be same as Maximum Considered Earthquake (MCE) in ASCE 7.

3413A.1.3 ASCE 41 Section 2.2.6. Modify ASCE 41 Section 2.2.6 with the following:

Data collection requirements. The extent of data collection shall be at Comprehensive level for all structures except that data collection at Usual level shall be permitted for structures with BSO or lower target performance objective. Materials properties testing program shall be pre-approved by the enforcement agent.

For buildings, built under an OSHPD permit based on the 1976 or later edition of the CBC, where materials properties are shown on design drawings and original materials testing data are available, no materials testing shall be required when approved by the enforcement agent.

3413A.1.4 ASCE 41 Section 2.4.1.1. Modify ASCE 41 Section 2.4.1.1 with the following:

1. If one or more component DCRs exceed 1.5 for the Immediate Occupancy Structural Performance Level (S-1) or 2.0 for the Life Safety Structural Performance level (S-3) and any irregularity described in Section 2.4.1.1.1 through 2.4.1.1.4 is present, then linear procedures are not applicable and shall not be used.
2. Linear procedures are not applicable to moment resisting frames where plastic hinges do not form in either the beam at the face of column or in the column panel zone.

3413A.1.5 ASCE 41 Section 2.4.2.1. Modify ASCE 41 Section 2.4.2.1 with the following:

Nonlinear static procedure. If higher mode effects are significant and building is taller than 75 feet above the base, the Nonlinear Dynamic Procedure shall be used.

3413A.1.6 ASCE 41 Section 2.4.4.5. Modify ASCE 41 Section 2.4.4.5 by the following:

Material properties. Expected material properties are not permitted to be determined by multiplying lower bound values by the assumed factors specified in Chapters 5 through 8.

3413A.1.7 ASCE 41 Section 3.2.10.1. Modify ASCE 41 Section 3.2.10.1 with the following:

Linear procedures. Equation 3-5 is not permitted by OSHPD.

3413A.1.8 ASCE 41 Section 3.3.1.3.5. Replace ASCE 41 Section 3.3.1.3.5 as follows:

Unreinforced masonry buildings. Unreinforced Masonry not permitted by OSHPD.

3413A.1.9 ASCE 41 Section 3.3.3.2.2. Modify ASCE 41 Section 3.3.3.2.2 with the following:

Simplified NSP Analysis. Not permitted by OSHPD.

3413A.1.10 ASCE 41 Section 3.4.2.2. Modify ASCE 41 Section 3.4.2.2 with the following:

Acceptance criteria for linear procedures – drift limitations. The interstory drift ratio shall not exceed the drift limits for Occupancy Category IV buildings in ASCE 7 Table 12.12-1 due to forces corresponding to BSE-1, except that buildings designed to BSO or lower performance levels are permitted to meet the drift limits for Occupancy Category II buildings. For dual systems, the least interstory drift ratio shall control.

Exception: Larger interstory drift ratios shall be permitted where justified by rational analysis that both...
structural and nonstructural elements can tolerate such drift and approved by the enforcement agent.

3413A.1.11 ASCE 41 Section 3.4.3.2.1. Modify ASCE 41 Section 3.4.3.2.1 with the following:

Deformation-controlled actions. For any building required to meet the Operational Building Performance level, 1-A or Immediate Occupancy Building Performance Level, 1-B, primary components shall be within the acceptance criteria for primary components and secondary components shall be within the acceptance criteria for secondary components.

3413A.1.12 ASCE 41 Section 4.4. Modify ASCE 41 Section 4.4 with the following:

Foundation strength and stiffness. Foundation and soil strength shall be used to evaluate potential overturning, uplift and sliding for fixed base assumptions, and stiffness for flexible base assumptions, including deformations associated with those actions.

3413A.1.13 ASCE 41 Section 4.4.1.1. Replace ASCE 41 Section 4.4.1.1 as follows:

Presumptive capacities. Not permitted by OSHPD.

3413A.1.14 ASCE 41 Section 4.4.1.2. Replace ASCE 41 Section 4.4.1.2 as follows:

Prescriptive expected capacities. Not permitted by OSHPD.

3413A.1.15 ASCE 41 Section 4.4.3.2.2. Modify ASCE 41 Section 4.4.3.2.2 with the following:

Flexible base assumption. The soil strength shall be evaluated.

3413A.1.16 ASCE 41 Section 4.5. Modify ASCE 41 Section 4.5 with the following:

Seismic earth pressure. Where the grade difference from one side of the building to another exceeds one-half story height, the seismic increment of earth pressure shall be added to the gravity lateral earth pressure to evaluate the building overturning and sliding stability and the lateral force resisting system below grade in combination with the building seismic forces.

3413A.1.17 ASCE 41 Table 5.6. Modify ASCE 41 Table 5.6 with the following:

Acceptance criteria for nonlinear procedures—structural steel components. For fully and partially restrained moment connections designed to 1989 or prior edition of Part 2, Title 24 shall be verified for the presence of welds using E70T-4 electrodes or other electrodes with equivalent aluminum content. Where E70T-4 or equivalent electrodes are present, the plastic rotation angles and residual strength ratios used shall be substantiated by the statistical analysis of three or more applicable cyclic test results subject to the approval of the enforcement agent.

3413A.1.18 ASCE 41 Section 6.7.1.1. Modify ASCE 41 Section 6.7.1.1 with the following:

Monolithic reinforced concrete shear walls and wall segments. For nonlinear procedures, shear walls or wall segments with axial loads greater than 0.35 \(P_o \) shall be included in the model as primary elements with appropriate strength and stiffness degrading properties assigned to those components subject to the approval of the enforcement agent. For linear procedures, the effects of deformation compatibility shall be investigated using moment-curvature section analyses and cyclic testing results of similar components to determine whether strengthening is necessary to maintain the gravity load carrying capacity of that component.

Horizontal wall segments or spandrels reinforced similar to vertical wall segments or piers shall be classified as wall segments, not shear wall coupling beams, in Tables 6-18 through 6-21.

3413A.1.19 ASCE 41 Section 7.3.2. Replace ASCE 41 Section 7.3.2 as follows:

Unreinforced masonry walls and piers in-plane. Not permitted by OSHPD.

3413A.1.20 ASCE 41 Section 7.3.3. Replace ASCE 41 Section 7.3.3 as follows:

Unreinforced masonry walls out-of-plane. Not permitted by OSHPD.

3413A.1.21 ASCE 41 7.3.4.2.2 Shear strength of walls and piers. Modify ASCE 41 Section 7.3.4.2.2 with the following:

The spacing of shear reinforcing, \(S \), shall be less than or equal to the wall pier clear height divided by 2 or the story height divided by 2, whichever is smaller.

3413A.1.22 ASCE 41 Section 9.2.4. Modify ASCE 41 Section 9.2.4 with the following:

Linear procedures. Verification of the interstory lateral displacements, isolator displacements, the strength adequacy of the seismic force resisting system and isolation system, and anchorage to the foundation shall be accomplished using the nonlinear dynamic procedure.

3413A.1.23 ASCE 41 Section 9.2.5.1. Modify ASCE 41 Section 9.2.5.1 with the following:

Nonlinear static procedure. Verification of the interstory lateral displacements, isolator displacements, the strength adequacy of the seismic force resisting system and isolation system, and anchorage to the foundation shall be accomplished using the nonlinear dynamic procedure.

3413A.1.24 Reserved.

3413A.1.25 Reserved.

3413A.1.26 ASCE 41 Section 9.3.4. Modify ASCE 41 Section 9.3.4 with the following:

Linear Procedures. Verification of the interstory lateral displacements, damper relative velocities and displace-
ments, the strength adequacy of the seismic force resisting system and damping system, and anchorage to the foundation shall be accomplished using the nonlinear dynamic procedure.

3413A.1.27 ASCE 41 Section 9.3.5.1. Modify ASCE 41 Section 9.3.5.1 with the following:

Nonlinear static procedure. Verification of the interstory lateral displacements, damper relative velocities and displacements, the strength adequacy of the seismic force resisting system and damping system, and anchorage to the foundation shall be accomplished using the nonlinear dynamic procedure.

3413A.1.28 Reserved.

3413A.1.29 ASCE 41 Chapter 10. Replace ASCE 41 Chapter 10 as follows:

Simplified rehabilitation. Not permitted by OSHPD.

3413A.1.30 ASCE 41 Section 11.3.2. Modify ASCE 41 Section 11.3.2 with the following:

Operational nonstructural performance level (N-a) requirements. All Structures shall meet immediate occupancy nonstructural performance level (N-B) and facility shall have on-site supplies of water and holding tanks for wastewater, sufficient for 72 hours emergency operations, are integrated into the building plumbing systems. An alternative, hook-ups to allow for the use of transportable sources of water and sanitary waste water disposal have been provided. An on-site emergency system as defined within Part 3, Title 24 is incorporated into the building electrical system for critical care areas. Additionally, the system shall provide for radiological service and an onsite fuel supply for 72 hours of acute care operation.

3413A.1.31 ASCE 41 Section 11.9.4.3.1. Modify ASCE 41 Section 11.9.4.3.1 with the following:

Ceilings in all categories shall satisfy requirements for ceilings in Category C specified in this section.

3413A.1.32 ASCE 41 Section 11.10.2.4. Modify ASCE 41 Section 11.10.2.4 by the following:

For general acute care hospital, nonstructural evaluation shall comply with requirements of Section 11.2, Chapter 6, Part 1, Title 24.

SECTION 3414A
PEER REVIEW REQUIREMENTS

3414A.1 General. Independent peer review is an objective technical review by knowledgeable reviewer(s) experienced in structural design, analysis and performance issues involved. The reviewer(s) shall examine the available information on the condition of building, basic engineering concept employed and recommendations for action.

3414A.2 Timing of independent review. The independent reviewer(s) shall be selected prior to initiation of substantial portion of the design and analysis work that is to be reviewed, and review shall start as soon as practical and sufficient information defining the project is available.

3414A.3 Qualifications and terms of employment. The reviewer shall be independent from the design and construction team.

3414A.3.1 The reviewer(s) shall have no other involvement in the project before, during or after the review, except in a review capacity.

3414A.3.2 The reviewer shall be selected and paid by owner and shall have technical expertise in repair of buildings similar to the one being reviewed, as determined by enforcement agent.

3414A.3.3 The reviewer (in case of review team, the chair) shall be a California-licensed structural engineer who is familiar with technical issues and regulations governing the work to be reviewed.

3414A.3.4 The reviewer shall serve through completion of the project and shall not be terminated except for failure to perform the duties specified herein. Such termination shall be in writing with copies to enforcement agent, owner, and the engineer of record. When a reviewer is terminated or resigns, a qualified replacement shall be appointed within 10 working days.

3414A.4 Scope of review. Review activities shall include, where appropriate, available construction documents, design criteria, observation of the condition of structure, all new and original inspection reports, including methods of sampling, analyses prepared by the engineer of record and consultants, and the retrofit or repair design. Review shall include consideration of the proposed design approach, method, materials and details.

3414A.5 Reports. The reviewer(s) shall prepare a written report to the owner and responsible enforcement agent that covers all aspect of the review performed including conclusions reached by the reviewer. Report shall be issued after the schematic phase, during design development, and at the completion of construction documents, but prior to their issuance of permit. Such report shall include, at the minimum, statement of the following.

1. Scope of engineering design peer review with limitations defined.
2. The status of the project documents at each review stage.
3. Ability of selected materials and framing systems to meet the performance criteria with given loads and configuration.
4. Degree of structural system redundancy and the deformation compatibility among structural and nonstructural elements.
5. Basic constructability of the retrofit or repair system.
6. Other recommendation that will be appropriate for the specific project.
7. Presentation of the conclusions of the reviewer identifying any areas that need further review, investigation and/or clarification.
8. Recommendations.
3414A.6 Responses and corrective actions. The engineer of record shall review the report from the reviewer(s) and shall develop corrective actions and other responses as appropriate. Changes observed during construction that affect the seismic-resisting system shall be reported to the reviewer in writing for review and recommendations. All reports, responses and corrective actions prepared pursuant to this section shall be submitted to the responsible enforcement agent and the owner along with other plans, specifications and calculations required. If the reviewer resigns or is terminated by the owner prior to completion of the project, then the reviewer shall submit copies of all reports, notes, and the correspondence to the responsible enforcement agent, the owner, and the engineer of record within 10 working days of such termination.

SECTION 3415A
EARTHQUAKE MONITORING
INSTRUMENTS FOR EXISTING BUILDINGS

3415A.1 Earthquake recording instrumentation of existing buildings. All owners of existing structures, selected by the enforcement agency for the installation of earthquake-recording instruments, shall provide space for the installation and access to such instruments. Location of said instruments shall be determined by the enforcement agency. The enforcement agency shall make arrangements to provide, maintain, and service the instruments. Data shall be the property of the enforcement agency, but copies of individual records shall be made available to the public on request and the payment of an appropriate fee.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 35 – REFERENCED STANDARDS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD 1</th>
<th>HCD 2</th>
<th>HCD 1-AC</th>
<th>DSA 1</th>
<th>DSA 2</th>
<th>DSA 3</th>
<th>DSA 4</th>
<th>OSHPD 1</th>
<th>OSHPD 2</th>
<th>OSHPD 3</th>
<th>OSHPD 4</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>ACI</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AISC</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AITC</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASCE/SEI</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASME</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASTM E662-09</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AWS</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BHMA</td>
<td></td>
</tr>
<tr>
<td>CPSC</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 13D-10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 170-06</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PCI</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PTI</td>
<td></td>
</tr>
<tr>
<td>ASME BPE-2009</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASTM E648-04</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FM3260-00</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FM3011-99</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FM4430-80</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ICC ES AC 331</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ICC ES AC 77</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 720</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 13-10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 13R-10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 14-07</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 15-01</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 22-03</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 24-10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 37-06</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 50-01</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 54-09</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 57-02</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
CHAPTER 35 – REFERENCED STANDARDS—continued

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>Chapter/Section</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFPA 72-10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NFPA 92a-09</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7A-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7A-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7A-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7A-4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7A-4A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-7A-5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-8-100</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-10-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-10-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SFM 12-10-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UBC 15-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UBC 15-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UBC 15-4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 13-96</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 38-99</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 193-04</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 199-95</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 228-97</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 260-04</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 262-04</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 268A-98</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 312-04</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 346-05</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 464-03</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 497B-04</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 521-99</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 539-00</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 632-00</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 753-04</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 813-96</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 884-03</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UL 2034</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Office of the State Fire Marshal's adoption of this chapter or individual sections is applicable to structures regulated by other state agencies pursuant to Section 1.11.
CHAPTER 35

REFERENCED STANDARDS

This chapter lists the standards that are referenced in various sections of this document. The standards are listed herein by the promulgating agency of the standard, the standard identification, the effective date and title, and the section or sections of this document that reference the standard. The application of the referenced standards shall be as specified in Chapter 1, Administration, Division I, Sections 1.1.5 and 1.1.7, and in Chapter 1, Administration, Division II, Section 102.4.

[DSA-SS, DSA-SS-CC & OSHPD 1 & 4] Refer to other chapters. In addition to the code sections referenced, the standards listed in this chapter are applicable to the respective code sections in Chapters 16A, 17A, 18A, 19A, 21A, 22A and 34A.

AA

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM 35-00</td>
<td>Aluminum Sheet Metal Work in Building Construction (Fourth Edition)</td>
<td>2002.1</td>
</tr>
</tbody>
</table>

AAMA

American Architectural Manufacturers Association
1827 Waldon Office Square, Suite 550
Schaumburg, IL 60173

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1402-86</td>
<td>Standard Specifications for Aluminum Siding, Soffit and Fascia</td>
<td>1404.5.1</td>
</tr>
<tr>
<td>AAMA/WDMA/CSA 101/LS.2/AA40-08</td>
<td>North American Fenestration Standard/Specifications for Windows, Doors and Skylights</td>
<td>1715.5.1, 2405.5</td>
</tr>
</tbody>
</table>

ACI

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>216.1-07</td>
<td>Standard Method for Determining Fire Resistance of Concrete and Masonry Construction Assemblies</td>
<td>Table 720.1(2), 721.1</td>
</tr>
<tr>
<td>318-08</td>
<td>Building Code Requirements for Structural Concrete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1604.3.2, 1614.3.1, 1614.4.1, 1704.3.1.3, Table 1704.3, 1704.4.1, Table 1704.4, 1708.2, 1808.8.2, Table 1808.8.2, 1808.8.5, 1808.8.6, 1810.2.4.1, 1810.3.2.1.1, 1810.3.2.1.2, 1810.3.8.3.1, 1810.3.8.3.3, 1810.3.9.4.2.1, 1810.3.9.4.2.2, 1810.3.11.1, 1901.2, 1901.3, 1901.4, 1902.1, 1903.1, 1904.1, 1904.2, 1904.3, 1904.4.1, 1904.4.2, 1904.5.5, 1905.1.1, 1905.2, 1905.3, 1905.4, 1905.5.6.2, 1905.6.3, 1905.6.4, 1905.6.5, 1905.7, 1905.8, 1905.9, 1905.10, 1905.11, 1905.12, 1905.13, 1906.1, 1906.2, 1906.3, 1906.4, 1907.1, 1907.2, 1907.3, 1907.4, 1907.5, 1907.6, 1907.7, 1907.8, 1907.9, 1907.10, 1907.11, 1907.12, 1907.13, 1908.1, 1908.1.1, 1908.1.2, 1908.1.3, 1908.1.4, 1908.1.5, 1908.1.6, 1908.1.7, 1908.1.8, 1908.1.9, 1908.1.10, 1909.1, 1909.3, 1909.4, 1909.5, 1909.6, 1912.1, 1912.2, 2005.3</td>
<td></td>
</tr>
<tr>
<td>440.2R-08</td>
<td>Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures</td>
<td>1917A.3</td>
</tr>
<tr>
<td>503.7-07</td>
<td>Specification for Crack Repair by Epoxy Injection</td>
<td>1917A.2</td>
</tr>
<tr>
<td>506-05</td>
<td>Guide to Shotcrete</td>
<td>1917A.3</td>
</tr>
<tr>
<td>530-08</td>
<td>Building Code Requirements for Masonry Structures</td>
<td></td>
</tr>
<tr>
<td>530.1-08</td>
<td>Specifications for Masonry Structures</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCED STANDARDS

AF&PA
- **American Forest & Paper Association**
 - 1111 19th St, NW Suite 800
 - Washington, DC 20036

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCD No. 4—89</td>
<td>Wood Construction Data—Plank and Beam Framing for Residential Buildings</td>
<td>2306.1.2</td>
</tr>
<tr>
<td>WFCM—01</td>
<td>Wood Frame Construction Manual for One- and Two-family Dwellings</td>
<td>2306.1.2</td>
</tr>
<tr>
<td>NDS—05</td>
<td>National Design Specification (NDS) for Wood Construction with 2005 Supplement</td>
<td>2306.1.2</td>
</tr>
<tr>
<td>AF&PA—93</td>
<td>Span Tables for Joists and Rafters</td>
<td>2306.1.2</td>
</tr>
<tr>
<td>ANSI/AF&PA PWF—07</td>
<td>Permanent Wood Foundation Design Specification</td>
<td>2306.1.2</td>
</tr>
<tr>
<td>ANSI/AF&PA SDPWS—08</td>
<td>Special Design Provisions for Wind and Seismic</td>
<td>2306.1.2</td>
</tr>
</tbody>
</table>

AISC
- **American Institute of Steel Construction**
 - One East Wacker Drive, Suite 700
 - Chicago, IL 60601-19021

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>341—05</td>
<td>Seismic Provisions for Structural Steel Buildings, including Supplement No. 1 dated 2005</td>
<td>1613.6.2, 1707.2, 1708.3, 2205.2.1, 2205.2.2, 2205.3, 2205.3.1</td>
</tr>
<tr>
<td>358—05</td>
<td>Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications including Supplement No. 1</td>
<td>2205A, 3413A</td>
</tr>
<tr>
<td>360—05</td>
<td>Specification for Structural Steel Buildings</td>
<td>1604.3.3, Table 1704.3, 1704.3.3, 2203.1, 2203.2, 2205.1, 2205.3</td>
</tr>
</tbody>
</table>

AISI
- **American Iron and Steel Institute**
 - 1140 Connecticut Avenue, 705
 - Suite 705
 - Washington, DC 20036

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>S100—07</td>
<td>North American Specification for the Design of Cold-formed Steel Structural Members</td>
<td>1604.3.3, 2203.1, 2203.2, 2209.1, 2210.2, 2210.4, 2210.5</td>
</tr>
<tr>
<td>S200—07</td>
<td>North American Standard for Cold-formed Steel Framing—General Provisions</td>
<td>2203.1, 2203.2, 2210.1</td>
</tr>
<tr>
<td>S210—07</td>
<td>North American Standard for Cold-formed Steel Framing—Floor and Roof System Design</td>
<td>2210.5</td>
</tr>
<tr>
<td>S211—07</td>
<td>North American Standard for Cold-formed Steel Framing—Wall Stud Design</td>
<td>2210.4</td>
</tr>
<tr>
<td>S212—07</td>
<td>North American Standard for Cold-formed Steel Framing—Header Design</td>
<td>2210.2</td>
</tr>
<tr>
<td>S213—07</td>
<td>North American Standard for Cold-formed Steel Framing—Lateral Design</td>
<td>2210.6</td>
</tr>
<tr>
<td>S214—07</td>
<td>North American Standard for Cold-formed Steel Framing—Truss Design, with Supplement 2, dated 2008</td>
<td>2210.3.11</td>
</tr>
<tr>
<td>S230—07</td>
<td>Standard for Cold-formed Steel Framing—Prescriptive Method for One- and Two-family Dwellings, with Supplement 2, dated 2008</td>
<td>1609.1.1, 1609.1.1.1, 2210.7</td>
</tr>
</tbody>
</table>

AITC
- **American Institute of Timber Construction**
 - Suite 140
 - 7012 S. Revere Parkway
 - Englewood, CO 80112

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITC Technical Note 7—96</td>
<td>Calculation of Fire Resistance of Glued Laminated Timbers</td>
<td>721.6.3.3</td>
</tr>
<tr>
<td>AITC 104—03</td>
<td>Typical Construction Details</td>
<td>2306.1</td>
</tr>
<tr>
<td>AITC 110—01</td>
<td>Standard Appearance Grades for Structural Glued Laminated Timber</td>
<td>2306.1</td>
</tr>
<tr>
<td>AITC 111—05</td>
<td>Recommended Practice for Protection of Structural Glued Laminated Timber During Transit, Storage and Erection</td>
<td>2303.1.3.1</td>
</tr>
<tr>
<td>AITC 113—01</td>
<td>Standard for Dimensions of Structural Glued Laminated Timber</td>
<td>2306.1</td>
</tr>
<tr>
<td>AITC 117—04</td>
<td>Standard Specifications for Structural Glued Laminated Timber of Softwood Species</td>
<td>2306.1</td>
</tr>
</tbody>
</table>
AIIC—continued

- AITC 119—96 Standard Specifications for Structural Glued Laminated Timber of Hardwood Species .. 2306.1
- AITC 200—04 Manufacturing Quality Control Systems Manual for Structural Glued Laminated Timber ... 2306.1
- AITC 404—05 *Standard for Radially Reinforcing Curved Glued Laminated Timber Members to Resist Radial Tension* 2303.1.3.1
- ANSI/AITC A 190.1—07 Structural Glued Laminated Timber ... 2306.1, 2303.1.3, 2306.1

ALI

- Automotive Lift Institute
 - P.O. Box 85
 - Courtland, NY 13045

ANSI

- American National Standards Institute
 - 25 West 43rd Street, Fourth Floor
 - New York, NY 10036

APA

- APA - Engineered Wood Association
 - 7011 South 19th
 - Tacoma, WA 98466

REFERENCED STANDARDS

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A13.1—96 (Reaffirmed 2002)</td>
<td>Scheme for the Identification of Piping Systems</td>
<td>415.8.6.4</td>
</tr>
<tr>
<td>A108.1A—99</td>
<td>Installation of Ceramic Tile in the Wet-set Method, with Portland Cement Mortar</td>
<td>2103.10.10</td>
</tr>
<tr>
<td>A108.1B—99</td>
<td>Installation of Ceramic Tile, quarry Tile on a Cured Portland Cement Mortar Setting Bed with Dry-set or Latex-portland Mortar</td>
<td>2103.10</td>
</tr>
<tr>
<td>A108.4—99</td>
<td>Installation of Ceramic Tile with Organic Adhesives or Water-cleanable Tile-setting Epoxy Adhesive</td>
<td>2103.10.6</td>
</tr>
<tr>
<td>A108.5—99</td>
<td>Installation of Ceramic Tile with Dry-set Portland Cement Mortar or Latex-portland Mortar</td>
<td>2103.10</td>
</tr>
<tr>
<td>A108.6—99</td>
<td>Installation of Ceramic Tile with Chemical-resistant,Water Cleanable Tile-setting and -grouting Epoxy</td>
<td>2103.10.3</td>
</tr>
<tr>
<td>A108.8—99</td>
<td>Installation of Ceramic Tile with Chemical-resistant Furan Resin Mortar and Grout</td>
<td>2103.10.4</td>
</tr>
<tr>
<td>A108.9—99</td>
<td>Installation of Ceramic Tile with Modified Epoxy Emulsion Mortar/Glout</td>
<td>2103.10.5</td>
</tr>
<tr>
<td>A108.10—99</td>
<td>Installation of Grout in Tilework</td>
<td>2103.10.7</td>
</tr>
<tr>
<td>A118.1—99</td>
<td>American National Standard Specifications for Dry-set Portland Cement Mortar</td>
<td>2103.10.1</td>
</tr>
<tr>
<td>A118.3—99</td>
<td>American National Standard Specifications for Chemical-resistant, Water-cleanable Tile-setting and -grouting Epoxy and Water Cleanable Tile-setting Epoxy Adhesive</td>
<td>2103.10.3</td>
</tr>
<tr>
<td>A118.4—99</td>
<td>American National Standard Specifications for Latex-portland Cement Mortar</td>
<td>2103.10.2</td>
</tr>
<tr>
<td>A118.5—99</td>
<td>American National Standard Specifications for Chemical Resistant Furan Mortar and Grouts for Tile Installation</td>
<td>2103.10.4</td>
</tr>
<tr>
<td>A118.6—99</td>
<td>American National Standard Specifications for Cement Grouts for Tile Installation</td>
<td>2103.10.7</td>
</tr>
<tr>
<td>A118.8—99</td>
<td>American National Standard Specifications for Modified Epoxy Emulsion Mortar/Glout</td>
<td>2103.10.5</td>
</tr>
<tr>
<td>A136.1—99</td>
<td>American National Standard Specifications for Organic Adhesives for Installation of Ceramic Tile</td>
<td>2103.10.6</td>
</tr>
<tr>
<td>A137.1—88</td>
<td>American National Standard Specifications for Ceramic Tile</td>
<td>2103.5</td>
</tr>
<tr>
<td>A208.1—99</td>
<td>Particleboard</td>
<td>2303.1.7, 2303.1.17.1</td>
</tr>
<tr>
<td>S3.41</td>
<td>American National Standard Specifications for Audible Emergency Evacuation Signal</td>
<td>907.5.2.1.3</td>
</tr>
<tr>
<td>Z 97.1—04</td>
<td>Safety Glazing Materials Used in Buildings—Safety Performance Specifications and Methods of Test</td>
<td>2406.1, 2406.2, Table 2406.2(2), 2406.3, 2407.1, 2407.1.4, 2408.2.1, 2408.2.3, 2409.1, 2409.2, 2409.3</td>
</tr>
</tbody>
</table>

2010 CALIFORNIA BUILDING CODE 643
REFERENCED STANDARDS

APA—continued

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS PDS</td>
<td>Design and Fabrication of All-plywood Beams (revised 1995)</td>
<td>2306.1</td>
</tr>
<tr>
<td>Supplement 5—95</td>
<td>Builders Tips: Proper Storage and Handling of Glulam Beams</td>
<td>2306.1</td>
</tr>
<tr>
<td>EWS R540—02</td>
<td>Glued Laminated Beam Design Tables</td>
<td>2306.1</td>
</tr>
<tr>
<td>EWS S475—01</td>
<td>Field Notching and Drilling of Glued Laminated Timber Beams</td>
<td>2306.1</td>
</tr>
<tr>
<td>EWS S550—03</td>
<td>Glulam Connection Details</td>
<td>2306.1</td>
</tr>
<tr>
<td>EWS T300—05</td>
<td>Product Guide—Glulam</td>
<td>2306.1</td>
</tr>
<tr>
<td>EWS X440—03</td>
<td>Glulam in Residential Construction—Western Edition</td>
<td>2306.1</td>
</tr>
</tbody>
</table>

APSP

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code</th>
</tr>
</thead>
</table>
ASME

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17.1/CSA B44—2007</td>
<td>Safety Code for Elevators and Escalators</td>
<td>907.3.3</td>
</tr>
<tr>
<td>A18.1—2005</td>
<td>Safety Standard for Platform Lifts and Stairway Chairlifts</td>
<td>1116B.2.1</td>
</tr>
<tr>
<td>A90.1—03</td>
<td>Safety Standard for Belt Manlifts</td>
<td>3001.2</td>
</tr>
<tr>
<td>B20.1—2006</td>
<td>Safety Standard for Conveyors and Related Equipment</td>
<td>3001.2, 3005.3</td>
</tr>
<tr>
<td>BPE—2009</td>
<td>Bio-processing Equipment Standard</td>
<td>415.8.6.1</td>
</tr>
<tr>
<td>B31.3—2004</td>
<td>Process Piping</td>
<td></td>
</tr>
</tbody>
</table>

ASTM

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 36/A 36M—05</td>
<td>Specification for Carbon Structural Steel</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 153/A 153M—05</td>
<td>Specification for Zinc Coating (Hot-dip) on Iron and Steel Hardware</td>
<td>2304.9.5</td>
</tr>
<tr>
<td>A 240/A 240M—07</td>
<td>Standard Specification for Chromium and Chromium-nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications</td>
<td>1507.4.3(1)</td>
</tr>
<tr>
<td>A 252—98 (2002)</td>
<td>Specification for Welded and Seamless Steel Pipe Piles</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 283/A 283M—03</td>
<td>Specification for Low and Intermediate Tensile Strength Carbon Steel Plates</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 307—04e01</td>
<td>Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength</td>
<td>1911.1</td>
</tr>
<tr>
<td>A 416/A 416M—06</td>
<td>Specification for Steel Strand, Uncoated Seven-wire for Prestressed Concrete</td>
<td>1810.3.2.2</td>
</tr>
<tr>
<td>A 463/A 463M—05</td>
<td>Standard Specification for Steel Sheet, Aluminum-coated, by the Hot-dip Process</td>
<td>1507.4.3(2)</td>
</tr>
<tr>
<td>A 572/A 572M—07</td>
<td>Specification for High-strength Low-alloy Columbium-vanadium Structural Steel</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 588/A 588M—05</td>
<td>Specification for High-strength Low-alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 inches (100 mm) Thick</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 615/A 615M—04a</td>
<td>Specification for Deformed and Plain Billet-steel Bars for Concrete Reinforcement</td>
<td>1708.2, 1810.3.10.2</td>
</tr>
<tr>
<td>A 653/A 653M—07</td>
<td>Specification for Steel Sheet, Zinc-coated Galvanized or Zinc-iron Alloy-coated Galvanized by the Hot-dip Process</td>
<td>2304.9.5.1</td>
</tr>
<tr>
<td>A 690/A 690M—07</td>
<td>Standard Specification for High-strength Low-alloy Nickel, Copper, Phosphorus Steel H-piles and Sheet Piling with Atmospheric Corrosion Resistance for Use in Marine Environments</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 706/A 706M—05a</td>
<td>Specification for Low-alloy Steel Deformed and Plain Bars for Concrete Reinforcement</td>
<td>1704.3, 1704.4.1, 2107.4, 2108.3</td>
</tr>
<tr>
<td>A 722/A 722M—07</td>
<td>Specification for Uncoated High-strength Steel Bar for Prestressing Concrete</td>
<td>1810.3.10.2</td>
</tr>
<tr>
<td>A 755/A 755M—07</td>
<td>Specification for Steel Sheet, Metallic-coated by the Hot-dip Process and Prepaintied by the Coil-coating Process for Exterior Exposed Building Products</td>
<td>1507.4.3(1), 1507.4.3(2)</td>
</tr>
<tr>
<td>A 792/A 792M—06a</td>
<td>Specification for Steel Sheet, 55% Aluminum-zinc Alloy-coated by the Hot-dip Process</td>
<td>1507.4.3(1), 1507.4.3(2)</td>
</tr>
<tr>
<td>A 875/A 875M—06</td>
<td>Standard Specification for Steel Sheet Zinc-5 percent, Aluminum Alloy-coated by the Hot-dip Process</td>
<td>1507.4.3(2)</td>
</tr>
<tr>
<td>A 913/A 913M—04</td>
<td>Specification for High-strength Low-alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-tempering Process (QST)</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>A 924/A 924M—07</td>
<td>Standard Specification for General Requirements for Steel Sheet, Metallic-coated by the Hot-dip Process</td>
<td>1507.4.3(1)</td>
</tr>
<tr>
<td>A 992/A 992M—06a</td>
<td>Standard Specification for Structural Shapes</td>
<td>1810.3.2.3</td>
</tr>
<tr>
<td>B 42—02e01</td>
<td>Specification for Seamless Copper Pipe, Standard Sizes</td>
<td>909.13.1</td>
</tr>
<tr>
<td>B 68—02</td>
<td>Specification for Seamless Copper Tube, Bright Annealed (Metric)</td>
<td>909.13.1</td>
</tr>
<tr>
<td>B 88—03</td>
<td>Specification for Seamless Copper Water Tube</td>
<td>909.13.1</td>
</tr>
<tr>
<td>B 101—02</td>
<td>Specification for Lead-coated Copper Sheet and Strip for Building Construction</td>
<td>1404.5.3, Table 1507.2.9.2, 1507.4.3(1)</td>
</tr>
<tr>
<td>B 209—06</td>
<td>Specification for Aluminum and Aluminum Alloy Steel and Plate</td>
<td>1507.4.3(1)</td>
</tr>
<tr>
<td>B 251—02e01</td>
<td>Specification for General Requirements for Wrought Seamless Copper and Copper-alloy Tube</td>
<td>909.13.1</td>
</tr>
</tbody>
</table>
REFERENCED STANDARDS

ASTM—continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B 280—03</td>
<td>Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service</td>
<td>909.13.1</td>
</tr>
<tr>
<td>B 370—03</td>
<td>Specification for Cold-rolled Copper Sheet and Strip for Building Construction</td>
<td>1404.5.2, Table 1507.2.9.2, Table 1507.4.3.1</td>
</tr>
<tr>
<td>B 695—04</td>
<td>Standard Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel</td>
<td>2304.9.5.1, 2304.9.5.3</td>
</tr>
<tr>
<td>C 5—03</td>
<td>Specification for Quicklime for Structural Purposes</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 22/C 22M—00 (2005)e01</td>
<td>Specification for Gypsum</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 28/C 28M—00 (2005)</td>
<td>Specification for Gypsum Plasters</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 31/C 31M—06</td>
<td>Practice for Making and Curing Concrete Test Specimens in the Field</td>
<td>Table 1704.4</td>
</tr>
<tr>
<td>C 33—03</td>
<td>Specification for Concrete Aggregates</td>
<td>721.3.1.4, 721.4.1.1.3</td>
</tr>
<tr>
<td>C 34—03</td>
<td>Specification for Structural Clay Load-bearing Wall Tile</td>
<td>2103.2</td>
</tr>
<tr>
<td>C 35—01 (2005)</td>
<td>Specification for Inorganic Aggregates for Use in Gypsum Plaster</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 36/C 36M—03</td>
<td>Specification for Gypsum Wallboard</td>
<td>Figure 721.5.1(2), Figure 721.5.1(3), Table 2506.2</td>
</tr>
<tr>
<td>C 37/C 37M—01</td>
<td>Specification for Gypsum Lath</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 38—0601</td>
<td>Specification for Concrete Building Brick</td>
<td>Table 721.3.2, 2103.1, 2105.2.2.1.2</td>
</tr>
<tr>
<td>C 35—06</td>
<td>Specification for Structural Clay Nonload-bearing Tile</td>
<td>2103.2</td>
</tr>
<tr>
<td>C 39/C 39M—00 (2006)</td>
<td>Specification for Gypsum Casting and Molding Plaster</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 61/C 61M—00 (2006)</td>
<td>Specification for Gypsum Keene’s Cement</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 62—05</td>
<td>Specification for Building Brick (Solid Masonry Units Made from Clay or Shale)</td>
<td>1807.1.6.3, 2103.2, 2105.2.2.1.1</td>
</tr>
<tr>
<td>C 67—07</td>
<td>Test Methods of Sampling and Testing Brick and Structural Clay Tile</td>
<td>721.4.1.1.1, 7210.3.1.1</td>
</tr>
<tr>
<td>C 73—05</td>
<td>Specification for Calcium Silicate Face Brick (Sand-lime Brick)</td>
<td>Table 721.3.2, 2103.1</td>
</tr>
<tr>
<td>C 79—04a</td>
<td>Specification for Treated Core and Non-treated Core Gypsum Sheathing Board</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 90—06b</td>
<td>Specification for Load-bearing Concrete Masonry Units</td>
<td>Table 721.3.2, 1807.1.6.3, 2103.1</td>
</tr>
<tr>
<td>C 91—05</td>
<td>Specification for Masonry Cement</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 94/C 94M—07</td>
<td>Specification for Ready-mixed Concrete</td>
<td>110.3.1</td>
</tr>
<tr>
<td>C 140—07</td>
<td>Test Method Sampling and Testing Concrete Masonry Units and Related Units</td>
<td>Table 721.3.1.2</td>
</tr>
<tr>
<td>C 144-04</td>
<td>Standard Specification for Aggregate for Masonry Mortar</td>
<td>2103A.8</td>
</tr>
<tr>
<td>C 150—07</td>
<td>Specification for Portland Cement</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 172—04</td>
<td>Practice for Sampling Freshly Mixed Concrete</td>
<td>Table 1704.4</td>
</tr>
<tr>
<td>C 199—84 (2005)</td>
<td>Test Method for Pier Test for Refractory Mortars</td>
<td>2111.5, 2111.8, 2113.12</td>
</tr>
<tr>
<td>C 206—03</td>
<td>Specification for Finishing Hydrated Lime</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 208—95 (2001)</td>
<td>Specification for Cellulosic Fiber Insulating Board</td>
<td>Table 1508.2, 2303.1.5</td>
</tr>
<tr>
<td>C 212—00 (2006)</td>
<td>Specification for Structural Clay Facing Tile</td>
<td>Table 2103.2</td>
</tr>
<tr>
<td>C 216—07</td>
<td>Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)</td>
<td>1807.1.6.3, 2103.2, 2105.2.2.1.1</td>
</tr>
<tr>
<td>C 236—07</td>
<td>Specification for Mortar for Unit Masonry</td>
<td>2103.8</td>
</tr>
<tr>
<td>C 289—07</td>
<td>Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates</td>
<td>1930A.3</td>
</tr>
<tr>
<td>C 315—07</td>
<td>Specification for Clay Flue Liners and Chimney Pots</td>
<td>2111.8, 2113.11, Table 2113.16(1)</td>
</tr>
<tr>
<td>C 317/C 317M—00 (2005)</td>
<td>Specification for Gypsum Concrete</td>
<td>1914.1</td>
</tr>
<tr>
<td>C 330—05</td>
<td>Specification for Lightweight Aggregates for Structural Concrete</td>
<td>721.1.1</td>
</tr>
<tr>
<td>C 331—05</td>
<td>Specification for Lightweight Aggregates for Concrete Masonry Units</td>
<td>721.3.1.4, 721.4.1.1.3</td>
</tr>
<tr>
<td>C 406—06e01</td>
<td>Specification for Roofing Slate</td>
<td>1507.7.5</td>
</tr>
<tr>
<td>C 442/C 442M—04</td>
<td>Specification for Gypsum Backing Board and Coreboard and Gypsum Shaltliner Board</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 473—06a</td>
<td>Test Method for Physical Testing of Gypsum Panel Products</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 474—05</td>
<td>Test Methods for Joint Treatment Materials for Gypsum Board Construction</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 475—05</td>
<td>Specification for Joint Compound and Joint Tape for Finishing Gypsum Wallboard</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 503—05</td>
<td>Specification for Marble Dimension Stone (Exterior)</td>
<td>Table 2103.4</td>
</tr>
<tr>
<td>C 514—04</td>
<td>Specification for Nails for the Application of Gypsum Board</td>
<td>Table 720.1(2), Table 720.1(3), Table 2306.7, Table 2506.2</td>
</tr>
<tr>
<td>C 516—02</td>
<td>Specifications for Vermiculite Loose Fill Thermal Insulation</td>
<td>721.3.1.4, 721.4.1.1.3</td>
</tr>
<tr>
<td>C 547—06</td>
<td>Specification for Mineral Fiber Pipe Insulation</td>
<td>Table 720.1(2), Table 720.1(3)</td>
</tr>
<tr>
<td>C 549—06</td>
<td>Specification for Perlite Loose Fill Insulation</td>
<td>721.3.1.4, 721.4.1.1.3</td>
</tr>
<tr>
<td>C 552—03</td>
<td>Standard Specification for Cellular Glass Thermal Insulation</td>
<td>Table 1508.2</td>
</tr>
<tr>
<td>C 557—03b01</td>
<td>Specification for Adhesives for Fastening Gypsum Wallboard to Wood Framing</td>
<td>Table 2506.2</td>
</tr>
<tr>
<td>C 568—03</td>
<td>Specification for Limestone Dimension Stone</td>
<td>2103.4</td>
</tr>
<tr>
<td>C 578—07</td>
<td>Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation</td>
<td>Table 1508.2</td>
</tr>
<tr>
<td>C 587—04</td>
<td>Specification for Gypsum Veneer Plaster</td>
<td>Table 2507.2</td>
</tr>
<tr>
<td>C 588/C 588M—01</td>
<td>Specification for Gypsum Base for Veneer Plasters</td>
<td>Table 2507.2</td>
</tr>
</tbody>
</table>

646

2010 CALIFORNIA BUILDING CODE
REFERENCED STANDARDS

ASTM—continued

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1280—04</td>
<td>Specification for Application of Gypsum Sheathing... Table 2508.1, 2508.2</td>
</tr>
<tr>
<td>C 1283—07</td>
<td>Practice for Installing Clay Flue Lining... 2113.12</td>
</tr>
<tr>
<td>C 1289—07</td>
<td>Standard Specification for Faced Rigid Cellular Polysioyanurate Thermal Insulation Board... Table 1508.2</td>
</tr>
<tr>
<td>C 1314—07</td>
<td>Test Method for Compressive Strength of Masonry Prisms... 2105.2.2.2, 2105.3.1, 2105.3.2</td>
</tr>
<tr>
<td>C 1325—04</td>
<td>Standard Specification for Non asbestos Fiber-mat Reinforced Cement Interior Substrate Sheets... 2509.2</td>
</tr>
<tr>
<td>C 1328—05</td>
<td>Specification for Plastic (Stucco Cement).... Table 2507.2</td>
</tr>
<tr>
<td>C 1386—07</td>
<td>Specification for Precast Autoclaved Aerated Concrete (AAC) Wall Construction Units... 2102.1, 2103.3, 2105.2.2.1.3</td>
</tr>
<tr>
<td>C 1395/C 1395M—06a</td>
<td>Specification for Gypsum Ceiling Board... Table 2506.2</td>
</tr>
<tr>
<td>C 1396M—06a</td>
<td>Specification for Gypsum Board... Table 2506.2</td>
</tr>
<tr>
<td>C 1405—07</td>
<td>Standard Specification for Glazed Brick (Single Fired, Solid Brick Units)... 2103.2</td>
</tr>
<tr>
<td>C 1492—03</td>
<td>Standard Specification for Concrete Roof Tile... 1507.3.5</td>
</tr>
<tr>
<td>C 1567—08</td>
<td>Standard Test Method for Determining the Potential Alkali-Silica Reactivity of the Cementicous Materials and Aggregate... 1903A.3, 1916.1.3</td>
</tr>
<tr>
<td>C 1586—05</td>
<td>Standard Guide for Quality Assurance of Mortars... 2105A.2.2.1.4, 2141.9.1</td>
</tr>
<tr>
<td>C 1629/C 1629M—06</td>
<td>Standard Classification for Abate-resistant Nondecorated Interior Gypsum Panel Products and Fiber-reinforced Cement Panels... 403.2.3.1, 403.2.3.2, 403.2.3.4</td>
</tr>
<tr>
<td>C 1658/C 1658M—06</td>
<td>Standard Specification for Glass Mat Gypsum Panels... 1810.3.2.4, Table 2506.2</td>
</tr>
<tr>
<td>D 25—99 (2005)</td>
<td>Specification for Round Timber Piles... 2303.1.11</td>
</tr>
<tr>
<td>D 41—05</td>
<td>Specification for Asphalt Primer Used in Roofing, Dampproofing and Waterproofing... Table 1507.10.2</td>
</tr>
<tr>
<td>D 43—00 (2006)</td>
<td>Specification for Coal Tar Primer Used in Roofing, Dampproofing and Waterproofing... Table 1507.10.2</td>
</tr>
<tr>
<td>D 56—05</td>
<td>Test Method for Flash Point By Tag Closed Tester... 307.2</td>
</tr>
<tr>
<td>D 86—07a</td>
<td>Test Method for Distillation of Petroleum Products at Atmospheric Pressure... 307.2</td>
</tr>
<tr>
<td>D 93—07</td>
<td>Test Method for Flash Point By Pensky-Martens Closed Cup Tester... 307.2</td>
</tr>
<tr>
<td>D 225—04</td>
<td>Specification for Asphalt Shingles (Organic Felt) Surfaced with Mineral Granules... 1507.2.5</td>
</tr>
<tr>
<td>D 226—06</td>
<td>Specification for Asphalt-saturated Organic Felt Used in Roofing and Waterproofing... 1404.2, 1507.2.3, 1507.3.3, 1507.5.3, 1507.6.3, 1507.7.3, Table 1507.8, 1507.8.3, 1507.9.3, 1507.9.5, Table 1507.10.2</td>
</tr>
<tr>
<td>D 227—03</td>
<td>Specification for Coal-tar-saturated Organic Felt Used in Roofing and Waterproofing... Table 1507.10.2</td>
</tr>
<tr>
<td>D 312—00 (2006)</td>
<td>Specification for Asphalt Used in Roofing... Table 1507.10.2</td>
</tr>
<tr>
<td>D 422—63 (2002)e01</td>
<td>Test Method for Particle-size Analysis of Soils... 1803.5.3</td>
</tr>
<tr>
<td>D 448—03a</td>
<td>Standard Classification for Sizes of Aggregate for Road and Bridge Construction... 1507.12.3, 1507.13.3</td>
</tr>
<tr>
<td>D 450—07</td>
<td>Specification for Coal-tar Pitch Used in Roofing, Dampproofing and Waterproofing... Table 1507.10.2</td>
</tr>
<tr>
<td>D 635—06</td>
<td>Test Method for Rate of Burning and/or Extent and Time of Burning of Self-supporting Plastics in a Horizontal Position... 2606.4, H107.1.1</td>
</tr>
<tr>
<td>D 1143/D 1143M—07</td>
<td>Test Method for Piles Under Static Axial Compressive Load... 1810.3.3.1.2</td>
</tr>
<tr>
<td>D 1227—95 (2007)</td>
<td>Specification for Emulsified Asphalt Used as a Protective Coating for Roofing... Table 1507.10.2, 1507.15.2</td>
</tr>
<tr>
<td>D 1557—02e01</td>
<td>Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort [56,000 \text{ft-lbf} / (2,700 \text{KN m2})]... 1704.7, 1804.5, 1107.4</td>
</tr>
<tr>
<td>D 1586—99</td>
<td>Specification for Penetration Test and Split-bar Sample of Soils... 1613.5.5</td>
</tr>
<tr>
<td>D 1761—06</td>
<td>Test Method for Mechanical Fasteners in Wood... 1716.1.1, 1716.1.2, 1716.1.3</td>
</tr>
<tr>
<td>D 1863—05</td>
<td>Specification for Mineral Aggregate Used on Built-up Roofs... Table 1507.10.2</td>
</tr>
<tr>
<td>D 1929—96 (2001)e01</td>
<td>Test Method for Determining Ignition Properties of Plastics... 402.16.4, 406.5.3, 1407.11.2.1, 2606.4</td>
</tr>
<tr>
<td>D 1970—01</td>
<td>Specification for Self-adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roof Underlayment for Ice Dam Protection... 1507.2.4, 1507.2.9.2, 1507.3.9, 1507.5.7, 1507.8.8, 1507.9.9</td>
</tr>
<tr>
<td>D 2166—06</td>
<td>Test Method for Unconfined Compressive Strength of Cohesive Soil... 1613.5.5</td>
</tr>
<tr>
<td>D 2178—04</td>
<td>Specification for Asphalt Glass Felt Used in Roofing and Waterproofing... Table 1507.10.2</td>
</tr>
<tr>
<td>D 2216—05</td>
<td>Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass... 1613.5.5</td>
</tr>
<tr>
<td>D 2487—06</td>
<td>Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)... Table 1610.1, 1802.3.1</td>
</tr>
<tr>
<td>D 2626—04</td>
<td>Specification for Asphalt-Saturated and Coated Organic Felt Base Sheet Used in Roofing... 1507.3.3, Table 1507.10.2</td>
</tr>
<tr>
<td>D 2822—05</td>
<td>Specification for Asphalt Roof Cement... Table 1507.10.2</td>
</tr>
<tr>
<td>D 2823—05</td>
<td>Specification for Asphalt Roof Coatings... Table 1507.10.2</td>
</tr>
<tr>
<td>D 2843—99 (2004)e01</td>
<td>Test for Density of Smoke from the Burning or Decomposition of Plastics... 2606.4</td>
</tr>
<tr>
<td>D 2850—03a</td>
<td>Test Method for Unconsolidated, Undrained Triaxial Compression Test on Cohesive Soils... 1613.5.5</td>
</tr>
<tr>
<td>D 2898—04</td>
<td>Test Methods for Accelerated Weathering of Fire-retardant-treated Wood for Fire Testing... 1505.1, 2303.2.2, 2303.2.6</td>
</tr>
<tr>
<td>D 3019—94 (2007)</td>
<td>Specification for Lap Cement Used with Asphalt Roll Roofing, Nonfibered, Asbestos Fibered and Non asbestos Fibered... Table 1507.10.2</td>
</tr>
<tr>
<td>D 3161—06</td>
<td>Test Method for a Wind Resistance of Asphalt Shingles (Fan Induced Method)... 1507.2.7.1, Table 1507.2.7.1(2)</td>
</tr>
</tbody>
</table>
REFERENCED STANDARDS

ASTM—continued

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Description</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 3201—07</td>
<td>Test Method for Hygroscopic Properties of Fire-retardant-treated Wood and Wood-based Products</td>
<td>2303.2.7</td>
</tr>
<tr>
<td>D 3278—(2004)e01</td>
<td>Test Methods for Flash Point of Liquids by Small Scale Closed-cup Apparatus.</td>
<td>307.2</td>
</tr>
<tr>
<td>D 3462—07</td>
<td>Specification for Asphalt Shingles Made from Glass Felt and Surfaced with Mineral Granules</td>
<td>1507.2.5</td>
</tr>
<tr>
<td>D 3468—99 (2006)e01</td>
<td>Specification for Liquid-applied Neoprene and Chlorosulfonated Polyethylene Used in Roofing and Waterproofing</td>
<td>1507.15 2</td>
</tr>
<tr>
<td>D 3769—06a</td>
<td>Specification for Rigid Poly [Vinyl Chloride (PVC) Siding].</td>
<td>1404.9, 1405.14</td>
</tr>
<tr>
<td>D 3737—07</td>
<td>Practice for Establishing Allowable Properties for Structural Glued Laminated Timber (Glulam)</td>
<td>2303.1.3</td>
</tr>
<tr>
<td>D 3747—79 (2007)</td>
<td>Specification for Emulsified Asphalt Adhesive for Adhering Roof Insulation.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 3909—97b (2004)e01</td>
<td>Specification for Asphalt Roll Roofing (Glass Felt) Surfaced with Mineral Granules</td>
<td>1507.2.9.2, 1507.6.5, Table 1507.10.2</td>
</tr>
<tr>
<td>D 3957—06</td>
<td>Standard Practices for Establishing Stress Grades for Structural Members Used in Log Buildings</td>
<td>2303.1.10</td>
</tr>
<tr>
<td>D 4022—07</td>
<td>Specification for Coal Tar Roof Cement, Asbestos Containing.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 4272—03</td>
<td>Test Method for Total Energy Impact of Plastic Films by Dart Drop.</td>
<td>1504.7</td>
</tr>
<tr>
<td>D 4318—05</td>
<td>Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils.</td>
<td>1613.5.5, 1803.5.3</td>
</tr>
<tr>
<td>D 4434—06</td>
<td>Specification for Poly (Vinyl Chloride) Sheet Roofing.</td>
<td>1507.13.2</td>
</tr>
<tr>
<td>D 4479—07</td>
<td>Specification for Asphalt Roof Coatings—Asbestos-free.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 4586—00</td>
<td>Specification for Asphalt Roof Cement—Asbestos-free.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 4601—04</td>
<td>Specification for Asphalt-coated Glass Fiber Base Sheet Used in Roofing.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 4637—04</td>
<td>Specification for EPDM Sheet Used in Single-ply Roof Membrane.</td>
<td>1507.12.2</td>
</tr>
<tr>
<td>D 4829—07</td>
<td>Test Method for Expansion Index of Soils.</td>
<td>1803.5.3</td>
</tr>
<tr>
<td>D 4869—05e01</td>
<td>Specification for Asphalt-saturated (Organic Felt) Underlayment Used in Steep Slope Roofing.</td>
<td>1507.2.3, 1507.5.3, 1507.6.3, 1507.7.3, 1507.8.3, 1507.9.3</td>
</tr>
<tr>
<td>D 4897—01</td>
<td>Specification for Asphalt-coated Glass Fiber Venting Base Sheet Used in Roofing.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 4945—00</td>
<td>Test Method for High-strain Dynamic Testing of Piles.</td>
<td>1810.3.3.1.2</td>
</tr>
<tr>
<td>D 4990—97a (2005)e01</td>
<td>Specification for Coal Tar Glass Felt Used in Roofing and Waterproofing.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 5019—07</td>
<td>Specification for Reinforced Nonvulcanized Polymeric Sheet Used in Roofing Membrane</td>
<td>1507.12.2</td>
</tr>
<tr>
<td>D 5055—05</td>
<td>Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-Joists</td>
<td>2303.1.2</td>
</tr>
<tr>
<td>D 5456—05a</td>
<td>Specification for Evaluation of Structural Composite Lumber Products.</td>
<td>2303.1.9</td>
</tr>
<tr>
<td>D 5516—03</td>
<td>Test Method of Evaluating the Flexural Properties of Fire-retardant-treated Softwood Plywood Exposed to the Elevated Temperatures.</td>
<td>2303.2.5.1</td>
</tr>
<tr>
<td>D 5643—06</td>
<td>Specification for Coal Tar Roof Cement, Asbestos-free.</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 5664—02</td>
<td>Test Methods for Evaluating the Effects of Fire-retardant Treatment and Elevated Temperatures on Strength Properties of Fire-retardant-treated Lumber.</td>
<td>2303.2.5.2</td>
</tr>
<tr>
<td>D 5665—99a (2006)</td>
<td>Specification for Thermoplastic Fabrics Used in Cold-applied Roofing and Waterproofing</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 5726—98 (2005)</td>
<td>Specification for Thermoplastic Fabrics Used in Hot-applied Roofing and Waterproofing</td>
<td>Table 1507.10.2</td>
</tr>
<tr>
<td>D 6083—05e01</td>
<td>Specification for Liquid Applied Acrylic Coating Used in Roofing.</td>
<td>Table 1507.10.2, 1507.15.2</td>
</tr>
<tr>
<td>D 6162—00A</td>
<td>Specification for Styrene-butyadiene-styrene (SBS) Modified Bituminous Sheet Materials Using a Combination of Polyester and Glass Fiber Reinforcements</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6163—00e01</td>
<td>Specification for Styrene-butyadiene-styrene (SBS) Modified Bituminous Sheet Materials Using Glass Fiber Reinforcements</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6164—05</td>
<td>Specification for Styrene-butyadiene-styrene (SBS) Modified Bituminous Sheet Metal Materials Using Polyester Reinforcements</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6222—02e01</td>
<td>Specification for Atactic Polypropylene (APP) Modified Bituminous Sheet Materials Using Polyester Reinforcements</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6223—02</td>
<td>Specification for Atactic Polypropylene (APP) Modified Bituminous Sheet Materials Using a Combination of Polyester and Glass Fiber Reinforcements</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6298—05</td>
<td>Specification for Fiberglass Reinforced Styrene-butyadiene-styrene (SBS) Modified Bituminous Sheets with a Factory Applied Metal Surface</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6305—02e01</td>
<td>Practice for Calculating Bending Strength Design Adjustment Factors for Fire-retardant-treated Plywood Roof Sheathing.</td>
<td>2303.2.5.1</td>
</tr>
<tr>
<td>D 6380—03</td>
<td>Standard Specification for Asphalt Roll Roofing (Organic) Felt.</td>
<td>1507.2.9.2, 1507.3.3, 1507.6.5</td>
</tr>
<tr>
<td>D 6509—00</td>
<td>Standard Specification for Atactic Polypropylene (APP) Modified Bituminous base Sheet Materials Using Glass Fiber Reinforcements</td>
<td>1507.11.2</td>
</tr>
<tr>
<td>D 6694—07</td>
<td>Standard Specification for Liquid-applied Silicone Coating Used in Spray Polyurethane Foam Roofing.</td>
<td>1507.15.2</td>
</tr>
<tr>
<td>D 6754—02</td>
<td>Standard Specification for Ketone Ethylene Ester Based Sheet Roofing.</td>
<td>1507.13.2</td>
</tr>
<tr>
<td>D 6757—07</td>
<td>Standard Specification for Inorganic Underlayment for Use with Steep Slope Roofing Products</td>
<td>1507.2.3</td>
</tr>
<tr>
<td>D 6841—03</td>
<td>Standard Practice for Calculating Design Value Treatment Adjustment Factors for Fire-retardant-treated Lumber.</td>
<td>2303.2.5.2</td>
</tr>
<tr>
<td>D 6878—06a</td>
<td>Standard Specification for Thermoplastic Polyolefin Based Sheet Roofing.</td>
<td>1507.13.2</td>
</tr>
<tr>
<td>D 6947—07</td>
<td>Standard Specification for Liquid Applied Moisture Cured Polyurethane Coating Used in Spray Polyurethane Foam Roofing System</td>
<td>1507.15.2</td>
</tr>
</tbody>
</table>

2010 CALIFORNIA BUILDING CODE 649
ASTM—continued

D 7158—07 Standard Test Method for Wind Resistance of Sealed Asphalt Shingles
(Uplift Force/Uplift Resistance Method) ... 1507.2.7.1, Table 1507.2.7.1(1)
E 84—07 Test Methods for Surface Burning Characteristics of Building Materials................ 402.11, 402.16.4, 406.3.3,
703.4.2, 719.1, 719.4, 802.1, 803.1.1, 803.9, 806.5, 1407.9, 1407.10.1, 2303.2, 2603.3, 2603.4.1.13, 2603.5.4, 2604.2.4, 2606.4, 3105.4, D102.2.8
E 90—04 Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of
Building Partitions and Elements .. 1207.2, 1207.2.1
E 96/E 96M—05 Test Method for Water Vapor Transmission of Materials.......................... 202, 1203.2
E 108—07a Test Methods for Fire Tests of Roof Coverings ... 1505.1, 2603.6, 2610.2, 2610.3
E 119—07 Test Methods for Fire Tests of Building Construction and Materials 703.2, 703.2.1, 703.2.3, 703.3,
703.5, 704.12, 705.7, 705.8.5, 707.6, 712.3.2, 713.3.1, 713.4.1.1, 714.1, 715.2, 715.4.5, 716.5.2, 716.5.3, 716.6.1, 716.6.2.1, Table 720.1(1), 1407.10.2, 2103.2, 2603.4, 2603.5.1
E 136—04 Test Method for Behavior of Materials in a Vertical Tube Furnace at 750°C 703.4.1
E 330—02 Test Method for Structural Performance of Exterior Windows, Curtain Walls and Doors by
Uniform Static Air Pressure Difference .. 1715.5.2
E 331—00 Test Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain Walls by
Uniform Static Air Pressure Difference .. 1403.2
E 492—04 Test Method for Laboratory Measurement of Impact Sound Transmission Through Floor-ceiling
Assemblies Using the Tapping Machine ... 1207.3
E 580—08 Standard Practice for Installation of Ceiling Suspension Systems for Acoustical Tile and
Lay-in Panels in Areas Subject to Earthquake Ground Motions 1615.10.13, 1615A.1.16
Applied to Structural Members ... 1704.12.4.1, 1704.12.4.2,
1704.12.4.3, 1704.12.5
Using a Radiant Heat Energy Source .. 804.4.1, 804.4.2
E662—09 Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials................ 804.4.1, 804.4.2
E 681—04 Test Methods for Concentration Limits of Flammable Chemical Vapors and Gases 307.2
E 736—00 (2006) Test Method for Cohesion/Adhesion of Sprayed Fire-resistant Materials Applied to
Structural Members ... 704.13.2, 1704.12.6
E 814—06 Test Method of Fire Tests of Through-penetration Firestops 702.1, 713.3.1.2, 713.3.2, 713.4.1.1.2
E 970—00 Test Method for Critical Radiant Flux of Exposed Attic Floor Insulation Using
a Radiant Heat Energy Source ... 719.3.1
E 1300—04e01 Practice for Determining Load Resistance of Glass in Buildings 2404.1, 2404.2, 2404.3.1,
2404.3.2, 2404.3.3, 2404.3.4, 2404.3.5
Using an Oxygen Consumption Calorimeter 402.12.1
E 1592—01 Test Method for Structural Performance of Sheet Metal Roof and Siding Systems by
Uniform Static Air Pressure Difference .. 1504.3.2
E 1602—03 Guide for Construction of Solid Fuel-burning Masonry Heaters 2112.2
E 1886—06 Test Method for Performance of Exterior Windows, Curtain Walls, Doors and
Storm Shutters Impacted by Missiles and Exposed to Cyclic Pressure Differentials 1609.1.2
E 1966—01 Test Method for Fire-resistant Joint Systems ... 702.1, 714.3
E 1996—06 Specification for Performance of Exterior Windows, Glazed Curtain Walls,
Doors and Impact Protective Systems Impacted by Windborne Debris in Hurricanes 1609.1.2, 1609.1.2.1
E 2072—04 Standard Specification for Photoluminescent (Phosphorescent) Safety Markings 1024.4
E 2273—03 Standard Test Method for Determining the Drainage Efficiency of Exterior Insulation and
Finish Systems (EIFS) Clad Wall Assemblies 1408.4.1
E 2307—04e01 Standard Test Method for Determining Fire Resistance of Perimeter Fire Barrier Systems
Using Intermediate-scale, Multistory Test Apparatus 714.4
E 2404—07a Standard Practice for Specimen Preparation and Mounting of Textile, Paper or Vinyl Wall or
Ceiling Coverings to Assess Surface Burning Characteristics 803.1.4
E 2570—07 Standard Test Method for Evaluating Water-resistant Barrier (WRB) Coatings Used
Under Exterior Insulation and Finish Systems (EIFS) for EIFS with Drainage 1408.4.1.1, 1704.12.1
E 2573—07 Standard Practice for Specimen Preparation and Mounting of Site-fabricated Stretch
Systems to Assess Surface Burning Characteristics 803.9
F 547—01 Terminology of Nails for Use with Wood and Wood-based Materials Table 2506.2
Swimming Pools, Spas and Hot Tubs .. 3109.4, 3109.4.1.8
F 1667—05 Specification for Driven Fasteners: Nails, Spikes and Staples Table 720.1(2), Table 720.1(3),
1507.2.6, 2303.6, Table 2506.2

650 2010 CALIFORNIA BUILDING CODE
ASTM—continued

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2200—05</td>
<td>Standard Specification for Automated Vehicular Gate Construction</td>
<td>3110.3</td>
</tr>
<tr>
<td>G152—06</td>
<td>Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Nonmetallic Materials</td>
<td>1504.6</td>
</tr>
<tr>
<td>G154—05</td>
<td>Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials</td>
<td>1504.6</td>
</tr>
<tr>
<td>G155—05a</td>
<td>Practice for Operating Xenon Arc Light Apparatus for Exposure of Nonmetallic Materials</td>
<td>1504.6</td>
</tr>
</tbody>
</table>

AWCI

Association of the Wall and Ceiling Industry
513 West Broad Street, Suite 210
Falls Church, VA 22046

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
</table>

AWPA

American Wood Protection Association
P.O. Box 361784
Birmingham, AL 35236-1784

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI—03</td>
<td>All Timber Products—Preservative Treatment by Pressure Processes</td>
<td>1505.6</td>
</tr>
<tr>
<td>M4—06</td>
<td>Standard for the Care of Preservative-treated Wood Products</td>
<td>1810.3.2.4.1, 2303.1.8</td>
</tr>
<tr>
<td>U1—07</td>
<td>USE CATEGORY SYSTEM: User Specification for Treated Wood Except Section 6, Commodity Specification H</td>
<td>1403.5, Table 1507.9.6, 1807.1.4, 1807.3.1, 1809.12, 1810.3.2.4.1, 2303.1.8, 2304.11.2, 2304.11.4, 2304.11.6, 2304.11.7</td>
</tr>
</tbody>
</table>

AWS

American Welding Society
550 N.W. LeJeune Road
Miami, FL 33126

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.1—08</td>
<td>Structural Welding Code—Steel</td>
<td>Table 1704.3, 1704.3.1.1, 1704A.3.1.4</td>
</tr>
<tr>
<td>D1.3—08</td>
<td>Structural Welding Code—Sheet Steel</td>
<td>Table 1704.3, 1704.3.1.2</td>
</tr>
<tr>
<td>D1.4—05</td>
<td>Structural Welding Code—Reinforcing Steel</td>
<td>Table 1704.3, 1704.3.1.3, Table 1704.4, 2107A.4, 2107A.7</td>
</tr>
<tr>
<td>D1.8-09</td>
<td>Structural Welding Code—Seismic Supplement</td>
<td>1704A.3.1.4, 2204A.1.1, 2204A.1.3, 2211.1</td>
</tr>
<tr>
<td>QC1—06</td>
<td>Standard for AWS Certification of Welding Inspectors</td>
<td>1704A.3.1.4</td>
</tr>
</tbody>
</table>

BHMA

Builders Hardware Manufacturers’ Association
355 Lexington Avenue, 17th Floor
New York, NY 10017-6603

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A156.10—06</td>
<td>Power Operated Pedestrian Doors</td>
<td>1008.1.4.2, 1133B.2.3.2, 1133B.2.5</td>
</tr>
<tr>
<td>A156.19—02</td>
<td>Standard for Power Assist and Low Energy Operated Doors</td>
<td>1008.1.4.2, 1133B.2.3.2, 1133B.2.5</td>
</tr>
</tbody>
</table>
REFERENCED STANDARDS

CGSB
- **Canadian General Standards Board**
 - Place du Portage 111, B1
 - 11 Laurier Street
 - Gatineau, Quebec, Canada K1A 1G6

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CGSB 37.54—95</td>
<td>Polyvinyl Chloride Roofing and Waterproofing Membrane</td>
<td>1507.13.2</td>
</tr>
</tbody>
</table>

CPA
- **Composite Panel Association**
 - 19465 Deerfield Avenue, Suite 306
 - Leesburg, VA 20176

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI A135.4—2004</td>
<td>Basic Hardboard</td>
<td>1404.3.1, 2303.1.6</td>
</tr>
<tr>
<td>ANSI A135.5—2004</td>
<td>Prefinished Hardboard Paneling</td>
<td>2303.1.6, 2304.6.2</td>
</tr>
<tr>
<td>ANSI A135.6—1998</td>
<td>Hardboard Siding</td>
<td>1404.3.2, 2303.1.6</td>
</tr>
</tbody>
</table>

CPSC
- **Consumer Product Safety Commission**
 - 4330 East West Highway
 - Bethesda, MD 20814-4408

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 CFR Part 1201(1977)</td>
<td>Safety Standard for Architectural Glazing Material</td>
<td>2406.2, Table 2406.2(1), 2406.3.1, 2407.1, 2407.1.4.1, 2408.2.1, 2408.3, 2409.1, 2409.2, 2409.3.1</td>
</tr>
<tr>
<td>16 CFR Part 1209 (1979)</td>
<td>Interim Safety Standard for Cellulose Insulation</td>
<td>719.6</td>
</tr>
<tr>
<td>16 CFR Part 1404 (1979)</td>
<td>Cellulose Insulation</td>
<td>719.6</td>
</tr>
<tr>
<td>16 CFR Part 1500 (1991)</td>
<td>Hazardous Substances and Articles; Administration and Enforcement Regulations</td>
<td>307.2</td>
</tr>
</tbody>
</table>

CSA
- **Canadian Standards Association**
 - 5060 Spectrum Way
 - Mississauga, Ontario Canada L4W 5N6

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>101/8.2/A440—08</td>
<td>Specifications for Windows, Doors and Unit Skylights</td>
<td>1715.5.1, 2405.5</td>
</tr>
</tbody>
</table>

CSSB
- **Cedar Shake and Shingle Bureau**
 - P.O. Box 1178
 - Sumas, WA 98295-1178

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSB—97</td>
<td>Grading and Packing Rules for Western Red Cedar Shakes and Western Red Shingles of the Cedar Shake and Shingle Bureau</td>
<td>Table 1507.8.5, Table 1507.9.6</td>
</tr>
</tbody>
</table>
REFERENCED STANDARDS

DASMA
Door and Access Systems Manufacturers Association International
1300 Summer Avenue
Cleveland, OH 44115-2851

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/DASMA 107—1997</td>
<td>Room Fire Test Standard for Garage Doors Using Foam Plastic Insulation</td>
<td>2603.4.1.9</td>
</tr>
<tr>
<td>108—05</td>
<td>Standard Method for Testing Sectional Garage Doors and Rolling Doors: Determination of Structural Performance Under Uniform Static Air Pressure Difference</td>
<td>1715.5.2</td>
</tr>
<tr>
<td>115—05</td>
<td>Standard Method for Testing Sectional Garage Doors and Rolling Doors: Determination of Structural Performance Under Missile Impact and Cyclic Wind Pressure</td>
<td>1609.1.2.2</td>
</tr>
</tbody>
</table>

DOC
U.S. Department of Commerce
National Institute of Standards and Technology
1401 Constitution Avenue NW
Washington, DC 20230

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-1—07</td>
<td>Structural Plywood</td>
<td>2303.1.4, 2304.6.2, Table 2304.7(4), Table 2304.7(5), Table 2306.2.1(1), Table 2306.2.1(2)</td>
</tr>
<tr>
<td>PS-2—04</td>
<td>Performance Standard for Wood-based Structural-use Panels</td>
<td>2303.1.4, 2304.6.2, Table 2304.7(5), Table 2306.2.1(1), Table 2306.2.1(2)</td>
</tr>
<tr>
<td>PS 20—05</td>
<td>American Softwood Lumber Standard</td>
<td>1810.3.2.4, 2302.1, 2303.1.1</td>
</tr>
</tbody>
</table>

DOJ
U.S. Department of Justice
950 Pennsylvania Avenue, NW
Civil Rights Division, Disability Rights Section-NYA
Washington, DC 20530

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOJ 36 CFR Part 1192</td>
<td>American with Disabilities Act (ADA) Accessibility Guidelines for Transportation Vehicles (ADAAG) Department of Justice, 1991</td>
<td>E109.2.4</td>
</tr>
</tbody>
</table>

DOL
U.S. Department of Labor
c/o Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402-9325

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
</table>

DOTn
U.S. Department of Transportation
c/o Superintendent of Documents
1200 New Jersey Avenue, SE
Washington, DC 20402-9325

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 CFR—1998</td>
<td>Specification of Transportation of Explosive and Other Dangerous Articles, UN 0335, UN 0336 Shipping Containers</td>
<td>307.2</td>
</tr>
<tr>
<td>Standard reference number</td>
<td>Title</td>
<td>Section number</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>EN 1081-98</td>
<td>Resilient Floor Coverings— Determination of the Electrical Resistance</td>
<td>406.5.2</td>
</tr>
<tr>
<td>FIA-TB11-01</td>
<td>Crawlspace Construction for Buildings Located in Special Flood Hazard Areas</td>
<td>1805.1.2.1</td>
</tr>
<tr>
<td>3260-00</td>
<td>Radiant Energy-Sensing Fire Detectors for Automatic Fire Alarm Signaling</td>
<td></td>
</tr>
<tr>
<td>3011-99</td>
<td>Approval Standard for Central Station Service for Fire Alarm and Protective Equipment Supervision</td>
<td></td>
</tr>
<tr>
<td>4430-80</td>
<td>Acceptance Criteria for Smoke and Heat Vents</td>
<td>910.3.1</td>
</tr>
<tr>
<td>4450 (1989)</td>
<td>Approval Standard for Class 1 Insulated Steel Deck Roofs—with Supplements through July 1992</td>
<td>1508.1, 2603.3, 2603.4.1.5</td>
</tr>
<tr>
<td>4470 (1992)</td>
<td>Approval Standard for Class 1 Roof Covers</td>
<td>1504.7</td>
</tr>
<tr>
<td>4474 (04)</td>
<td>Evaluating the Simulated Wind Uplift Resistance of Roof Assemblies Using Static Positive and/or Negative Differential Pressures</td>
<td>1504.3.1</td>
</tr>
<tr>
<td>GA 216—07</td>
<td>Application and Finishing of Gypsum Panel Products</td>
<td>Table 2508.1, 2509.2</td>
</tr>
<tr>
<td>GA 600—06</td>
<td>Fire-resistance Design Manual, 18th Edition</td>
<td>Table 720.1(1), Table 720.1(2), Table 720.1(3)</td>
</tr>
<tr>
<td>HP-1—2004</td>
<td>Standard for Hardwood and Decorative Plywood</td>
<td>2303.3, 2304.6.2</td>
</tr>
</tbody>
</table>
HUD

U.S. Department of Housing and Urban Development
451 7th Street, SW
Washington, DC 20410

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
</table>

ICC

International Code Council, Inc.
500 New Jersey Ave, NW
6th Floor
Washington, DC 20001

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC 300-07</td>
<td>ICC Standard on Bleachers, Folding and Telescopic Seating and Grandstands</td>
<td>1028.1.1, Table 1607.1, 3401.1</td>
</tr>
<tr>
<td>ICC 400-07</td>
<td>Standard on Design and Construction of Log Structures</td>
<td>2301.2</td>
</tr>
<tr>
<td>ICC 500-08</td>
<td>ICC/NSSA Standard on the Design and Construction of Storm Shelters</td>
<td>423.1, 423.2</td>
</tr>
<tr>
<td>ICC 600-08</td>
<td>Standard for Residential Construction in High Wind Regions</td>
<td>1609.1.1, 1609.1.1.1, 2308.2.1</td>
</tr>
<tr>
<td>ICC ES AC 331</td>
<td>Acceptance Criteria for Smoke and Heat Vents</td>
<td>910.3.1</td>
</tr>
<tr>
<td>ICC-ES AC 01-09*</td>
<td>Acceptance Criteria for Expansion Anchors in Masonry Elements</td>
<td>1615A.1.14</td>
</tr>
<tr>
<td>ICC-ES AC 43-09*</td>
<td>Acceptance Criteria for Steel Deck Roof and Floor Systems</td>
<td>2209A.3</td>
</tr>
<tr>
<td>ICC-ES AC 58-09*</td>
<td>Acceptance Criteria for Adhesive Anchors in Masonry Elements</td>
<td>1615A.1.14</td>
</tr>
<tr>
<td>ICC-ES AC 70-09*</td>
<td>Acceptance Criteria for Fasteners Power-Driven into Concrete, Steel and Masonry Elements</td>
<td>1911A.1.1</td>
</tr>
<tr>
<td>ICC-ES AC 106-09*</td>
<td>Acceptance Criteria for Predrilled Fasteners (Screw Anchors) in Masonry</td>
<td>1615A.1.14</td>
</tr>
<tr>
<td>ICC-ES AC 125-09*</td>
<td>Acceptance Criteria for Concrete, and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer (FRP) Composite Systems</td>
<td>1917A.3</td>
</tr>
<tr>
<td>ICC-ES AC 178-09*</td>
<td>Acceptance Criteria for Inspection and Verification of Concrete, and Reinforced and Unreinforced Masonry Strengthening Using Fiber-Reinforced Polymer (FRP) Composite Systems</td>
<td>1917A.3</td>
</tr>
<tr>
<td>ICC-ES AC 193-09*</td>
<td>Acceptance Criteria for Mechanical Anchors in Concrete Elements</td>
<td>1615A.1.14, 1912A.1.1</td>
</tr>
<tr>
<td>ICC-ES AC 308-09</td>
<td>Acceptance Criteria for Post-Installed Adhesive Anchors in Concrete Elements</td>
<td>1615A.1.14, 1912A.1.1</td>
</tr>
<tr>
<td>ICC-ES AC 358-09*</td>
<td>Acceptance Criteria for Helical Foundation Systems and Devices</td>
<td>1810A.3.1.5.1</td>
</tr>
<tr>
<td>SBCCI STD 11-97</td>
<td>Test Standard for Determining Wind Resistance of Concrete or Clay Roof Tiles</td>
<td>1716.2.1, 1716.2.2</td>
</tr>
</tbody>
</table>

ISO

International Organization for Standardization
ISO Central Secretariat
1 ch, de la Voie-Creuse, Case Postale 56
CH-1211 Geneva 20, Switzerland

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8115-86</td>
<td>Cotton Bales—Dimensions and Density</td>
<td>Table 415.8.2.1.1</td>
</tr>
</tbody>
</table>

NAAMM

National Association of Architectural Metal Manufacturers
800 Roosevelt Road, Bldg. C, Suite 312
Glen Ellyn, IL 60137

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 1001-97</td>
<td>Guide Specifications for Design of Metal Flag Poles</td>
<td>1609.1.1</td>
</tr>
</tbody>
</table>

NCMA

National Concrete Masonry Association
13750 Sunrise Valley
Herndon, VA 22071-4662

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEK 5-84 (1996)</td>
<td>Details for Concrete Masonry Fire Walls</td>
<td>Table 720.1(2)</td>
</tr>
</tbody>
</table>
Referenced Standards

NFPA
National Fire Protection Association
1 Batterymarch Park
Quincy, MA 02169-7471

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-07</td>
<td>Portable Fire Extinguishers</td>
<td>906.2, 906.3.2, 906.3.4, Table 906.3(1), Table 906.3(2)</td>
</tr>
<tr>
<td>11-05</td>
<td>Low Expansion Foam</td>
<td>904.7</td>
</tr>
<tr>
<td>12-05</td>
<td>Carbon Dioxide Extinguishing Systems</td>
<td>904.8, 904.11</td>
</tr>
<tr>
<td>12A-04 Halon 1301</td>
<td>Halon 1301 Fire Extinguishing Systems</td>
<td>904.9</td>
</tr>
<tr>
<td>13-10</td>
<td>Installation of Sprinkler Systems</td>
<td>708.2, 903.3.1.1, 903.3.2, 903.3.5.1.1, 903.3.5.2, 904.11, 905.3.4, 907.6.3, 1613.6.3</td>
</tr>
</tbody>
</table>

NFPA 13, Amended Sections as follows:
Revise Section 2.2 and add publications as follows:
2.2 NFPA Publications.
Revise Section 8.15.1.2.15 as follows:
8.15.1.2.15 Exterior columns under 10 ft² (0.93 m²) in total area, formed by studs or wood joist, with no sources of ignition within the column, supporting exterior canopies that are fully protected with a sprinkler system, shall not require sprinkler protection.
Revise Section 8.15.7.1* as follows:
8.15.7.1* Unless the requirements of 8.15.7.2 are met, sprinklers shall be installed under exterior roofs, canopies, porte-cochere, balconies, decks, or similar projections exceeding 4 ft (1.2 m) in width.
Revise Section 8.15.7.2* as follows:
8.15.7.2* Sprinklers shall be permitted to be omitted where the canopies, roofs, balconies, decks, or similar projections are constructed with materials that are noncombustible, limited-combustible, or fire retardant treated wood as defined in NFPA 703, Standard for Fire Retardant-Treated Wood and Fire-Retardant Coatings for Building Materials.
Delete Section A.8.15.7.2 of Annex
Revise Section 8.15.7.3
8.15.7.3 Sprinklers shall be permitted to be omitted from below the canopies, roofs, balconies, decks, or similar projections are combustible construction, provided the exposed finish material on the roof, or canopy, is noncombustible, limited-combustible, or fire retardant treated wood as defined in NFPA 703, Standard for Fire Retardant-Treated Wood and Fire-Retardant Coatings for Building Materials, and the roofs, or canopies contain only sprinklered concealed spaces or any of the following unsprinklered combustible concealed spaces:
(1) Combustible concealed spaces filled entirely with noncombustible insulation
(2) Light or ordinary hazard occupancies where noncombustible or limited-combustible ceilings are directly attached to the bottom of solid wood joists so as to create enclosed joist spaces 160 ft³ (4.5 m³) or less in volume, including space below insulation that is laid directly on top or within the ceiling joists in an otherwise sprinklered attic [See 11.2.3.1.4(4)(d)].
(3) Concealed spaces over isolated small roofs, or canopies not exceeding 55 ft² (5.1 m²)
Delete language to section 8.15.7.4 and reserve section number.

8.15.7.4
Revise Annex Section A.8.15.7.5 as follows:
A.8.15.7.5 The presence of planters, newspaper machines and similar items should not be considered storage.
Add new Sections 8.16.1.1.1.4 and 8.16.1.1.1.5 as follows:
8.16.1.1.1.4 Where a system includes floor control valves, a hydraulic design information sign containing information for the floor shall be provided at each floor control valve. A hydraulic design information sign shall be provided for each area calculated. The installing contractor shall identify a hydraulically designed sprinkler system with a permanently marked weatherproof metal or rigid plastic sign secured with corrosion resistant wire, chain or other approved means. Such signs shall be placed at the alarm valve, dry pipe valve, preaction valve or deluge valve supplying the corresponding hydraulically designed area.
8.16.1.1.1.5 Control valves, check valves, drain valves and antifreeze valves shall be readily accessible for inspection, testing and maintenance. Valves located more than 7 feet above the finished floor shall be provided with a means of opening and closing the valve from the floor level.
REFERENCED STANDARDS

NFPA—continued

Revise Section 8.16.1.5.1 as follows:
8.16.1.5.1 Private fire service main systems shall have sectional control valves at appropriate points in order to permit sectionalizing the system in the event of a break or for the making of repairs or extensions.

Add new Sections 8.16.1.5.1.1, 8.16.1.5.1.2 and 8.16.1.5.1.3 as follows:
8.16.1.5.1.1 Sectional control valves are not required when the fire service main system serves less than six fire appurtenances.
8.16.1.5.1.2 Sectional control valves shall be indicating valves in accordance with Section 6.7.1.3.
8.16.1.5.1.3 Sectional control valves shall be located so that no more than five fire appurtenances are affected by shut-down of any single portion of the fire service main. Each fire hydrant, fire sprinkler system riser and standpipe riser shall be considered a separate fire appurtenance. In-rack sprinkler systems shall not be considered as a separate appurtenance.
8.16.1.5.1.4 The number of fire appurtenances between sectional control valves is allowed to be modified by the authority having jurisdiction.

Revise Section 8.16.1.5.2 as follows:
8.16.1.5.2 A valve shall be provided on each bank where a main crosses a body of water or outside the building foundation(s) where the main or section of main runs under a building.

Add new Section 9.1.3.9.1.1 as follows:
9.1.3.9.1.1 Powder-driven studs used for attaching hangers to the building structure are prohibited in Seismic Design Categories C, D, E and F.

Add a new sentence to the beginning of Section 9.3.5.8.9 as follows:
9.3.5.8.11 Where threaded pipe is used for sway bracing, it shall have a wall thickness of not less than Schedule 40.

Replace Section 9.3.5.9.4 as follows:
Lag screws or power-driven fasteners shall not be used to attach braces to the building structure.

Add language to the beginning of Section 9.3.5.9.6 as follows:
9.3.5.9.6 Fastening methods other than those identified in Sections 9.3.5.9 and 9.3.7.8 shall not apply to other fastening methods, which shall be acceptable for use if certified by a registered professional engineer to support the loads determined in accordance with the criteria in 9.3.5.6. Calculations shall be submitted to the authority having jurisdiction.

Revise Section 9.3.5.9.7.2* as follows:
9.3.5.9.7.2* Concrete anchors other than those shown in Figure 9.3.5.9.1 and identified in Section 9.3.5.10 shall be acceptable for use where designed in accordance with the requirements of the building code and certified by a registered professional engineer.

Revise Section 9.3.6.1(3) as follows:
9.3.6.1(3) No. 12, 440lb (200Kg) wire installed at least 45 degrees from the vertical plane and anchored on both sides of the pipe. Powder-driven fasteners for attaching restraint is allowed to be used provided that the restraint component does not support the dead load.

Revise Section 10.6.5 as follows:
10.6.5 Pipe joints shall not be located under foundation footings. The pipe under the building or building foundation shall not contain mechanical joints.

Exceptions:
1. Where allowed in accordance with Section 10.6.2
2. Alternate designs may be utilized where designed by a registered professional engineer and approved by the enforcing agency.

Revise Section 11.2.3.2.1.4(4)(i) as follows:
11.2.3.2.1.4(4)(i) Exterior columns under 10 ft² (0.93 m²) in total area, formed by studs or wood joist, with no sources of ignition within the column, supporting exterior canopies that are fully protected with a sprinkler system.

Revise Section 11.2.3.2.3.1 as follows:
11.2.3.2.3.1 Where listed quick-response sprinklers, excluding extended coverage quick-response sprinklers, are used throughout a system or portion of a system having the same hydraulic design basis, the system area of operation shall be permitted to be reduced without revising the density as indicated in Figure 11.2.3.2.3.1 when all of the following conditions are satisfied:
1. Wet pipe system
2. Light hazard occupancy
(3) 20 ft (6.1 m) maximum ceiling height

(4) There are no unprotected ceiling pockets as allowed by 8.6.7 and 8.8.7 exceeding 32 ft² (3 m²)

Note: \(y = \frac{-3x}{2} + 55 \)

For ceiling height \(\geq 10 \) ft and \(\leq 20 \) ft, \(y = \frac{-3x}{2} + 55 \)

For ceiling height \(< 10 \) ft, \(y = 40 \)

For ceiling height \(> 20 \) ft, \(y = 0 \)

For SI units, 1 ft = 0.31 m.

FIGURE 11.2.3.2.3.1 Design Area Reduction for Quick-Response Sprinklers.

Revise Section 11.2.3.2.3.2 as follows:

11.2.3.2.3.2 The number of sprinklers in the design area shall never be less than seven.

Add Section 24.1(5)

24.1 Approval of Sprinkler Systems and Private Fire Service Mains.

The installing contractor shall do the following:

(1) Notify the authority having jurisdiction and the property owner or property owner's authorized representative of the time and date testing will be performed.

(2) Perform all required testing (see Section 24.2)

(3) Complete and sign the appropriate contractor's material and test certificate(s) (see Figure 24.1)

(4) Remove all caps and straps prior to placing the sprinkler system in service

(5) Upon system acceptance by the authority having jurisdiction a label prescribed by Title 19 California Code of Regulations, Chapter 5 shall be affixed to each system riser.

Revise Section 24.4(2) and add Section 24.4(3) as follows:

24.4 Instructions.

The installing contractor shall provide the property owner or the property owner's authorized representative with the following:

(1) All literature and instructions provided by the manufacturer describing proper operation and maintenance of any equipment and devices installed

(2) NFPA 25, Standard for the Inspection, testing, and maintenance of Water-Based Fire Protection Systems, 2006 California Edition

(3) Title 19, California Code of Regulations, Chapter 5, “Fire Extinguishing Systems.”

Add sentence at the end of Section 24.5.1 as follows:

24.5.1 “Pipe schedule systems shall be provided with a sign indicating that the system was designed and installed as a pipe schedule system and the hazard classification(s) included in the design.”

Revise Section 24.5.2(3) and add Sections 24.5.2(7) to (14) as follows:

24.5.2 The sign shall include the following information:

(3) Required flow and pressure of the system at the base of the riser

(7) Required flow and pressure of the system at the water supply source.

(8) Required flow and pressure of the system at the discharge side of the fire pump where a fire pump is installed.

(9) Type or types and number of sprinklers or nozzles installed including the orifice size, temperature rating, orientation, \(K \)-Factor, sprinkler identification number (SIN) for sprinkler heads when applicable; and response type.
REFERENCED STANDARDS

NFPA—continued

(10) The minimum discharge flow rate and pressure required from the hydraulically most demanding sprinkler.

(11) The required pressure settings for pressure reducing valves.

(12) For deluge sprinkler systems, the required flow and pressure at the hydraulically most demanding sprinkler or nozzle.

(13) The protection area per sprinkler based on the hydraulic calculations.

(14) The edition of NFPA 13 to which the system was designed and installed.

Revise Section 24.6.1 as follows:

Standard for the Installation of Sprinkler Systems in One- and Two-family Dwellings and Manufactured Homes as amended* .. 903.3.1.3, 903.3.5.1.1

NFPA 13D, Amended Sections as follows:

6.2* Water Supply Sources. When the requirements of Section 6.2.2 are met, the following water supply sources shall be considered to be acceptable by this standard:

(1) A connection to a reliable waterworks system with or without an automatically operated pump

(2) An elevated tank

(3) A pressure tank designed to American Society of Mechanical Engineers (ASME) standards for a pressure vessel with a reliable pressure source

(4) A stored water source with an automatically operated pump

(5) A well with a pump of sufficient capacity and pressure to meet the sprinkler system demand. The stored water requirement of 6.1.2 or 6.1.3 shall be permitted to be a combination of the water in the well (including the refill rate) plus the water in the holding tank if such tank can supply the sprinkler system.

6.2.2 Where a well, pump, tank or combination thereof is the source of supply for a fire sprinkler system, the water supply shall serve both domestic and fire sprinkler systems, and the following shall be met:

(1) A test connection shall be provided downstream of the pump that creates a flow of water equal to the smallest sprinkler on the system. The connection shall return water to the tank.

(2) Any disconnecting means for the pump shall be approved.

(3) A method for refilling the tank shall be piped to the tank.

(4) A method of seeing the water level in the tank shall be provided without having to open the tank.

(5) The pump shall not be permitted to sit directly on the floor.

6.2.2.1 Where a fire sprinkler system is supplied by a stored water source with an automatically operated means of pressurizing the system other than an electric pump, the water supply may serve the sprinkler system only.

6.2.4 Where a water supply serves both domestic and fire sprinkler systems, 5 gpm (19 L/min) shall be added to the sprinkler system demand at the point where the systems are connected, to determine the size of common piping and the size of the total water supply requirements where no provision is made to prevent flow into the domestic water system upon operation of a sprinkler.

8.6.4* Sprinklers shall not be required in detached garages, open attached porches, carports with no habitable space above, and similar structures.

Installation of Sprinkler Systems in Residential Occupancies Up to and Including Four Stories in Height as amended* .. 903.3.1.2, 903.3.5.1.1, 903.3.5.1.2, 903.4

NFPA 13R, Amended Sections as follows:

Revise Section 2.2 and add publications as follows:

2.2 NFPA Publications.

Add Section 6.3.5 as follows:

6.3.5 Instructions.

The installing contractor shall provide the property owner or the property owner's authorized representative with the following:

(1) All literature and instructions provided by the manufacturer describing proper operation and maintenance of any equipment and devices installed

(3) Once the system is accepted by the authority having jurisdiction a label as prescribed by Title 19, California Code of Regulations, Chapter 5, shall be affixed to each system riser.

Installation of Standpipe and Hose System, as amended*. .. 905.2, 905.3.4, 905.4.2, 905.6.2, 905.8

NFPA 14, Amended Sections as follows:

Replace Section 6.3.7.1

6.3.7.1 System water supply valves, isolation control valves, and other valves in fire mains shall be supervised in an approved manner in the open position by one of the following methods:

(1) Where a building has a fire alarm system or a sprinkler monitoring system installed, the valve shall be supervised by:

(a) a central station, proprietary, or remote supervising station, or

(b) a local signaling service that initiates an audible signal at a constantly attended location.

(2) Where a building does not have a fire alarm system or a sprinkler monitoring system installed, the valve shall be supervised by:

(a) Locking the valves in the open position, or

(b) Sealing of valves and a approved weekly recorded inspection where valves are located within fenced enclosures under the control of the owner.

Water Spray Fixed Systems for Fire Protection

Installation of Foam-water Sprinkler and Foam-water Spray Systems .. 904.7, 904.11

Dry Chemical Extinguishing Systems ... 904.6, 904.11

Wet Chemical Extinguishing Systems ... 904.5, 904.11

Installation of Stationary Pumps for Fire Protection .. 913.1, 913.2.1, 913.5

Water Tanks for Private Fire Protection

Installation of Private Fire Service Mains and Their Appurtenances, as amended* .. 916.1, 916.1.1, 916.2

NFPA 24, Amended Sections as follows:

Amend Section 4.2.1

4.2.1 Installation work shall be done by fully experienced and responsible contractors. Contractors shall be appropriately licensed in the State of California to install private fire service mains and their appurtenances.

Revise Section 4.2.2 as follows:

4.2.2 Installation or modification of private fire service mains shall not begin until plans are approved and appropriate permits secured from the authority having jurisdiction.

Add Section 4.2.2.1 as follows:

As approved by the authority having jurisdiction, emergency repair of existing system may start immediately, with plans being submitted to the authority having jurisdiction within 96 hours from the start of the repair work.

Revise Section 5.9.1.2 as follows:

Section 5.9.1.2 Fire department connections shall be properly supported and protected from mechanical damage.

Revise Section 5.9.5.1 as follows:

5.9.5.1 Fire department connections shall be on the street side of buildings and as approved by the authority having jurisdiction.

Revise Section 6.5.1 as follows:

6.5.1 Private fire service main systems shall have sectional control valves at appropriate points in order to permit sectionalizing the system in the event of a break or for the making of repairs or extensions.

Add Sections 6.5.2.1 – 6.5.2.3

6.5.2.1 Sectional control valves are not required when the fire service main system serves less than six fire appurtenances.

6.5.2.2 Sectional control valves shall be indicating valves in accordance with Section 6.7.1.3.

6.5.2.3 Sectional control valves shall be located so that no more than five fire appurtenances are affected by shut-down of any single portion of the fire service main. Each fire hydrant, fire sprinkler system riser, and standpipe riser shall be considered a separate fire appurtenance. In-rack sprinkler systems shall not be considered as a separate appurtenance.

6.5.2.4 The number of fire appurtenances between sectional control valves is allowed to be modified by the authority having jurisdiction.
NFPA—continued

Revise Section 6.6.2 as follows:

6.6.2 A sectional valve shall be provided at the following locations:

1. On each bank where a main crosses a body of water

2. Outside the building foundation(s) where a main or a section of a main runs under a building

Revise Section 10.6.5 as follows:

10.6.5 Pipe joints shall not be located under foundation footings. The pipe under the building or building foundation shall not contain mechanical joints.

Exceptions:

1. Where allowed in accordance with Section 10.6.2

2. Alternate designs may be utilized where designed by a registered professional engineer and approved by the enforcing agency.

Revise Section 10.9.1 as follows:

10.9.1 Backfill shall be well tamped in layers or puddle under and around pipes to prevent settlement or lateral movement. Backfill shall consist of clean fill sand or pea gravel to a minimum of 6” below and to a minimum of 12” above the pipe and shall contain no ashes, cinders, refuse, organic matter, or other corrosive materials. Other backfill materials and methods are permitted where designed by a registered professional engineer and approved by the enforcing agency.

Amended Sections as follows:

- 10.9.1 Backfill shall be well tamped in layers or puddle under and around pipes to prevent settlement or lateral movement. Backfill shall consist of clean fill sand or pea gravel to a minimum of 6” below and to a minimum of 12” above the pipe and shall contain no ashes, cinders, refuse, organic matter, or other corrosive materials. Other backfill materials and methods are permitted where designed by a registered professional engineer and approved by the enforcing agency.

- 10.6.5 Pipe joints shall not be located under foundation footings. The pipe under the building or building foundation shall not contain mechanical joints.

NFPA 72, Amended Sections as follows:

- 10.3.1 Equipment constructed and installed in conformity with this code shall be listed for the purpose for which it is used. Fire alarm systems and components shall be California State Fire Marshal approved and listed in accordance with California Code of Regulations, Title 19, Division 1.

- 10.3.3 All devices and appliances that receive their power from the initiating device circuit or signaling line circuit of a control unit shall be California State Fire Marshal listed for use with the control unit.

- 10.6.1 Where approved by the authority having jurisdiction, ECS priority signals when evaluated by stakeholders through risk analysis in accordance with 24.4.2.2 shall be permitted to take precedence over all other signals.

14.4.7.1 Testing. Household fire alarm systems shall be tested in accordance with the manufacturer’s published instructions according to the methods of Table 14.4.2.2.

17.15 Fire Extinguisher Monitoring Device. A fire extinguisher monitoring device shall indicate those conditions for a specific fire extinguisher required by California Code of Regulations, Title 19, Chapter 1, Section 574.2(c) and California Fire Code to a fire alarm control unit.

23.4.2.2 (4) Where the vertically run conductors are contained in a 2-hour rated cable assembly, or enclosed (installed) in a 2-hour rated enclosure or a listed circuit integrity (C.I.) cable, which meets or exceeds a 2-hour fire resistive rating.

23.8.5.1.2 Where connected to a supervising station, fire alarm systems employing automatic fire detectors or waterflow devices shall include a manual fire alarm box to initiate a signal to the supervising station.

Exception: Fire alarm systems dedicated to elevator recall control, supervisory service and fire sprinkler monitoring.

23.8.5.4.1 Systems equipped with alarm verification features shall be permitted under the following conditions:

1. The alarm verification feature is not initially enabled unless conditions or occupant activities that are expected to cause nuisance alarms are anticipated in the area that is protected by the smoke detectors. Enabling of the alarm verification feature shall be protected by password or limited access.

2. A smoke detector that is continuously subjected to a smoke concentration above alarm threshold does not delay the system functions of Sections 10.6 through 10.13, 23.8.1.1, or 21.2.1 by more than 30 seconds.
(3) Actuation of an alarm-initiating device other than a smoke detector causes the system functions of 4.4.3, 6.8.1.1, or 6.16.2.1 without additional delay.

(4) The current status of the alarm verification feature is shown on the record of completion (see Figure 4.5.2.1. item 10).

(5) Operation of a patient room smoke detector in 1-2 and R-2.1 Occupancies shall not include an alarm verification feature.

29.3.1 All devices, combinations of devices, and equipment to be installed in conformity with this chapter shall be approved or listed by the California State Fire Marshal the for the purposes for which they are intended.

29.5.2.1.1* Smoke and Heat Alarms. Unless exempted by applicable laws, codes, or standards, smoke or heat alarms used to provide a fire-warning function, and when two or more alarms are installed within a dwelling unit, suite of rooms, or similar area, shall be arranged so that the operation of any smoke or heat alarm causes all alarms within these locations to sound.

29.7.2.1 The alarm verification feature shall not be used for household fire warning equipment.

29.7.5.7.1 The alarm verification feature shall not be used for household fire warning equipment.

80—07 Fire Doors and Other Opening Protectives ... 410.3.5, 508.2.5.2, 715.4, 715.4.5, 715.4.6, 715.4.7.1, 715.4.8.2, 715.5, 715.5.5, 1008.1.4.3

85—07 Boiler and Combustion System Hazards Code ... 415.1, 415.3, 415.4, 415.4.2, 415.4.3, 415.4.7.1

(3) Actuation of an alarm-initiating device other than a smoke detector causes the system functions of 4.4.3, 6.8.1.1, or 6.16.2.1 without additional delay.

(4) The current status of the alarm verification feature is shown on the record of completion (see Figure 4.5.2.1. item 10).

(5) Operation of a patient room smoke detector in 1-2 and R-2.1 Occupancies shall not include an alarm verification feature.

29.3.1 All devices, combinations of devices, and equipment to be installed in conformity with this chapter shall be approved or listed by the California State Fire Marshal the for the purposes for which they are intended.

29.5.2.1.1* Smoke and Heat Alarms. Unless exempted by applicable laws, codes, or standards, smoke or heat alarms used to provide a fire-warning function, and when two or more alarms are installed within a dwelling unit, suite of rooms, or similar area, shall be arranged so that the operation of any smoke or heat alarm causes all alarms within these locations to sound.

29.7.2.1 The alarm verification feature shall not be used for household fire warning equipment.

29.7.5.7.1 The alarm verification feature shall not be used for household fire warning equipment.

80—07 Fire Doors and Other Opening Protectives ... 410.3.5, 508.2.5.2, 715.4, 715.4.5, 715.4.6, 715.4.7.1, 715.4.8.2, 715.5, 715.5.5, 1008.1.4.3

85—07 Boiler and Combustion System Hazards Code ... 415.1, 415.3, 415.4, 415.4.2, 415.4.3, 415.4.7.1

(3) Actuation of an alarm-initiating device other than a smoke detector causes the system functions of 4.4.3, 6.8.1.1, or 6.16.2.1 without additional delay.

(4) The current status of the alarm verification feature is shown on the record of completion (see Figure 4.5.2.1. item 10).

(5) Operation of a patient room smoke detector in 1-2 and R-2.1 Occupancies shall not include an alarm verification feature.

29.3.1 All devices, combinations of devices, and equipment to be installed in conformity with this chapter shall be approved or listed by the California State Fire Marshal the for the purposes for which they are intended.

29.5.2.1.1* Smoke and Heat Alarms. Unless exempted by applicable laws, codes, or standards, smoke or heat alarms used to provide a fire-warning function, and when two or more alarms are installed within a dwelling unit, suite of rooms, or similar area, shall be arranged so that the operation of any smoke or heat alarm causes all alarms within these locations to sound.

29.7.2.1 The alarm verification feature shall not be used for household fire warning equipment.

29.7.5.7.1 The alarm verification feature shall not be used for household fire warning equipment.

80—07 Fire Doors and Other Opening Protectives ... 410.3.5, 508.2.5.2, 715.4, 715.4.5, 715.4.6, 715.4.7.1, 715.4.8.2, 715.5, 715.5.5, 1008.1.4.3

85—07 Boiler and Combustion System Hazards Code ... 415.1, 415.3, 415.4, 415.4.2, 415.4.3, 415.4.7.1

(3) Actuation of an alarm-initiating device other than a smoke detector causes the system functions of 4.4.3, 6.8.1.1, or 6.16.2.1 without additional delay.

(4) The current status of the alarm verification feature is shown on the record of completion (see Figure 4.5.2.1. item 10).

(5) Operation of a patient room smoke detector in 1-2 and R-2.1 Occupancies shall not include an alarm verification feature.

29.3.1 All devices, combinations of devices, and equipment to be installed in conformity with this chapter shall be approved or listed by the California State Fire Marshal the for the purposes for which they are intended.

29.5.2.1.1* Smoke and Heat Alarms. Unless exempted by applicable laws, codes, or standards, smoke or heat alarms used to provide a fire-warning function, and when two or more alarms are installed within a dwelling unit, suite of rooms, or similar area, shall be arranged so that the operation of any smoke or heat alarm causes all alarms within these locations to sound.

29.7.2.1 The alarm verification feature shall not be used for household fire warning equipment.

29.7.5.7.1 The alarm verification feature shall not be used for household fire warning equipment.

80—07 Fire Doors and Other Opening Protectives ... 410.3.5, 508.2.5.2, 715.4, 715.4.5, 715.4.6, 715.4.7.1, 715.4.8.2, 715.5, 715.5.5, 1008.1.4.3

85—07 Boiler and Combustion System Hazards Code ... 415.1, 415.3, 415.4, 415.4.2, 415.4.3, 415.4.7.1

(3) Actuation of an alarm-initiating device other than a smoke detector causes the system functions of 4.4.3, 6.8.1.1, or 6.16.2.1 without additional delay.

(4) The current status of the alarm verification feature is shown on the record of completion (see Figure 4.5.2.1. item 10).

(5) Operation of a patient room smoke detector in 1-2 and R-2.1 Occupancies shall not include an alarm verification feature.

29.3.1 All devices, combinations of devices, and equipment to be installed in conformity with this chapter shall be approved or listed by the California State Fire Marshal the for the purposes for which they are intended.

29.5.2.1.1* Smoke and Heat Alarms. Unless exempted by applicable laws, codes, or standards, smoke or heat alarms used to provide a fire-warning function, and when two or more alarms are installed within a dwelling unit, suite of rooms, or similar area, shall be arranged so that the operation of any smoke or heat alarm causes all alarms within these locations to sound.

29.7.2.1 The alarm verification feature shall not be used for household fire warning equipment.

29.7.5.7.1 The alarm verification feature shall not be used for household fire warning equipment.
PCI (Precast Prestressed Concrete Institute)

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNL 124–89</td>
<td>Design for Fire Resistance of Precast Prestressed Concrete</td>
<td>721.2.3.1</td>
</tr>
<tr>
<td>MNL 128–01</td>
<td>Recommended Practice for Glass Fiber Reinforced Concrete Panels</td>
<td>1903.2</td>
</tr>
<tr>
<td>PCI 120–10</td>
<td>PCI Design Handbook 7th Edition</td>
<td>1908A.1</td>
</tr>
</tbody>
</table>

PTI (Post-Tensioning Institute)

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTI–2007</td>
<td>Standard Requirements for Analysis of Shallow Concrete Foundations on Expansive Soils, Third Edition</td>
<td>1808.6.2</td>
</tr>
<tr>
<td>PTI–2007</td>
<td>Standard Requirements for Design of Shallow Post-tensioned Concrete Foundation on Expansive Soils, Second Edition</td>
<td>1808.6.2</td>
</tr>
</tbody>
</table>

SFM (State of California Department of Forestry and Fire Protection)

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-3</td>
<td>Releasing Systems for Security Bars in Dwellings</td>
<td>1029.4</td>
</tr>
<tr>
<td>12-7-3</td>
<td>Fire-testing Furnaces</td>
<td>NA</td>
</tr>
<tr>
<td>12-7A-1</td>
<td>Exterior Wall Siding and Sheathing</td>
<td>703A.7, 707A.2</td>
</tr>
<tr>
<td>12-7A-2</td>
<td>Exterior Window</td>
<td>703A.7, 708A.2.1</td>
</tr>
<tr>
<td>12-7A-3</td>
<td>Under Eave</td>
<td>703A.7, 707A.8</td>
</tr>
<tr>
<td>12-7A-4</td>
<td>Decking</td>
<td>703A.7, 709A.3</td>
</tr>
<tr>
<td>SFM 12-7A-4A</td>
<td>Decking Alternate Method A</td>
<td>703A.7, 709A.3</td>
</tr>
<tr>
<td>SFM 12-7A-5</td>
<td>Ignition Resistant Building Material</td>
<td>703A.7, 709A.3</td>
</tr>
<tr>
<td>12-8-100</td>
<td>Room Fire Tests for Wall and Ceiling Materials</td>
<td>NA</td>
</tr>
<tr>
<td>12-10-1</td>
<td>Power Operated Exit Doors</td>
<td>NA</td>
</tr>
<tr>
<td>12-10-2</td>
<td>Single Point Latching or Locking Devices</td>
<td>NA</td>
</tr>
<tr>
<td>12-10-3</td>
<td>Emergency Exit and Panic Hardware</td>
<td>NA</td>
</tr>
</tbody>
</table>

(The Office of the State Fire Marshal standards referred to above are found in the California Code of Regulations, Title 24, Part 12.)

RMI (Rack Manufacturers Institute)

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/MH16.1–08</td>
<td>Specification for Design, Testing and Utilization of Industrial Steel Storage Racks</td>
<td>2208.1</td>
</tr>
</tbody>
</table>

SDI (Steel Deck Institute)

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/NC1.0–06</td>
<td>Standard for Noncomposite Steel Floor Deck</td>
<td>2209.2.2, 2209.2.2.1</td>
</tr>
<tr>
<td>ANSI/RD1.0–06</td>
<td>Standard for Steel Roof Deck</td>
<td>2209.2.3</td>
</tr>
<tr>
<td>Referenced Standards</td>
<td>Standard reference number</td>
<td>Title</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Steel Joist Institute</td>
<td>CJ-1.0—06</td>
<td>Standard Specification for Composite Steel Joists, CJ-series</td>
</tr>
<tr>
<td></td>
<td>JG-1.1—05</td>
<td>Standard Specification for Joist Girders</td>
</tr>
<tr>
<td></td>
<td>K-1.1—05</td>
<td>Standard Specification for Open Web Steel Joists, K-series</td>
</tr>
<tr>
<td></td>
<td>LH/DLH-1.1—05</td>
<td>Standard Specification for Longspan Steel Joists, LH-series and Deep Longspan Steel Joists, DLH-series</td>
</tr>
<tr>
<td>Single-Ply Roofing Institute</td>
<td>SPRI/ANSI/ES-1—03</td>
<td>Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems</td>
</tr>
<tr>
<td></td>
<td>RP-4—02</td>
<td>Wind Design Guide for Ballasted Single-ply Roofing Systems</td>
</tr>
<tr>
<td>Telecommunications Industry Association</td>
<td>TIA-222-G—05</td>
<td>Structural Standards for Steel Antenna Towers and Antenna Supporting Structures including Addendum 1, 222-G-1, Dated 2007</td>
</tr>
<tr>
<td>The Masonry Society</td>
<td>0216—97</td>
<td>Standard Method for Determining Fire Resistance of Concrete and Masonry Construction Assemblies</td>
</tr>
<tr>
<td></td>
<td>0302—07</td>
<td>Standard Method for Determining the Sound Transmission Class Rating for Masonry Walls</td>
</tr>
<tr>
<td></td>
<td>0402—08</td>
<td>Building Code Requirements for Masonry Structures</td>
</tr>
<tr>
<td></td>
<td>602—08</td>
<td>Specification for Masonry Structures</td>
</tr>
<tr>
<td>Truss Plate Institute</td>
<td>TRU-2007</td>
<td>National Design Standards for Metal-plate-connected Wood Truss Construction</td>
</tr>
</tbody>
</table>
UBC

International Code Council, Inc.
500 New Jersey Avenue, NW 6th Floor
Washington, DC 20001

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBC Standard 15-2</td>
<td>Test Standard for Determining the Fire Retardancy of Roof-Covering Materials</td>
<td></td>
</tr>
<tr>
<td>UBC Standard 15-3</td>
<td>Wood Shakes</td>
<td></td>
</tr>
<tr>
<td>UBC Standard 15-4</td>
<td>Wood Shingles</td>
<td></td>
</tr>
</tbody>
</table>

UL

Underwriters Laboratories, Inc.
333 Pfingsten Road
Northbrook, IL 60062-2096

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>9—2000</td>
<td>Fire Tests of Window Assemblies—with Revisions through April 2005</td>
<td></td>
</tr>
<tr>
<td>10A—98</td>
<td>Tin Clad Fire Doors—with Revisions through March 2003</td>
<td></td>
</tr>
<tr>
<td>10B—97</td>
<td>Fire Tests of Door Assemblies—with Revisions through October 2001</td>
<td></td>
</tr>
<tr>
<td>10C—98</td>
<td>Positive Pressure Fire Tests of Door Assemblies—with Revisions through November 2001</td>
<td></td>
</tr>
<tr>
<td>13—96</td>
<td>Power-limited Circuit Cables</td>
<td></td>
</tr>
<tr>
<td>14C—06</td>
<td>Swinging Hardware for Standard Tin Clad Fire Doors Mounted Singly and in Pairs</td>
<td></td>
</tr>
<tr>
<td>38—99</td>
<td>Manually Actuated Signaling Boxes—with revisions through February 2, 2005 as amended.*</td>
<td></td>
</tr>
</tbody>
</table>

*Amend Section 14.1.5 as follows:

14.1.5 A signaling box having a glass panel, disc, rod or similar part that must be broken to operate it for a signal or for access to its actuating means shall satisfactorily complete five part-breaking operations using the means provided with the box, without jamming of the mechanism or other interference by broken particles. It shall be practicable to remove and replace the broken parts. A signaling box shall not have a glass panel, disc, rod or similar part requiring a striking action by grasping a tool to operate it for a signal. The force required to activate controls shall be no greater than 5 pounds (22 N) of force.

*Add Appendix B chapter to UL 38 (1999) as follows:

Appendix B,

14.1.5 Operation. Controls and operating mechanisms shall be operable with one hand and shall not require tight grasping, pinching or twisting of the wrist.

103—01 Factory-built Chimneys, for Residential Type and Building Heating Appliances—with Revisions through June 2006

127—96 Factory-built Fireplaces—with Revisions through November 2006

139—04 Alarm Valves for Fire-Protection Service

199—95 Automatic Sprinklers for Fire Protection Service—with revisions through August 19, 2005

199E—04 Outline of Investigation for Fire Testing of Sprinklers and Water Spray Nozzles for Protection of Deep Fat Fryers

217—06 Single and Multiple Station Smoke Alarms—with Revisions through August 2005

228—97 Door Closers/ Holders, with or without Integral Smoke Detectors—with revisions through January 26, 2006

260—04 Dry Pipe and Deluge Valves for Fire Protection Service

262—04 Gate Valves for Fire Protection Service

263—03 Standard for Fire Test of Building Construction and Materials

268—06 Smoke Detectors for Fire Protective Signaling Systems—with Revisions through January 1999

268A—98 Smoke Detectors for Duct Application—with revisions through October 22, 2003

300—05 Fire Testing of Fire Extinguishing Systems for Protection of Restaurant Cooking Areas

305—07 Panic Hardware

312—04 Check Valves for Fire-Protection Service

325—02 Door, Drapery, Gate, Louver and Window Operations and Systems—with Revisions through February 2006

346—05 Waterflow Indicators for Fire Protective Signaling Systems

464—03 Audible Signal Appliances—with revisions through October 10, 2003

497B—04 Protectors for Data Communication and Fire Alarm Circuits

2010 CALIFORNIA BUILDING CODE 665
UL—continued

521—99
539—00
555—2006
555C—2006
555S—99
580—2006
632—00
641—95
710B—04
723—03
735—04
790—04
793—03
813—96
864—03

Referenced Standards

521—99
539—00
555—2006
555C—2006
555S—99
580—2006
632—00
641—95
710B—04
723—03
735—04
790—04
793—03
813—96
864—03

Add Section 55.2.9 as follows:

Smoke detectors connected to an alarm verification feature shall not be used as releasing devices.

Exception: Smoke detectors which operate their releasing function immediately upon alarm actuation independent of alarm verification feature.

*Amend Section 55.2.2 as follows:

Where an alarm verification feature is provided, the maximum retard-reset-restart period before an alarm signal can be confirmed and indicated at the control unit, including any control unit reset time and the power-up time for the detector to become operational for alarm, shall not exceed 30 seconds. (The balance of the section text is to remain unchanged).

*Amend No. 55.1 as follows:

RETARD-RESET-RESTART PERIOD — MAXIMUM 30 SECONDS — No alarm obtained from control unit. Maximum permissible time is 30 seconds.

*Amend Section 89.1.10 as follows:

The existing text of this section is to remain as printed with one editorial amendment as follows:

THE TOTAL DELAY (CONTROL UNIT PLUS SMOKE DETECTORS) SHALL NOT EXCEED 30 SECONDS.

(The balance of the section text is to remain unchanged).

924—06
1040—96
1256—02
1479—03
1482—96
1715—97
1777—04
1784—01
1897—04
1975—06
1994—04
2017—2000
2034
2075
2079—04
2200—04

UL—continued

Heat Detectors for Fire Protective Signaling Systems—with Revisions through July 20, 2005
Single- and Multiple-Station Heat Detectors—with Revisions through August 15, 2005
Fire Dampers .. 716.3
Ceiling Dampers ... 716.3, 716.6.2
Smoke Dampers—with Revisions through July 2006 716.3, 716.3.1.1
Test for Uplift Resistance of Roof Assemblies 1504.3.1, 1504.3.2
Electrically Actuated Transmitters
Type L Low-temperature Venting Systems—with Revisions through August 2006 2113.11.1.4
Recirculating Systems—with Revisions through April 2006 904.11
Standard for Test for Surface Burning Characteristics of Building Materials—
with Revisions through May 2005 ... 402.11, 402.16.4, 406.5.3, 703.4.2, 719.1, 719.4, 802.1, 803.1.1, 803.9, 806.5, 1407.9, 1407.10.1, 2303.2, 2603.3, 2603.4.1.13, 2603.5.4, 2604.2.4, 2606.4, 3105.4, D102.2.8
Alarm Accessories for Automatic Water Supply Valves for Fire Protection Service
Standard Test Methods for Fire Tests of Roof Coverings 1505.1, 2603.6, 2610.2, 2610.3
Standards for Automatically Operated Roof Vents for Smoke and Heat—
with Revisions through April 2004 ... 910.3.1
Commercial Audio Equipment—with revisions through December 7, 1999
Control Units for Fire Protective Signaling Systems, as amended*—with revisions through July 14, 2005 909.12

*Amend No. 55.1 as follows:

RETARD-RESET-RESTART PERIOD — MAXIMUM 30 SECONDS — No alarm obtained from control unit. Maximum permissible time is 30 seconds.

*Amend Section 55.2.2 as follows:

Where an alarm verification feature is provided, the maximum retard-reset-restart period before an alarm signal can be confirmed and indicated at the control unit, including any control unit reset time and the power-up time for the detector to become operational for alarm, shall not exceed 30 seconds. (The balance of the section text is to remain unchanged).

*Add Section 55.2.9 as follows:

Smoke detectors connected to an alarm verification feature shall not be used as releasing devices.

Exception: Smoke detectors which operate their releasing function immediately upon alarm actuation independent of alarm verification feature.

*Amend Section 89.1.10 as follows:

The existing text of this section is to remain as printed with one editorial amendment as follows:

THE TOTAL DELAY (CONTROL UNIT PLUS SMOKE DETECTORS) SHALL NOT EXCEED 30 SECONDS.

(The balance of the section text is to remain unchanged).

Standard for Safety Emergency Lighting and Power Equipment ... 1011.4
Fire Test of Insulated Wall Construction—with Revisions through June 2001 1407.10.3, 2603.4, 2603.9
Fire Test of Roof Deck Construction—with Revisions through January 2007 1508.1, 2603.3, 2603.4.1.5
Fire Tests of Through-penetration Firestops—with Revisions through April 2007 702.1, 713.3.1.2, 713.3.2, 713.4.1.2
Solid-fuel-type Room Heater—with Revisions through November 2006 2112.2, 2112.5
Fire Test of Interior Finish Material—with Revisions through March 2004 1407.10.2, 1407.10.3, 2603.4, 2603.9
Chimney Liners ... 2113.11.1, 2113.19
Air Leakage Tests of Door Assemblies—with Revisions through December 2004 708.14.1, 711.5.2, 715.4.3.1, 715.4.4.1, 715.4.6.3, 3007.4.3
Uplift Tests for Roof Covering Systems ... 1504.3.1
Fire Test of Foam Plastics Used for Decorative Purposes ... 402.11, 402.12.1, 402.16.5
Standard for Luminous Egress Path Marking Systems—with Revisions through February 2005 411.7, 1024.2.1, 1024.2.3, 1024.2.4, 1024.4
Standards for General-purpose Signaling Devices and Systems—
with Revisions through August 2005 .. 3109.4.1.8
Single and Multiple Station Carbon Monoxide Alarms Effective August 1, 2009 420.4
Gas and Vapor Detectors and Sensors Effective September 1, 2009 .. 420.4
Stationary Engine Generator Assemblies—with Revisions through July 2004 2702.1.1
REFERENCED STANDARDS

ULC

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/ULC S102.2—1988</td>
<td>Standard Method of Test for Surface Burning Characteristics of Flooring, Floor Coverings and Miscellaneous Materials and Assemblies—with 2000 Revisions</td>
<td>719.4</td>
</tr>
</tbody>
</table>

USC

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 USC Part 1, Ch.40</td>
<td>Importation, Manufacture, Distribution and Storage of Explosive Materials</td>
<td>307.2</td>
</tr>
</tbody>
</table>

WDMA

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMAWDMA/CSA 101/L.S.2/A440—08</td>
<td>Specifications for Windows, Doors and Unit Skylights</td>
<td>1715.5.1, 2405.5</td>
</tr>
</tbody>
</table>

WRI

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
<th>Referenced in code section number</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRI/CRSI—81</td>
<td>Design of Slab-on-ground Foundations—with 1996 Update</td>
<td>1808.6.2</td>
</tr>
</tbody>
</table>
California Building Code-Matrix Adoption Table
Appendix A - Employee Qualifications
(Not Adopted by State Agencies)

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC SFM</td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
</tr>
<tr>
<td>SSM</td>
<td>SS</td>
<td>SS/CC</td>
<td></td>
</tr>
<tr>
<td>CSA DPH AGR DWR CEC CA SL SLC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Adopt entire chapter**
- **Adopt entire chapter as amended (amended sections listed below)**
- **Adopt only those sections that are listed below**
- **Chapter/Section**
APPENDIX A
EMPLOYEE QUALIFICATIONS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION A101
BUILDING OFFICIAL QUALIFICATIONS

A101.1 Building official. The building official shall have at least 10 years' experience or equivalent as an architect, engineer, inspector, contractor or superintendent of construction, or any combination of these, five years of which shall have been supervisory experience. The building official should be certified as a building official through a recognized certification program. The building official shall be appointed or hired by the applicable governing authority.

A101.2 Chief inspector. The building official can designate supervisors to administer the provisions of the International Building, Mechanical and Plumbing Codes and International Fuel Gas Code. Each supervisor shall have at least 10 years' experience or equivalent as an architect, engineer, inspector, contractor or superintendent of construction, or any combination of these, five years of which shall have been in a supervisory capacity. They shall be certified through a recognized certification program for the appropriate trade.

A101.3 Inspector and plans examiner. The building official shall appoint or hire such number of officers, inspectors, assistants and other employees as shall be authorized by the jurisdiction. A person shall not be appointed or hired as inspector of construction or plans examiner who has not had at least 5 years' experience as a contractor, engineer, architect, or as a superintendent, foreman or competent mechanic in charge of construction. The inspector or plans examiner shall be certified through a recognized certification program for the appropriate trade.

A101.4 Termination of employment. Employees in the position of building official, chief inspector or inspector shall not be removed from office except for cause after full opportunity has been given to be heard on specific charges before such applicable governing authority.

SECTION A102
REFERENCED STANDARDS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBC—09</td>
<td>International Building Code</td>
<td>A101.2</td>
</tr>
<tr>
<td>IMC—09</td>
<td>International Mechanical Code</td>
<td>A101.2</td>
</tr>
<tr>
<td>IPC—09</td>
<td>International Plumbing Code</td>
<td>A101.2</td>
</tr>
<tr>
<td>IFGC—09</td>
<td>International Fuel Gas Code</td>
<td>A101.2</td>
</tr>
</tbody>
</table>
California Building Code-Matrix Adoption Table

Appendix B - Board of Appeals

(Not Adopted by State Agencies)

<table>
<thead>
<tr>
<th>Adopting Agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>1-AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS/CC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>CSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPH</td>
<td>AGR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DWR</td>
<td>CEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
<td>SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SLC</td>
</tr>
</tbody>
</table>

- **Adopt entire chapter**
- **Adopt entire chapter as amended (amended sections listed below)**
- **Adopt only those sections that are listed below**
- **Chapter/Section**
APPENDIX B
BOARD OF APPEALS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION B101
GENERAL

B101.1 Application. The application for appeal shall be filed on a form obtained from the building official within 20 days after the notice was served.

B101.2 Membership of board. The board of appeals shall consist of persons appointed by the chief appointing authority as follows:

1. One for five years; one for four years; one for three years; one for two years; and one for one year.
2. Thereafter, each new member shall serve for five years or until a successor has been appointed.

The building official shall be an ex officio member of said board but shall have no vote on any matter before the board.

B101.2.1 Alternate members. The chief appointing authority shall appoint two alternate members who shall be called by the board chairperson to hear appeals during the absence or disqualification of a member. Alternate members shall possess the qualifications required for board membership and shall be appointed for five years, or until a successor has been appointed.

B101.2.2 Qualifications. The board of appeals shall consist of five individuals, one from each of the following professions or disciplines:

1. Registered design professional with architectural experience or a builder or superintendent of building construction with at least ten years’ experience, five of which shall have been in responsible charge of work.
2. Registered design professional with structural engineering experience
3. Registered design professional with mechanical and plumbing engineering experience or a mechanical contractor with at least ten years’ experience, five of which shall have been in responsible charge of work.
4. Registered design professional with electrical engineering experience or an electrical contractor with at least ten years’ experience, five of which shall have been in responsible charge of work.
5. Registered design professional with fire protection engineering experience or a fire protection contractor with at least ten years’ experience, five of which shall have been in responsible charge of work.

B101.2.3 Rules and procedures. The board is authorized to establish policies and procedures necessary to carry out its duties.

B101.2.4 Chairperson. The board shall annually select one of its members to serve as chairperson.

B101.2.5 Disqualification of member. A member shall not hear an appeal in which that member has a personal, professional or financial interest.

B101.2.6 Secretary. The chief administrative officer shall designate a qualified clerk to serve as secretary to the board. The secretary shall file a detailed record of all proceedings in the office of the chief administrative officer.

B101.2.7 Compensation of members. Compensation of members shall be determined by law.

B101.3 Notice of meeting. The board shall meet upon notice from the chairperson, within 10 days of the filing of an appeal or at stated periodic meetings.

B101.3.1 Open hearing. All hearings before the board shall be open to the public. The appellant, the appellant’s representative, the building official and any person whose interests are affected shall be given an opportunity to be heard.

B101.3.2 Procedure. The board shall adopt and make available to the public through the secretary procedures under which a hearing will be conducted. The procedures shall not require compliance with strict rules of evidence, but shall mandate that only relevant information be received.

B101.3.3 Postponed hearing. When five members are not present to hear an appeal, either the appellant or the appellant’s representative shall have the right to request a postponement of the hearing.

B101.4 Board decision. The board shall modify or reverse the decision of the building official by a concurring vote of two-thirds of its members.

B101.4.1 Resolution. The decision of the board shall be by resolution. Certified copies shall be furnished to the appellant and to the building official.

B101.4.2 Administration. The building official shall take immediate action in accordance with the decision of the board.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

APPENDIX C – GROUP U – AGRICULTURAL BUILDINGS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C
GROUP U–AGRICULTURAL BUILDINGS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION C101
GENERAL

C101.1 Scope. The provisions of this appendix shall apply exclusively to agricultural buildings. Such buildings shall be classified as Group U and shall include the following uses:

1. Livestock shelters or buildings, including shade structures and milking barns.
2. Poultry buildings or shelters.
4. Storage of equipment and machinery used exclusively in agriculture.
5. Horticultural structures, including detached production greenhouses and crop protection shelters.
7. Grain silos.
8. Stables.

SECTION C102
ALLOWABLE HEIGHT AND AREA

C102.1 General. Buildings classified as Group U Agricultural shall not exceed the area or height limits specified in Table C102.1.

C102.2 One-story unlimited area. The area of a one-story Group U agricultural building shall not be limited if the building is surrounded and adjoined by public ways or yards not less than 60 feet (18 288 mm) in width.

C102.3 Two-story unlimited area. The area of a two-story Group U agricultural building shall not be limited if the building is surrounded and adjoined by public ways or yards not less than 60 feet (18 288 mm) in width and is provided with an approved automatic sprinkler system throughout in accordance with Section 903.3.1.1.

SECTION C103
MIXED OCCUPANCIES

C103.1 Mixed occupancies. Mixed occupancies shall be protected in accordance with Section 508.

SECTION C104
EXITS

C104.1 Exit facilities. Exits shall be provided in accordance with Chapters 11A or 11B as applicable.

Exceptions:

1. The maximum travel distance from any point in the building to an approved exit shall not exceed 300 feet (91 440 mm).
2. One exit is required for each 15,000 square feet (1393.5 m²) of area or fraction thereof.

<table>
<thead>
<tr>
<th>TABLE C102.1—BASIC ALLOWABLE AREA FOR A GROUP U, ONE STORY IN HEIGHT AND MAXIMUM HEIGHT OF SUCH OCCUPANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Unlimited</td>
</tr>
<tr>
<td>ALLOWABLE AREA (square feet)<sup>a</sup></td>
</tr>
<tr>
<td>Unlimited</td>
</tr>
<tr>
<td>MAXIMUM HEIGHT IN STORIES</td>
</tr>
<tr>
<td>Unlimited</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m².

a. See Section C102 for unlimited area under certain conditions.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
APPENDIX D – FIRE DISTRICTS
(Not Adopted by State Agencies)

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

FIRE DISTRICTS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION D101
GENERAL

D101.1 Scope. The fire district shall include such territory or portion as outlined in an ordinance or law entitled "An Ordinance (Resolution) Creating and Establishing a Fire District." Wherever, in such ordinance creating and establishing a fire district, reference is made to the districts, reference is made to the

D101.1.1 Mapping. The fire district complying with the provisions of Section D101.1 shall be shown on a map that shall be available to the public.

D101.2 Establishment of area. For the purpose of this code, the fire district shall include that territory or area as described in Sections D101.2.1 through D101.2.3.

D101.2.1 Adjoining blocks. Two or more adjoining blocks, exclusive of intervening streets, where at least 50 percent of the ground area is built upon and more than 50 percent of the built-on area is devoted to hotels and motels of Group R-1; Group B occupancies; theaters, nightclubs, restaurants of Group A-1 and A-2 occupancies; garages, express and freight depots, warehouses and storage buildings used for the storage of finished products (not located with and forming a part of a manufactured or industrial plant); or Group S occupancies. Where the average height of a building is two or more stories or more, a block should be considered if the ground area built upon is at least 40 percent.

D101.2.2 Buffer zone. Where four contiguous blocks or more comprise a fire district, there shall be a buffer zone of 200 feet (60 960 mm) around the perimeter of such district. Streets, rights-of-way and other open spaces not subject to building construction can be included in the 200-foot (60 960 mm) buffer zone.

D101.2.3 Developed blocks. Where blocks adjacent to the fire district have developed to the extent that at least 25 percent of the ground area is built upon and 40 percent or more of the built-on area is devoted to the occupancies specified in Section D101.2.1, they can be considered for inclusion in the fire district, and can form all or a portion of the 200-foot (60 960 mm) buffer zone required in Section D101.2.2.

SECTION D102
BUILDING RESTRICTIONS

D102.1 Types of construction permitted. Within the fire district every building hereafter erected shall be either Type I, II, III or IV, except as permitted in Section D104.

D102.2 Other specific requirements.

D102.2.1 Exterior walls. Exterior walls of buildings located in the fire district shall comply with the requirements in Table 601 except as required in Section D102.2.6.

D102.2.2 Group H prohibited. Group H occupancies shall be prohibited from location within the fire district.

D102.2.3 Construction type. Every building shall be constructed as required based on the type of construction indicated in Chapter 6.

D102.2.4 Roof covering. Roof covering in the fire district shall conform to the requirements of Class A or B roof coverings as defined in Section 1505.

D102.2.5 Structural fire rating. Walls, floors, roofs and their supporting structural members shall be a minimum of 1-hour fire-resistance-rated construction.

Exceptions:

1. Buildings of Type IV construction.
2. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
3. Automobile parking structures.
4. Buildings surrounded on all sides by a permanently open space of not less than 30 feet (9144 mm).
5. Partitions complying with Section 603.1, Item 10.

D102.2.6 Exterior walls. Exterior load-bearing walls of Type II buildings shall have a fire-resistance rating of 2 hours or more where such walls are located within 30 feet (9144 mm) of a common property line or an assumed property line. Exterior nonload-bearing walls of Type II buildings located within 30 feet (9144 mm) of a common property line or an assumed property line shall have fire resistance ratings as required by Table 601, but not less than 1 hour. Exterior walls located more than 30 feet (9144 mm) from a common property line or an assumed property line shall comply with Table 601.

Exception: In the case of one-story buildings that are 2,000 square feet (186 m²) or less in area, exterior walls located more than 15 feet (4572 mm) from a common property line or an assumed property line need only comply with Table 601.

D102.2.7 Architectural trim. Architectural trim on buildings located in the fire district shall be constructed of approved noncombustible materials or fire-retardant treated wood.
D102.2.8 Permanent canopies. Permanent canopies are permitted to extend over adjacent open spaces provided all of the following are met:

1. The canopy and its supports shall be of noncombustible material, fire-retardant-treated wood, Type IV construction or of 1-hour fire-resistance-rated construction.

 Exception: Any textile covering for the canopy shall be flame resistant as determined by tests conducted in accordance with NFPA 701 after both accelerated water leaching and accelerated weathering.

2. Any canopy covering, other than textiles, shall have a flame spread index not greater than 25 when tested in accordance with ASTM E 84 or UL 723 in the form intended for use.

3. The canopy shall have at least one long side open.

4. The maximum horizontal width of the canopy shall not exceed 15 feet (4572 mm).

5. The fire resistance of exterior walls shall not be reduced.

D102.2.9 Roof structures. Structures, except aerial supports 12 feet (3658 mm) high or less, flagpoles, water tanks and cooling towers, placed above the roof of any building within the fire district shall be of noncombustible material and shall be supported by construction of noncombustible material.

D102.2.10 Plastic signs. The use of plastics complying with Section 2611 for signs is permitted provided the structure of the sign in which the plastic is mounted or installed is noncombustible.

D102.2.11 Plastic veneer. Exterior plastic veneer is not permitted in the fire district.

SECTION D103 CHANGE TO BUILDINGS

D103.1 Existing buildings within the fire district. An existing building shall not hereafter be increased in height or area unless it is of a type of construction permitted for new buildings within the fire district or is altered to comply with the requirements for such type of construction. Nor shall any existing building be hereafter extended on any side, nor square footage or floors added within the existing building unless such modifications are of a type of construction permitted for new buildings within the fire district.

D103.2 Other alterations. Nothing in Section D103.1 shall prohibit other alterations within the fire district provided there is no change of occupancy that is otherwise prohibited and the fire hazard is not increased by such alteration.

D103.3 Moving buildings. Buildings shall not hereafter be moved into the fire district or to another lot in the fire district unless the building is of a type of construction permitted in the fire district.

SECTION D104 BUILDINGS LOCATED PARTIALLY IN THE FIRE DISTRICT

D104.1 General. Any building located partially in the fire district shall be of a type of construction required for the fire district, unless the major portion of such building lies outside of the fire district and no part is more than 10 feet (3048 mm) inside the boundaries of the fire district.

SECTION D105 EXCEPTIONS TO RESTRICTIONS IN FIRE DISTRICT

D105.1 General. The preceding provisions of this appendix shall not apply in the following instances:

1. Temporary buildings used in connection with duly authorized construction.

2. A private garage used exclusively as such, not more than one story in height, nor more than 650 square feet (60 m²) in area, located on the same lot with a dwelling.

3. Fences not over 8 feet (2438 mm) high.

4. Coal tips, material bins and trestles of Type IV construction.

5. Water tanks and cooling towers conforming to Sections 1509.3 and 1509.4.

6. Greenhouses less than 15 feet (4572 mm) high.

7. Porches on dwellings not over one story in height, and not over 10 feet (3048 mm) wide from the face of the building, provided such porch does not come within 5 feet (1524 mm) of any property line.

8. Sheds open on a long side not over 15 feet (4572 mm) high and 500 square feet (46 m²) in area.

9. One- and two-family dwellings where of a type of construction not permitted in the fire district can be extended 25 percent of the floor area existing at the time of inclusion in the fire district by any type of construction permitted by this code.

10. Wood decks less than 600 square feet (56 m²) where constructed of 2-inch (51 mm) nominal wood, pressure treated for exterior use.

11. Wood veneers on exterior walls conforming to Section 1405.5.

12. Exterior plastic veneer complying with Section 2605.2 where installed on exterior walls required to have a fire-resistance rating not less than 1 hour, provided the exterior plastic veneer does not exhibit sustained flaming as defined in NFPA 268.
SECTION D106
REFERENCED STANDARDS

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM E 84-04</td>
<td>Test Method for Surface Burning Characteristics of Building Materials</td>
<td>D102.2.8</td>
</tr>
<tr>
<td>NFPA 268-01</td>
<td>Test Method for Determining Ignitability of Exterior Wall Assemblies Using a Radiant Heat Energy Source</td>
<td>D105.1</td>
</tr>
<tr>
<td>NFPA 701-99</td>
<td>Methods of Fire Tests for Flame-Propagation of Textiles and Films</td>
<td>D102.2.8</td>
</tr>
<tr>
<td>UL 723-03</td>
<td>Standard for Test for Surface Burning Characteristics of Building Materials, with Revisions through May 2005</td>
<td>D102.2.8</td>
</tr>
</tbody>
</table>
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
APPENDIX E – RESERVED

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E
RESERVED
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE

APPENDIX F – RODENTPROOFING

(Not Adopted by State Agencies)

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
<td>AC</td>
<td>SS</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F
RODENTPROOFING

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION F101
GENERAL

F101.1 General. Buildings or structures and the walls enclosing habitable or occupiable rooms and spaces in which persons live, sleep or work, or in which feed, food or foodstuffs are stored, prepared, processed, served or sold, shall be constructed in accordance with the provisions of this section.

F101.2 Foundation wall ventilation openings. Foundation wall ventilator openings shall be covered for their height and width with perforated sheet metal plates no less than 0.070 inch (1.8 mm) thick, expanded sheet metal plates not less than 0.047 inch (1.2 mm) thick, cast iron grills or grating, extruded aluminum load-bearing vents or with hardware cloth of 0.035 inch (0.89 mm) wire or heavier. The openings therein shall not exceed 1/4 inch (6.4 mm).

F101.3 Foundation and exterior wall sealing. Annular spaces around pipes, electric cables, conduits, or other openings in the walls shall be protected against the passage of rodents by closing such openings with cement mortar, concrete masonry or noncorrosive metal.

F101.4 Doors. Doors on which metal protection has been applied shall be hinged so as to be free swinging. When closed, the maximum clearance between any door, door jambs and sills shall not be greater than 1/8 inch (9.5 mm).

F101.5 Windows and other openings. Windows and other openings for the purpose of light or ventilation located in exterior walls within 2 feet (610 mm) above the existing ground level immediately below such opening shall be covered for their entire height and width, including frame, with hardware cloth of at least 0.035 inch (0.89 mm) wire or heavier.

F101.5.1 Rodent-accessible openings. Windows and other openings for the purpose of light and ventilation in the exterior walls not covered in this chapter, accessible to rodents by way of exposed pipes, wires, conduits and other appurtenances, shall be covered with wire cloth of at least 0.035 inch (0.89 mm) wire. In lieu of wire cloth covering, said pipes, wires, conduits and other appurtenances shall be blocked from rodent usage by installing solid sheet metal guards 0.024 inch (0.61 mm) thick or heavier. Guards shall be fitted around pipes, wires, conduits or other appurtenances. In addition, they shall be fastened securely to and shall extend perpendicularly from the exterior wall for a minimum distance of 12 inches (305 mm) beyond and on either side of pipes, wires, conduits or appurtenances.

F101.6 Pier and wood construction.

F101.6.1 Sill less than 12 inches above ground. Buildings not provided with a continuous foundation shall be provided with protection against rodents at grade by providing either an apron in accordance with Section F101.6.1.1 or a floor slab in accordance with Section F101.6.1.2.

F101.6.1.1 Apron. Where an apron is provided, the apron shall not be less than 8 inches (203 mm) above, nor less than 24 inches (610 mm) below, grade. The apron shall not terminate below the lower edge of the siding material. The apron shall be constructed of an approved nondecayable, water-resistant rodentproofing material of required strength and shall be installed around the entire perimeter of the building. Where constructed of masonry or concrete materials, the apron shall not be less than 4 inches (102 mm) in thickness.

F101.6.1.2 Grade floors. Where continuous concrete grade floor slabs are provided, open spaces shall not be left between the slab and walls, and openings in the slab shall be protected.

F101.6.2 Sill at or above 12 inches above ground. Buildings not provided with a continuous foundation and which have sills 12 or more inches (305 mm) above the ground level shall be provide with protection against rodents at grade in accordance with any of the following:

1. Section F101.6.1.1 or F101.6.1.2;
2. By installing solid sheet metal collars at least 0.024 inch (0.6 mm) thick at the top of each pier or pile and around each pipe, cable, conduit, wire or other item which provides a continuous pathway from the ground to the floor; or
3. By encasing the pipes, cables, conduits or wires in an enclosure constructed in accordance with Section F101.6.1.1.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
APPENDIX G – FLOOD RESISTANT CONSTRUCTION
(Not Adopted by State Agencies)

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD BSC</th>
<th>SFM</th>
<th>1</th>
<th>2</th>
<th>1-AC</th>
<th>AC</th>
<th>SS</th>
<th>SS/CC</th>
<th>DSA</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G

FLOOD-RESISTANT CONSTRUCTION

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION G101
ADMINISTRATION

G101.1 Purpose. The purpose of this appendix is to promote the public health, safety and general welfare and to minimize public and private losses due to flood conditions in specific flood hazard areas through the establishment of comprehensive regulations for management of flood hazard areas designed to:

1. Prevent unnecessary disruption of commerce, access and public service during times of flooding;
2. Manage the alteration of natural flood plains, stream channels and shorelines;
3. Manage filling, grading, dredging and other development which may increase flood damage or erosion potential;
4. Prevent or regulate the construction of flood barriers which will divert floodwaters or which can increase flood hazards; and
5. Contribute to improved construction techniques in the flood plain.

G101.2 Objectives. The objectives of this appendix are to protect human life, minimize the expenditure of public money for flood control projects, minimize the need for rescue and relief efforts associated with flooding, minimize prolonged business interruption, minimize damage to public facilities and utilities, help maintain a stable tax base by providing for the sound use and development of flood-prone areas, contribute to improved construction techniques in the flood plain and ensure that potential owners and occupants are notified that property is within flood hazard areas.

G101.3 Scope. The provisions of this appendix shall apply to all proposed development in a flood hazard area established in Section 1612 of this code and ASCE 24.

G101.4 Violations. Any violation of a provision of this appendix or any requirement of this appendix, shall be handled in accordance with Section 114.

SECTION G102
APPLICABILITY

G102.1 General. This appendix, in conjunction with the International Building Code, provides minimum requirements for development located in flood hazard areas, including the subdivision of land; installation of utilities; placement and replacement of manufactured homes; new construction and repair, reconstruction, rehabilitation or additions to new construction; substantial improvement of existing buildings and structures, including restoration after damage, temporary structures, and temporary or permanent storage, utility and miscellaneous Group U buildings and structures, and certain building work exempt from permit under Section 105.2.

G102.2 Establishment of flood hazard areas. Flood hazard areas are established in Section 1612.3 of the International Building Code, adopted by the applicable governing authority on [INSERT DATE].

G103.1 Permit applications. The building official shall review all permit applications to determine whether proposed development sites will be reasonably safe from flooding. If a proposed development site is in a flood hazard area, all site development activities (including grading, filling, utility installation and drainage modification), all new construction and substantial improvements (including the placement of prefabricated buildings and manufactured homes) and certain building work exempt from permit under Section 105.2 shall be designed and constructed with methods, practices and materials that minimize flood damage and that are in accordance with this code and ASCE 24.

G103.2 Other permits. It shall be the responsibility of the building official to assure that approval of a proposed development shall not be given until proof that necessary permits have been granted by federal or state agencies having jurisdiction over such development.

G103.3 Determination of design flood elevations. If design flood elevations are not specified, the building official is authorized to require the applicant to:

1. Obtain, review and reasonably utilize data available from a federal, state or other source, or
2. Determine the design flood elevation in accordance with accepted hydrologic and hydraulic engineering techniques. Such analyses shall be performed and sealed by a registered design professional. Studies, analyses and computations shall be submitted in sufficient detail to allow review and approval by the building official. The accuracy of data submitted for such determination shall be the responsibility of the applicant.

G103.4 Activities in riverine flood hazard areas. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the building official shall not permit any new construction, substantial improvement or other development, including fill, unless the applicant demonstrates that the cumulative effect of the proposed devel-
opment, when combined with all other existing and anticipated flood hazard area encroachment, will not increase the design flood elevation more than 1 foot (305 mm) at any point within the community.

G103.5 Floodway encroachment. Prior to issuing a permit for any floodway encroachment, including fill, new construction, substantial improvements and other development or land-disturbing activity, the building official shall require submission of a certification, along with supporting technical data, that demonstrates that such development will not cause any increase of the level of the base flood.

G103.5.1 Floodway revisions. A floodway encroachment that increases the level of the base flood is authorized if the applicant has applied for a conditional Flood Insurance Rate Map (FIRM) revision and has received the approval of the Federal Emergency Management Agency (FEMA).

G103.6 Watercourse alteration. Prior to issuing a permit for any alteration or relocation of any watercourse, the building official shall require the applicant to provide notification of the proposal to the appropriate authorities of all affected adjacent government jurisdictions, as well as appropriate state agencies. A copy of the notification shall be maintained in the permit records and submitted to FEMA.

G103.6.1 Engineering analysis. The building official shall require submission of an engineering analysis which demonstrates that the flood-carrying capacity of the altered or relocated portion of the watercourse will not be decreased. Such watercourses shall be maintained in a manner which preserves the channel’s flood-carrying capacity.

G103.7 Alterations in coastal areas. Prior to issuing a permit for any alteration of sand dunes and mangrove stands in flood hazard areas subject to high velocity wave action, the building official shall require submission of an engineering analysis which demonstrates that the proposed alteration will not increase the potential for flood damage.

G103.8 Records. The building official shall maintain a permanent record of all permits issued in flood hazard areas, including copies of inspection reports and certifications required in Section 1612.

SECTION G104 PERMITS

G104.1 Required. Any person, owner or authorized agent who intends to conduct any development in a flood hazard area shall first make application to the building official and shall obtain the required permit.

G104.2 Application for permit. The applicant shall file an application in writing on a form furnished by the building official. Such application shall:

1. Identify and describe the development to be covered by the permit.
2. Describe the land on which the proposed development is to be conducted by legal description, street address or similar description that will readily identify and definitely locate the site.
3. Include a site plan showing the delineation of flood hazard areas, floodway boundaries, flood zones, design flood elevations, ground elevations, proposed fill and excavation and drainage patterns and facilities.
4. Indicate the use and occupancy for which the proposed development is intended.
5. Be accompanied by construction documents, grading and filling plans and other information deemed appropriate by the building official.
6. State the valuation of the proposed work.
7. Be signed by the applicant or the applicant’s authorized agent.

G104.3 Validity of permit. The issuance of a permit under this appendix shall not be construed to be a permit for, or approval of, any violation of this appendix or any other ordinance of the jurisdiction. The issuance of a permit based on submitted documents and information shall not prevent the building official from requiring the correction of errors. The building official is authorized to prevent occupancy or use of a structure or site which is in violation of this appendix or other ordinances of this jurisdiction.

G104.4 Expiration. A permit shall become invalid if the proposed development is not commenced within 180 days after its issuance, or if the work authorized is suspended or abandoned for a period of 180 days after the work commences. Extensions shall be requested in writing and justifiable cause demonstrated. The building official is authorized to grant, in writing, one or more extensions of time, for periods not more than 180 days each.

G104.5 Suspension or revocation. The building official is authorized to suspend or revoke a permit issued under this appendix wherever the permit is issued in error or on the basis of incorrect, inaccurate or incomplete information, or in violation of any ordinance or code of this jurisdiction.

SECTION G105 VARIANCES

G105.1 General. The board of appeals established pursuant to Section 112 shall hear and decide requests for variances. The board of appeals shall base its determination on technical justifications, and has the right to attach such conditions to variances as it deems necessary to further the purposes and objectives of this appendix and Section 1612.

G105.2 Records. The building official shall maintain a permanent record of all variance actions, including justification for their issuance.

G105.3 Historic structures. A variance is authorized to be issued for the repair or rehabilitation of a historic structure upon a determination that the proposed repair or rehabilitation will not preclude the structure’s continued designation as a hist-
historic structure, and the variance is the minimum necessary to preserve the historic character and design of the structure.

Exception: Within flood hazard areas, historic structures that are not:

1. Listed or preliminarily determined to be eligible for listing in the National Register of Historic Places; or
2. Determined by the Secretary of the U.S. Department of Interior as contributing to the historical significance of a registered historic district or a district preliminarily determined to qualify as an historic district; or
3. Designated as historic under a state or local historic preservation program that is approved by the Department of Interior.

G105.4 Functionally dependent facilities. A variance is authorized to be issued for the construction or substantial improvement of a functionally dependent facility provided the criteria in Section 1612.1 are met and the variance is the minimum necessary to allow the construction or substantial improvement, and that all due consideration has been given to methods and materials that minimize flood damages during the design flood and create no additional threats to public safety.

G105.5 Restrictions. The board of appeals shall not issue a variance for any proposed development in a floodway if any increase in flood levels would result during the base flood discharge.

G105.6 Considerations. In reviewing applications for variances, the board of appeals shall consider all technical evaluations, all relevant factors, all other portions of this appendix and the following:

1. The danger that materials and debris may be swept onto other lands resulting in further injury or damage;
2. The danger to life and property due to flooding or erosion damage;
3. The susceptibility of the proposed development, including contents, to flood damage and the effect of such damage on current and future owners;
4. The importance of the services provided by the proposed development to the community;
5. The availability of alternate locations for the proposed development that are not subject to flooding or erosion;
6. The compatibility of the proposed development with existing and anticipated development;
7. The relationship of the proposed development to the comprehensive plan and flood plain management program for that area;
8. The safety of access to the property in times of flood for ordinary and emergency vehicles;
9. The expected heights, velocity, duration, rate of rise and debris and sediment transport of the floodwaters and the effects of wave action, if applicable, expected at the site; and
10. The costs of providing governmental services during and after flood conditions including maintenance and repair of public utilities and facilities such as sewer, gas, electrical and water systems, streets and bridges.

G105.7 Conditions for issuance. Variances shall only be issued by the board of appeals upon:

1. A technical showing of good and sufficient cause that the unique characteristics of the size, configuration or topography of the site renders the elevation standards inappropriate;
2. A determination that failure to grant the variance would result in exceptional hardship by rendering the lot undevelopable;
3. A determination that the granting of a variance will not result in increased flood heights, additional threats to public safety, extraordinary public expense, nor create nuisances, cause fraud on or victimization of the public or conflict with existing local laws or ordinances;
4. A determination that the variance is the minimum necessary, considering the flood hazard, to afford relief; and
5. Notification to the applicant in writing over the signature of the building official that the issuance of a variance to construct a structure below the base flood level will result in increased premium rates for flood insurance up to amounts as high as $25 for $100 of insurance coverage, and that such construction below the base flood level increases risks to life and property.

SECTION G201 DEFINITIONS

G201.1 General. The following words and terms shall, for the purposes of this appendix, have the meanings shown herein. Refer to Chapter 2 for general definitions.

G201.2 Definitions.

DEVELOPMENT. Any manmade change to improved or unimproved real estate, including but not limited to, buildings or other structures, temporary structures, temporary or permanent storage of materials, mining, dredging, filling, grading, paving, excavations, operations and other land-disturbing activities.

FUNCTIONALLY DEPENDENT FACILITY. A facility which cannot be used for its intended purpose unless it is located or carried out in close proximity to water, such as a docking or port facility necessary for the loading or unloading of cargo or passengers, shipbuilding or ship repair. The term does not include long-term storage, manufacture, sales or service facilities.

MANUFACTURED HOME. A structure that is transportable in one or more sections, built on a permanent chassis, designed for use with or without a permanent foundation when attached to the required utilities, and constructed to the Federal Mobile Home Construction and Safety Standards and rules and regulations promulgated by the U.S. Department of Housing and Urban Development. The term also includes mobile homes, park trailers, travel trailers and similar transportable structures that are placed on a site for 180 consecutive days or longer.
MANUFACTURED HOME PARK OR SUBDIVISION. A parcel (or contiguous parcels) of land divided into two or more manufactured home lots for rent or sale.

RECREATIONAL VEHICLE. A vehicle that is built on a single chassis, 400 square feet (37.16 m²) or less when measured at the largest horizontal projection, designed to be self-propelled or permanently towable by a light-duty truck, and designed primarily not for use as a permanent dwelling but as temporary living quarters for recreational, camping, travel or seasonal use. A recreational vehicle is ready for highway use if it is on its wheels or jacking system, is attached to the site only by quick disconnect-type utilities and security devices and has no permanently attached additions.

VARIANCE. A grant of relief from the requirements of this section which permits construction in a manner otherwise prohibited by this section where specific enforcement would result in unnecessary hardship.

VIOLATION. A development that is not fully compliant with this appendix or Section 1612, as applicable.

SECTION G301
SUBDIVISIONS

G301.1 General. Any subdivision proposal, including proposals for manufactured home parks and subdivisions, or other proposed new development in a flood hazard area shall be reviewed to assure that:

1. All such proposals are consistent with the need to minimize flood damage;
2. All public utilities and facilities, such as sewer, gas, electric and water systems are located and constructed to minimize or eliminate flood damage; and
3. Adequate drainage is provided to reduce exposure to flood hazards.

G301.2 Subdivision requirements. The following requirements shall apply in the case of any proposed subdivision, including proposals for manufactured home parks and subdivisions, any portion of which lies within a flood hazard area:

1. The flood hazard area, including floodways and areas subject to high velocity wave action, as appropriate, shall be delineated on tentative and final subdivision plats;
2. Design flood elevations shall be shown on tentative and final subdivision plats;
3. Residential building lots shall be provided with adequate buildable area outside the floodway; and
4. The design criteria for utilities and facilities set forth in this appendix and appropriate International Codes shall be met.

SECTION G401
SITE IMPROVEMENT

G401.1 Development in floodways. Development or land disturbing activity shall not be authorized in the floodway unless it has been demonstrated through hydrologic and hydraulic analyses performed in accordance with standard engineering practice that the proposed encroachment will not result in any increase in the level of the base flood.

G401.2 Flood hazard areas subject to high-velocity wave action. In flood hazard areas subject to high-velocity wave action:

1. New buildings and buildings that are substantially improved shall only be authorized landward of the reach of mean high tide.
2. The use of fill for structural support of buildings is prohibited.

G401.3 Sewer facilities. All new or replaced sanitary sewer facilities, private sewage treatment plants (including all pumping stations and collector systems) and on-site waste disposal systems shall be designed in accordance with Chapter 7, ASCE 24, to minimize or eliminate infiltration of floodwaters into the facilities and discharge from the facilities into floodwaters, or impairment of the facilities and systems.

G401.4 Water facilities. All new or replacement water facilities shall be designed in accordance with the provisions of Chapter 7, ASCE 24, to minimize or eliminate infiltration of floodwaters into the systems.

G401.5 Storm drainage. Storm drainage shall be designed to convey the flow of surface waters to minimize or eliminate damage to persons or property.

G401.6 Streets and sidewalks. Streets and sidewalks shall be designed to minimize potential for increasing or aggravating flood levels.

SECTION G501
MANUFACTURED HOMES

G501.1 Elevation. All new and replacement manufactured homes to be placed or substantially improved in a flood hazard area shall be elevated such that the lowest floor of the manufactured home is elevated to or above the design flood elevation.

G501.2 Foundations. All new and replacement manufactured homes, including substantial improvement of existing manufactured homes, shall be placed on a permanent, reinforced foundation that is designed in accordance with Section 1612.

G501.3 Anchoring. All new and replacement manufactured homes to be placed or substantially improved in a flood hazard area shall be installed using methods and practices which minimize flood damage. Manufactured homes shall be securely anchored to an adequately anchored foundation system to resist flotation, collapse and lateral movement. Methods of anchoring are authorized to include, but are not limited to, use of over-the-top or frame ties to ground anchors. This requirement is in addition to applicable state and local anchoring requirements for resisting wind forces.

SECTION G601
RECREATIONAL VEHICLES

G601.1 Placement prohibited. The placement of recreational vehicles shall not be authorized in flood hazard areas subject to high velocity wave action and in floodways.
G601.3 Permanent placement. Recreational vehicles that are not fully licensed and ready for highway use, or that are to be placed on a site for more than 180 consecutive days, shall meet the requirements of Section G501 for manufactured homes.

SECTION G701 TANKS

G701.1 Underground tanks. Underground tanks in flood hazard areas shall be anchored to prevent flotation, collapse or lateral movement resulting from hydrostatic loads, including the effects of buoyancy, during conditions of the design flood.

G701.2 Above-ground tanks. Above-ground tanks in flood hazard areas shall be elevated to or above the design flood elevation or shall be anchored or otherwise designed and constructed to prevent flotation, collapse or lateral movement resulting from hydrodynamic and hydrostatic loads, including the effects of buoyancy, during conditions of the design flood.

G701.3 Tank inlets and vents. In flood hazard areas, tank inlets, fill openings, outlets and vents shall be:

1. At or above the design flood elevation or fitted with covers designed to prevent the inflow of floodwater or outflow of the contents of the tanks during conditions of the design flood.

2. Anchored to prevent lateral movement resulting from hydrodynamic and hydrostatic loads, including the effects of buoyancy, during conditions of the design flood.

SECTION G801 OTHER BUILDING WORK

G801.1 Detached accessory structures. Detached accessory structures shall be anchored to prevent flotation, collapse or lateral movement resulting from hydrostatic loads, including the effects of buoyancy, during conditions of the design flood. Fully enclosed accessory structures shall have flood openings to allow for the automatic entry and exit of flood waters.

G801.2 Fences. Fences in floodways that may block the passage of floodwaters, such as stockade fences and wire mesh fences, shall meet the requirement of Section G103.5.

G801.3 Oil derricks. Oil derricks located in flood hazard areas shall be designed in conformance with the flood loads in Sections 1603.1.7 and 1612.

G801.4 Retaining walls, sidewalks and driveways. Retaining walls, sidewalks and driveways shall meet the requirements of Section 1803.4.

G801.5 Prefabricated swimming pools. Prefabricated swimming pools in floodways shall meet the requirements of Section G103.5.

SECTION G901 TEMPORARY STRUCTURES AND TEMPORARY STORAGE

G901.1 Temporary structures. Temporary structures shall be erected for a period of less than 180 days. Temporary structures shall be anchored to prevent flotation, collapse or lateral movement resulting from hydrostatic loads, including the effects of buoyancy, during conditions of the design flood. Fully enclosed temporary structures shall have flood openings to allow for the automatic entry and exit of floodwaters.

G901.2 Temporary storage. Temporary storage includes storage of goods and materials for a period of less than 180 days. Stored materials shall not include hazardous materials.

G901.3 Floodway encroachment. Temporary structures and temporary storage in floodways shall meet the requirements of G103.5.

SECTION G1001 UTILITY AND MISCELLANEOUS GROUP U

G1001.1 Utility and miscellaneous Group U. Utility and miscellaneous Group U includes buildings that are accessory in character and miscellaneous structures not classified in any specific occupancy in the International Building Code, including, but not limited to, agricultural buildings, aircraft hangars (accessory to a one- or two-family residence), barns, carports, fences more than 6 feet (1829 mm) high, grain silos (accessory to a residential occupancy), greenhouses, livestock shelters, private garages, retaining walls, sheds, stables and towers.

G1001.2 Flood loads. Utility and miscellaneous Group U buildings and structures, including substantial improvement of such buildings and structures, shall be anchored to prevent flotation, collapse or lateral movement resulting from flood loads, including the effects of buoyancy, during conditions of the design flood.

G1001.3 Elevation. Utility and miscellaneous Group U buildings and structures, including substantial improvement of such buildings and structures, shall be elevated such that the lowest floor, including basement, is elevated to or above the design flood elevation in accordance with Section 1612 of the International Building Code.

G1001.4 Enclosures below design flood elevation. Fully enclosed areas below the design flood elevation shall be at or above grade on all sides and conform to the following:

1. In flood hazard areas not subject to high-velocity wave action, enclosed areas shall have flood openings to allow for the automatic inflow and outflow of floodwaters.

2. In flood hazard areas subject to high-velocity wave action, enclosed areas shall have walls below the design flood elevation that are designed to break away or collapse from a water load less than that which would occur during the design flood, without causing collapse, displacement or other structural damage to the building or structure.

G1001.5 Flood-damage-resistant materials. Flood-damage-resistant materials shall be used below the design flood elevation.
G1001.6 Protection of mechanical, plumbing and electrical systems. Mechanical, plumbing and electrical systems, including plumbing fixtures, shall be elevated to or above the design flood elevation.

Exception: Electrical systems, equipment and components, and heating, ventilating, air conditioning, and plumbing appliances, plumbing fixtures, duct systems and other service equipment shall be permitted to be located below the design flood elevation provided that they are designed and installed to prevent water from entering or accumulating within the components and to resist hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding to the design flood elevation in compliance with the flood-resistant construction requirements of this code. Electrical wiring systems shall be permitted to be located below the design flood elevation provided they conform to the provisions of NFPA 70.

SECTION G1101

REFERENCED STANDARDS

- ASCE 24-05 *Flood Resistance Design and Construction*
 - G103.1, G401.3, G401.4

 - G201

- IBC—06 *International Building Code*
 - G102.2

- NFPA 70—08 *National Electrical Code*
 - G1001.6
California Building Code-Matrix Adoption Table

Appendix H – Signs

(Not Adopted by State Agencies)

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1-AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AC</td>
<td>SS</td>
<td>SS/CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX H
SIGN

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION H101
GENERAL

H101.1 General. A sign shall not be erected in a manner that would confuse or obstruct the view of or interfere with exit signs required by Chapter 10 or with official traffic signs, signals or devices. Signs and sign support structures, together with their supports, braces, guys and anchors, shall be kept in repair and in proper state of preservation. The display surfaces of signs shall be kept neatly painted or posted at all times.

H101.2 Signs exempt from permits. The following signs are exempt from the requirements to obtain a permit before erection:

1. Painted nonilluminated signs.
2. Temporary signs announcing the sale or rent of property.
3. Signs erected by transportation authorities.
4. Projecting signs not exceeding 2.5 square feet (0.23 m²).
5. The changing of moveable parts of an approved sign that is designed for such changes, or the repainting or repositioning of display matter shall not be deemed an alteration.

SECTION H102
DEFINITIONS

H102.1 General. Unless otherwise expressly stated, the following words and terms shall, for the purposes of this appendix, have the meanings shown herein. Refer to Chapter 2 of the International Building Code for general definitions.

COMBINATION SIGN. A sign incorporating any combination of the features of pole, projecting and roof signs.

DISPLAY SIGN. The area made available by the sign structure for the purpose of displaying the advertising message.

ELECTRIC SIGN. A sign containing electrical wiring, but not including signs illuminated by an exterior light source.

GROUND SIGN. A billboard or similar type of sign which is supported by one or more uprights, poles or braces in or upon the ground other than a combination sign or pole sign, as defined by this code.

POLE SIGN. A sign wholly supported by a sign structure in the ground.

PORTABLE DISPLAY SURFACE. A display surface temporarily fixed to a standardized advertising structure which is regularly moved from structure to structure at periodic intervals.

PROJECTING SIGN. A sign other than a wall sign, which projects from and is supported by a wall of a building or structure.

ROOF SIGN. A sign erected upon or above a roof or parapet of a building or structure.

SIGN. Any letter, figure, character, mark, plane, point, marquee sign, design, poster, pictorial, picture, stroke, stripe, line, trademark, reading matter or illuminated service, which shall be constructed, placed, attached, painted, erected, fastened or manufactured in any manner whatsoever, so that the same shall be used for the attraction of the public to any place, subject, person, firm, corporation, public performance, article, machine or merchandise, whatsoever, which is displayed in any manner outdoors. Every sign shall be classified and conform to the requirements of that classification as set forth in this chapter.

SIGN STRUCTURE. Any structure which supports or is capable of supporting a sign as defined in this code. A sign structure is permitted to be a single pole and is not required to be an integral part of the building.

WALL SIGN. Any sign attached to or erected against the wall of a building or structure, with the exposed face of the sign in a plane parallel to the plane of said wall.

SECTION H103
LOCATION

H103.1 Location restrictions. Signs shall not be erected, constructed or maintained so as to obstruct any fire escape or any window or door or opening used as a means of egress or so as to prevent free passage from one part of a roof to any other part thereof. A sign shall not be attached in any form, shape or manner to a fire escape, nor be placed in such manner as to interfere with any opening required for ventilation.

SECTION H104
IDENTIFICATION

H104.1 Identification. Every outdoor advertising display sign hereafter erected, constructed or maintained, for which a permit is required shall be plainly marked with the name of the person, firm or corporation erecting and maintaining such sign and shall have affixed on the front thereof the permit number issued for said sign or other method of identification approved by the building official.
SECTION H105
DESIGN AND CONSTRUCTION

H105.1 General requirements. Signs shall be designed and constructed to comply with the provisions of this code for use of materials, loads and stresses.

H105.2 Permits, drawings and specifications. Where a permit is required, as provided in Chapter 1, construction documents shall be required. These documents shall show the dimensions, material and required details of construction, including loads, stresses and anchors.

H105.3 Wind load. Signs shall be designed and constructed to withstand wind pressure as provided for in Chapter 16.

H105.4 Seismic load. Signs designed to withstand wind pressures shall be considered capable of withstanding earthquake loads, except as provided for in Chapter 16.

H105.5 Working stresses. In outdoor advertising display signs, the allowable working stresses shall conform to the requirements of Chapter 16. The working stresses of wire rope and its fastenings shall not exceed 25 percent of the ultimate strength of the rope or fasteners.

Exceptions:
1. The allowable working stresses for steel and wood shall be in accordance with the provisions of Chapters 22 and 23.
2. The working strength of chains, cables, guys or steel rods shall not exceed one-fifth of the ultimate strength of such chains, cables, guys or steel.

H105.6 Attachment. Signs attached to masonry, concrete or steel shall be safely and securely fastened by means of metal anchors, bolts or approved expansion screws of sufficient size and anchorage to safely support the loads applied.

SECTION H106
ELECTRICAL

H106.1 Illumination. A sign shall not be illuminated by other than electrical means, and electrical devices and wiring shall be installed in accordance with the requirements of NFPA 70. Any open spark or flame shall not be used for display purposes unless specifically approved.

H106.1.1 Internally illuminated signs. Except as provided for in Sections 402.16 and 2611, where internally illuminated signs have facings of wood or approved plastic, the area of such facing section shall not be more than 120 square feet (11.16 m²) and the wiring for electric lighting shall be entirely enclosed in the sign cabinet with a clearance of not less than 2 inches (51 mm) from the facing material. The dimensional limitation of 120 square feet (11.16 m²) shall not apply to sign facing sections made from flame-resistant coated fabric (ordinarily known as “flexible sign face plastic”) that weighs less than 20 ounces per square yard (678 g/m²) and that, when tested in accordance with NFPA 701, meets the fire propagation performance requirements of both Test 1 and Test 2 or that when tested in accordance with an approved test method, exhibits an average burn time of 2 seconds or less and a burning extent of 5.9 inches (150 mm) or less for 10 specimens.

H106.2 Electrical service. Signs that require electrical service shall comply with NFPA 70.

SECTION H107
COMBUSTIBLE MATERIALS

H107.1 Use of combustibles. Wood, approved plastic or plastic veneer panels as provided for in Chapter 26, or other materials of combustible characteristics similar to wood, used for moldings, cappings, nailing blocks, letters and latticing, shall comply with Section H109.1, and shall not be used for other ornamental features of signs, unless approved.

H107.1.1 Plastic materials. Notwithstanding any other provisions of this code, plastic materials which burn at a rate no faster than 2.5 inches per minute (64 mm/s) when tested in accordance with ASTM D 635 shall be deemed approved plastics and can be used as the display surface material and for the letters, decorations and facings on signs and outdoor display structures.

H107.1.2 Electric sign faces. Individual plastic facings of electric signs shall not exceed 200 square feet (18.6 m²) in area.

H107.1.3 Area limitation. If the area of a display surface exceeds 200 square feet (18.6 m²), the area occupied or covered by approved plastics shall be limited to 200 square feet (18.6 m²) plus 50 percent of the difference between 200 square feet (18.6 m²) and the area of display surface. The area of plastic on a display surface shall not in any case exceed 1,100 square feet (102 m²).

H107.1.4 Plastic appurtenances. Letters and decorations mounted on an approved plastic facing or display surface can be made of approved plastics.

SECTION H108
ANIMATED DEVICES

H108.1 Fail-safe device. Signs that contain moving sections or ornaments shall have fail-safe provisions to prevent the section or ornament from releasing and falling or shifting its center of gravity more than 15 inches (381 mm). The fail-safe device shall be in addition to the mechanism and the mechanism’s housing which operate the movable section or ornament. The fail-safe device shall be capable of supporting the full dead weight of the section or ornament when the moving mechanism releases.

SECTION H109
GROUND SIGNS

H109.1 Height restrictions. The structural frame of ground signs shall not be erected of combustible materials to a height of more than 35 feet (10668 mm) above the ground. Ground signs constructed entirely of noncombustible material shall not be erected to a height of greater than 100 feet (30480 mm) above the ground. Greater heights are permitted where
H109.2 Required clearance. The bottom coping of every ground sign shall be not less than 3 feet (914 mm) above the ground or street level, which space can be filled with platform decorative trim or light wooden construction.

H109.3 Wood anchors and supports. Where wood anchors or supports are embedded in the soil, the wood shall be pressure treated with an approved preservative.

SECTION H110
ROOF SIGNS

H110.1 General. Roof signs shall be constructed entirely of metal or other approved noncombustible material except as provided for in Sections H106.1.1 and H107.1. Provisions shall be made for electric grounding of metallic parts. Where combustible materials are permitted in letters or other ornamental features, wiring and tubing shall be kept free and insulated therefrom. Roof signs shall be so constructed as to leave a clear space of not less than 6 feet (1829 mm) between the roof level and the lowest part of the sign and shall have at least 5 feet (1524 mm) clearance between the vertical supports thereof. No portion of any roof sign structure shall project beyond an exterior wall.

Exception: Signs on flat roofs with every part of the roof accessible.

H110.2 Bearing plates. The bearing plates of roof signs shall distribute the load directly to or upon masonry walls, steel roof girders, columns or beams. The building shall be designed to avoid overstress of these members.

H110.3 Height of solid signs. A roof sign having a solid surface shall not exceed, at any point, a height of 24 feet (7315 mm) measured from the roof surface.

H110.4 Height of open signs. Open roof signs in which the uniform open area is not less than 40 percent of total gross area shall not exceed a height of 75 feet (22 860 mm) on buildings of Type 1 or Type 2 construction. On buildings of other construction types, the height shall not exceed 40 feet (12 192 mm).

Such signs shall be thoroughly secured to the building upon which they are installed, erected or constructed by iron, metal anchors, bolts, supports, chains, stranded cables, steel rods or braces and they shall be maintained in good condition.

H110.5 Height of closed signs. A closed roof sign shall not be erected to a height greater than 50 feet (15 240 mm) above the roof of buildings of Type 1 or Type 2 construction, nor more than 35 feet (10 668 mm) above the roof of buildings of Type 3, 4 or 5 construction.

SECTION H111
WALL SIGNS

H111.1 Materials. Wall signs which have an area exceeding 40 square feet (3.72 m²) shall be constructed of metal or other approved noncombustible material, except for nailing rails and as provided for in Sections H106.1.1 and H107.1.

H111.2 Exterior wall mounting details. Wall signs attached to exterior walls of solid masonry, concrete or stone shall be safely and securely attached by means of metal anchors, bolts or expansion screws of not less than 7/8 inch (9.5 mm) diameter and shall be embedded at least 5 inches (127 mm). Wood blocks shall not be used for anchorage, except in the case of wall signs attached to buildings with walls of wood. A wall sign shall not be supported by anchorages secured to an unbraced parapet wall.

H111.3 Extension. Wall signs shall not extend above the top of the wall, nor beyond the ends of the wall to which the signs are attached unless such signs conform to the requirements for roof signs, projecting signs or ground signs.

SECTION H112
PROJECTING SIGNS

H112.1 General. Projecting signs shall be constructed entirely of metal or other noncombustible material and securely attached to a building or structure by metal supports such as bolts, anchors, supports, chains, guys or steel rods. Staples or nails shall not be used to secure any projecting sign to any building or structure. The dead load of projecting signs not parallel to the building or structure and the load due to wind pressure shall be supported with chains, guys or steel rods having net cross-sectional dimension of not less than 7/8 inch (9.5 mm) diameter. Such supports shall be erected or maintained at an angle of at least 45 percent (0.78 rad) with the horizontal to resist the dead load and at an angle of 45 percent (0.78 rad) or more with the face of the sign to resist the specified wind pressure. If such projecting sign exceeds 30 square feet (2.8 m²) in one facial area, there shall be provided at least two such supports on each side not more than 8 feet (2438 mm) apart to resist the wind pressure.

H112.2 Attachment of supports. Supports shall be secured to a bolt or expansion screw that will develop the strength of the supporting chains, guys or steel rods, with a minimum 7/8-inch (15.9 mm) bolt or lag screw, by an expansion shield. Turn buckles shall be placed in chains, guys or steel rods supporting projecting signs.

H112.3 Wall mounting details. Chains, cables, guys or steel rods used to support the live or dead load of projecting signs are permitted to be fastened to solid masonry walls with expansion bolts or by machine screws in iron supports, but such supports shall not be attached to an unbraced parapet wall. Where the supports must be fastened to walls made of wood, the supporting anchor bolts must go through the wall and be plated or fastened on the inside in a secure manner.

H112.4 Height limitation. A projecting sign shall not be erected on the wall of any building so as to project above the roof or cornice wall or above the roof level where there is no cornice wall; except that a sign erected at right angles to the building, the horizontal width of which sign is perpendicular to such a wall and does not exceed 18 inches (457 mm), is permitted to be erected to a height not exceeding 2 feet (610 mm) above the roof or cornice wall or above the roof level where there is no cornice wall. A sign attached to a corner of a build-
ing and parallel to the vertical line of such corner shall be deemed to be erected at a right angle to the building wall.

H112.5 Additional loads. Projecting sign structures which will be used to support an individual on a ladder or other servicing device, whether or not specifically designed for the servicing device, shall be capable of supporting the anticipated additional load, but not less than a 100-pound (445 N) concentrated horizontal load and a 300-pound (1334 N) concentrated vertical load applied at the point of assumed or most eccentric loading. The building component to which the projecting sign is attached shall also be designed to support the additional loads.

SECTION H113 MARQUEE SIGNS

H113.1 Materials. Marquee signs shall be constructed entirely of metal or other approved noncombustible material except as provided for in Sections H106.1.1 and H107.1.

H113.2 Attachment. Marquee signs shall be attached to approved marquees that are constructed in accordance with Section 3106.

H113.3 Dimensions. Marquee signs, whether on the front or side, shall not project beyond the perimeter of the marquee.

H113.4 Height limitation. Marquee signs shall not extend more than 6 feet (1829 mm) above, nor 1 foot (305 mm) below such marquee, but under no circumstances shall the sign or signs have a vertical dimension greater than 8 feet (2438 mm).

SECTION H114 PORTABLE SIGNS

H114.1 General. Portable signs shall conform to requirements for ground, roof, projecting, flat and temporary signs where such signs are used in a similar capacity. The requirements of this section shall not be construed to require portable signs to have connections to surfaces, tie-downs or foundations where provisions are made by temporary means or configuration of the structure to provide stability for the expected duration of the installation.

TABLE 4-A

<table>
<thead>
<tr>
<th>Size, Thickness and Type of Glass Panels in Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Size of Exposed Panel</td>
</tr>
<tr>
<td>Any dimension (inches)</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>144</td>
</tr>
<tr>
<td>> 144</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm².

TABLE 4-B

<table>
<thead>
<tr>
<th>Thickness of Projection Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection</td>
</tr>
<tr>
<td>(feet)</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

SECTION H115 REFERENCED STANDARDS

- ASTM D 635—03 Test Method for Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position
- NFPA 70—08 National Electrical Code H106.1, H106.2
- NFPA 701—99 Methods of Fire Test for Flame Propagation of Textiles and Films
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
APPENDIX I – PATIO COVERS

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>HCD</th>
<th>DSA</th>
<th>OSHPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSC</td>
<td>SFM</td>
<td>1</td>
</tr>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td>I101</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I102</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I103</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX I

PATIO COVERS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION I101
GENERAL

I101.1 General. Patio covers shall be permitted to be detached from or attached to dwelling units. Patio covers shall be used only for recreational, outdoor living purposes and not as carports, garages, storage rooms or habitable rooms. Openings shall be permitted to be enclosed with insect screening, approved translucent or transparent plastic not more than 0.125 inch (3.2 mm) in thickness, glass conforming to the provisions of Chapter 24 or any combination of the foregoing.

SECTION I102
DEFINITIONS

I102.1 General. The following word and term shall, for the purposes of this appendix, have the meaning shown herein.

PATIO COVERS. One story structures not exceeding 12 feet (3657 mm) in height. Enclosure walls shall be permitted to be of any configuration, provided the open or glazed area of the longer wall and one additional wall is equal to at least 65 percent of the area below a minimum of 6 feet 8 inches (2032 mm) of each wall, measured from the floor.

SECTION I103
EXTERIOR OPENINGS

I103.1 Light, ventilation and emergency egress. Exterior openings required for light and ventilation shall be permitted to open into a patio structure. However, the patio structure shall be unenclosed if such openings are serving as emergency egress or rescue openings from sleeping rooms. Where such exterior openings serve as an exit from the dwelling unit, the patio structure, unless unenclosed, shall be provided with exits conforming to the provision of Chapter 10.

SECTION I104
STRUCTURAL PROVISIONS

I104.1 Design loads. Patio covers shall be designed and constructed to sustain, within the stress limits of this code, all dead loads plus a minimum vertical live load of 10 pounds per square foot (0.48 kN/m²) except that snow loads shall be used where such snow loads exceed this minimum. Such patio covers shall be designed to resist the minimum wind and seismic loads set forth in this code.

I104.2 Footings. In areas with a frost depth of zero, a patio cover shall be permitted to be supported on a concrete slab on grade without footings, provided the slab conforms to the provisions of Chapter 19 of this code, is not less than 3 1/2 inches (89 mm) thick and further provided that the columns do not support loads in excess of 750 pounds (3.36 kN) per column.
CALIFORNIA BUILDING CODE-MATRIX ADOPTION TABLE
APPENDIX J – GRADING

<table>
<thead>
<tr>
<th>Adopting agency</th>
<th>BSC</th>
<th>SFM</th>
<th>HCD</th>
<th>DSA</th>
<th>SS</th>
<th>SS/CC</th>
<th>OSHPD</th>
<th>CSA</th>
<th>DPH</th>
<th>AGR</th>
<th>DWR</th>
<th>CEC</th>
<th>CA</th>
<th>SL</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt entire chapter</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adopt entire chapter as amended (amended sections listed below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter/Section</td>
<td></td>
</tr>
<tr>
<td>J101</td>
<td></td>
</tr>
<tr>
<td>J102</td>
<td></td>
</tr>
<tr>
<td>J104.4</td>
<td></td>
</tr>
<tr>
<td>J105</td>
<td></td>
</tr>
<tr>
<td>J105.1</td>
<td></td>
</tr>
<tr>
<td>J106</td>
<td></td>
</tr>
<tr>
<td>J106.2</td>
<td></td>
</tr>
<tr>
<td>J107</td>
<td></td>
</tr>
<tr>
<td>J107.5</td>
<td></td>
</tr>
<tr>
<td>J108</td>
<td></td>
</tr>
<tr>
<td>J109</td>
<td></td>
</tr>
<tr>
<td>J110</td>
<td></td>
</tr>
<tr>
<td>J111</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX J
GRADING

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION J101
GENERAL

J101.1 Scope. The provisions of this chapter apply to grading, excavation and earthwork construction, including fills and embankments. Where conflicts occur between the technical requirements of this chapter and the geotechnical report, the geotechnical report shall govern.

J101.2 Flood hazard areas. The provisions of this chapter shall not apply to grading, excavation and earthwork construction, including fills and embankments, in floodways within flood hazard areas established in Section 1612.3 or in flood hazard areas where design flood elevations are specified but floodways have not been designated, unless it has been demonstrated through hydrologic and hydraulic analyses performed in accordance with standard engineering practice that the proposed work will not result in any increase in the level of the base flood.

SECTION J102
DEFINITIONS

J102.1 Definitions. For the purposes of this appendix chapter, the terms, phrases and words listed in this section and their derivatives shall have the indicated meanings.

BENCH. A relatively level step excavated into earth material on which fill is to be placed.

COMPACTION. The densification of a fill by mechanical means.

CUT. See Excavation.

DOWN DRAIN. A device for collecting water from a swale or ditch located on or above a slope, and safely delivering it to an approved drainage facility

EROSION. The wearing away of the ground surface as a result of the movement of wind, water or ice.

EXCAVATION. The removal of earth material by artificial means, also referred to as a cut.

FILL. Deposition of earth materials by artificial means.

GRADE. The vertical location of the ground surface.

GRADE, EXISTING. The grade prior to grading.

GRADE, FINISHED. The grade of the site at the conclusion of all grading efforts.

GRADING. An excavation or fill or combination thereof.

KEY. A compacted fill placed in a trench excavated in earth material beneath the toe of a slope.

SLOPE. An inclined surface, the inclination of which is expressed as a ratio of horizontal distance to vertical distance.

TERRACE. A relatively level step constructed in the face of a graded slope for drainage and maintenance purposes.

SECTION J103
PERMITS REQUIRED

J103.1 Permits required. Except as exempted in Section J103.2, no grading shall be performed without first having obtained a permit therefor from the building official. A grading permit does not include the construction of retaining walls or other structures.

J103.2 Exemptions. A grading permit shall not be required for the following:

1. Grading in an isolated, self-contained area, provided there is no danger to the public, and that such grading will not adversely affect adjoining properties.

2. Excavation for construction of a structure permitted under this code.

3. Cemetery graves.

4. Refuse disposal sites controlled by other regulations.

5. Excavations for wells, or trenches for utilities.

6. Mining, quarrying, excavating, processing or stockpiling rock, sand, gravel, aggregate or clay controlled by other regulations, provided such operations do not affect the lateral support of, or significantly increase stresses in, soil on adjoining properties.

7. Exploratory excavations performed under the direction of a registered design professional.

Exemption from the permit requirements of this appendix shall not be deemed to grant authorization for any work to be done in any manner in violation of the provisions of this code or any other laws or ordinances of this jurisdiction.

SECTION J104
PERMIT APPLICATION AND SUBMITTALS

J104.1 Submittal requirements. In addition to the provisions of Section 105.3, the applicant shall state the estimated quantities of excavation and fill.

J104.2 Site plan requirements. In addition to the provisions of Section 107, a grading plan shall show the existing grade and finished grade in contour intervals of sufficient clarity to indicate the nature and extent of the work and show in detail that it complies with the requirements of this code. The plans shall show the existing grade on adjoining properties in sufficient detail to identify how grade changes will conform to the requirements of this code.
J104.3 Geotechnical report. A geotechnical report prepared by a registered design professional shall be provided. The report shall contain at least the following:

1. The nature and distribution of existing soils;
2. Conclusions and recommendations for grading procedures;
3. Soil design criteria for any structures or embankments required to accomplish the proposed grading; and
4. Where necessary, slope stability studies, and recommendations and conclusions regarding site geology.

Exception: A geotechnical report is not required where the building code official determines that the nature of the work applied for is such that a report is not necessary.

J104.4 Liquefaction study. For sites with mapped maximum considered earthquake spectral response accelerations at short periods (S_s) greater than 0.5g as determined by Section 1613, a study of the liquefaction potential of the site shall be provided, and the recommendations incorporated in the plans.

Exceptions:

1. A liquefaction study is not required where the building official determines from established local data that the liquefaction potential is low.
2. [OSHPD 1, 2, & 4] Exception 1 not permitted by OSHPD.

SECTION J105 INSPECTIONS

J105.1 General. Inspections shall be governed by Section 109, Chapter 1, Division II of this code.

J105.2 Special inspections. The special inspection requirements of Section 1704.7 shall apply to work performed under a grading permit where required by the building official.

SECTION J106 EXCAVATIONS

J106.1 Maximum slope. The slope of cut surfaces shall be no steeper than is safe for the intended use, and shall be no steeper than two units horizontal to one unit vertical (50-percent slope) unless the owner or authorized agent furnishes a geotechnical report justifying a steeper slope.

Exceptions:

1. A cut surface shall be permitted to be at a slope of 1.5 units horizontal to one unit vertical (67-percent slope) provided that all of the following are met:
 1.1. It is not intended to support structures or surcharges.
 1.2. It is adequately protected against erosion.
 1.3. It is no more than 8 feet (2438 mm) in height.
 1.4. It is approved by the building code official.
 1.5. Ground water is not encountered.

2. A cut surface in bedrock shall be permitted to be at a slope of one unit horizontal to one unit vertical (100-percent slope).

J106.2 Earth Retaining Shoring. [OSHPD 1 & 4]

J106.2.1 General. The requirements of this section shall apply to temporary and permanent earth retaining shoring using soldier piles and lagging with or without tie-back anchors in soil or rock, only when existing or new OSHPD 1 or 4 facilities are affected. Shoring used as construction means and methods only, which does not affect existing or new OSHPD 1 or 4 facilities, are not regulated by OSHPD and shall satisfy the requirements of the authorities having jurisdiction.

Design, construction, testing and inspection shall satisfy the requirements of this code except as modified in Sections J106.2.2 through J106.2.8.

J106.2.2 Duration. Shoring shall be considered temporary when elements of the shoring will be exposed to site conditions for a period of less than one (1) year, and shall be considered permanent otherwise. Permanent shoring shall account for the increase in lateral soil pressure due to earthquake. At the end of the construction period, the existing and new structures shall not rely on the temporary shoring for support in anyway. Wood components shall not be used for permanent shoring lasting more than two (2) years. Wood components of the temporary shoring that may affect the performance of permanent structure shall be removed after the shoring is no longer required.

All components of the shoring shall have corrosion protection or preservative treatment for their expected duration. Wood components of the temporary shoring that will not be removed shall be treated in accordance with AWPA U1 (Commodity Specification A, Use Category 4B and Section 5.2), and shall be identified in accordance with Section 2303.1.8.1.

J106.2.3 Surcharge. Surcharge pressure due to footings, traffic or other sources shall be considered in design. If the footing surcharge is located within the semicircular distribution or bulb of earth pressure (when shoring is located close to a footing), lagging shall be designed for lateral earth pressure due to footing surcharge. Soil arching effects may be considered in the design of lagging. Underpinning of the footing may be used in lieu of designing the shoring and lagging for surcharge pressure. Alternatively, continuously contacting drilled pier shafts near the footings shall be permitted. The lateral surcharge design pressure shall be derived using Boussinesq equations modified for the distribution of stresses in an elastic medium due to a uniform, concentrated or line surface load as appropriate and soil arching effects.

J106.2.4 Design and testing. Except for the modifications as set forth in Sections J106.2.4.1 and J106.2.4.2 below, all prestressed rock and soil tie-back anchors shall be designed and tested in accordance with PTI Recommendations for Prestressed Rock and Soil Anchors (PTI-2004).
J106.2.4.1 Geotechnical requirements. The geotechnical report for the earth retaining shoring shall address the following:

1. Minimum diameter and minimum spacing for the anchors including consideration of group effects.
2. Maximum unbonded length and minimum bonded length of the tie-back anchors.
3. Maximum recommended anchor tension capacity based upon the soil or rock strength/grout bond and anchor depth/spacing.
4. Allowable bond stress at the ground/grout interface and applicable factor of safety for ultimate bond stress for the anchor. For permanent anchors, a minimum factor of safety of 2.0 shall be applied to ground soil interface as required by PTI-2004 Section 6.6.
5. Minimum grout pressure for installation and postgrout pressure for the anchor. The presumptive postgrout pressure of 300 psi may be used for all soil type.
6. Class I Corrosion Protection is required for all permanent anchors. The geotechnical report shall specify the corrosion protection recommendations for temporary anchors.
7. Performance test for the anchors shall be at a minimum of two (2) times the design loads and shall not exceed 80 percent of the specified minimum tensile strength of the anchor rod. A creep test is required for all prestressed anchors that are performance tested. All production anchors shall be tested at 150 percent of design loads and shall not be greater than 70 percent of the specified minimum tensile strength of the anchor rod.
8. Earth pressure, surcharge pressure and the seismic increment of earth pressure loading, when applicable.
9. Maximum recommended lateral deformation at the top of the soldier pile, at the tie-back anchor locations and the drilled pier concrete shafts at the lowest grade level.
10. Allowable vertical soil bearing pressure, friction resistance and lateral passive soil resistance for the drilled pier concrete shafts and associated factors of safety for these allowable capacities.
11. Soil-pier shaft/pile interaction assumptions and lateral soil stiffness to be used in design for drilled pier concrete shaft or pile lateral loads.

J106.2.4.2 Structural requirements:

1. Tendons shall be thread-bar anchors conforming to ASTM A 722.
2. Anchor design loads shall be based upon the load combinations in Section 1605A.3.1 and shall not exceed 60 percent of the specified minimum tensile strength of the tendons.
3. The anchor shall be designed to fail in grout bond to the soil or rock before pullout of the soil wedge.
4. Design of shoring system shall account for as-built locations of soil anchors considering all specified construction tolerances in Section J106.2.8.
5. Design of shoring system shall account for both short and long term deformation.

J106.2.4.3 Testing of tie-back anchors:

1. The geotechnical engineer shall keep a record at job site of all test loads and total anchor movement, and report their accuracy.
2. If a tie-back anchor initially fails the testing requirements, the anchor shall be permitted to be regrounded and retested. If anchor continues to fail, the followings steps shall be taken:
 a. The contractor shall determine the cause of failure – variations of the soil conditions, installation methods, materials, etc.
 b. Contractor shall propose a solution to remedy the problem. The proposed solution will need to be reviewed and approved by the geotechnical engineer, shoring design engineer and building official.
3. After a satisfactory test, each anchor shall be locked off in accordance with Section 8.4 of PTI 2004.
4. The shoring design engineer shall specify design loads for each anchor.

J106.2.5 Construction. The construction procedure shall address the following:

1. Holes drilled for piles/tie-back anchors shall be done without detrimental loss of ground, sloughing or caving of materials and without endangering previously installed shoring members or existing foundations.
2. Drilling of earth anchor shafts for tie-backs shall occur when the drill bench reaches two to three feet below the level of the tie-back pockets.
3. Casing or other methods shall be used where necessary to prevent loss of ground and collapse of the hole.
4. The drill cuttings from earth anchor shaft shall be removed prior to anchor installation.
5. Unless tremie methods are used, all water and loose materials shall be removed from the holes prior to installing piles/tie-backs.
6. Tie-back anchor rods with attached centralizing devices shall be installed into the shaft or through the drill casing. Centralizing device shall not restrict movement of the grout.
7. After lagging installation, voids between lagging and soil shall be backfilled immediately to the full height of lagging.

8. The soldier piles shall be placed within specified tolerances in the drilled hole and braced against displacement during grouting. Fill shafts with concrete up to top of footing elevation, rest of the shaft can generally be filled with lean concrete. Excavation for lagging shall not be started until concrete has achieved sufficient strength for all anticipated loads as determined by the shoring design engineer.

9. Where boulders and/or cobbles have been identified in the geotechnical reports, contractor shall be prepared to address boulders and/or cobbles that may be encountered during the drilling of soldier piles and tie-back anchors.

10. The grouting equipment shall produce grout free of lumps and indispensed cement. The grouting equipment shall be sized to enable the grout to be pumped in continuous operation. The mixer shall be capable of continuously agitating the grout.

11. The quantity of grout and grout pressure shall be recorded. The grout pressure shall be controlled to prevent excessive heave in soils or fracturing rock formations.

12. If postgrouting is required, postgrouting operation shall be performed after initial grout has set for 24-hours in the bond length only. Tie-backs shall be grouted over a sufficient length (anchor bond length) to transfer the maximum anchor force to the anchor grout.

13. Testing of anchors may be performed after postgrouting operations provided grout has reached strength of 3,000 psi as required by PTI-2004 Section 6.11.

14. Anchor rods shall be tensioned straight and true. Excavation directly below the anchors shall not continue before those anchors are tested.

J106.2.6 Inspection, survey monitoring and observation.

1. The shoring design engineer or his designee shall make periodic inspections of the job site for the purpose of observing the installation of shoring system, testing of tie-back anchors and monitoring of survey.

2. Testing, inspection and observation shall be in accordance with testing, inspection and observation requirements approved by the building official. The following activities and materials shall be tested, inspected, or observed by the special inspector and geotechnical engineer:
 a. Sampling and testing of concrete in soldier pile and tie-back anchor shafts
 b. Fabrication of tie-back anchor pockets on soldier beams
 c. Installation and testing of tie-back anchors
 d. Survey monitoring of soldier pile and tie-back load cells
 e. Survey monitoring of existing buildings

3. A complete and accurate record of all soldier pile locations, depths, concrete strengths, tie-back locations and lengths, tie-back grout strength, quantity of concrete per pile, quantity of grout per tie-back and applied tie-back loads shall be maintained by the special inspector and geotechnical engineer. The shoring design engineer shall be notified of any unusual conditions encountered during installation.

4. Calibration data for each test jack, pressure gauge and master pressure gauge shall be verified by the special inspector and geotechnical engineer. The calibration tests shall be performed by an independent testing laboratory and within 120 calendar days of the data submitted.

5. Monitoring points shall be established at the top and at the anchor heads of selected soldier piles and at intermediate intervals as considered appropriate by the geotechnical engineer.

6. Control points shall be established outside the area of influence of the shoring system to ensure the accuracy of the monitoring readings.

7. The periodic basis of shoring monitoring, as a minimum, shall be as follows:
 a. Initial monitoring shall be performed prior to any excavation.
 b. Once excavation has begun, the periodic readings shall be taken weekly until excavation reaches the estimated subgrade elevation and the permanent foundation is complete.
 c. If performance of the shoring is within established guidelines, shoring design engineer may permit the periodic readings to be bi-weekly. Once initiated, bi-weekly readings shall continue until the building slab at ground floor level is completed and capable of transmitting lateral loads to the permanent structure. Thereafter, readings can be monthly.
 d. Where the building has been designed to resist lateral earth pressures, the periodic monitoring of the soldier piles and adjacent structure can be discontinued once the ground floor diaphragm and subterranean portion of the structure is capable of resisting lateral soil loads and approved by the shoring design engineer, geotechnical engineer and building official.
 e. Additional readings shall be taken when requested by the special inspector, shoring design engineer, geotechnical engineer or building official.
8. Monitoring reading shall be submitted to the shoring design engineer, engineer in responsible charge, and the building official within three working days after they are conducted. Monitoring readings shall be accurate to within 0.01 feet. Results are to be submitted in tabular form showing at least the initial date of monitoring and reading, current monitoring date and reading and difference between the two readings.

9. If the total cumulative horizontal or vertical movement (from start of construction) of the existing buildings reaches 1/2 inch or soldier piles reaches 1 inch all excavation activities shall be suspended. The geotechnical and shoring design engineer shall determine the cause of movement, if any, and recommend corrective measures, if necessary, before excavation continues.

10. If the total cumulative horizontal or vertical movement (from start of construction) of the existing buildings reaches 1/4 inch or soldier piles reaches 1 1/2 inches all excavation activities shall be suspended until the causes, if any, can be determined. Supplemental shoring shall be devised to eliminate further movement and the building official shall review and approve the supplemental shoring before excavation continues.

11. Monitoring of tie-back anchor loads:
 a. Load cells shall be installed at the tie-back heads adjacent to buildings at maximum interval of 50 feet, with a minimum of one load cells per wall.
 b. Load cell readings shall be taken once a day during excavation and once a week during the remainder of construction.
 c. Load cell readings shall be submitted to the geotechnical engineer, shoring design engineer, engineer in responsible charge and the building official.
 d. Load cell readings can be terminated once the temporary shoring no longer provides support for the buildings.

4. If excessive movement or visible cracking occurs, contractor shall stop work and shore/reinforce excavation and contact shoring design engineer and the building official.

5. Monitoring of the existing structure shall be at reasonable intervals as required by the registered design professional subject to approval of the building official. Monitoring shall be performed by a licensed surveyor and shall consist of vertical and lateral movement of the existing structures. Prior to starting shoring installation a preconstruction meeting shall take place between the contractor, shoring design engineer, surveyor, geotechnical engineer and the building official to identify monitoring locations on existing buildings.

6. If in the opinion of the building official or shoring design engineer, monitoring data indicate excessive movement or other distress, all excavation shall cease until the geotechnical engineer and shoring design engineer investigates the situation and makes recommendations for remediation or continuing.

7. All reading and measurements shall be submitted to the building official and shoring design engineer.

J106.2.8 Tolerances. Following tolerances shall be specified on the construction documents.

1. Soldier piles:
 i. Horizontal and vertical construction tolerances for the soldier pile locations.
 ii. Soldier pile plumbness requirements (angle with vertical line).

2. Tie-back anchors:
 i. Allowable deviation of anchor projected angle from specified vertical and horizontal design projected angle.
 ii. Anchor clearance to the existing/new utilities and structures.

SECTION J107
FILLS

J107.1 General. Unless otherwise recommended in the geotechnical report, fills shall comply with the provisions of this section.

J107.2 Surface preparation. The ground surface shall be prepared to receive fill by removing vegetation, topsoil and other unsuitable materials, and scarifying the ground to provide a bond with the fill material.

J107.3 Benching. Where existing grade is at a slope steeper than five units horizontal to one unit vertical (20-percent slope) and the depth of the fill exceeds 5 feet (1524 mm) benching shall be provided in accordance with Figure J107.3. A key shall be provided which is at least 10 feet (3048 mm) in width and 2 feet (610 mm) in depth.
For SI: 1 foot = 304.8 mm.

FIGURE J107.3
BENCHING DETAILS

For SI: 1 foot = 304.8 mm.

FIGURE J108.1
DRAINAGE DIMENSIONS
J107.4 Fill material. Fill material shall not include organic, frozen or other deleterious materials. No rock or similar irreducible material greater than 12 inches (305 mm) in any dimension shall be included in fills.

J107.5 Compaction. All fill material shall be compacted to 90 percent of maximum density as determined by ASTM D 1557, Modified Proctor, in lifts not exceeding 12 inches (305 mm) in depth.

J108.1 General. Cut and fill slopes shall be set back from the property lines in accordance with this section. Setback dimensions shall be measured perpendicular to the property line and shall be as shown in Figure J108.1, unless substantiating data is submitted justifying reduced setbacks.

J108.2 Top of slope. The setback at the top of a cut slope shall not be less than that shown in Figure J108.1, or than is required to accommodate any required interceptor drains, whichever is greater.

J108.3 Slope protection. Where required to protect adjacent properties at the toe of a slope from adverse effects of the grading, additional protection, approved by the building official, shall be included. Such protection may include but shall not be limited to:

1. Setbacks greater than those required by Figure J108.1.
2. Provisions for retaining walls or similar construction.
3. Erosion protection of the fill slopes.
4. Provision for the control of surface waters.

J109.1 General. Unless otherwise recommended by a registered design professional, drainage facilities and terracing shall be provided in accordance with the requirements of this section.

Exception: Drainage facilities and terracing need not be provided where the ground slope is not steeper than 3 horizontal to 1 vertical (33 percent).

J109.2 Terraces. Terraces at least 6 feet (1829 mm) in width shall be established at not more than 30-foot (9144 mm) vertical intervals on all cut or fill slopes to control surface drainage and debris. Suitable access shall be provided to allow for cleaning and maintenance.

Where more than two terraces are required, one terrace, located at approximately mid-height, shall be at least 12 feet (3658 mm) in width.

Swales or ditches shall be provided on terraces. They shall have a minimum gradient of 20 horizontal to 1 vertical (5 percent) and shall be paved with concrete not less than 3 inches (76 mm) in thickness, or with other materials suitable to the application. They shall have a minimum depth of 12 inches (305 mm) and a minimum width of 5 feet (1524 mm).

A single run of swale or ditch shall not collect runoff from a tributary area exceeding 13,500 square feet (1256 m²) (projected) without discharging into a down drain.

J109.3 Interceptor drains. Interceptor drains shall be installed along the top of cut slopes receiving drainage from a tributary width greater than 40 feet (12 192 mm), measured horizontally. They shall have a minimum depth of 1 foot (305 mm) and a minimum width of 3 feet (915 mm). The slope shall be approved by the building official, but shall not be less than 50 horizontal to 1 vertical (2 percent). The drain shall be paved with concrete not less than 3 inches (76 mm) in thickness, or by other materials suitable to the application. Discharge from the drain shall be accomplished in a manner to prevent erosion and shall be approved by the building official.

J109.4 Drainage across property lines. Drainage across property lines shall not exceed that which existed prior to grading. Excess or concentrated drainage shall be contained on site or directed to an approved drainage facility. Erosion of the ground in the area of discharge shall be prevented by installation of nonerosive down drains or other devices.

Section J110
Erosion Control

J110.1 General. The faces of cut and fill slopes shall be prepared and maintained to control erosion. This control shall be permitted to consist of effective planting.

Exception: Erosion control measures need not be provided on cut slopes not subject to erosion due to the erosion-resistant character of the materials.

Erosion control for the slopes shall be installed as soon as practicable and prior to calling for final inspection.

J110.2 Other devices. Where necessary, check dams, cribbing, riprap or other devices or methods shall be employed to control erosion and provide safety.

Section J111
Referenced Standards

ASTM D 1557-e01 Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort [56,000 ft-lb/ft³ (2,700kN-m/m³)].
APPENDIX K

GROUP R-3 AND GROUP R-3.1 OCCUPANCIES
PROTECTED BY THE FACILITIES OF THE CENTRAL VALLEY
FLOOD PROTECTION PLAN

Note: The effective date of these standards shall be March 1, 2012 or ninety (90) days after the corresponding maps are completed and become readily available to the public general, whichever is the later date.

SECTION K101
SCOPE

K101.1 General. The provisions of this section shall apply to new construction, changes of use and to substantial improvement and restoration of substantial damage as defined in Section 1612, of Group R-3 and R-3.1 Occupancies in areas protected by the facilities of the Central Valley Flood Protection Plan where flood levels are anticipated to exceed three feet for the 200-year flood event. Except as specifically required by this section, buildings and structures shall meet applicable provisions of this code.

Exception: Changes of use of Group R-3 to Group R-3.1 Occupancies, including any substantial improvement done under the same permit.

K101.1.1 Construction documents. If the land on which the proposed work is to be constructed is located in an area protected by the facilities of the Central Valley Flood Protection Plan, the construction documents shall include the WSEL200 and the elevation(s) of the floor(s), and, as applicable, the elevation(s) and slopes of roofs, of the building or structure.

SECTION K102
DEFINITIONS

K102.1 General. The following words and terms shall, for the purposes of this section, have the meanings shown.

AREAS PROTECTED BY THE FACILITIES OF THE CENTRAL VALLEY FLOOD PROTECTION PLAN WHERE FLOOD LEVELS ARE ANTICIPATED TO EXCEED THREE FEET FOR THE 200-YEAR FLOOD EVENT. Geographical areas identified by the state as “Areas Protected by the Facilities of the Central Valley Flood Protection Plan where Flood Levels are Anticipated to Exceed Three Feet for the 200-Year Flood Event” in accordance with Health and Safety Code Section 50465. Published data from the California Department of Water Resources can be obtained online at the following website: www.water.ca.gov/BuildingCodes.

Note: The facilities of the Central Valley Flood Protection Plan are identified in the following counties: Butte, Colusa, Fresno, Glenn, Lake, Madera, Merced, Plumas, Sacramento, San Joaquin, Solano, Stanislaus, Sutter, Tehama, Tuolumne, Yolo and Yuba. Determination of additional facilities is ongoing.

CENTRAL VALLEY. Any lands in the bed or along or near the banks of the Sacramento River and the San Joaquin River, and any of their tributaries or connected therewith, or upon any land adjacent thereto, or within any of the overflow basins thereof, or upon any land susceptible to overflow therefrom. The following counties and the incorporated municipalities within these counties, in whole or in part, are in the Central Valley: Alpine, Amador, Butte, Calaveras, Colusa, El Dorado, Fresno, Glenn, Lake, Lassen, Madera, Mariposa, Merced, Modoc, Napa, Nevada, Placer, Plumas, Sacramento, San Benito, San Joaquin, Shasta, Sierra, Siskiyou, Solano, Stanislaus, Sutter, Tehama, Tuolumne, Yolo and Yuba. A map that delineates the Central Valley can be obtained online at the following website: www.water.ca.gov/BuildingCodes.

EVACUATION LOCATION. A location no less than one (1) foot (0.30 meter) above the WSEL200 where occupants are expected to congregate pending evacuation and from which occupants may be evacuated during conditions of flooding, such as a space within the building that has an exit door or operable window; a deck, balcony, porch, rooftop platform or rooftop area, or combinations thereof.

FACILITIES OF THE CENTRAL VALLEY FLOOD PROTECTION PLAN. The facilities referenced herein include the facilities of State Plan of Flood Control and other flood management facilities in the Central Valley evaluated under the Central Valley Flood Protection Plan, which will be completed in 2012 and updated every 5 years thereafter. The facilities of State Plan of Flood Control include the state and federal flood control works (levees, weirs, channels and other features) of the Sacramento River Flood Control Project described in Water Code Section 8350, and flood control projects in the Sacramento River and San Joaquin River watersheds authorized pursuant to Article 2 (commencing with Water Code section 12648) of Chapter 2 of Part 6 of Division 6 for which the Central Valley Flood Protection Board or the Department of Water Resources has provided the assurances of nonfederal cooperation to the United States, and those facilities identified in Water Code Section 8361.

ROUTE TO THE EVACUATION LOCATION. The path through and along which occupants move from the habitable areas of a building or structure that are below the WSEL200 to the evacuation location.

WSEL200. The water surface elevation (WSEL) of the 200-year flood event that is identified by the state when it identifies areas that receive protection from the facilities of the Central Valley Flood Protection Plan.
SECTION K103
STRUCTURAL STABILITY

K103.1 General. Portions of buildings and structures supporting evacuation locations shall be designed, constructed, connected and anchored to resist flotation, collapse or permanent lateral movement resulting from the hydrostatic loads anticipated during conditions of flooding anticipated for the 200-year flood event.

K103.2 Determination of loads. Hydrostatic loads, based on the depth of water determined by the WSEL200, shall be determined in accordance with Chapter 5 of ASCE 7. Reduction of hydrostatic loads may be accomplished by allowing for the automatic entry and exit of floodwaters to minimize unbalanced loads. Such means shall be designed by a registered design professional and include, but are not limited to, openings, valves, and panels designed to yield under load.

Exception: When two flood vents are installed on opposite sides of the building or structure, one on each side, that comply with Figure K103.1.

SECTION K104
EVACUATION LOCATIONS

K104.1 General. An evacuation location and a route to the evacuation location shall be provided for Group R-3 and R-3.1 Occupancies.

K104.2 Route to evacuation location. A route shall be allowed through any number of intervening rooms or spaces. Doors along the route shall be openable without the use of a key or lock, special knowledge or effort.

Exception: Doors in individual dwelling or sleeping units having an occupant load of 10 or less are permitted to be equipped with a night latch, dead bolt or security chain, provided such devices are openable from the inside without the use of a key or tool.

K104.2.1 Group R-3.1 Occupancies. The route to an evacuation location shall meet the accessibility requirements of Chapter 11A or 11B as applicable.

K104.3 Minimum size requirements. Evacuation locations shall provide a minimum gross floor area of 7 square feet (0.65 m²) per occupant, based on the occupant load of the portions of the building that are below the WSEL200. The area provided shall be adequate to accommodate the occupant load of the upper levels as well as the anticipated occupant load from the area below the WSEL200.

SECTION K105
SPACE WITHIN THE BUILDING

K105.1 General. If the evacuation location is a space within a building, the evacuation location shall be provided with a means for occupants to be evacuated out of the building specified in Sections K105.1.1, K105.1.2 or K105.1.3.

K105.1.1 Windows, minimum size and dimensions. A minimum of one window shall be provided that meets the minimum size, minimum dimensions and operational constraints of Section 1026. The number of such windows shall be appropriate for the occupancy or occupancies of the portions of the building that are below the WSEL200.

Note: It is the intent of this section that windows are of sufficient number, sizes and dimensions to reasonably accommodate the needs and limitations of the occupants of the building. Reasonable judgment in the application of this requirement must be exercised by the building official.

K105.1.2 Exterior doors to decks, balconies and porches. Exterior doors to decks, balconies and porches shall be sized in accordance with Section 1008.

Exception: In Group R-3.1 Occupancies that are subject to the requirements of Chapters 11A or 11B, doors to decks, balconies or porches shall comply with Section 1132A.1.

K105.1.3 Means of escape to rooftops from spaces within a building. The means of escape to rooftops shall be permitted to be provided by a stairway, ramp, alternating tread device, fixed ladder or other means approved by the building official.

Exception: In Group R-3.1 occupancies that are subject to the requirements of Chapter 11A or 11B, such accessibility requirements shall apply to the means of escape to rooftops.

SECTION K106
DECKS AND BALCONIES THAT ARE EVACUATION LOCATIONS

K106.1 General. Decks and balconies that have finish floors no less than one (1) foot (0.30 meter) above the WSEL200 shall be permitted to be evacuation locations. When a deck or balcony used as an evacuation location is not at the same level as a floor within the building, it shall be permitted to be accessed by a stairway, ramp, alternating tread device, fixed ladder or other means approved by the building official.

K106.2 Live load. Decks and balconies that are evacuation locations shall be designed for the live load required for the occupancy as required in Table 1607.2.

K106.3 Evacuation route. Evacuation routes to decks and balconies that are evacuation locations shall be permitted to be provided by a stairway, ramp, alternating tread device, fixed ladder or other means approved by the building official.

Exception: In Group R-3.1 Occupancies that are subject to the requirements of Chapter 11A or 11B, such requirements shall apply to the evacuation routes to decks and balconies.
FIGURE K103.1
N.T.S.
FIGURE K103.1
N.T.S.
SECTION K107
ROOFTOP EVACUATION LOCATIONS

K107.1 General. Rooftop evacuation locations shall be permitted to include rooftop platforms and rooftop areas provided that they are no less than one (1) foot (0.30 meter) above the WSEL200. A minimum horizontal distance of three (3) feet (0.91 meter) shall be provided between the lower edge of the rooftop evacuation location access point and the evacuation location lower perimeter.

K107.2 Rooftop platforms required. A rooftop platform shall be provided if the roof covering materials are:
1. Clay tile, concrete tile, slate shingles, wood shingles or wood shakes, and the roof slope is three units vertical in 12 units horizontal (25 percent slope) or greater.
2. Metal roof panels or metal roof shingles, and the roof slope is one unit vertical in 12 units horizontal (8.33 percent slope) or greater.

K107.3 Roof live loads. Roof areas that are rooftop evacuation locations and roofs that support rooftop platforms that are evacuation locations shall be designed for the roof live load required for the occupancy as required in Table 1607.2.

K107.4 Evacuation routes to rooftop evacuation locations. Evacuation routes to rooftop evacuation locations shall be permitted to be provided by a stairway, ramp, alternating tread device, fixed ladder or other means approved by the building official.

Exception: In Group R-3.1 occupancies that are subject to the requirements of Chapter 11A or 11B, such requirements shall apply to the evacuation routes to attics.

K107.5 Perimeter protection. For Group R-3 and R-3.1 occupancies, the perimeter of rooftop evacuation locations shall be protected by:
1. Guards per Section 1013 if a rooftop platform is provided; or
2. A railing that is 12 inches (305 mm) in height if a sloped roof is provided.

K107.6 Utility/equipment buffer zone. A separation of 48 inches shall be provided between a rooftop evacuation location and any mechanical equipment, photovoltaic system, utility service drop or other utility line. Electrical service lines shall not pass over evacuation locations.

SECTION K108
ATTICS THAT ARE EVACUATION LOCATIONS

K108.1 General. Attics that have finish floors no less than one (1) foot (0.30 meter) above the WSEL200 shall be permitted to be evacuation locations.

K108.2 Headroom. When an attic is used as an evacuation location, the minimum headroom of the required area shall be 30 inches (762 mm) with 50 percent of the required area having a headroom of 60 inches (1524 mm).

K108.3 Attic flooring. The required area of the evacuation location shall be solidly sheathed.

K108.4 Attic live loads. Attic areas that are used as evacuation locations shall be designed for the floor live load required for the occupancy as required in Table 1607.2.

K108.5 Evacuation routes to attic evacuation locations. Evacuation routes to attic evacuation locations shall be permitted to be provided by a stairway, ramp, alternating tread device, fixed ladder or other means approved by the building official.

Exception: In Group R-3.1 occupancies that are subject to the requirements of Chapter 11A or 11B, such requirements shall apply to the evacuation routes to attics.

K108.6 Means of escape from attics. The means of escape from attics shall comply with Section K105.

SECTION K109
ALTERNATE MEANS OF PROTECTION

K109.1 Request for approval of alternate means of protection. Requests for approval to use an alternative means of protection shall be made in writing to the building official by the owner or the owner's authorized representative. The request shall be accompanied by a full statement of the conditions and sufficient evidence that the proposed alternate means of protection provides reasonable protection to occupants. The building official shall require the owner to obtain a written statement from the applicable emergency management authority regarding plans and processes related to notification of anticipated conditions of flooding, warnings, evacuations and other pertinent conditions relative to the proximity of nearby levees. The building official shall also require the owner to obtain a written statement and findings from the entity that has jurisdiction over the management, maintenance, monitoring and control of flood protection works in the vicinity of the location of the owner's property; such statement shall comment on the viability of the proposed alternate means of protection. The building official may request written statements from the Central Valley Flood Protection Board, the California Department of Water Resources, and the California Emergency Management Agency.

Approval of a request for use of an alternative means of protection made pursuant to these provisions shall be limited to the particular case covered by the request and shall not be construed as establishing any precedent for any future request except in substantially equivalent situations.

Note: Contact information for the California Department of Water Resources and the Department’s Directory of Flood Officials, which includes levee and reclamation district boundary maps, is available on-line at the following web site: www.water.ca.gov/BuildingCodes. The Department of Water Resources Building Code Project Engineer can be contacted at 916-574-1451. The Central Valley Flood Control Board Chief Engineer can be contacted at 916-574-0609. The California Emergency Management Agency Inland Region Program Manager can be contacted at 916-845-8488.
K109.2 Appeals. When a request for an alternate means of protection has been denied by the building official, the applicant may file a written appeal with the board of appeals. In considering such appeal, the board of appeals may provide additional information to, and request additional written statements from, the Central Valley Flood Protection Board, the California Department of Water Resources, and the California Emergency Management Agency. If such additional written statements are provided, the board of appeals shall consider those statements.
INDEX

AWNINGS .. 3105
Design and construction 3105.3
Drainage, water .. 3201.4
Encroachment, public right-of-way 3202.2.3, 3202.3.1, 3202.4
Fire district ... D102.2.8
Live load .. Table 1607.1, 1607.11.2.1, 1607.11.4
Materials .. 3105.4
Motor vehicle service stations 406.5.3
Permanent .. D102.2.8
Plastic .. 2606.10

B

BALCONIES
Accessibility .. 1120A, 1104B.3.5(Exc. 1), 1113B.3
Assembly .. 1028.5
Construction, exterior 1406.3
Egress, means of ... 1016.2, 1019, 1028.5
Emergency escape 1029.1
Guard (or Guardrails) 1002.1, 1013.1
Live load .. Table 1607.1
Projection .. 705.2, 1406.3
Public right-of-way encroachments 3202.3.2, 3202.3.3
Travel distance ... 1016.2

BARBECUES ... 2801

BARRIERS
Fire (see FIRE BARRIER) 3306
Pedestrian protection 3306
Smoke (see SMOKE BARRIER) 3306
Vehicle .. 406.2.4, 1602.1, 1607.7.3

BASEMENT (see UNDERGROUND BUILDINGS)
Aircraft hangars ... 412.4.2
Area modification 506.4, 506.5
Considered a story 502.1
Emergency escape 1029.1
Flood loads .. 1612.2, 1612.5
Height modifications for 509.5
Prohibited .. 415.1, 415.4, 415.5, 415.8.5.2.2, 418.1
Rodentproofing ... Appendix F
Sprinklers ... 903.2.11.1
Waterproofing and dampproofing 1805

BASEMENT WALLS
Concrete .. Table 1904.3, 1909.6.1
Soil loads ... 1610.1
Waterproofing and dampproofing 1805

BASIC WIND SPEED 1609.3

BATHING AND TOILET FACILITIES
(SANITARY FACILITIES) ACCESSIBLE 1127A, 1134A

BATHING AND TOILET FACILITIES
(SANITARY FACILITIES) 1115B
Accessories ... 1115B.8
Bath and shower facilities 1115B.2
Bathtubs (Accessible) 1115B.4.5
Children (Where used by) 1115B.1.2
Diameter/width ... 1115B.7.1
(Grab bar gripping surface) 1115B.7.1
Enclosures (Showers) 1115B.4.4.10
Fixtures (Accessible) 1115B.4.4.10
Floor slope (Showers) 1115B.4.4.7
General (Accessibility) 1115B.1
Grab bars, tub and shower seats 1115B.7
Hand-held sprayer unit (Showers) 1115B.4.4.5
Identification symbols 1115B.6
Lavatories (Accessible) 1115B.4.3
Lockers (Accessories) 1115B.8.5
Medicine cabinets (Accessories) 1115B.8.2
Men's Sanitary Facilities (Symbol) 1115B.6.1
Mirrors (Accessories) 1115B.8.1
Multiple-accommodation 1115B.3.1
Orientation (Showers) 1115B.4.4.3
Passageways .. 1115B.5
Separate and unisex facilities 1115B.1.1
Shower accessories 1115B.4.4.8
Showers (Accessible) 1115B.4.4
Single-accommodation 1115B.3.2
Size and clearances (Showers) 1115B.4.4.1
Soap dish (Showers) 1115B.4.4.9
Sprayer unit alternative (Showers) 1115B.4.4.6
Structural strength 1115B.7.2
(Grab bars, tub and shower seats) 1115B.7.2
Surface (Grab bar/wall) 1115B.7.3
Thresholds (Showers) 1115B.4.4.2
Toilet facilities .. 1115B.3
Toilet tissue dispensers (Accessories) 1115B.8.4
Towel, sanitary napkins, waste receptacles, dispensers & controls (Accessories) 1115B.8.3
Unins (Accessible) 1115B.4.2
Unisex sanitary facilities (Symbol) 1115B.6.3
Water closets (Accessible) 1115B.4.1
Water controls (Showers) 1115B.4.4.4
Women's sanitary facilities (Symbol) 1115B.6.2

BATHROOM (ACCESSIBLE)
For efficiency dwelling units 1208.4

BAY AND ORIEL WINDOWS 1406.4
Public right-of-way encroachments 3202.3.2, 3202.3.3

BLEACHERS .. 303.1, 1028.1.1, 3401.1
Accessibility .. 1104B.3.5(Exc. 1), 1104B.4
Egress .. 1028.1.1
Live load ... Table 1607.1
Occupant load ... 1004.7

BLOCK (see CONCRETE BLOCK AND GLASS UNIT MASONRY)

BOARD OF APPEALS 113, Appendix B
Application for appeal B101.1
Alternate members B101.2.1
Board decision ... B101.4
Limitations on authority 113.2
Membership of board B101.2
Notice of meeting B101.3
Qualifications ... 113.3, B101.2.2

732 2010 CALIFORNIA BUILDING CODE
INDEX

BOILER ROOM
Exits 1015.3
BOLTS 2204.2
Accessors 1911, 1912, 2204.2.1
High strength, steel 1704.3.3
BONDING, MASONRY 2103.9, 2109.2
BRACED WALL LINE 2302.1, 2308.3
Bracing 2309.3
Seismic requirements 2308.12.2, 2308.12.4,
.. 2308.12.6
Sill anchorage 2308.3.3
Spacing 2308.3.1
Support 2308.3.4
BRACED WALL PANEL 2302.1, 2308.9.3
Alternative bracing 2308.9.3.1, 2308.9.3.2
Connections 2308.3.2
BRICK (see MASONRY)

BUILDING
Access, fire department 402.17
Accessibility 1133B.1
Accessibility (scope) 1101A.1
Area (see AREA, BUILDING) 502.1, 503,
.. 505, 506, 507, 508, 509
Definition 202
Demolition 3303
Existing 202, Chapter 34
Fire walls 706.1
Height (see HEIGHT, BUILDING) 502.1,
.. 503, 504, 505,
.. 506, 508, 509
Occupancy classification Chapter 3
Other building components 1117B
Party walls 706.1.1
BUILDING ACCESSIBILITY 1103B
Distance to elevators 1103B.2
Scope 1103B.1
Floors or portions of floors
(not customarily occupied) 1103B.1(Exc. 1)
Multistoried office buildings
(other than the professional office
of a health care provider) 1103B.1(Exc. 2.1)
Other privately funded
Multistoried 1103B.1(Exc. 2.2)
Privately funded multistory 1103B.1(Exc. 2)

BUILDING DEPARTMENT
BUILDING ENTRANCE ON AN
ACCESSIBLE ROUTE (definition) 202, 1107A.2-B
BUILDING OFFICIAL
Duties and powers 104
Qualifications A101.1
Records 104.7
Termination A101.4

BUILT-UP ROOFS 1507.10
BUSINESS OCCUPANCY (GROUP B) 304, 1105B
Accessory 508.2
Aisles 1017.2
Ambulatory health care facilities ... 422
Area 503, 505, 506, 507, 508
Assembly 303.1
Business and professional offices ... 1105B.3.2
Educational 303.1, 304.1
Fire alarm 907.2.2
Height 503, 504, 505, 506, 508, 509
Interior finishes Table 803.9, 804
Live load Table 1607.1
Miscellaneous general standards 1105B.3.6
Office buildings and personal and
public service facilities 1105B.3
Parking under or above 509.2, 509.7,
.. 509.8, 509.9
Personal and public service facilities 1105B.3.3
Plumbing fixtures 2902
Police department, law enforcement, fire
department facilities and courtrooms .. 1105B.3.5
Public utility facilities 1105B.3.4
Special occupancy separation 303.1, Table 508.2.5
Travel distance 1014.3, 1016.1, 1021.2
Unlimited area 507.3, 507.4

CABLES, STEEL STRUCTURAL 2207
CALCULATED FIRE RESISTANCE
(see FIRE RESISTANCE, CALCULATED)
CANOPIES 3105
Design and construction 3105.3
Drainage, water 3201.4
Encroachment, public right-of-way .. 3202.3.1
Fire district D102.2.8
Live load Table 1607.1,
.. 1607.11.2, 1607.11.4
Materials 3105.4
Motor vehicle service stations 406.5.3
Permanent D102.2.8
Plastic 2606.10
CALIFORNIA ADMINISTRATION
Chapter 1, Division I
CARBON MONOXIDE ALARMS (residential) . 420.4
CARE FACILITIES (see HEALTH CARE)
CARPET
Floor covering 804.2
Textile ceiling finish 803.6
Textile wall coverings 803.5
CATWALKS
Live loads Table 1607.1
Means of egress 410.3.2, 1015.6.1
Sprinklers 410.6
CEILING
Acoustical 808
Height 409.2, 909.20.4.3, 1205.2.2, 1208.2
Interior finish 803
Penetration of fire resistant assemblies 713.4,
.. 716.2, 716.6
Suspended acoustical 808.1.1
CELL (definition) 308.4.6
CELL COMPLEX (definition) 308.4.6
CELL TIERS (definition) 308.4.6

2010 CALIFORNIA BUILDING CODE 733
CELLULOSE NITRATE FILM 409.1, 903.2.5.3

CERAMIC TILE
Material requirements 2103.5
Mortar 2103.10

CERTIFICATE OF OCCUPANCY . 106.2, 111, 3408.2
Certificate issued. Chapter 1 Div II - 111.2

CHANGE OF OCCUPANCY 3408, D103.2
Accessibility 3412.2.5

CHILD CARE (see DAY CARE) 305.2, 308.3.1, 308.5.2, 310.1

CHIMNEYS . 2102.1, 2111, 2112, 2113
Factory-built 717.2.5
Flashings 1503.6
Protection from adjacent construction .. 3307.1

CHURCHES
(see RELIGIOUS WORSHIP, PLACES OF)

CIRCULAR STAIRS (see CURVED STAIRWAYS)
CIRCULATION PATH (definition) 202

CITY, COUNTY, AMENDMENTS,
ADDITIONS OR DELETIONS 1.1.8
Findings and filings 1.1.8.1

CLAY ROOF TILE 1507.3
Testing 1716.2

CLINIC
Hospital 308.3
Outpatient (see AMBULATORY
HEALTH CARE FACILITIES). .. 304.1.1, 422

CLINICS - BIRTHING CLINICS 1226.16

CLINICS - GENERAL REQUIREMENTS
Application 1226.2
Ceiling Heights 1226.8
Corridors and Hallways 1226.5
Definitions 1226.3
Doors and Door Openings 1226.6
Elevators 1226.11
Garbage-Solid Wastes and Trash Storage . 1226.12
General Construction 1226.4
Interior Finishes-Floors and Bases 1226.9
Laundry and Trash Chutes 1226.13
Scope 1226.1
Windows and Screens 1226.7
Walls and Ceilings 1226.10

CLINICS - PRIMARY CARE
Abortion Services 1226.14
Clinical Facilities 1226.15

CLINICS - PSYCHOLOGY CLINICS 1226.20

CLINICS - SPECIALTY CLINICS
Chronic Dialysis Clinics 1226.18
Rehabilitation Clinics 1226.19
Surgical Clinics 1226.17

COAL POCKETS 415.6.1.6

CODES . 101.2, 101.4, 102.3, 102.4, 102.6, Chapter 35

COLD STORAGE
(see FOAM PLASTIC INSULATION)
COLD-FORMED STEEL 2202.1, 2209
Light-frame construction 2210

Special inspection 1704.3.1.2, 1704.3.4, 1706.3, 1707.4

COMBUSTIBLE DUSTS 415.6.1

COMBUSTIBLE LIQUIDS 307.4, 307.5, 415.6.2

COMBUSTIBLE MATERIAL
Concealed spaces 413.2, 717.5
Exterior side of exterior wall 1406
High-pile stock or rack storage 413.1, 910.2.2
Type I and Type II 603, 805

COMBUSTIBLE PROJECTIONS 705.2, 1406.3

COMBUSTIBLE STORAGE 413, 910.2.2

COMMON PATH OF EGRESS TRAVEL ... 1014.3

COMPARTMENTATION
Ambulatory Health Care Facilities 422.2
Group I-2 407.4
Group I-3 406.6
Underground buildings 405.4
Values 3412.6.3

COMPLIANCE ALTERNATIVES 3412

COMPRESSED GAS 307.2, 415.8.7.2.2

CONCEALED SPACES 413.2, 717

CONCRETE
ACI modifications Chapter 19
1901.2, 1901.3
1902.1, 1903.1, 1908
Anchorage 1911, 1912
Calculated fire resistance 721.2
Conduits 1906
Construction documents 1901.4
Construction joints 1906
Curing 195.11
Durability 1904
Exposure conditions 1904
Footings 1809
Formwork 1906
Foundation walls 1807.1.5, 1808.8
Materials 1704.4.1, 1903
Mixing 1905.8
Pipe columns, concrete-filled 1915
Pipes 1906
Placing 1905
Plain, structural 1909
Proportioning 1905.2
Quality 1905
Reinforced gypsum concrete 1914
Reinforcement 1907
Rodentproofing Appendix F
Roof tile 1507.3, 1716.2
Shotcrete 1913
Slab, minimum 1910
Special inspections 1704.4, Table 1704.4
Specifications 1903
Strength testing 1704.4.1, 1905.6
Wood support 2304.12

CONCRETE MASONRY
Calculated fire resistance 721.3
Construction 2104
Design 2101.2, 2108, 2109
Materials 2103.1

2010 CALIFORNIA BUILDING CODE

INDEX
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
</table>

CORRECTIONAL TREATMENT CENTERS

<table>
<thead>
<tr>
<th>OPTIONAL SERVICES</th>
<th>24-Hour Mental Health Care Services</th>
<th>1227.23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outpatient Services</td>
<td>1227.22</td>
</tr>
<tr>
<td></td>
<td>Service Spaces</td>
<td>1227.21</td>
</tr>
</tbody>
</table>

CORRIDOR (see CORRIDOR PROTECTION, EXIT ACCESS and FIRE PARTITIONS)

<table>
<thead>
<tr>
<th>Aisles</th>
<th>1018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuity</td>
<td>1018.6</td>
</tr>
<tr>
<td>Dead end</td>
<td>1018.4</td>
</tr>
<tr>
<td>Elevation change</td>
<td>1003.5</td>
</tr>
<tr>
<td>Group B and M</td>
<td>017.2, 1103B.1 (Exc. 2), 1123B.2 (Exc.)</td>
</tr>
<tr>
<td>Group I-2</td>
<td>407.2</td>
</tr>
<tr>
<td>Hazardous</td>
<td>415.8.2.2, 415.8.2.7, 415.8.3, 415.8.4, 415.8.6, 415.8.7.1.4</td>
</tr>
<tr>
<td>Headroom</td>
<td>1003.2, 1003.3</td>
</tr>
<tr>
<td>HPM service</td>
<td>903.2.5.2</td>
</tr>
<tr>
<td>Live load</td>
<td>Table 1607.1</td>
</tr>
<tr>
<td>Walls</td>
<td>709.1, 1018.1</td>
</tr>
<tr>
<td>Width</td>
<td>1018.2</td>
</tr>
</tbody>
</table>

CORRIDOR PROTECTION, EXIT ACCESS

Construction, fire protection	709.1, Table 1018.1, 1018.6
Doors	715.4
Glazing	715.3
Group I-2	407.3
Interior finish	Table 803.9, 804.4
Opening protection	715, 716.5.4.1
Ventilation	1018.5, 1018.5.1

CORROSIVES

| 307.6, Table 414.2.5(1), 414.3, 415.7.3, Table 415.8.2.1.1 |

COURTS (see YARDS OR COURTS)

| 1206 |

COVERED MALL AND OPEN MALL BUILDINGS

| 402 |
Construction type	402.6
Fire department	402.3, 402.17
Fire detection/alarm system	402.4.5.1, 402.11, 402.12.2, 402.15, 907.2.20, 2702.2.14
Interior finish	402.8
Kiosk	402.11
Means of egress	402.4, 402.5, 402.13
Occupant load	402.4.1
Playground structures	402.12
Separation	402.7
Signs	402.16
Smoke control	402.10
Sprinklers	402.9
Standby power	402.14, 2702.2.14
Standpipe system	402.9.1, 905.3.3
Travel distance	402.4, 1014.3, 1016.1, 1021.2

COVERED MULTIFAMILY DWELLINGS (definition)

| 202, 1107A.3-C |

COVERED WALKWAY

| 3306.7 |

CRAWL SPACE

Access	1209.1
Drainage	1805.1.2
Unusable space fire protection	712.3.3

VENTILATION

| 1203.3 |

CRIPPLE WALL

| 2302.1, 2308.9.4 |

CROSS SLOPE (definition)

| 202, 1107A.3-C |

CRYOCINETIC

| Table 307.1, Table 414.5.1, Table 415.8.2.1.1 |

CURB CUT (definition)

| 202, 1107A.3-C |

CURB RAMP (definition)

| 202, 1107A.3-C |

D

DAMPS (see FIRE DAMPSERS AND SMOKE DAMPSERS)

| 716.2 through 716.5 |

DAMPPROOFING AND WATERPROOFING

| 1805 |

Day care

| 305.2, 308.5, 310.1 |

Day surgery center

| (see AMBULATORY HEALTH CARE FACILITIES) |

Dead end

| 1018.4 |

Dead load

| 1602.1, 1606 |

Anchorages

| 1604.8.3 |

DECK

| 1607.1 |

DECK

| 1604.8.3, 310.1 |

Crane

| 308.5.2, 310.1 |

Egress

| 308.5.2, Table 1004.1.1, Table 1015.1, Table 1021.2 |

Day care

| (see AMBULATORY HEALTH CARE FACILITIES) |

Dead end

| 1018.4 |

Dead load

| 1602.1, 1606 |

Footing

| 1808.3 |

Deflection

| 1604.3.1 |

Design strength

| 1602.1, 2102.1 |

Design strength

| 1711.1 |

Newly constructed

| 1711.2 |

Designated seismic system

| 1702.1 |

Seismic qualification

| 1708.4 |
DIAPHRAGMS 1602.1, 2302.1

DIVISION OF THE
STATE ARCHITECT

DOORS 1008, Chapter 11A, 1133B.2
Access-controlled 1008.1.4.4
Accessibility 1126A, 1132A
Delayed egress locks 903.3.1, 907, 1008.1.9.7,
1117B.5.1 (Item 1), 1133B.2.5
Emergency escape 1029.1
Fire (see OPENING PROTECTIVES) 715.4,
1022.3, 1022.4
Glazing 715.4.7, 715.5, 1405.13
Hazardous storage 415.8.5.6
Hardware
(see LOCKS AND LATCHES) 1005.3,
1008.1.4.4, 1008.1.9,
1008.1.10, 1115B.3.1 (4.5), 1116B.1.8,
1117B.5.1(1), 1125B.4, 1133B.2.5,
1133B.2.5.2, 1134B.2.1 (3.6.11)
Horizontal sliding 1008.1.4.3
Hydrogen cutoff rooms 421.4.1
Landings 1008.1.5, 1008.1.6
Means of Egress 1008.1, Chapter 11, 1133B.2
Operation 1008.1.3, 1008.1.9
Panic and fire exit hardware 1008.1.10
Power operated 1008.1.4.2
Revolving 1008.1.4.1
Security grilles 1008.1.4.5

EDUCATIONAL OCCUPANCY
(GROUP E) 305, 1106B
Accessory 508.2
Accessory assembly spaces 303.1
Area 503, 505, 506, 507, 508
Corridors 1018.1, 1018.2
Day care 305.2, 308.5, 310.1
Education for students above the 12th grade ... 304
Egress, special provisions 1008.1.10
Fire alarm and detection 907.2.3
Gyms 303.1
Height 503, 504, 505, 506, 508
Laboratory rooms 1106B.2
Interior finishes Table 803.9, 804
Library general use areas 1106B.4
Live load Table 1607.1

EARTHWQuAKE LOADS (see SEISMIC) 1613

DIY CLEANING PLANTS 415.6.4
DRIY ROOMS 417
DUCCTS AND AIR TRANSFER OPENINGS
(see MECHANICAL) DUMBWAITERS 708.14

DRAWING AND FITTING ROOMS 1117B.8

DRINKING FOUnTAINS
Accessible drinking fountains 1117B.1
Alcoves 1117B.1(3)
Bubbler 1117B.1(4)
Clearances 1117B.1(2)
Water flow 1117B.1(5)

DRINKING FOUnTAINS 1139A

DRAFTSTOPPING
Attics 717.4
Floor-ceiling assemblies 717.3

DIY CLEANING PLANTS 415.6.4
DRIY ROOMS 417
DUCCTS AND AIR TRANSFER OPENINGS
(see MECHANICAL) DUMBWAITERS 708.14

DWELLING UNIT, ADAPTABLE
(see ADAPTABLE DWELLING UNIT) ..

DWELLING UNITS (definition) 202, 1107A.4-D
Accessibility Chapter 11A, 1107A.4-D, 1102B
Accessibility, existing 1102A.2
Adaptable 1111B, 1114B.1.5.1
Area 1208.3, 1208.4
Group R 310
Live/work units (see LIVE/WORK UNITS)
Scoping 101.2
Separation 420.2, 420.3
Sound transmission 1207
Visible alarms 420.4.4

INDEX
ELEVATOR

Means of egress 1116B.1.2
Lobby 1116B.1.4
Machine rooms Table 1607.1, 1607.8, 3006
Means of egress 403.6, 1007.2, 1007.2.1, 1007.4, 1116B.2.5, 3008

INDEX

Manual fire alarm boxes 907.2.3, 907.4.2
Occupancy category Table 1604.5
Panic hardware 1008.1.10
Plumbing fixtures 2902
Religious facilities 303.1
Special occupancy separation . 303.1, Table 508.2.5
Sprinkler system 903.2.3
Stages and platforms 410
Teaching facility cubicles, study carrels . 1106B.3
Travel distance 1014.3, 1016.1, 1021.2
Unlimited area 507.10

EFFICIENT DATE OF THIS CODE. 1.1.9

EFFICIENCY DWELLING UNIT 1208.4

EGRESS

(see MEANS OF EGRESS) Chapter 10, 1114B.2

ELECTRICAL 105.2, 112, Chapter 27, Appendix K
Accessible means of egress elevators 2702.2.5
Accessible means of egress platform lifts 2702.2.6

ELEVATOR 1116B, 3003, Chapter 30
Accessibility 1007.2.1, 1007.4, 1007.8, 1124A, 1116B, 3001.1, 3001.3
Acmodation for persons with disabilities 1116B.1.1
Car call 1116B.1.7
Car controls 1116B.1.9
Car inside 1116B.1.8
Car size 3001.3, 3002.4
Construction 708.14, 1116B.1, 1607.8.1
Control values 3412.6.14
Conveying systems 1124A, 3001.1, 3001.3, 3005
Distance to 1103B.2
Door jambs marking 1116B.1.14
Door operation 1116B.1.3
Door protective and reopening device 1116B.1.5
Doors and gates 1116B.2.6
Door size 3002.3, 3002.5, 3003, 3007, 3008
Emergency operations 403.6.1, 3007
Fire service access 403.6.1
General (Accessibility) 1116B.1.1
Hall call 1116B.1.6
Hall call buttons 1116B.1.10
Hall lantern 1116B.1.13
Glass 2409, 3002.5
Handrails 1116B.1.11
High-rise 403.2.3, 403.4.7, 403.4.8, 403.6
Hoistway enclosures 403.2.3, 708, 1022.3, 3002, 3005.3.1
Hoistway venting 3004
Illumination (minimum) 1116B.1.12
Landing size 1116B.2.3
Lobby 1007.4, 3007.4, 3008.11
Location 1116B.1.15
Machine rooms Table 1607.1, 1607.8, 3006
Means of egress 403.6, 1003.7, 1007.2.1, 1007.4, 1116B.2.5, 1116B.2.5.2, 3008

Minimum illumination 1116B.1.12
Number of elevator cars in hoistway ... 3008.2
Occupant evacuation elevators 403.6.2, 3008
Operation and leveling 1116B.1.2
Passenger (definition) 202
Passenger elevators (accessible) 1116B.3, 3001.3
Platform (wheelchair) lift 1116B.2, 1116B.3, 1116B.5.1 (Exc.), 3001.4
Personnel and material hoists 3005.4
Relationship to path of travel 1116B.2.4
Restriction sign 1116B.2.7
Roof access 1009.14
Seismic controls 1613.6.5
Shaft enclosure 708.14
Size of cab and control locations 1116B.1.1
Signs 914, 1007.8.2, 1008, 3002.3.1
Standards 3001
Standby power 1116B.2.5.1, 2702.2.5, 2702.2.6
Structural design/safeguards/vertical distance [Platform (wheelchair) lifts]
Unassisted entry [Platform (wheelchair) lifts]
Underground 405.4.3

EMERGENCY COMMUNICATIONS
Accessible means of egress 1007.8
Alarms (see FIRE ALARMS) 3008.5
Elevators, occupant evacuation 403.4.5, 911
Fire command center 403.4.5, 911
Radio coverage 403.4.4, 915
Visible communication method 1007.8.3.1

EMERGENCY EGRESS OPENINGS
Required Table 1021.2, 1029.1
Window wells 1029.5

EMERGENCY LIGHTING
.................................. 1006, 1205.5

EMERGENCY POWER
.................................. 2702.1, 2702.3
Exit signs 1011.5, 2702.2.3, 2702.2.9
Group A 2702.2.1
Group I-3 408.4.2, 2702.2.17
Hazardous 415.4.4, 415.8.10, 2702.2.8, 2702.2.10, 2702.2.11, 2702.2.13
High-rise 403.4.8, 2702.2.15
Means of egress illumination 1006.3, 2702.2.4
Semiconductor fabrication 415.8.10, 2702.2.8
Underground buildings 405.9, 2702.2.16

EMERGENCY RESPONDERS
Additional exit stairway 403.5.2
Elevators 403.6, 1007.2.1, 3002.4, 3003, 3007, 3008
Fire command center 403.4.5, 911
Fire department access 402.17
Radio coverage 403.4.4, 915
Roof access 1009.13
Safety features 914

EMERGENCY WARNING SYSTEMS 1114B.2.2

EMPIRICAL DESIGN OF MASONRY 2101.2.4, 2109
Adobe construction 2109.3
General 2109.1
Special inspection .. 1704.5
Surface-bonded ... 2109.2

EMPLOYEE
Accessibility for work areas 907.5.2.3.2,
1105B.3.2(3), 1105B.3.3(2),
1108B.5, 1110B.1.2, 1123B
General (employee areas accessibility) 1123B.1
Qualifications .. A101
Termination of employment A101.4
Work stations ... 1123B.2

ENCROACHMENTS INTO THE
PUBLIC RIGHT-OF- WAY Chapter 32

END-JOINED LUMBER .. 2303.1.1

ENERGY EFFICIENCY 101.4.6,
110.3.7, Chapter 13

ENFORCING AGENCY .. 202
California Energy Commission 105
California State Lands Commission 114
 Corrections Standards Authority 103
Department of Consumer Affairs 104
Department of Food and Agriculture 106
Department of Health Services 107
Division of the State
Architect—Access Compliance 109.1
Division of the State
Architect—Structural Safety 109.2
Housing and Community Development 108
Office of the State Fire Marshal 111
Office of Statewide Health Planning and
Development ... 110
Special Conditions for Persons with Disabilities
Requiring Appeals Action Ratification 109.1.5
State Librarian ... 112

ENGINEER (see definition for REGISTERED
DESIGN PROFESSIONAL)

ENTRANCES, EXITS AND PATHS OF TRAVEL
(ACCESSIBILITY FOR) Div III 1133B
Aisles ... 1133B.6
All entrances & exterior ground-floor
exit doors (Building accessibility) 1133B.1.1.1.1
Automatic and power-assisted
doors (Hinged doors) 1133B.2.3.2
Building accessibility 1133B.1
Change of direction (Ramp-landing) 1133B.5.4.6
Changes in level (Walks/Sidewalks) 1133B.7.4
Continuous surface (Walks/Sidewalks) 1133B.7.1
Corridors and hallways over 200 feet 1133B.3.2
Corridors and hallway widths 1133B.3.1
Corridors, hallways and exterior
exit balconies ... 1133B.3
Detectable directional texture at
boarding platforms (Hazards) 1133B.8.4
Detectable warnings at
hazardous vehicular areas (Hazards) 1133B.8.5
Detectable warnings at
reflecting pools (Hazards) 1133B.8.7
Detectable warnings at transit
boarding platforms (Hazards) 1133B.8.3
Door closer (Door opening force) 1133B.2.5.1
Door opening force ... 1133B.2.5
Doors ... 1133B.2
Doors at ramp landings 1133B.5.4.3
Encroachment of doors at
ramp landings ... 1133B.5.4.4
Entrances & exterior ground floor
exit doors (Building accessibility) 1133B.1.1.1
Entrances (Building accessibility) 1133B.1.1
Existing ramps (Landings) 1133B.5.4.8
Five percent gradient (Walks/Sidewalks) 1133B.7.3
Floor level at doors ... 1133B.2.4
Free-standing signs
(Protruding objects-Hazards) 1133B.8.6.3
Gates (Building accessibility) 1133B.1.1.1.4
Gratings (Walks/Sidewalks) 1133B.7.2
Gradient (5 percent) 1133B.7.3
Guards (Ramps) .. 1133B.5.7
Guide curbs and wheel
guide rails (Ramps) 1133B.5.6
Hand-activated door opening
hardware (Door opening force) 1133B.2.5.2
Handgrips
(Stairways-handrail configuration) 1133B.4.2.6
Handrails (Stairways) 1133B.4.4.1
Handrail configuration (Stairways) 1133B.4.2
Handrails for ramps .. 1133B.5.5
Hazard .. 1133B.8
Hazard (Building accessibility) 1133B.1.1.1.1
Location (Ramp landings) 1133B.5.4.1
Maneuvering clearances at doors
(Floor level at doors) 1133B.2.4.2
Nosing (Stairways) ... 1133B.4.5.3
Other intermediate landings (Ramp) 1133B.5.4.7
Outdoor ramps .. 1133B.5.8
Overhanging obstructions (Hazards) 1133B.8.2
Pairs of doors (Hinged doors) 1133B.2.3.1
Protruding objects (Hazards) 1133B.8.6
Ramp handrails .. 1133B.5.5.1.1
Ramps ... 1133B.5
Recessed doors (Floor level at doors) 1133B.2.4.5
Recessed doormats
(Building accessibility) 1133B.1.1.1.3
Required handrails (Stairways) 1133B.4.1.1
Revolving doors (Hinged doors) 1133B.2.3.3
Risers (Stairways) .. 1133B.4.5.2
Service entrances
(Building accessibility) 1133B.1.1.1.5
Size of top and bottom landings
(Ramp) .. 1133B.5.4.2
Slope (Ramps) ... 1133B.5.3, 1133B.5.3.1
Slopes less than 6 percent (Continuous
surface-Walks/Sidewalks) 1133B.7.1.1
Slopes 6 percent or greater (Continuous
surface-Walks/Sidewalks) 1133B.7.1.2
INDEX

Smooth surface (Doors) .. 1133B.2.6
Stair treads, risers & nosing (Stairways) 1133B.4.5
Stairways .. 1133B.4
Striping for the visually impaired (Stairways) 1133B.4.4
Surface cross slopes (Continuous surface-Walks/Sidewalks) 1133B.7.1.3
Tactile floor designation signs in stairways 1133B.4.3
Temporary restriction (Building accessibility) 1133B.1.1.1.2
Thresholds (Floor level at doors) 1133B.2.4.1
Treads (Stairways) .. 1133B.4.5.1
Turnstiles, rails & pedestrian controls (Hinged doors) 1133B.2.3.4
Type of lock or latch (Doors) 1133B.2.1
Walks and sidewalks 1133B.7
Warning curbs (Hazards) 1133B.8.1
Width (Aisles) ... 1133B.6.2
Width (Ramps) .. 1133B.5.2
Width and height (Doors) 1133B.2.2
ENTRANCES, EXITS AND PATHS OF TRAVEL (Building Accessibility) Chapter 11A
EQUIVALENT FACILITATION (definition) 202, 1107A.5-E, 1102B
EQUIVALENT OPENING FACTOR Figure 705.7
ESCALATORS .. 3005
Accessibility ... 1103B.1, 103B.2, 1116B.1, 1121B.3.1(16)
Floor opening protection 702.8
Means of egress ... 1003.7
ESSENTIAL FACILITIES (see OCCUPANCY CATEGORY) 1602.1
EXCAVATION, GRADING AND FILL 1804, 3304
EXISTING BUILDING .. 102.6, Chapter 34, 1134B
Accessibility ... 1102A.2, 1134B
Additions .. 3403, D103.1
Alteration .. 3404, D103.1
Alteration of single elements 1134B.2.3
Change of occupancy 3408, D103.1
Definition (see BUILDING, EXISTING) 202
Flood resistant ... 3401.2, 3403.2, 3404.2, 3405.5, 3409.2, 341 2.2.4.1, Appendix G
General (Accessibility) 1134B.2
General (Scope) .. 3401.1, 1134B
Historic .. 3409
Moved structures .. 3410, D1 03.3
Primary entrance .. 1134B.2.1
Repairs .. 3405
Rodentproofing ... Appendix F
Scope (Accessibility) 1134B.1
Toilet facilities ... 1134B.2.2
EXIT (see MEANS OF EGRESS) 1020 through 1026
Boiler rooms .. 1015.3
Construction .. 708.2
Definition .. 1002.1
Enclosure .. 707.3.2, 1022.1
Fire resistance .. 707.3, 1022
Furnace rooms ... 1015.3
Group H ... 41 5.8.4.4, 41 5.8.5.5
Horizontal .. 707.3.3, 1025
Incinerator rooms .. 1015.3
Interior finish .. Table 803.9, 804
Luminous .. 403.5.5, 411.7.1, 1024
Mezzanines .. 505.3, 505.4, 1004.6
Number, minimum 403.5, 1015.1, 1021
Passageway .. 1023
Ramps, exterior .. 1026
Refrigerated rooms or spaces 1015.5
Refrig destiny machinery rooms 1015.4
Signs ... 1011
Stairs, exterior .. 1026
Travel distance 104.2.2, 402.4, 404.9, 407.4, 1048.6.1, 408.8.1, 411.4, 1014.3, 1015.5, 1016, 1021.2, 1028.7
Underground buildings 405.7
EXIT ACCESS (see MEANS OF EGRESS) 1014 through 1019
Aisles ... 1017
Balconies .. 1016.2, 1019
Common path ... 1014.3
Corridors .. 1018
Doors ... 1005.2, 1008, 1015, 1020.2
Intervening space .. 1014.2
Path of eggress travel, common 1014.3
Seating at tables ... 1017.3
Single exit ... 1015.1.1, 1021.2
Travel distance 402.4, 404.9, 407.4, 408.6.1, 408.8.1, 411.4, 1014.2.2, 1014.3, 1015.5, 1016, 1021.2, 1028.7
EXIT DISCHARGE (see MEANS OF EGRESS) 707.3.3, 1023
Horizontal exit .. 1027.1
Lobbies .. 1027.1
Marquees .. 3106.4
Open parking garage 1027.1
Public way ... 1002.1, 1027.6
Termination .. 1022.2
Vestibules .. 1027.1
EXIT PASSAGeway (see MEANS OF EGGRESS) 707.3.3, 1023
EXIT SIGNS (see MEANS OF EGRESS) 1011
Accessibility .. 1011.3, 1117B.5.1(1)
Illumination .. 1011.2, 1011.4, 1011.5
Required .. 1011.1
Special amusement buildings 411.7
Tactile exit signs .. 1011.3, 1117B.5.1 (Item 1)
EXPLOSIVES ... Table 41 4.5.1, Table 415.3.1, Table 415.3.2
EXPOSURE CATEGORY (see WIND LOAD) 1609.4
EXTERIOR AREAS FOR ASSISTED RESCUE
Requirements ... 1007.7
Signage ... 1007.9, 1007.10, 1007.11
1117B.5.1(2)/(3), Chapter 11A
Where required .. 1007.2

740 2010 CALIFORNIA BUILDING CODE
INDEX

FIRE COMMAND CENTER 403.4.5, 911
FIRE DAMPERS 716.2 through 716.5
FIRE DEPARTMENT
(see EMERGENCY RESPONDERS)
FIRE DETECTION SYSTEM (see FIRE ALARM AND SMOKE DETECTION SYSTEMS)
FIRE DISTRICT Appendix D
FIRE DOOR (see OPENING PROTECTIVES) 715, 1022.3, 1022.4
FIRE ESCAPE 412.7.3, 3406
FIRE EXTINGUISHERS, PORTABLE 906, 3309
FIRE EXTINGUISHING SYSTEMS 416.5, 417.4, 903, 904
FIRE PARTITION 110.3.6, 709
Continuity 709.4
Exterior walls Table 602, 709.5
Fire-resistance rating 603.1(21), 603.1(22), 603.1(25), 703, 709.3
Glazing, rated 715.5
Joint treatment gypsum 2508.4
Joints 709.8, 714
Marking 703.6
Materials 709.2
Opening protection 709.6, 713.3, 715, 716.5.4
Penetrations 709.7, 709.9, 713, 716
Special provisions
Covered mall 402.7.2
Group I-3 408.7
Group I-1, R-1, R-2, R-3 420.2
FIRE PREVENTION 101.4.5
FIRE PROTECTION
Explosion control 414.5.1, 415.6.1.4, 415.8.5.4, 421.7
Fire extinguishers, portable 906
Glazing, rated 715.2
Smoke and heat vents 910
Smoke control systems .. 909
Sprinkler systems, automatic ... 903
FIRE PROTECTION SYSTEMS Chapter 9
FIRE PUMPS Table 508.2.5, 913, 914.2
FIRE RESISTANCE
Calculated 721
Conditions of restraint 703.2.3
Ducts and air transfer openings .. 716
Exterior walls Table 602, 705.5, 709.5
Fire district D102.2.5
High-rise 403.2
Joint systems 714
Prescriptive 720
Ratings Chapter 6, 703, 705.5, 707.3.9
Roof assemblies 1505
Structural members 704
Tests 703
Thermal and sound insulating materials ... 719.1
FIRE RESISTANCE, CALCULATED 721
Clay brick and tile masonry .. 721.4
Concrete assemblies 721.2
Concrete masonry 721.3
Steel assemblies 721.5
Wood assemblies 721.6
FIRE-RETARDANT-TREATED
WOOD 2302.1, 2303.2
Awnings 3105.3
Balconies 1406.3
Canopies 3105.3
Concealed spaces 717.5
Fastening 2304.9.5
Fire wall vertical continuity .. 706.6
Partitions 603.1
Platforms 410.4
Projections 705.2.3
Roof construction Table 601, 705.11, 706.6, 1505
Shakes and shingles 1505.6
Type I and II construction 603.1(10), 603.1(25)
Type III construction 602.3
Type IV construction 602.4
Veneer 1405.5
FIRE SEPARATION DISTANCE Table 602, 702
Exterior walls 1406.2.1.1
FIRE SERVICE
ACCESS ELEVATORS 403.6.1, 3007
FIRE SHUTTER (see OPENING PROTECTIVES) 715.4, 715.4.9, 715.5
FIRE WALLS 706
Aircraft 412.6.2
Combustible framing 706.7

742
2010 CALIFORNIA BUILDING CODE
INDEX

TRIM ... 806.3, 2604.2
Type I and II construction 603.1(1), 603.1(2)
Walk-in coolers 2603.4.1.3
FOLDING AND TELESCOPIC SEATING 1028.1.1, 3401.1
Egress 1028.1.1
Live load Table 1607.1
Occupant load 1004.7
FOOD COURT 402.2
Occupant load 402.4.1.4
FOOTBOARDS 1028.14.2
FORMWORK, CONCRETE 1906
FOUNDATION (see FOUNDATION, DEEP and FOUNDATION, SHALLOW) Chapter 18, 1407.13
Roofing 2603.4.1.5
Basement 1610, 1805.1.1, 1806.3, 1807
Concrete 1808.8, 1809.8, 1810.3.2.1
Damp proofing 1805.2
Encroachment, public right-of-way 3202.1
Formwork 1906, 3304.1
Geotechnical investigation (APPENDIX) ... 1004.3
Inspection 110.3.1
Load-bearing value 1806, 1808, 1810
Masonry 1808.9
Pedestrian protection 3306.9
Pier (see FOUNDATION, SHALLOW) 1028.1.1
Pile (see FOUNDATION, DEEP) 1028.1.1
Plates or sills 2308.6
Protection from adjacent construction ... 3303.5, 3307.1
Rodentproofing Appendix F
Special inspections 1704.4, 1704.8,
.. 1704.9, 1704.10, 1704.11
Steel 1809.11, 1810.3.2.2, 1810.8.3.2.3
Timber 1809.12, 1810.3.2.4
Waterproofing 1805.3
GIRDERS .. 299.11.11
FOUNDATION, DEEP 1802.1, 1810
Drilled shaft 1802.1
Existing 1810.10.1.2
Geotechnical investigation 1803.5.5
Grade beams 1810.3.12
Helical pile 1802.1, 1810.3.1.5,
.. Table 1810.3.2.6, 1810.3.3.1.9,
.. 1810.3.5.3, 1810.4.11, 1810.4.12
Micropile 1802.1, 1808.8.1,
.. Table 1810.3.2.6, 1810.3.5.3.3,
.. 1810.3.10, 1810.4.10
Piles Table 1808.8.1, 1809.12,
.. 1810, 1810.3.1.4
FOUNDATION, SHALLOW 1802.1, 1809
Piers and curtain wall 1809.10
Slab-on-grade 1808.6.2
Strip footing 1808.8, 1809
FOYERS .. 1028.4, 1028.9.5
Corridors 1018.6
COVERED MALL 402.1
FRAME INSPECTION 110.3.4
FRATERNITIES 310
FROST PROTECTION 1609.5
FULL-TIME CARE (definition) 310.2
FURNACE ROOMS 1015.3
GALLERIES 410.3.2, 1015.6.1, 1028.5
Sprinklers 410.6
GARAGE, AUTOMOBILE PARKING (APPENDIX) 406.6
GARAGE, REPAIR 406.6
Floor surface 406.6.4
Gas detection system 406.6.6, 908.5
Sprinklers 903.2.9.1
Ventilation 406.6.3
GARAGES, TRUCK AND BUS 1607.6, 1607.7.3
Sprinklers 903.2.10.1
GARAGES AND CARPORTS, PRIVATE 406.1
Area limitations 406.1.2
Separation 406.1.4
GAS .. 101.4.1, 105.2, 112
Accessibility 1117B.7.7, 11177.7.2(Exc. 5)
Gas detection system 406.6.6, 41 5.8.7,
... 421.6, 908
Hydrogen cutoff room 421.6
Motor fuel dispensing 406.5
GATES ... 1008.2
Vehicular 3110
GENERAL CODE PROVISIONS Chapter 1-Div I
CA Administration Chapter 1-Div I
ICC Administration Chapter 1-Div II
GIFT SHOPS 407.2.4
GIRDERS .. 250.1
Fire resistance Table 601
Materials Chapter 6
Wood construction 2304.11.2.1, 2308.7
GLASS (see GLAZING) Chapter 1-Div I
GLASS BLOCK (see GLASS UNIT MASONRY) .. Chapter 1-Div II
GLASS UNIT MASONRY 2102.1, 2110
Atrium enclosure 404.5
Design method 2101.2.5
Fire resistance 2110.1.1
Hazardous locations 2406.1.3
Material requirements 2103.6
GLAZING 2408
Athletic facilities 2408
Doors 705.8, 710.5, 711.5,
.. 715.4.3.2, 1405.13, 1715.5
Elevator hoistway and car. 2408
Fire doors 715.4.4, 71 5.4.7
Fire resistant walls 715.4.3.2
Fire windows 703.5, 715.5
INDEX

GROUP I-3 ... 408.7
Guards (or Guardrails) 1002.1, 1013.1.1, 1105B.1.1
Handrail 1002.1, 1009.12, 2406.4, 2407
Identification 2404.2, 2405
Impact loads 2406.1, 2407.1.4.2, 2408.2.1, 2408.3
Impact resistant 1609.1.20
Jalousies 2403.5
Label/identification 715.4.6.1, 715.4.7.3, 715.5.9
Loads ... 2404
Louvered windows 2403.5
Opening protection 715.2
Replacement 2401.2, 2407
Safety .. 715.4.7.4, 2406
Security 408.7
Skylights 2405
Sloped .. 2404.2, 2405
Supports 2403.2
Swimming pools 2406.4
Testing 1715.5, 2406.1.1, 2408.2.1
Veneer 1405.12
Vertical .. 2404.1
Wired .. 715.5.4

GRAB BAR .. 127A.2
Definition 202, 1107A.7-G

GRADE (ADJACENT GROUND ELEVATION) 202

GRADE, LUMBER (see LUMBER) 2302.1

GRADE PLANE 502

GRAIN ELEVATORS .. 415.6.1.5

GRANDSTANDS 303.1, 1028.1.1, 3401.1
Accessibility 1104B.4
Clubrooms 1104B.4.4
Exit sign exemptions 1018.11.1
Live load Table 1607.1
Occupant load 1004.7
Participation areas 1104B.4.3
Sanitary and locker facilities 1104B.4.5
Spectator seating 1104B.4.1
Ticket booth Table 1104B.4.2

GREENHOUSES 312.1
Area ... 503, 505, 506, 507, 508
Deflections Table 1604.3
Live load 1607.12.1
Membrane structure 3102.1
Plastic .. 2606.11
Sloped glazing 2405
Wind load 1609.12

GRIDIRON .. 410.2
Means of egress 410.3.2, 1015.6.1
Sprinklers 410.6

GRINDING ROOMS 415.6.1.2

GROUND AND FLOOR SURFACES 1124B
Carpet 1124B.3
Changes in level 1124B.2
General (Along accessible routes/rooms) 1124B.1
Gratings 1124B.4

GROSS LEASABLE AREA (see COVERED MALL AND OPEN MALL BUILDINGS) 402.2, 402.4.1.1

GROUND FLOOR (definition) 202, 1107A.7-G

GROUP A (accessibility) 1104B

GROUP B (accessibility) 1105B, 1114B.1.1

GROUP E (accessibility) 1106B, 1114B.1.1

GROUP H (accessibility) 1108B

GROUP I (accessibility) 1109B

GROUP M (accessibility) 1110B

GROUP R (accessibility) 1111B

GROUT .. 713.3.1, 713.4.1.1, 2103.12

GUARD (or GUARDRIL) definition 202, 1002

GUARDS (or Guardrails) 1002.1, 1013
Assembly seating 1028.1.1, 1028.14
Equipment platform 505.5.3
Exceptions 1013.1
Glazing 1013.1.1, 1303.1, 2406.4, 2407
Height .. 1013.2
Loads ... 1607.7
Mechanical equipment 1013.5
Opening limitations 1013.3
Parking garage 406.2.4
Ramps 1010.10
Residential 1013.2
Roof access 1013.6
Screen porches 1013.4
Stairs .. 1002.1, 1013.1
Vehicle barrier 1607.7.3
Where required 1013.1, 1607.7, 2407

GUTTERS .. 1503.4.3

GYMNASIUMS 303.1
Group E 303.1(4)
Live load Table 1600.1
Occupant load 1004.1

GYPSUM .. Chapter 25
Aggregate, exposed 2513
Board ... Chapter 25
Ceiling diaphragms 2508.5
Concrete, reinforced 1914
Construction 2508
Draftstopping 717.3.1
Exterior soffit Table 2506.2
Fastening Table 2306.7, 2508.1
Fire resistance 718, 712.1.2, 712.6.2
Fire-resistant joint treatment 2508.4
 Inspection 2503
Lath 2507, 2510
Lathing and furring for cement plaster 718, 2510
Lathing and plastering 2507
Materials 2506
Plaster, exterior 2512
Plaster, interior 2511
Shear wall construction 2306.7, 2308.9.3, 2505
Sheathing Table 2304.6
Shower and water closets 2509
Stucco 2510
Veneer base 2507.2
Veneer plaster 2507.2
Vertical and horizontal assemblies 2504
Wallboard Table 2506.2

2010 CALIFORNIA BUILDING CODE

745
INDEX

Water-resistant backing board 2506.2, 2509.2

H

HANDRAILS 1002.1, 1012,
Chapter 11A, 1607.7
Alternating tread devices 1009.10.1
Assembly aisles 1028.13
Construction 1012.4, 1012.5, 1012.6
Extensions 1012.6
Glazing 2407
Graspanility 1012.3
Guards (or Guardrails) 1002.1, 1013.2
Height 1012.2
Loads 1607.7
Location 1012.1, 1012.7, 1012.8, 1012.9
Ramps 1010.8
Stairs 1002.1, 1009.12

HARDBOARD 1404.3.2, 2302.1, 2303.1.6

HARDWARE
(see DOORS and LOCKS AND LATCHES)

HARDWOOD
Fastening 2304.9
Quality 2303.1.8.1, 2303.3
Veneer 1404.3.2

HAZARDOUS MATERIALS 307, 414, 415
Control areas 414.2
Explosion control 414.5.1, Table 414.5.1,
415.6.1.4, 415.8.5.4
Special provisions 415.4, 415.5
Sprinklers Table 414.2.5(1), Table 414.2.5(2),
415.5.2, 415.6.2.4, 415.8.11, 903.2.7.1
Ventilation 414.3, 414.5.4, 415.6.1.4,
415.6.2.8, 415.8.2.6, 415.8.2.8.2,
415.8.4.3, 415.8.5.7, 415.8.6.3,
415.8.7, 415.8.9.3, 415.8.10.1203.5
Weather protection 414.6.1

HAZARDS
Detectable directional texture (Boarding
platforms) 1133B.8.4
Detectable warnings (Hazardous
vehicular areas) 1133B.8.5
Detectable warnings (Reflecting
pools) 1133B.8.7
Detectable warnings
(Transit boarding platforms) 1133B.8.3
Free-standing signs
(Protruding objects) 1133B.8.6.3
Headroom (Protruding objects) 1133B.8.6.2
Overhanging obstructions 1133B.8.2
Protruding objects 1133B.8.6
Warning curbs 1133B.8.1

HEAD JOINT, MASONRY 2102.1

HEADROOM 406.2.2, 505.1, 1003.2,
1003.3, 1008.1.1, 1008.1.1.1,
1009.2, 1010.5.2, 1208.2

HEALTH CARE (see INSTITUTIONAL I-1
AND INSTITUTIONAL I-2)
Ambulatory health care facilities 422
Clinics, outpatient 304
Hospitals 308.3

HEALTH-HAZARD MATERIALS 307.2,
Table 414.2.5(1), 415.2, 415.4,
Table 415.8.2.1.1, 415.8.6.2

HEAT VENTS 910

HEATING (see MECHANICAL) 101.4.2
Aircraft hangars 412.4.4
Fire pump rooms 913.3
Fireplace 2111
Masonry heaters 2112
Parking garages 406.2.8
Repair garages 406.6.5

HEIGHT, BUILDING 503, 504, 505, 506, 508, 509
Limitations 503
Mixed construction types 509
Modifications 504
Roof structures 504.3

HIGH-PILE COMBUSTIBLE STORAGE 413,
907.2.15, 910.2.2

HIGH-HAZARD OCCUPANCY (GROUP H) 307, 414,
415, 1108B

Accessibility 1108B.6
Accessible facilities 1108B.6
Accessory 508.2
Area 503, 505, 506, 507, 508
Classification 307
Combustible liquids 307.4, 307.5,
414.2.5, 414.5.4, 415.6.2
Control areas 414.2
Conveyors 415.6.1.3
Corrosives 307.6, Table 414.2.5(1),
414.3, 415.7.3, Table 415.8.2.1.1
Cryogenic Table 307.1,
Table 414.5.1, Table 415.8.2.1.1
Dispensing 414.1, 414.5, 414.6, 414.7.2, 415.3
Dry cleaning
(see DRY CLEANING PLANTS)
Emergency alarm systems 414.7, 415.8.3,
415.8.4.6, 415.8.5.8, 908.1, 908.2
Employee work areas 1108B.5
Exceptions 307.1
Exempt 307.1
Explosives 307.3, Table 414.5.1, Table 415.3.1
Factory industrial F-1 moderate
hazard occupancy 306.2
Factory industrial F-2 low
hazard occupancy 306.3
Fire alarm and detection 414.7.2, 415.8.8,
901.6.3, 907.2.5
Fire district D102.2.2
Flammable liquids 307.4, 307.5, 415.6.2

746
2010 CALIFORNIA BUILDING CODE
Flammable solids 307.5, 415.1
Floors and levels (accessible) 1108B.2
Grinding rooms 415.6.1.2
Group H-1 307.3, 403.1, 41 5.3.1, 415.3.2, 415.4
Group H-2 307.4, 403.1, 412.6.1, 415.3, 415.4.1, 415.5, 415.6
Group H-3 307.5, 403.1, 415.3, 415.5, 415.6
Group H-4 307.6, 415.4, 415.7
Group H-5 307.7, 415.8
Health-hazard materials 307.2, Table 414.2.5(1), 415.2, 415.4, Table 415.8.2.1.1
Height 415.4, 415.5, 415.6.1.1, 415.6.1.6, 415.6.2.1.1, 503, 504, 505, 506, 508
Interior finishes 416.2.1, 416.3.1, Table 803.9, 804
Irritants 414.2.5(1), Table 415.8.2.1.1
Liquid, highly toxic and toxic 307.6, Table 414.2.5(1), 415.7.3, 415.7.4, Table 415.8.2.1.1, 908.3
Live load Table 1607.1
Location on property 414.6.1.2, 415.3
Multiple hazards 307.8
Organic peroxides Table 414.5.1, Table 415.3.2, 415.4.1, 415.5.1, Table 415.8.2.1.1, 418
Oxidizers, liquid and solid Table 414.2.5(1), Table 415.5.1, Table 415.8.2.1.1,
Pyrophoric materials 307.4, Table 307.1(1), Table 414.5.1, 415.4.1,
Risks (accessible) 1108B.2
Sanitation facilities (accessible) 1108B.2
Sensitizers Table 415.8.2.1.1
Separation from other occupancies 415.3.1, 508.2.4, Table 508.2.5, 508.3, 508.4
Solids, highly toxic and toxic 307.6, Table 414.2.5(1), 415.7.3, 415.7.4, Table 415.8.2.1.1, 908.3
Smoke and heat vents 910.2
Sprinklers 415.5.2, 415.6.2.4, 415.8.6.3, 415.8.9, 415.8.10.1, 415.8.11, 705.8.1, 903.2.5
Standby power systems ... 414.5.4, 2702.2.8, 2702.2.10 through 2702.2.13
Storage 413, 414.1, 414.2.5, 414.5, 414.6, 414.7.1, 415.2, 415.3, Table 415.3.2, 415.4.1, 415.5, 415.6.1, 415.6.2
Tanks 415.6.2
Travel distance 1014.3, 1016.1, 1021.2
Unlimited area 507.8
Unstable materials 307.3, Table 414.2.5(1), Table 414.5.1, Table 415.3.2, 415.4.1, Table 415.5.1, Table 41 5.8.2.1.1
Water-reactive materials Table 414.5.1, Table 41 5.3.2, 415.5, 415.5.1, 415.5.2, 415.8, Table 41 5.8.2.1.1

HIGH-RISE BUILDINGS 403
Application 403.1
Construction 403.2
Elevators 403.6, 1007.2.1, 1124A, 3007, 3008
Emergency power 403.4.8, 2702.2.15
Emergency systems 403.4
Fire alarm 403.4.2
Fire alarm anc detection 403.4.1, 907.2.13
Fire command station 403.4.5
Fire department communication 403.4.3, 403.4.4
Fire service elevators 403.6.1, 3007
Occupant evacuation elevators 403.6.2, 3008
Smoke removal 403.4.6
Smokeproof enclosure 403.5.4, 1022.9
Sprayed fire-resistant materials (SFRM) 403.2.4
Sprinklers 403.3, 403.2.11.3
Stairways 1002.1, 403.5
Standby power 403.4.7, 2702.2.5, 2702.2.15
Structural integrity 403.2.3, 1614
Super high-rise (over 420 feet) 403.2.1, 403.2.3,
403.2.4, 403.3.1, 403.5.2
Voice alarm 403.4.3, 907.2.13
Zones 907.6.3.2

HISTORIC BUILDINGS 1135B 3409
Accessible 1119B, 1135B, 3411.9
Flood provisions 403.6, 403.5.2

HORIZONTAL ASSEMBLY 712
Continuity 508.2.5.1, 712.4, 708.11, 708.12
Fire-resistance rating 603.1(21), 603.1(22), 603.1(25), 703, 707.3.9, 712.3
Glazing, rated 715.5
Group I-1 402.3
Group R 402.3
Incidental accessory occupancies 508.2.5.1
Insulation 719, 807, 808
Joints 714, 2508.4
Opening protection 712.8, 713.4, 715, 716.6
Shaft enclosure 708.1
Special provisions 41 2.4.4
Aircraft hangars 404.3, 404.6
Covered mall 402.4.6, 402.7.1
Fire pumps 913.2.1
Flammable finishes 416.2
Group H-2 415.6.1.2, 415.6.2.2
Group H-3 and H-4 415.7
Group H-5 415.8.2.2, 415.8.5.2
Group I-2 407.4.3
Groups I-1, R-1, R-2, R-3 420.3
INDEX

Hazardous materials .. 414.2
High-rise .. 403.2.1, 403.3, 403.4.7.1
Hydrogen cutoff ... 421.4
Organic coating ... 418.4, 418.5, 418.6
Stages and platforms 410.5.1, 410.5.2

HORIZONTAL EXIT 1025
Accessible means of egress 1007.2, 1007.2.1,
1007.3, 1007.4, 1007.6, 1007.6.2
Doors .. 1025.3
Exit discharge .. 1027.1
Fire resistance .. 1025.2
Institutional I-2 occupancy 407.4, 1025.1
Institutional I-3 occupancy 408.2, 1025.1
Refuge area (see REFUGE AREAS)

HORIZONTAL FIRE SEPARATION
(see HORIZONTAL ASSEMBLY)

HOSE CONNECTIONS
(see STANDPIPES, REQUIRED)

HOSPITAL
(see INSTITUTIONAL GROUP I-2) 308.3, 407

HOSPITAL
Application .. 1224.2
Definitions .. 1224.3
General construction 1224.4
Reserved ... 1224.5–1224.13
Scope ... 1224.1

HOSPITAL – BASIC SERVICES
Anesthesia service space 1224.16
Clinical laboratory service space 1224.17
Dietetic service space 1224.20
Nursing service space 1224.14
Pharmaceutical service space 1224.19
Radiological/imaging service space 1224.18
Surgical service space 1224.15

HOSPITAL – SUPPORT SERVICES
Administration space 1224.21
Central sterile supply 1224.22
Employee dressing rooms and lockers 1224.25
Housekeeping rooms 1224.26
Laundry .. 1224.27
Morgue and autopsy facilities 1224.24
Storage ... 1224.23

HOSPITAL – SUPPLEMENTAL SERVICES
Emergency service 1224.33
Intensive care units 1224.29
Intermediate-care service space 1224.38
Nuclear medicine 1224.34
Obstetrical facilities (perinatal unit) 1224.32
Outpatient service space 1224.39
Pediatric and adolescent unit 1224.30
Psychiatric nursing unit 1224.31
Rehabilitation therapy department 1224.35
Renal dialysis service space 1224.36
Respiratory therapy service space 1224.37
Skilled nursing service space 1224.40
Social service space 1224.41
Supplemental surgery services 1224.28

HOTEL (or MOTEL) (definition) 202

HURRICANE-PRONE REGIONS
(see WIND LOADS) 1609.2
HURRICANE SHELTER (see STORM SHELTER)
HURRICANE SHUTTERS 1609.1.2
HYDROGEN CUTOFF ROOMS 421, Table 508.2.5

IDENTIFICATION, REQUIREMENTS FOR
Fire barriers ... 703.6
Fire partitions .. 703.6
Fire wall .. 703.6
Glazing ... 2403.1, 2406.3
Inspection certificate 1702.1
Labeling .. 1703.5
Preservative-treated wood 2303.1.8.1
Smoke barrier .. 703.6
Smoke partition .. 703.6
Steel .. 2203.1

IMPACT LOAD ... 1602.1, 1603.1.1, 1607.8

INCIDENTAL USE AREAS
(see ACCESSORY OCCUPANCIES)

INCINERATOR ROOMS 1015.3

INDUSTRIAL (see FACTORY OCCUPANCY)
INSPECTIONS ... 110, 1704, 1705, 1706, 1707
Alternative methods and materials 1704.15
Approval required 110.6
Atrium buildings 909.3
Concrete construction 110.3.1, 110.3.2,
110.3.9, 1704.4
Concrete slab ... 110.3.2
Continuous ... 1702.1
EIFS ... 110.3.9, 1704.14
Energy efficiency 110.3.7
Fabricators ... 1704.2
Fees ... 109
Final ... 110.3.10
Fire-resistant materials 110.3.9, 1704.12, 1704.13
Fire-resistant penetrations 110.3.6
Footing or foundation 110.3.1, 110.3.9,
1704.4, 1704.5, 1704.8,
1704.9, 1704.10, 1704.11

Frame ... 110.3.4
Lath or gypsum board 110.3.5, 2503
Liability .. 104.8
Masonry ... 110.3.9, 1704.5, 1704.11
Periodic .. 1702.1
Preliminary .. 110.2
Required ... 110.3
Right of entry ... 104.6
Seismic ... 1707
Smoke control .. 104.16, 1704.16
Soils ... 110.3.9, 1704.7
Special (see STRUCTURAL TESTS AND SPECIAL
INSPECTIONS) .. 110.3.9, 1704, 1706, 1707

748 2010 CALIFORNIA BUILDING CODE
INDEX

Floor finish .. 804, 805
Foam plastic insulation 2603.3, 2603.4
Foam plastic trim 806.3, 2604.2
Insulation ... 807
Light-transmitting plastics 2606
Signs .. 402.16, 2611
Trim ... 806.5, 806.6
Wall and ceiling finishes 803
Wet location ... 1210, 2903
INTERNATIONAL SYMBOL OF ACCESSIBILITY (definition) ... 202, 1107A.9-1
INTERPRETATION, CODE 104.1

J

JAILS (see INSTITUTIONAL I-3) 308.3, 408
JOINT
Concrete construction joints 1906.4
Gypsum board .. 2508.4
Lumber sheathing 2308.10.8.1
Shotcrete .. 1913.7
Structural plain concrete 1909.3
Waterproofing 1805.3.3
JOINTS, FIRE-RESISTANT SYSTEMS 714

K

KICK PLATE (definition) 202, 1107A.11-K
KIOSKS .. 402.11
KITCHENS .. Table 508.4(d), 1117B.3
Accessibility .. 1133A, 1111B.4.4, 1114B.1.2, 1117B.3
Dimensions .. 1208
Means of egress 1014.2
Occupant load Table 1004.1.1
Rooms openings 1210.5

L

LABORATORIES
Classification of 304.1
Hazardous materials 414, 415
Incidental accessory occupancies ... Table 508.2.5
LADDERS
Boiler, incinerator and furnace rooms 1015.3
Construction ... 1009.4.2, 1012.2, 1012.6, 1013.2, 1013.3
Emergency escape window wells 1029.5.2
Group I-3 .. 408.3.5, 1009.11
Heliport .. 412.7.3, 1021.1.3
Refrigeration machinery room 1015.4
Stage .. 410.5.3, 1015.6.1
LAMINATED TIMBER, STRUCTURAL GLUED 602.4, 2303.1, 2304.11.3,
2306.1.1, 2308.8.2.1, 2308.10.7
LANDINGS
Doors1008.1.6
Ramp ... 1010.6
Stair .. 1002.1, 1009.5
LATH, METAL OR WIRE Table 2507.2
LAUNDRIES ... 304.1, 306.2, Table 508.2.5
LAUNDRY CHUTE 708.13, 903.2.11.2
LEGAL
Federal and state authority 102.2
Liability .. 104.8
Notice of violation 114.2, 116.3
Registered design professional 107.1, 107.3.4
Right of entry 104.6
Unsafe buildings or systems 116
Violation penalties 114.4
LEVEL AREA (definition) 202, 1107A.12-L
LIBRARIES
Classification, other than school 303.1
Classification, school 305.1
Live load ... Table 1607.1
LIFT, PLATFORM (WHEELCHAIR)
(See PLATFORM (WHEELCHAIR) LIFT) .. 1205
LIGHT, REQUIRED 1205
Artificial ... 1205.3
Emergency (see EMERGENCY LIGHTING) 1205.2
Natural ... 1205.2
Stairways ... 1002.1, 1205.4
Yards and courts 1206
LIGHTS, PLASTIC CEILING DIFFUSERS 2606.7
LINTEL
Adobe ... 2109.3.4.7
Fire resistance 704.11
Masonry .. 2104.1.5
Masonry, wood support 2304.12
LIQUEFIED PETROLEUM GAS 415.6.3
LISTED (definition) 202
LISTING AGENCY (definition) 202
LIVE LOADS .. 1602.1, 1607
Construction documents 107.2, 1603.1.1
Posting of .. 106.1
LIVE/WORK UNITS 310.1, 419
Separation .. 508.1
LOAD AND RESISTANCE
FACTOR DESIGN (LRFD) 1602.1
Load combinations 1605.2
Wood design .. 2301.2, 2307
LOAD COMBINATIONS 1605
Allowable stress design 1605.3
Load and resistance factor design 1605.2
Strength design 1605.2
LOADS ... 106, 1602.1
Combinations 1605
Dead .. 1602.1, 1606
Flood .. 1603.1.7, 1612
Impact ... 1602.1, 1607.8
Live .. 419.6, 1603.1.1, 1607
Rain .. 1611
Seismic .. 1603.1.5, 1613
Snow .. 1603.1.3, 1608
Soil lateral .. 1610
Wind .. 1603.1.4, 1609

750
2010 CALIFORNIA BUILDING CODE
LOBBIES
Assembly occupancy 1028.4
Elevator .. 708.14.1, 1007.2.1, 1007.4, 3007.4, 3008.11
Exit discharge ... 1027.1

LOBBY (definition) 202

LOCAL ENFORCING AGENCY 1.8.3

LOCKS AND LATCHES 1008.1.9, 1008.1.10
Access-controlled egress 1008.1.4.4
Delayed egress locks 1008.1.9.7
Electromagnetically locked 1008.1.9.8
Group I-2 .. 1008.1.9.6
Group I-3 ... 408.4, 1008.1.9.9
Group R-4 .. 1008.1.9.5.1
High-rise ... 403.5.3

LODGING HOUSE (definition) 202

LUMBER
General provisions Chapter 23
Quality standards 2303

M

MAINTENANCE
Accessibility 1101B.3, 1103B.3.1, 1117B.5.8.1.2, 1117B.5.11.2(4), 3411.2
Means of egress Chapter 23

MALL (see COVERED MALL AND OPEN MALL BUILDINGS)

MANUAL FIRE ALARM BOX 907.4.2
Height .. 907.4.2.2
Operation .. 1117B.6(4)

MANUFACTURED HOMES
Flood resistant G501

MARKED CROSSING (definition) 202, 1107A.13-M

MARQUEES .. 3106, H113
Drainage, water 3201.4
Live load Table 1607.1, 1607.11

MASONRY
Adhered veneer 1405.10
Adobe ... 2109.3
Anchorage ... 1604.8.2
Anchored veneer 1405.6
Ashlar stone .. 2102.1
Autoclaved aerated concrete (AAC) 2102.1, 2103.3
Calculated fire resistance 721.4
Chimneys ... 2113
Cold weather construction 2104.3
Construction .. 2104, 2109.2.2
Construction documents 2101.3
Corbelled ... 2104.2
Damp proofing 1805.2.2
Design, methods 2101.2, 2107 through 2109
Fire resistance, calculated 7213.2.3, 7213.4
Fireplaces ... 2101.3.1, 2111
Floor anchorage 1604.8.2
Foundation walls 1807.1.5
Foundations, adobe 2109.3.4.3
Glass unit .. 2101.2.5, 2103.6, 2110

Grouted .. 2102.1
Headers (see BONDING, MASONRY) 2109.2
Heaters .. 2112
Hot weather construction 2104.4
Inspection, special 1704.5
Joint reinforcement 2103.13
Materials ... 2103
Penetrations 713
Quality assurance 2105
Rodent proofing Appendix F
Roof anchorage 1604.8.1
Rubble stone 2102.1
Seismic provisions 2106
Serviceability 1604.3.4
Stone .. 2103.4, 2109.2
Support ... 2304.12
Surface bonding 2103.9
Test procedures 2105.2.2.2, 2105.3
Tile, wall .. 2104.1.3
Veneer ... 1405.6, 1405.10, 2101.2.6, 2308.11.2
Wall, composite 2102.1
Wall, hollow .. 2102.1
Wall anchorage 1604.8.2
Waterproofing 1805.3.2
Wythe .. 2102.1

MATERIALS
Alternates .. 104.11
Aluminum .. Chapter 20
Concrete .. Chapter 19
Glass and glazing Chapter 24
Gypsum .. Chapter 25
Masonry .. Chapter 21
Noncombustible 703.4
Plastic .. Chapter 26
Steel .. Chapter 22
Testing (see TESTING) 1716
Wood .. Chapter 23

MEANS OF EGRESS
Accessible 1007, Chapter 11A, 2702.2.5, 2702.2.6
Aircraft related 412.3.3, 412.5.2, 412.7.3, 505.5
Alternating tread device 412.7.3, 505.5
Ambulatory care facilities 422.4
Assembly .. 1007.1, 1028
Atrium .. 404.9, 707.3.5
Capacity .. 1005.1
Child care facilities (see Day-care facilities) 1003.2
Ceiling height 1003.2
Construction drawings 107.2.3
Covered mall and open mall buildings 402.4, 402.5, 402.13

Day-care facilities 308.5.1, 310.1, Table 1004.1.1, Table 101 5.1(a), Table 1021.2(e)
Doors .. 1005.2, 1008, 1015, 1020.2, Chapter 11A, 2702.2.7

During construction 3303.3, 3310
Elevation change 1003.5
Elevators .. 403.5.2, 403.6.2, 1003.7, 1007, 3008
Emergency escape and rescue 1029
Equipment platform 505.5
INDEX

Escalators 1003.7
Existing buildings 1007.1, 3310, 3404.6, 3406.1, 3412.5, 3412.6.11
Exit (see EXIT) 1020 through 1026
Exit access
(see EXIT ACCESS) 1014 through 1019
Exit definition 1002.2
Exit discharge (see EXIT DISCHARGE) 1027
Exit enclosures 1022.1
Exit signs 1011, 2702.2.3, 2702.2.9
Fire escapes 3406
Floor identification signs 1022.8, 1117B.5.1
Floor surface 804, 1003.4
Gates 1008.2
Group I-2 407.4
Group I-3 408.2, 408.3, 408.4, 408.6
Guards (or Guardrails) 1002.1, 1013
Handrails 1002.1, 1012, Chapter 11A
Headroom 414.6.1.2, 415.8.4.4, 415.8.5.5
Heistops 1003.2, 1003.3
High hazard Group H. 415.8.4.4, 415.8.5.5
High-rise 403.5, 403.6
Illumination 1006, 2702.2.4, 3412.6.15
Interior finish 803.9, 804
Ladders (see LADDERS) Live loads Table 1607.1
Live/work units 419.3
Mezzanines 505.3, 505.4, 1004.6, 1007.1
Moving walk 1003.7
Occupant load 1004.1, 1004.1.1, 1004.2
Parking 406.3.8
Protruding objects (see Chapter 11A, Chapter 11B, 1003.3, 1005.2, 1133B.8.6
Ramps 1010, 1026
Scoping 101.3, 105.2.2, 108.2, 1001.1
Seating, fixed 1007.1, 1028
Special amusement 411.7
Stages 41 0.3.3, 41 0.5.3, 1015.6
Stairways 403.5, 1002.1, 1009, 1022.1, 1026, Chapter 11A, 1133B.4
Temporary structures 3103.4
Travel distance
(see TRAVEL DISTANCE) 1014.3, 1016
Turnstile 1008.3
Underground buildings 405.5.1, 405.7
Width 1005.1, Table 1005.1, 1009.1, 101 0.5.1, 1018.2, 1028.6, 1028.8
MECHANICAL (see AIR CONDITIONING,
HEATING, REFRIGERATION AND
VENTILATION) 101.4.2
Access 1009.13, 1009.14, 1209.3
Air transfer openings 705.10, 706.11, 707.9, 708.2(7), 708.10, 709.9, 710.8, 711.7, 712.7, 713.1.1, 713.4.1.3, 716
Chimneys (see CHIMNEYS) Code Chapter 28
Disconnected 3303.6
Ducts 704.8, 705.10, 706.11, 707.9, 708.2(4), 708.2(15), 708.10, 709.9, 710.8, 711.7, 712.7, 713.1.1, 713.4.1.3, 716
Encroachment, public right-of-way 3202.3.2
Equipment on roof 1509, 1510.2
Equipment platforms 505.5
Factory-built fireplace 2111.14.1
Fireplaces 2111
Motion picture projection room 409.3
Permit required 105.1, 105.2
Roof access 1009.13
Room separation Table 508.2.5
Seismic inspection and testing 1707.7, 1707.8, 1708.4
Smoke control systems 909
Systems 1613.2, Chapter 28
MECHANICALLY LAMINATED DECKING 2304.8.3
MEMBRANE ROOF COVERINGS 1507.11, 1507.12, 1507.13
MEMBRANE STRUCTURES 2702.2.9, 3102
MENTAL HOSPITALS 308.3
MERCANTILE OCCUPANCY (GROUP M) Accessibility 1110B
Accessory 1110B
Aisles 1017.2, 1017.3
Area 503, 505, 506, 507, 508
Classification 309
Checkstands 1110B.1.3
Circulation 1110B.2.1
Fire alarm and detection 907.2.7
Height 503, 504, 505, 506, 508, 509
Interior finishes Table 803.9, 804
Live load Table 1607.1
Miscellaneous general standards 1110B.2
Parking beneath or above 509.2, 509.7, 509.8, 509.9
Plumbing fixtures 2902
Point-of-sale machines 1110B.1.4
Sales 1110B.1
Special occupancy separation 309.1, Table 508.2.5
Sprinkler system, automatic 903.2.7
Storage areas 1110B.2.2
Theft prevention barriers 1110B.1.6
Travel distance 402.4, 1014.3, 1016.1, 1021.2
Turnstiles 1110B.1.5
Unlimited area 507.3, 507.4, 507.12
Work areas 1110B.1.2
METAL Chapter 20
Aluminum Chapter 20
Roof coverings 1504.3.2, 1507.5
Steel Chapter 22
Veneer 1404.5
MEZZANINES 505
Accessibility 1103B.1, 1121B.3.1(6)
Area limitations 505.2, 505.5.1
Egress 505.3, 505.4, 1004.6, 1007.1
Equipment platforms 505.5
Guards (or Guardrails) 505.5.3, 1002.1, 1013.1
OTHER BUILDING COMPONENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility signs (General)</td>
<td>1117B.5.1(3)</td>
</tr>
<tr>
<td>Accessible drinking fountains</td>
<td>1117B.1</td>
</tr>
<tr>
<td>Accessible sinks</td>
<td>1117B.9</td>
</tr>
<tr>
<td>Assistive listening systems</td>
<td>1117B.5.8.4</td>
</tr>
<tr>
<td>ATM equipment for persons with vision impairments</td>
<td>1117B.7.6</td>
</tr>
<tr>
<td>ATM (Where 1 is provided)</td>
<td>1117B.7.4.1</td>
</tr>
<tr>
<td>ATMs (Where 3 or more are provided)</td>
<td>1117B.7.4.3</td>
</tr>
<tr>
<td>ATMs (Where 2 are provided)</td>
<td>1117B.7.4.2</td>
</tr>
<tr>
<td>Automated teller machines (ATMs) and point of sale machines</td>
<td>1117B.7</td>
</tr>
<tr>
<td>Braille (Signs & identification)</td>
<td>1117B.5.6</td>
</tr>
<tr>
<td>Character height (Signs & identification)</td>
<td>1117B.5.4</td>
</tr>
<tr>
<td>Cleaner air symbol</td>
<td>1117B.5.11</td>
</tr>
<tr>
<td>Clear floor space (Controls/operating mechanisms)</td>
<td>1117B.6(2)</td>
</tr>
<tr>
<td>Clear floor/ground space (Telephones)</td>
<td>1117B.2.2</td>
</tr>
<tr>
<td>Color and size of symbol (Cleaner air)</td>
<td>1117B.5.11.1</td>
</tr>
<tr>
<td>Clearances and reach range (ATMs)</td>
<td>1117B.7.3</td>
</tr>
<tr>
<td>Color of symbol (ISA)</td>
<td>1117B.5.8.1.1</td>
</tr>
<tr>
<td>Conditions of use (Cleaner air)</td>
<td>1117B.5.11.2</td>
</tr>
<tr>
<td>Controls (ATMs)</td>
<td>1117B.7.3</td>
</tr>
<tr>
<td>Controls (Text telephones)</td>
<td>1117B.2.10</td>
</tr>
<tr>
<td>Controls and operating mechanisms</td>
<td>1117B.6</td>
</tr>
<tr>
<td>Cord length (Text telephones)</td>
<td>1117B.2.11</td>
</tr>
<tr>
<td>Directional/informational signs (General)</td>
<td>1117B.5.1(2)</td>
</tr>
<tr>
<td>Display (LED/cathode ray/screen device)</td>
<td>1117B.7.5</td>
</tr>
<tr>
<td>Electrical receptacle outlets (Controls/operating mechanisms) height</td>
<td>1117B.6(5.2)</td>
</tr>
<tr>
<td>Electrical switches (Controls/operating mechanisms) height</td>
<td>1117B.6(5.1)</td>
</tr>
<tr>
<td>Enclosures (Telephones)</td>
<td>1117B.2.7</td>
</tr>
<tr>
<td>Entrance sign (ISA)</td>
<td>1117B.5.8.1.2</td>
</tr>
<tr>
<td>Finish/contrast (Signs & identification)</td>
<td>1117B.5.2</td>
</tr>
<tr>
<td>Fitting/dressing rooms</td>
<td>1117B.8</td>
</tr>
<tr>
<td>Floor surfaces of wheelchair spaces (Telephones)</td>
<td>1117B.2.5</td>
</tr>
<tr>
<td>Height (Controls/operating mechanisms)</td>
<td>1117B.6(3)</td>
</tr>
<tr>
<td>Height of electrical switches/ receptacle outlets (Controls/operating mechanisms)</td>
<td>1117B.6(5)</td>
</tr>
<tr>
<td>Identification signs (General)</td>
<td>1117B.5.1(1)</td>
</tr>
<tr>
<td>Information posted (ISA)</td>
<td>1117B.5.8.1.3</td>
</tr>
<tr>
<td>International symbol of accessibility ([ISA] Signs & identification)</td>
<td>1117B.5.8.1</td>
</tr>
<tr>
<td>International TTY symbol</td>
<td>1117B.5.8.2</td>
</tr>
<tr>
<td>Kitchens</td>
<td>1117B.3</td>
</tr>
<tr>
<td>Mounting location and height (Signs & identification)</td>
<td>1117B.5.7</td>
</tr>
<tr>
<td>Mounting height (Telephones)</td>
<td>1117B.2.6</td>
</tr>
<tr>
<td>Operation (Controls/operating mechanisms)</td>
<td>1117B.6(4)</td>
</tr>
<tr>
<td>Proportions (Signs & identification)</td>
<td>1117B.5.3</td>
</tr>
<tr>
<td>Raised characters/pictorial symbol signs (Signs & identification)</td>
<td>1117B.5.5</td>
</tr>
<tr>
<td>Reach range/clearances (ATMs)</td>
<td>1117B.7.4</td>
</tr>
<tr>
<td>Removal of symbol (Cleaner air)</td>
<td>1117B.5.11.3</td>
</tr>
<tr>
<td>Relationship of maneuvering clearances to wheelchair spaces (Telephones)</td>
<td>1117B.2.4</td>
</tr>
<tr>
<td>Signage (Text telephones)</td>
<td>1117B.2.9.3, 1117B.5.10</td>
</tr>
<tr>
<td>Signs and identification</td>
<td>1117B.5, 1117B.5.1</td>
</tr>
<tr>
<td>Sinks (Accessible)</td>
<td>1117B.9</td>
</tr>
<tr>
<td>Size and approach (Telephones)</td>
<td>1117B.2.3</td>
</tr>
<tr>
<td>Swimming pools</td>
<td>1117B.4</td>
</tr>
<tr>
<td>Symbols of accessibility (Signs & identification)</td>
<td>1117B.5.8</td>
</tr>
<tr>
<td>Telephone books (Text telephones)</td>
<td>1117B.2.12</td>
</tr>
<tr>
<td>Telephone equipment for hearing impaired persons.</td>
<td>1117B.2.8</td>
</tr>
<tr>
<td>Telephones</td>
<td>1117B.2</td>
</tr>
<tr>
<td>Text telephones</td>
<td>1117B.2.9, 1117B.2.9.2</td>
</tr>
<tr>
<td>Traffic control devices</td>
<td>1117B.5.9</td>
</tr>
<tr>
<td>Volume control telephones</td>
<td>1117B.5.8.3</td>
</tr>
<tr>
<td>Where required (Text telephones)</td>
<td>1117B.2.9.1</td>
</tr>
</tbody>
</table>

OUTDOOR OCCUPANCIES

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>1132B</td>
</tr>
<tr>
<td>Highway rest areas</td>
<td>1132B.3</td>
</tr>
<tr>
<td>Parks and recreational areas</td>
<td>1132B.2</td>
</tr>
<tr>
<td>Permanent facilities</td>
<td>1132B.3</td>
</tr>
</tbody>
</table>

OXIDIZERS, LIQUID AND SOLID

<table>
<thead>
<tr>
<th>Topic</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>307.2</td>
</tr>
</tbody>
</table>
REFERENCED CODES .. 1.1.5
RECOMMEND (definition) 202
REFERENCED STANDARDS Chapter 35
Applicability ... 102.3, 102.4
Fire resistance .. 703.2
List ... Chapter 35
Organizations ... Chapter 35
REFORMATORIES .. 308.4
REFRIGERATION (see MECHANICAL) 101.4.2
Machinery room ... 1015.4
REFUGE AREAS
(see HORIZONTAL EXIT, SMOKE CLOSETS, STORM SHELTERS) . 407.4.1, 407.4.1, 408.6, 422.3, 423.1.1, 1025.4
REFUSE CHUTE ... 708.13
REINFORCED CONCRETE (see CONCRETE) General .. 1901.2
Inspections .. 1704.4
REINFORCEMENT .. Concrete ... 1907, 1913.4, 1915.4
Masonry .. 2103.13
RELIGIOUS WORSHIP, PLACES OF
Balcony .. 1028.5
Classification .. 303, 305.1
Door operations .. 1008.1.9.3
Egress ... 1028
Fire alarm ... 907.2.1
Interior finishes .. Table 803.9, 804
Special occupancy separation 303.1, Table 508.2.5
Unlimited area ... 507.6, 507.7
REPAIRS, BUILDING ... 3405
Compliance alternatives 3412.1, 3412.2, 3412.3
Flood .. 1612.1, 1612.2, 3405.5
Minor .. 105.2.2
Permit required .. 105.1
Scope ... 1.1.1, 101.2, 1613.3, 3401.1, 3401.3, 3409.1
RESIDENTIAL CARE/ASSISTED LIVING FACILITIES 308.1
Fire alarms .. 907.2.6, 907.5.2.3.3
Separations .. Table 508.2.5, Table 508.4
Sprinklers ... 903.2.6, 903.3.2
Smoke alarms ... 907.2.11.2
RESIDENTIAL HOTELS (mail receptacles) 424
RESIDENTIAL OCCUPANCY (GROUP R) 310, 1111B
Access to beds ... 1111B.4.3
Accessibility ... Chapter 11A, 1111B.1
Accessible route .. Chapter 11A, 1111B.4.2.2
Accessory .. 508.2, G801.1
Alterations in existing facilities Chapter 11A, 1111B.4.2.4
Area .. 503, 505, 506, 507, 508
Available range of accommodations 1111B.4.1
Bathrooms in hotels, motels, inns, dormitories, resorts, homeless shelters, halfway houses, transient group homes and similar places of transient lodging .. 1111B.4.6
Buildings and complexes containing publicly funded dwelling units .. 1111B.5
Carbon monoxide alarms 420.4
Corridors ... 1018.1, 1018.2
Doors ... 1008.1.1, 1111B.4.2.3
Dormitory rooms ... 1111B.4.8
Draftstopping .. 71 7.3.2, 71 7.4.2
Emergency escape and rescue 1029.1
Exit sign exemptions 1011.1
Fire alarm and detection 907.2.8, 907.2.9, 907.2.10
Group R-1 ... 310.1
Group R-2 ... 310.1
Group R-2.1 .. 310.1
Group R-3 .. 310.1
Group R-3.1 .. 310.1
Group R-4 .. 310.1, 1008.1.9.5.1
Guest rooms and suites 1111B.4.2
Height .. 503, 504, 505, 506, 508, 509
Hotels, motels, inns, dormitories, resorts, homeless shelters, halfway houses, transient group homes and similar places of transient lodging .. 1111B.4
Interior finishes .. Table 803.9, 804
Kitchens, kitchenettes or wet bar facilities 1111B.4.4
Live load ... Table 1607.1
Parking, private .. 406.1
Parking beneath or above 509
Partitions ... 420, 709.1
Plumbing fixtures .. 2902
Public and common use rooms or areas 1111B.2
Recreational facilities 1111B.3
Smoke alarms ... 907.2.11
Spaces (in Guest rooms & suites) 1111B.4.2.1
Special occupancy separation 419, 420, 508.2.4,
Table 508.2.5, 508.3.3
Special provisions .. 509.5, 509.6
Sprinklers .. 903.2.8, 903.3.2
Storage areas .. 1111B.4.7
Swimming pools .. 3109.4, Chapter 31B
Telephones .. 1111B.4.5.3
Travel distance ... 1014.3, 1016.1, 1021.2
Visible alarms .. 420.4.4, 907.5.2.3.3,
907.5.2.3.4, 1111B.4.5.1
RESTRICTED ENTRANCE (definition) 202
RETAINTING WALLS 1807.2, 2304.11.7
Flood provisions ... G801.4
Seismic .. 1803.5.12
REVIEWING STANDS (see BLEACHERS AND GRANDSTANDS) 1028.1.1
Live load .. Table 1607.1
RISER (definition) 202, 1107A.18-R

INDEX

2010 CALIFORNIA BUILDING CODE 757
INDEX

RISERS, STAIR (see STAIRWAY CONSTRUCTION)

Aisle stairways 1028.11.2
Alternating tread device 1009.10, 1009.10.2
Assembly 1028.5.1, 1028.6, 1028.7, 1028.9, 1028.11
Closed 1009.4.5
Curved stairways 1009.8
Dimension reference surface 1009.4.1
Dimensional uniformity 1009.4.4
Existing stairways replacement 3403.1 (Exc. 2), 1134B
General 1009.4
Group I-3 1009.4.2 Exc. 7
Group R-3 1009.4.2 Exc. 5
Handrails 1009.10, 1133B.4.1
Nonuniform riser dimensions
of aisle stairs 1028.11.2
Profile 1009.4.5
Riser height and tread depth 1009.4.2
Ships ladders 1009.11
Spiral 1009.9
Spiral stairways 1009.9
Spiral stairways 1009.9
Stair treads and risers 1009.4, 1009.4.1, 1009.4.5
Uniformity 1009.4.4
Winder treads 1009.4.3
Winders, consistently shaped 1009.4.2

RODENTPROOFING Appendix F

ROLL ROOFING.................................. 1507.6

ROOF ACCESS.................................. 1009.13, 1009.14

ROOF ASSEMBLIES AND ROOFTOP STRUCTURES

Cooling towers 1509.4
Drainage 1503.4, 3201.4
Fire classification 1505
Fire district D102.2.9
Height modifications 504.3
Impact resistance 1504.7
Materials 1506
Parapet walls 1503.3, 1503.6
Penthouses 1509.2
Tanks ... 1509.3
Towers, spires, domes and cupolas 1509.5
Weather protection 1503
Wind resistance 1504.1, 1609.5

ROOF CONSTRUCTION

Construction walkways 3306.7
Coverings (see ROOF COVERINGS) 1609.5.2
Deck .. 1609.5.1
Draftstopping 717.4
Fire classification Table 601
Fireblocking 717.2
Live loads Table 1607.1, 1607.11
Materials Chapter 6
Penetration of fire resistant assemblies .. 713
Protection from adjacent construction 3307.1
Rain loads 1611
Roof structures 504.3, 1509, D102.2.9
Signs, roof mounted H110
Slope, minimum Chapter 15
Snow load 1608
Trusses .. 2210.3, 2303.4, 2308.10.10
Wood (see ROOF CONSTRUCTION, WOOD)

ROOF CONSTRUCTION, WOOD 602.4.3, 602.4.5
Anchorage to walls 1604.8.2
Attic access 1209.2
Ceiling joists 2308.10.2
Diaphragms 2305.1, 2306.2
Fastening schedule 2304.9
Fire-retardant-treated Table 601, 603.1(25)
Framing 2304.10.3, 2308.10
Rafters .. 2306.1.1
Sheathing 2304.7, 2308.10.8
Trusses .. 2303.4, 2308.10.10
Ventilation, attic 1203.2
Wind uplift 2308.10.1

ROOF COVERINGS 1507
Asphalt shingles 1507.2
Built up 1507.10
Clay tile 1507.3
Concrete tile 1507.3
Fire district D102.2.4
Fire resistance 603.1(3), 1505
Flashing 1503.2, 1503.6, 1507.2.9, 1507.3.9, 1507.5.7, 1507.7.7, 1507.8.8, 1507.9.9, 1510.6
Impact resistance 1504.7
Insulation 1508
Liquid applied coating 1507.15
Membrane 3102
Metal panels 1507.4
Metal shingles 1507.5
Modified bitumen 1507.11
Plastics, light-transmitting panels 2609
Replacement/recovering 1510.3
Reroofing 1510
Roll .. 1507.6
Single-ply 1507.12
Slate shingles 1507.7
Sprayed polyurethane foam 1507.14
Thermoplastic single-ply 1507.13
Wind loads 1504.1, 1609.5
Wood shakes 1507.9
Wood shingles 1507.8

ROOF DRAINAGE 1503.4

ROOF REplacement/RECOVERING 1510.3

ROOF STRUCTURE (see ROOF ASSEMBLIES
AND ROOFTOP STRUCTURES)

ROOM DIMENSIONS 1208

ROOMING HOUSE 310

ROUTE OF TRAVEL (ACCESSIBLE) 1114B.1.2, 1102B, 1114B, 1124B, 1133B.3, 1133B.5, 1133B.7

S

SAFEGUARDS DURING CONSTRUCTION Chapter 33
Adjoining property protection 3307
Construction 3302
INDEX

SIDewALKS 05.2(6), G801.4 1133B.7
Definition 202, 1107A.23-W
Live loads Table 1607.1

SIGNALS AND IDENTIFICATION 1114B.1.4, 1117B.5, 3107, Appendix H
Accessibility 1011.3, 1143A
Accessibility signs . 1117B.5.1(3)
Accessible means of egress . 1002.1,1007.8.2, 1007.9 through 1007.11

Animated devices H108
Braille 1117B.5.6
Character height . . . 1117B.5.4
Cleaner air symbol . . H117B.5.11
Construction H105, H107
Covered mall and open mall building . . 402.16
Directional and informational signs . 1117B.5.1(2)
Doors 1008.1.4.4, 1008.1.9.3, 1008.1.9.7
Electrical H106
Elevators 1124A, 3002.3, 3008.11.5
Encroachment, public right-of-way . . 3202.3.1
Exit 1011, 2702.2.3, 2702.2.9
Finish and contrast 1117B.5.2
Floor loads 106.1
Ground 1117B.5.1
Height limitation . . H109, H112.4
Identification signs . . 1117B.5.1(1)
Illumination H106.1
Luminous 403.5.5, 1011.4, 1024
Marquee H113
Mounting location and height . . 1117B.5.7
Obstruction 1003.3.2, 1003.3.3, H103
Occupant load, assembly 1004.3
Parking spaces . . . 1109A.8.8
Plan review and inspection . 1117B.5.1(4)
Plastic 2611, D102.2.10
Portable H114
Projecting H112
Proportions 1117B.5.3
Protruding objects . . 1003.3, Chapter 11B
Raised characters and pictorial symbols 1117B.5.5
Roof H110
Signs for text telephones . . . 1117B.5.10
Stair identification . . 1022.7, 1022.8, 1110.2, 1110.3
Standpipe control valve . . 905.7.1
Symbols of accessibility 1117B.5.8
International symbol of accessibility . 1117B.5.8.1
International TTY symbol . . 1117B.5.8.2
Volume control telephone . . 1117B.5.8.3
Assistive listening systems . . 1117B.5.8.4
Traffic control devices . . . 1117B.5.9
Walls 703.6, H111

SINGLE-ACCOMODATION SANITARY FACILITY (definition) 202

SINKS (ACCESSIBLE) 1117B.9

SITE (definition) 202

SITE ACCESSIBILITY (Div II) . . . 1127B—1132B.3.1
Accessible parking required . . . 1129B

Exterior routes of travel 1127B
Outdoor occupancies 1132B
Parking structures 1130B
Passenger drop-off and loading zones . . 1131B
Pedestrian grade separation . . . (Overpasses/underpasses) . 1128B

SITE DEVELOPMENT (definition) 202

SITE DRAWINGS 107.2.5

SITE WORK 3304

SKILLED NURSING AND INTERMEDIATE-CARE FACILITIES-GENERAL REQUIREMENTS
Activity programming space 1225.7
Application 1224.2
Dietetic service space 1225.5
General construction 1224.3
Nursing service space 1225.4
Pharmaceutical service space 1225.6
Scope 1225.1

SKILLED NURSING AND INTERMEDIATE-CARE FACILITIES-OPTIONAL SERVICES
General 1225.14
Occupational Therapy Space 1225.16
Physical Therpay Space 1225.15
Social Work Service 1225.18
Special Treatment Program Space 1225.19
Speech Pathology and/or Audiology Service 1225.17

SKILLED NURSING AND INTERMEDIATE-CARE FACILITIES-SUPPORT SERVICES
Administration Space 1225.8
Employee Dressing Rooms and Lockers 1225.11
Laundry 1225.13
Housekeeping Rooms 1225.12
Sterile Supplies 1225.9
Storage 1225.10

SKYLIGHTS 2405, 3106.3
Light, required 1205.2
Loads 2404
Plastic 2610
Protection from adjacent construction 3307.1

SLAB, COMPOSITE 2209.2.1

STEEL DECK/CONCRETE 2209.2.1

SLAB ON GROUND, CONCRETE . . . 1910, 2304.11.2.3

SLATE SHINGLES 1507.7

SLEEPING ACCOMODATIONS (definition) 202, 1107A.19-S

SLEEPING UNITS 202
Group 308
Group R 610
Scoping 101.2
Separation 420.2, 420.3

SLOPE (definition) 202, 1107A.19-S

SMOKE ALARMS
Live/work unit 907.2.11.2
Multiple-station 907.2.11
Residential aircraft hangars . . . 412.5.3,
Residential occupancies 907.2.11.1, 907.2.11.2

760

2010 CALIFORNIA BUILDING CODE
INDEX

Temporary structures
(see TEMPORARY STRUCTURES) 3103

SPECIAL CONSTRUCTION

Separate structures 3104.2 (Exc. 2)

SPECIAL INSPECTIONS

(see INSPECTIONS and STRUCTURAL TESTS AND SPECIAL INSPECTIONS)

SPECIAL STANDARDS OF ACCESSIBILITY FOR BUILDINGS WITH HISTORICAL SIGNIFICANCE 1119B

SPIRAL STAIRS 1009.9

Construction 1009.1, 1009.2, 1009.9

Exceptions 1009.4.2, 1009.4.3, 1009.4.5, 1009.12

Group I-3 408.3.4

Live/work 419.3.3

Stages 410.5.3, 1015.6.1

SPRAY-APPLIED FIRE RESISTANT MATERIALS 1702.1

Inspection 1704.12, 1704.13

Steel column calculated fire resistance 721.5.2.2

SPRINKLER SYSTEMS, AUTOMATIC 903, 3312

Exempt locations 903.3.1.1.1

Fire department location 912

Seismic design 161 3.6.3

Signs 914.2

Substitute for fire rating Table 601(4)

Values 3412.6.17

SPRINKLERS, REQUIRED 903

Aircraft related 412.4.6, 412.6.5

Ambulatory health care facilities 422.5, 903.2.2

Amusement buildings, special 411.4

Area increase 506.3

Assembly 903.2.1, 903.2.11.5, 1028.6.2.3

Atrium building 404.3

Basements 903.2.11.1

Combustible storage 413

Construction 903.2.12

Covered mall and open mall building 402.9

Drying rooms 417.4

Education 903.2.3

Exempt locations 903.3.1.1.1

Factory 903.2.4

Fire areas 707.3.9

Garages 406.3.10, 903.2.9.1, 903.2.10.1

Hazardous materials Table 414.2.5(1),

Table 414.2.5(2), 903.2.11.4

Hazardous occupancies 415.5.2, 415.6.2.4,

415.8.6.3, 415.8.11, 705.8.1, 903.2.5

Height increase 504.2

High-rise buildings 403.2, 403.3, 903.2.11.3

Incidental accessory occupancies Table 508.2.5

Institutional 407.5, 903.2.6, 903.3.2

Laundry chutes, refuse chutes, termination rooms and incinerator rooms 708.13, 903.2.11.2

Live/work units 419.5, 903.2.8

Mercantile 903.2.7

Mezzanines 505.4, 505.5.2

Multistory buildings 903.2.11.3

Residential 903.2.8, 903.3.2

Special amusement buildings 411.4

Spray finishing booth 416.5

Stages 410.6

Storage 903.2.9, 903.2.10

Supervision

(see SPRINKLERS, SUPERVISION) 903.4

Underground buildings 405.3, 903.2.11.1

Unlimited area 507

SPRINKLERS, SUPERVISION

Service 903.6

Underground buildings 405.3

STAGES AND PLATFORMS 303, 410

Dressing rooms 410.5

Egress 410.5.3, 1015.6

Fire barrier wall 410.5.1, 410.5.2

Floor finish and floor covering 410.3, 410.4,

804.4, 805.1

Horizontal assembly 410.5.1, 410.5.2

Platform, temporary 410.4.1

Platform construction 410.4, 603.1(11)

Proscenium curtain 410.3.5

Proscenium wall 410.3.4

Roof vents 410.3.7.1

Scenery 410.3.6

Smoke control 410.3.7.2

Sprinkler system 410.6

Stage construction 410.3, 603.1(11)

Standpipes 410.7, 905.3.4

Ventilation 410.3.7

Wheelchair (Platform lifts) 1116B.2

STAIRWAY (see ALTERNATING TREAD DEVICES, SPIRAL STAIRS, STAIRWAY CONSTRUCTION and STAIRWAY ENCLOSURE)

STAIRWAY CONSTRUCTION

Aisle 1028.9

Alterations 3404.1

Alternating tread 1009.10

Circular (see Curved) Construction 1009.6

Curved 1009.3, 1009.8

Discharge barrier 1022.7

During construction 3310.1

Elevators 1009.14, 1022.3, 3002.7

Enclosure under 1009.6.3

Existing 3404.1, 3408.3

Exterior exitway 1026.1, 1027.1

Fireblocking 717.2.4

Guards (or Guardrails) 1002.1, 1013.1,

1013.2, 1607.7

Handrails 1002.1, 1009.12,

1012, 1133B.4, 1607.7

Headroom 1009.2

Illumination 1006.1, 1205.4, 1205.5

Ladders 1009.11

Landings 1009.5, 1009.7

Live load Table 1607.1, 1607.7

762 2010 CALIFORNIA BUILDING CODE
STAIRWAY ENCLOSURE 1021.2
Access .. 1022.1.9.2
Construction 1022.4
Discharge .. 1027.1
Doors ... 715.4.8, 1008.1.9.10
Elevators within 1022.3, 3002.7
Exterior walls 705.2, 707.4, 708.6, 709.5, 1022, 1026.6
Fire-resistant construction 1022.1
Group I-3 ... 408.3.8
High-rise .. 403.5
Penetrations ... 1022.4
Pressurization 909.6, 909.20.5
Space below, use 1009.6.3
Ventilation .. 1022.5

STANDARDS (see REFERENCED STANDARDS)
STANDBY POWER 2702.1, 2702.3
Aircraft traffic control towers 412.3.5, 2702.2.18
Atriums .. 404.7, 2702.2.2
Covered mall and open mall building 402.14, 2702.2.14
Elevators .. 1007.4, 2702.2.5, 2702.2.19, 3003.1, 3007.7, 3008.15
Hazardous occupancy 414.5.4, 421.8, 2702.2.10, 2702.2.12
High-rise ... 403.4.7, 2702.2.15
Horizontal sliding doors 1008.1.4.3, 2702.2.7
Membrane structures 2702.2.9, 3102.8.2
Platform lifts .. 1007.5, 2702.2.6
Smoke control 909.11, 2702.2.2
Smokeproof enclosure 909.20.6.2, 2702.2.20
Underground buildings 405.8, 2702.2.16

STANDPIPE AND HOSE SYSTEMS (see STANDPIPES, REQUIRED) 905, 3106.4, 3008.1.1, 3311
Cabinet locks 905.7.2
Dry .. 905.8
Hose connection location 905.1, 905.4 through 905.6, 912

STANDPIPES, REQUIRED
Assembly ... 905.3.2, 905.5.1
Covered mall and open mall buildings 402.9.1, 905.3.3
During construction 905.10
Elevators, fire service access 3007.5
Helistops ... 905.3.6

Marinas .. 905.3.7
Parking garages 406.3.6, 406.3.9
Stages ... 410.7, 905.3.4
Underground buildings 405.10, 905.3.5

STATE LAW .. 102.2
STATE-REGULATED BUILDINGS, STRUCTURES AND APPLICATIONS 1.1.3.2

STEEL .. Chapter 22
Bolting .. 2204.2
Cable structures 2207
Calculated fire resistance 721.5
Cold-formed ... 2202.1, 2209, 2210
Conditions of restraint 703.2.3
Decks ... 2209.2
Identification and protection 2203
Joists ... 2202.1, 2206
Open web joist 2206
Parapet walls .. 1503.3, 1503.6
Reinforcement, concrete 1907
Seismic provisions 2205
Special inspections 1704.3
Storage racks .. 2208
Welding ... 2204.1

STONE VENEER .. 1405.7
Slab-type ... 1405.8

STOP WORK ORDERS 115

STORAGE .. 1125B
Clear floor space 1125B.2
General .. 1125B.1
Hardware .. 1125B.4
Height ... 1125B.3

STORAGE OCCUPANCY (GROUP S) ... 311
Accessory ... 508.2
Area ... 406.3.5, 406.3.6, 406.4.1, 503, 505, 506, 507, 508
Automobile parking garage 406
Hazard storage, low, Group S-2 311.3
Hazard storage, moderate, Group S-1 311.2
Height .. 406.3.5, 406.4.1, 503, 504, 505, 506, 508, 509
High-piled combustible 413
Interior finishes Table 803.9, 804
Live loads ... Table 1607.1
Parking garages 406.1, 406.2, 406.3, 406.4
Plumbing fixtures 2902
Smoke and heat vents 910.2
Special occupancy separation 309.1, Table 508.2.5
Sprinkler system, automatic 903.2.10
Travel distance 1014.3, 1016.1, 1021.2
Unlimited area 507.2, 507.3, 507.4

STORM SHELTER 423
Refuge area (see REFUGE AREA)

STRENGTH ... 1604.2
Design requirements 1604.2
Masonry .. 2102.1
Nominal .. 1602.1
Required .. 1602.1
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRENGTH DESIGN</td>
<td>1602.1, 1604.1</td>
</tr>
<tr>
<td>Masonry</td>
<td>2101.2.2, 2108</td>
</tr>
<tr>
<td>STRUCTURAL DESIGN</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Chapter 20</td>
</tr>
<tr>
<td>Concrete</td>
<td>Chapter 19</td>
</tr>
<tr>
<td>Foundations</td>
<td>Chapter 18</td>
</tr>
<tr>
<td>Grab bars</td>
<td>1607.7.2, 1607A.7.2</td>
</tr>
<tr>
<td>Loads on handrails</td>
<td>1607.7, 1607A.7</td>
</tr>
<tr>
<td>Masonry</td>
<td>Chapter 21</td>
</tr>
<tr>
<td>Steel</td>
<td>Chapter 22</td>
</tr>
<tr>
<td>Wood</td>
<td>Chapter 23</td>
</tr>
<tr>
<td>STRUCTURAL TESTS AND SPECIAL INSPECTIONS (see INSPECTIONS AND TESTING)</td>
<td>110.3.9, Chapter 17</td>
</tr>
<tr>
<td>Alternative test procedure</td>
<td>1712</td>
</tr>
<tr>
<td>Approvals</td>
<td>1703</td>
</tr>
<tr>
<td>Contractor responsibilities</td>
<td>1709</td>
</tr>
<tr>
<td>Design strengths of materials</td>
<td>1711</td>
</tr>
<tr>
<td>General</td>
<td>1701</td>
</tr>
<tr>
<td>In-situ load tests</td>
<td>1714</td>
</tr>
<tr>
<td>Material and test standards</td>
<td>1716</td>
</tr>
<tr>
<td>Preconstruction load tests</td>
<td>1715</td>
</tr>
<tr>
<td>Special inspections</td>
<td>1704, 1706, 1707</td>
</tr>
<tr>
<td>Statement of special inspections</td>
<td>1705</td>
</tr>
<tr>
<td>Structural observations</td>
<td>1710</td>
</tr>
<tr>
<td>Structural testing</td>
<td>1708</td>
</tr>
<tr>
<td>Test safe load</td>
<td>1713</td>
</tr>
<tr>
<td>STUCCO</td>
<td>2512</td>
</tr>
<tr>
<td>SWIMMING POOL</td>
<td>3109, 1117B.4, 1104B.4.3</td>
</tr>
<tr>
<td>Deck mechanism for accessibility</td>
<td>3113B.1(Exc. 4)</td>
</tr>
<tr>
<td>Flood provisions</td>
<td>G801.5</td>
</tr>
<tr>
<td>Gates, access</td>
<td>3109.4.1.7</td>
</tr>
<tr>
<td>Glass</td>
<td>406.4</td>
</tr>
<tr>
<td>Participation areas</td>
<td>1104B.4.3, 3113B.1(Exc. 4)</td>
</tr>
<tr>
<td>Indoor</td>
<td>3109.4.2</td>
</tr>
<tr>
<td>Public</td>
<td>3109.3, Chapter 31B</td>
</tr>
<tr>
<td>Residential</td>
<td>3109.4</td>
</tr>
</tbody>
</table>

T

TACTILE TELEPHONES | 202 |

Clear floor or ground space | 1117B.2.2 |
Controls (push-button) | 1117B.2.10 |
Cord length | 1117B.2.11 |
Enclosures | 1117B.2.7 |
Equipment for hearing impaired | 1117B.2.8 |
Floor surfaces of wheelchair spaces | 1117B.2.5 |
Maneuvering clearances | 1117B.2.4 |
Mounting height | 1117B.2.6 |
Signage (Text telephones) | 1117B.2.9.3 |
Size and approach | 1117B.2.3 |
Telephone books | 1117B.2.12 |

Text telephones | 1117B.2.9 |

TELEPHONE EXCHANGES | 304 |

TELESCOPIC SEATING (see FOLDING AND TELESCOPIC SEATING) |

TEMPORARY STRUCTURES | 3103 |
Certificate of occupancy | 108.3 |
Conformance | 108.2 |
Construction documents | 3103.2 |
Encroachment, public right-of-ways | 3202.3 |
Flood provisions | G901 |
Means of egress | 3103.4 |
Permit | 108.1, 3103.1.1 |
Power, temporary | 108.3 |
Termination of approval | 108.4 |

TENANT SEPARATION | 402.7, 709.1 |
Covered mall buildings |

TENTS | 2702.2.9 |
Standby and emergency power |

TERMITE PROTECTION | 2304.11 |

TERRA COTTA | 1405.9 |

TESTING |
Building official required | 104.11.1 |
Concrete | 1905.6 |
Fire-resistant materials | 703.2 |
Glazing | 2406, 2408.2.1 |
Roof tile | 1716.2 |
Seismic | 1708 |
Smoke control | 909.3 |
Soils | 1803 |
Sprinklers | 904.4 |
Structural (see STRUCTURAL TESTS AND SPECIAL INSPECTIONS) |

TESTING AGENCY (definition) | 202 |

THEATERS (see ASSEMBLY OCCUPANCY) |
(GROUP A, PROJECTION ROOMS and STAGES AND PLATFORMS) | 303, 1116B.2 |

THERMAL BARRIER, FOAM PLASTIC INSULATION | 2603.4, 2603.5.2 |

THERMAL-INSULATING MATERIALS (see INSULATION) | 719 |

TILE | 2102.1 |
Ceramic (see CERAMIC TILE) |
Fire resistance, clay or shale | 720.1 |

TOILET FACILITIES (see BATHING AND TOILET FACILITIES) |

TOILETS and TOILET ROOMS | Chapter 11B, Chapter 29, 3305 |
Accessible | 1127A, 1134A, 1155B, 1607.7.2 |
Construction/materials | 1210, 2903 |
Family- or assisted-use | 2902.1.2, 2902.2 |
Location | 2902.3.2, 2902.3.3, 2902.3.4 |
Partitions | 2903 |
Public facilities | 2902.3 |
Rooms openings | 1210.5 |
INDEX

Fire district D102.1, D102.2.6
Fire-resistance ratings Table 602, 703, 705.5, 706.5.1, 707.4, 1403.4
Flashing, veneered walls 1405.4
Foam plastic insulation 2603.4.1.4, 2603.5
Glazing, rated 715.5
Joints ... 705.5, 714
Light-transmitting plastic panels 2607
Materials ... 705.4, 1406
Metal Composite Materials (MCM) 1407
Nonbearing Chapter 6
Opening protection 705.8, 705.10, 71 6.5.6
Parapets .. 705.11
Projections 705.2
Structural stability 705.6
Veneer (see VENEER) Chapter 14
Weather resistant barriers 1405.2, 1405.3
WEATHER, COLD
Concrete construction 1905.12
Masonry construction 2104.3
WEATHER, HOT
Concrete construction 1905.13
Masonry construction 2104.4
WEATHER PROTECTION
Exterior walls 1405.2
Roofs .. 1503
WALL, FIRE (see FIRE WALLS)
WALL, FOUNDATION (see FOUNDATION)
WALL, INTERIOR
Finishes ... 803, 1210.2, 1210.3
Opening protection 715, 716
WALL, INTERIOR NONBEARING (see PARTITIONS)
WALL, MASONRY 2102.1
Wood contact 2304.11.2.3, 2304.11.2.5
WALL, PARAPET 705.11, 1503.3, 1503.6, 2109.3.4.1.4
WALL, PARTY (see FIRE WALLS)
WALL, PENETRATIONS 713.3
WALL, RETAINING (see RETAINING WALL)
WALL, VENEERED (see VENEER) Chapter 14
WALL, WOOD CONSTRUCTION
Bracing .. 2308.9.3
Cutting, notching, boring 2308.9.10
Exterior framing 2308.9
Fastening schedule 2304.9
Framing .. 2304.3, 2308.9
Interior bearing partition 2308.9.1
Interior nonbearing partition 2308.9.2.3
Openings ... 2308.9.5, 2308.9.6, 2308.9.7
Shear walls 2305.1, 2306.3 through 2306.7
Sheathing (see SHEATHING)
Studs .. 2308.9.1
Top plates 2308.9.2.1
WATER-REACTIVE MATERIALS Table 307.1(1)
WEATHER, COLD
Concrete construction 1905.12
Masonry construction 2104.3
WEATHER, HOT
Concrete construction 1905.13
Masonry construction 2104.4
WEATHER PROTECTION
Exterior walls 1405.2
Roofs .. 1503
WELDING ... 2204.1
Materials, verification of steel reinforcement 1704.4.1
Special inspections 1704.3.1, 1707.2, 1707.4
Splices of reinforcement in masonry 2107.4
Structural testing 1708.2, 1708.3
WHEELCHAIR (definition) 202
WHEELCHAIR SPACE (definition) 202
WIND LOAD .. 1609
Alternate all-heights method 1609.6
Basic wind speed 1609.3
Construction documents 107, 1603.1.4, 1709
Exposure category 1609.4
Glass block 2110
Glazing .. 1609.1.2, 2404
Hurricane-prone regions 1609.2
Provisions for walls 2306.2
Roofs ... 1504.1, 1609.5, 2308.10.1
Seismic detailing required 1604.10
Special inspection 1706
Statement of special inspections 1705.4
Wind-borne debris region 1609.2
Wind tunnel testing 1609.1.1.2, 1716.2.2
WINDBLOWN, STAIR (see STAIRWAY CONSTRUCTION)
WINDOW
Accessibility 1109.13.1
Emergency egress 1029
Exterior, structural testing 1715.5
Fire (see OPENING PROTECTIVES) 715.4.9, 715.4.10
Glass (see GLAZING) 1405.13
Required light 1205.2
Wells .. 1029.5
WIND LOAD .. 1609
WIRE, PENETRATION PROTECTION 713
WOOD .. Chapter 23
Allowable stress design 2306
Bracing, walls 2308.9.3
Calculated fire resistance 721.6
Ceiling framing 2308.10
Connections and fasteners 2304.9
Contacting concrete, masonry or earth .. 2304.11.4
Decay, protection against 2304.11
Diaphragms 2305.1, 2305.2, 2306.2
Draftstopping 717.3, 717.4
End-jointed lumber 2303.1.1
Fiberboard 2303.1.5, 2306.6
Fire-retardant treated 2303.2
Fireblocking 717.2
Floor and roof framing 2304.4
Floor sheathing 2304.7
Foundation 1807.1.14, 2308.3.3.1
Grade, lumber 2303.1.1
Hardboard 2303.1.6
Heavy timber construction 2304.10
Hurricane shutters 1609.1.2
I-joist .. 2303.1.2
2010 CALIFORNIA BUILDING CODE

767
INDEX

Inspection, special 1704.6, 1706.2, 1707.3
Lateral force-resisting systems 2305
Light-frame construction, conventional 2308
Load and resistance factor design 2307
Moisture content 2303.1.8.2, 2303.2.6
Nails and staples 2303.6
Particleboard shear walls 2306.5
Plywood, hardwood 2303.3
Preservative treated 1403.5, 1403.6, 2303.1.8
Roof framing
 (see ROOF CONSTRUCTION, WOOD) ... 2304.4
Roof sheathing 2304.7
Seismic provisions 2305, 2306, 2308.11, 2308.12
Shear walls 2305, 2306.3 through 2306.7
Standards and quality, minimum 2303
Structural panels 2302.1, 2303.1.4
Supporting concrete or masonry 2304.12
Termite, protection against 2304.11
Trusses 2303.4
Veneer Chapter 14
Wall framing
 (see WALL, WOOD CONSTRUCTION) ... 2304.3
Wall sheathing 2304.6
WOOD SHINGLES AND SHAKES 1507.8, 1507.9
WOOD STRUCTURAL PANELS
 (see WOOD) 2302.1, 2303.1.4
Bracing 2308.9.3
Decorative 2303.3
Design requirements 2301
Diaphragms 2305.1, 2306.2
Fastening 2304.9
Fire-retardant-treated 2303.2
Quality 2303.1.4
Roof sheathing 2304.7, 2308.10.8
Seismic shear panels 2305.1, 2308.12.4
Shear walls 2306.3
Sheathing 2304.6.1
Standards 2306.1
Subfloors 804.4
Veneer 1405.5

Y

YARDS OR COURTS 1206
Group I-2 407.8
Group I-3 408.3.6, 408.6
Light, natural 1205
Motor fuel-dispensing facilities 406.5.3
Occupant load 1004.8
Parking garage, open 406.3.6
HISTORY NOTE APPENDIX

California Building Code
(Title 24, Part 2, California Code of Regulations)

For prior history, see the History Note Appendix to the California Building Code (CBC), 2010 Triennial Edition, effective January 1, 2011.

1. (BSC 02/09, DSA-AC 01/09, DSA-SS 02/09, HCD 01/09, OSHPD 05/09 & 07/09, SFM 03/09, DWR 01/09) Adoption by reference of the 2009 International Building Code (IBC) with necessary state amendments into the 2010 CBC and repeal of the 2006 edition of the IBC, effective on January 1, 2011.
PREFACE

This document is the 8th of 12 parts of the official triennial compilation and publication of the adoptions, amendments and repeal of administrative regulations to California Code of Regulations, Title 24, also referred to as the California Building Standards Code. This part is known as the California Historical Building Code.

The California Building Standards Code is published in its entirety every three years by order of the California legislature, with supplements published in intervening years. The California legislature delegated authority to various state agencies, boards, commissions and departments to create building regulations to implement the State's statutes. These building regulations, or standards, have the same force of law, and take effect 180 days after their publication unless otherwise stipulated. The California Building Standards Code applies to occupancies in the State of California as annotated.

A city, county, or city and county may establish more restrictive building standards reasonably necessary because of local climatic, geological or topographical conditions. Findings of the local condition(s) and the adopted local building standard(s) must be filed with the California Building Standards Commission to become effective and may not be effective sooner than the effective date of this edition of the California Building Standards Code. Local building standards that were adopted and applicable to previous editions of the California Building Standards Code do not apply to this edition without appropriate adoption and the required filing.

Should you find publication (e.g., typographical) errors or inconsistencies in this code or wish to offer comments toward improving its format, please address your comments to:

California Building Standards Commission
2525 Natomas Park Drive, Suite 130
Sacramento, CA 95833-2936
Phone: (916) 263-0916
Fax: (916) 263-0959

Web Page: www.bsc.ca.gov

For questions on California state agency amendments, please refer to the contact list on page vii.
PART 8 CONTAINS ALTERNATIVE REGULATIONS FOR QUALIFIED HISTORICAL BUILDINGS

The California Historical Building Code (CHBC) is unique among state regulations. The authoring of the original CHBC required state agencies promulgating regulations for building construction to work in harmony with representatives of other design and construction disciplines. The result was a totally new approach to building codes for historical structures, which maintains currently acceptable life-safety standards.

These regulations are also unique in that they are performance oriented rather than prescriptive. The provisions of the CHBC are to be applied by the enforcing authority of every city, county, city and county, or state agency in permitting repairs, alterations and additions necessary for the preservation, rehabilitation, relocation, related construction, change of use or continued use of a qualified historical building.

The authority for use of the CHBC is vested in Sections 18950 through 18961 of the Health and Safety Code. Section 18954 states, “The building department of every city or county shall apply the provisions of alternative building standards and building regulations adopted by the CHBC Board pursuant to Section 18959.5 in permitting repairs, alterations and additions necessary for the preservation, restoration, rehabilitation, moving or continued use of an historical building or structure.”

However, be aware that in order to use the CHBC, the structure under consideration must be qualified by being designated as an historical building or structure. Section 18955 states, “For the purposes of this part, a qualified historical building or structure is any structure or collection of structures, and their associated sites deemed of importance to the history, architecture or culture of an area by an appropriate local or state governmental jurisdiction. This shall include structures on existing or future national, state or local historical registers or official inventories, such as the National Register of Historic Places, State Historical Landmarks, State Points of Historical Interest, and city or county registers or inventories of historical or architecturally significant sites, places, historic districts or landmarks.”

The regulations of the CHBC have the same authority as state law and are to be considered as such. Liability is the same as for prevailing law.

The intent of the CHBC is to save California’s architectural heritage by recognizing the unique construction problems inherent in historical buildings and by providing a code to deal with these problems.
HISTORICAL PREFACE

The background of the California Historical Building Code can be traced to December 1973, when the State Department of Parks and Recreation published the California History Plan, Volume I, in which Recommendation No. 11 was proposed by the then California Landmarks Advisory Committee (later to become The State Historical Resources Commission). This proposal expressed a need for a new building code to meet the intent of protecting the public health and safety and also retain “enough flexibility to allow restoration of a Historic feature while still retaining its Historic integrity.” No. 11 of this History Plan supported this need by stating that “…restoration … is frequently made difficult by unnecessarily rigid interpretation of building … codes.”

In March of 1974, the Landmarks Committee by resolution recommended that the Director of the State Department of Parks and Recreation and the State Architect initiate a study to develop this needed code. These two officials accepted this concept and jointly called a statewide meeting in Sacramento on May 14th of that year. Attending were representatives from both the public and private sectors, such as members of the building industry, design professions, local and state building officials, and others interested in this problem.

Out of this open conference, a steering committee was formed to explore in depth the ways and means of implementing the new historical building code concept. This ad hoc committee was chaired by a representative from the California Council, American Institute of Architects and composed of a comprehensive cross section of the professional organizations and government agencies concerned with design and code enforcement.

Meetings began late in 1974 and continued into early 1975. By April of that year, a legislative subcommittee of the ad hoc group drafted a sample bill for the proposed code and requested that it be carried by Senator James R. Mills, President Pro Tempore of the Senate. After further development and refinement, the enacting legislation to create the authority for the code and an advisory board to prepare regulations to implement it (SB 927, Mills) was supported by both the legislature and the public. It was signed by the governor in September 1975, and became effective January 1, 1976.

The members of the advisory board, which were required by law to include local and state building officials, individuals from the building industry and design professions, as well as representatives from city and county governments, were appointed and held their first session in Sacramento, February 24, 1976. This Board’s duties included the preparation of code regulations and the review of specific historic building cases, when officially requested by governing bodies.

Several of the Board’s members were a part of the original ad hoc steering committee and thus provided a continuity and smooth transition from the inception of the code’s philosophy to its pragmatic implementation in these performance-oriented regulations.

The first comprehensive regulations were codified in August and October 1979, after years of careful deliberation. Those regulations allowed all jurisdictions to utilize them at their discretion in replacing or modifying details of prevailing prescriptive codes.

Changes made in law in 1984 and 1991, and to the code, make the application of the California Historical Building Code statutes and regulations applicable for all agencies and at the discretion of the owner for local jurisdictions when dealing with qualified historical buildings.

These current performance regulations were adopted by the Board on June 23, 1998, and approved by the California Building Standards Commission on January 29, 2007.
California Energy Commission
Energy Hotline .. (800) 772-3300 or (916) 654-5106
Building Efficiency Standards
Appliance Efficiency Standards
Compliance Manual/Forms

California State Lands Commission
Marine Oil Terminals (562) 499-6317

California State Library
Resources and Information (916) 654-0261
Government Publication Section (916) 654-0069

Corrections Standards Authority
Local Adult Jail Standards (916) 324-1914
Local Juvenile Facility Standards (916) 324-1914

Department of Consumer Affairs – Acupuncture Board
Office Standards (916) 445-3021

Department of Consumer Affairs – Board of Pharmacy
Pharmacy Standards (916) 574-7900

Department of Consumer Affairs – Bureau of Barbering And Cosmetology
Barber and Beauty Shop and
College Standards (800) 952-5210

Department of Consumer Affairs – Bureau of Home Furnishings and Thermal Insulation
Insulation Testing Standards (916) 574-2041

Department of Consumer Affairs – Structural Pest Control Board
Structural Standards (800) 737-8188
... (916) 561-8708

Department of Consumer Affairs – Veterinary Medical Board
Veterinary Hospital Standard (916) 263-2610

Department of Food and Agriculture
Meat and Poultry Packing Plant
Standards (916) 654-1447
Dairy Standards(916) 654-1447

Department of Public Health
Organized Camps Standards (916) 449-5661
Public Swimming Pools Standards (916) 449-5693
Asbestos Standards (510) 620-2874

Department of Housing and Community Development
Residential – Hotels, Motels, Apartments, Single-Family Dwellings (916) 445-9471
Permanent Structures in Mobilehome and Special Occupancy Parks (916) 445-9471
Factory-Built Housing, Manufactured Housing and Commercial Modular (916) 445-3338
Mobilehomes – Permits and Inspections
Northern Region (916) 225-2501
Southern Region (951) 782-4420
Employee Housing Standards (916) 445-9471

Department of Water Resources
Gray Water Installations Standards (916) 651-9667

Division of the State Architect – Access Compliance
Access Compliance Standards (916) 445-8100

Division of the State Architect – Structural Safety
Public Schools Standards (916) 445-8100
Essential Services Building Standards (916) 445-8100
Community College Standards (916) 445-8100

Division of the State Architect – State Historical Building Safety Board
Alternative Building Standards (916) 445-8100

Office of Statewide Health Planning and Development
Hospital Standards (916) 440-8409
Skilled Nursing Facility Standards ... (916) 440-8409
Clinic Standards (916) 440-8409
Permits .. (916) 440-8409

Office of the State Fire Marshal
Code Development and Analysis (916) 445-8200
Fire Safety Standards (916) 445-8200
Fireplace Standards (916) 445-8200
Day-Care Centers Standards(916) 445-8200
Exit Standards (916) 445-8200
HOW TO DETERMINE WHERE CHANGES HAVE BEEN MADE

Symbols in the margins indicate where changes have been made or language has been deleted.

This symbol indicates that a change has been made.

This symbol indicates deletion of language.
TABLE OF CONTENTS

CHAPTER 8-1 ADMINISTRATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title, Purpose and Intent</th>
<th>Application</th>
<th>Organization and Enforcement</th>
<th>Review and Appeals</th>
<th>Construction Methods and Materials</th>
<th>SHBSB Rulings</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-2 DEFINITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-201</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-3 USE AND OCCUPANCY

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose and Scope</th>
<th>General</th>
<th>Residential Occupancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-301</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-303</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-4 FIRE PROTECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose, Intent and Scope</th>
<th>Fire-resistive Construction</th>
<th>Interior Finish Materials</th>
<th>Wood Lath and Plaster</th>
<th>Occupancy Separation</th>
<th>Maximum Floor Area</th>
<th>Vertical Shafts</th>
<th>Roof Covering</th>
<th>Fire Alarm Systems</th>
<th>Automatic Sprinkler Systems</th>
<th>Other Technologies</th>
<th>High-rise Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-401</td>
<td></td>
</tr>
<tr>
<td>8-402</td>
<td></td>
</tr>
<tr>
<td>8-403</td>
<td></td>
</tr>
<tr>
<td>8-404</td>
<td></td>
</tr>
<tr>
<td>8-405</td>
<td></td>
</tr>
<tr>
<td>8-406</td>
<td></td>
</tr>
<tr>
<td>8-407</td>
<td></td>
</tr>
<tr>
<td>8-408</td>
<td></td>
</tr>
<tr>
<td>8-409</td>
<td></td>
</tr>
<tr>
<td>8-410</td>
<td></td>
</tr>
<tr>
<td>8-411</td>
<td></td>
</tr>
<tr>
<td>8-412</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-5 MEANS OF EGRESS

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose, Intent and Scope</th>
<th>General</th>
<th>Escape or Rescue Windows and Doors</th>
<th>Railings and Guardrails</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-502</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-504</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-6 ACCESSIBILITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose, Intent and Scope</th>
<th>Basic Provisions</th>
<th>Alternatives</th>
<th>Equivalent Facilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-601</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-602</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-603</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-604</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-7 STRUCTURAL REGULATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose, Intent and Scope</th>
<th>General</th>
<th>Structural Survey</th>
<th>Nonhistorical Additions and Nonhistorical Alterations</th>
<th>Structural Regulations</th>
<th>Lateral Load Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-702</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-8 ARCHAIC MATERIALS AND METHODS OF CONSTRUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose, Intent and Scope</th>
<th>General Engineering Approaches</th>
<th>Allowable Conditions for Specific Materials</th>
<th>Masonry</th>
<th>Adobe</th>
<th>Wood</th>
<th>Concrete</th>
<th>Steel and Iron</th>
<th>Hollow Clay Tile</th>
<th>Veneers</th>
<th>Glass and Glazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-801</td>
<td></td>
</tr>
<tr>
<td>8-802</td>
<td></td>
</tr>
<tr>
<td>8-803</td>
<td></td>
</tr>
<tr>
<td>8-804</td>
<td></td>
</tr>
<tr>
<td>8-805</td>
<td></td>
</tr>
<tr>
<td>8-806</td>
<td></td>
</tr>
<tr>
<td>8-807</td>
<td></td>
</tr>
<tr>
<td>8-808</td>
<td></td>
</tr>
<tr>
<td>8-809</td>
<td></td>
</tr>
<tr>
<td>8-810</td>
<td></td>
</tr>
<tr>
<td>8-811</td>
<td></td>
</tr>
<tr>
<td>8-812</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 8-9 MECHANICAL, PLUMBING AND ELECTRICAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Purpose, Intent and Scope</th>
<th>Mechanical</th>
<th>Plumbing</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-901</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-902</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-903</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-904</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2010 CALIFORNIA HISTORICAL BUILDING CODE ix
CHAPTER 8-1
ADMINISTRATION

Note: The California Historical Building Code, Part 8 of Title 24, governs for all qualified historical buildings or properties in the State of California.

SECTION 8-101
TITLE, PURPOSE AND INTENT

8-101.1 Title. These regulations shall be known as the California Historical Building Code and will be referred to herein as "the CHBC."

8-101.2 Purpose. The purpose of the CHBC is to provide regulations for the preservation, restoration, rehabilitation, relocation or reconstruction of buildings or properties designated as qualified historical buildings or properties (Chapter 8-2). The CHBC is intended to provide solutions for the preservation of qualified historical buildings or properties, to promote sustainability, to provide access for persons with disabilities, to provide a cost-effective approach to preservation, and to provide for the reasonable safety of the occupants or users. The CHBC requires enforcing agencies to accept solutions that are reasonably equivalent to the regular code (as defined in Chapter 8-2) when dealing with qualified historical buildings or properties.

8-101.3 Intent. The intent of the CHBC is to facilitate the preservation and continuing use of qualified historical buildings or properties while providing reasonable safety for the building occupants and access for persons with disabilities.

SECTION 8-102
APPLICATION

8-102.1 Application. The CHBC is applicable to all issues regarding code compliance for qualified historical buildings or properties. The CHBC may be used in conjunction with the regular code to provide solutions to facilitate the preservation of qualified historical buildings or properties. The CHBC shall be used by any agency with jurisdiction and whenever compliance with the code is required for qualified historical buildings or properties.

1. The state or local enforcing agency shall apply the provisions of the CHBC in permitting repairs, alterations and additions necessary for the preservation, restoration, reconstruction, rehabilitation, relocation or continued use of a qualified historical building or property when so elected by the private property owner.

2. State agencies. All state agencies shall apply the provisions of the CHBC in permitting repairs, alterations and additions necessary for the preservation, restoration, rehabilitation, safety, relocation, reconstruction or continued use of qualified historical buildings or properties.

8-102.1.1 Additions, alterations and repairs. It is the intent of the CHBC to allow nonhistorical expansion or addition to a qualified historical building or property, provided nonhistorical additions shall conform to the requirements of the regular code. See Chapter 8-2.

8-102.1.2 Relocation. Relocated qualified historical buildings or properties shall be sited to comply with the regular code or with the solutions listed in the CHBC. Nonhistorical new construction related to relocation shall comply with the regular code. Reconstruction and restoration related to relocation is permitted to comply with the provisions in the CHBC.

8-102.1.3 Change of occupancy. For change of use or occupancy, see Chapter 8-3, Use and Occupancy.

8-102.1.4 Continued use. Qualified historical buildings or properties may have their existing use or occupancy continued if such use or occupancy conformed to the code or to the standards of construction in effect at the time of construction, and such use or occupancy does not constitute a distinct hazard to life safety as defined in the CHBC.

8-102.1.5 Unsafe buildings or properties. When a qualified historical building or property is determined to be unsafe as defined in the regular code, the requirements of the CHBC are applicable to the work necessary to correct the unsafe conditions. Work to remediate the buildings or properties need only address the correction of the unsafe conditions, and it shall not be required to bring the entire qualified historical building or property into compliance with regular code.

8-102.1.6 Additional work. Qualified historical buildings or properties shall not be subject to additional work required by the regular code, regulation or ordinance beyond that required to complete the work undertaken. Certain exceptions for accessibility and for distinct hazards exist by mandate and may require specific action, within the parameters of the CHBC.

SECTION 8-103
ORGANIZATION AND ENFORCEMENT

8-103.1 Authority. The state or local enforcing agency, pursuant to authority provided under Section 18954 of the Health and Safety Code, shall administer and enforce the provisions of the CHBC in permitting repairs, alterations and additions necessary for the preservation, restoration, reconstruction, rehabilitation, relocation or continued use of a qualified historical building or property.

8-103.2 State enforcement. All state agencies pursuant to authority provided under Section 18954 and Section 18961 of the Health and Safety Code shall administer and enforce the CHBC with respect to qualified historical buildings or properties under their respective jurisdiction.
8-103.3 Liability. Prevailing law regarding immunity of building officials is unaffected by the use and enforcement of the CHBC.

SECTION 8-104
REVIEW AND APPEALS

8-104.1 State Historical Building Safety Board (SHBSB). In order to provide for interpretation of the provisions of the CHBC and to hear appeals, the SHBSB shall act as an appeal and review body to state and local agencies or any affected party.

8-104.2 SHBSB review. When a proposed design, material or method of construction is being considered by the enforcing agency, the agency chief, the building official or the local board of appeals may file a written request for opinion to the SHBSB for its consideration, advice or findings. In considering such request, the SHBSB may seek the advice of other appropriate private or public boards, individuals, or state or local agencies. The SHBSB shall, after considering all of the facts presented, including any recommendation of other appropriate boards, agencies or other parties, determine if, for the purpose intended, the proposal is reasonably equivalent to that allowed by these regulations in proposed design, material or method of construction, and it shall transmit such findings and its decision to the enforcing agency for its application. The Board may recover the costs of such reviews and shall report the decision in printed form, copied to the California Building Standards Commission.

8-104.2.1 State agencies. All state agencies with ownership of, or that act on behalf of state agency owners of, qualified historical buildings or properties, shall consult and obtain SHBSB review prior to taking action or making decisions or appeals that affect qualified historical buildings or properties, per Section 18961 of the Health and Safety Code.

8-104.2.2 Imminent threat. Where an emergency is declared and a qualified historical building or property is declared an imminent threat to life and safety, the state agency assessing such a threat shall consult with the SHBSB before any demolition is undertaken, per Section 18961 of the Health and Safety Code.

8-104.3 SHBC appeals. If any local agency administering and enforcing the CHBC or any person adversely affected by any regulation, rule, omission, interpretation, decision or practice of the agency enforcing the CHBC wishes to appeal the issue for resolution to the SHBSB, either of these parties may appeal directly to the Board. The Board may accept the appeal only if it determines that issues involved are of statewide significance. The Board may recover the costs of such reviews and shall make available copies of decisions in printed form at cost, copied to the California Building Standards Commission.

8-104.4 Local agency fees. Local agencies, when actively involved in the appeal, may also charge affected persons reasonable fees not to exceed the cost of obtaining reviews and appeals from the Board.

SECTION 8-105
CONSTRUCTION METHODS AND MATERIALS

8-105.1 Repairs. Repairs to any portion of a qualified historical building or property may be made in-kind with historical materials and the use of original or existing historical methods of construction, subject to conditions of the CHBC. (See Chapter 8-8.)

8-105.2 Solutions to the California Historical Building Code. Solutions provided in the CHBC, or any other acceptable regulation or methodology of design or construction and used in whole or in part, with the regular code, or with any combination of the regular code and the CHBC, shall be allowed. The CHBC does not preclude the use of any proposed alternative or method of design or construction not specifically prescribed or otherwise allowed by these regulations. Any alternative may be submitted for evaluation to the appropriate enforcing agency for review and acceptance. The enforcing agency may request that sufficient evidence or proof be submitted to substantiate any claims that may be made regarding such solutions. Any alternative offered in lieu of that prescribed or allowed in the CHBC shall be reasonably equivalent in quality, strength, effectiveness, durability and safety to that of the CHBC.

SECTION 8-106
SHBSB RULINGS

8-106.1 General. Rulings of the SHBSB (i.e., formal appeals, case decisions, code interpretations and administrative resolutions, etc.) that are issues of statewide application are required to be submitted to the California Building Standards Commission in printed form. These rulings may be used to provide guidance for similar cases or issues.
CHAPTER 8-2
DEFINITIONS

SECTION 8-201
DEFINITIONS

For the purpose of the CHBC, certain terms and phrases, words and their derivatives shall be construed as specified in this chapter. Additional definitions and/or terms may appear in the various other chapters relative to terms or phrases primarily applicable thereto. Any reference to "authority having jurisdiction" does not necessarily preclude the appellate process of Section 8-104.3.

ADDITION. A nonhistorical extension or increase in floor area or height of a building or property.

ALTERATION. A modification to a qualified historical building or property that affects the usability of the building or property, or part thereof. Alterations include, but are not limited to, remodeling, renovation, rehabilitation, reconstruction, historical restoration, changes or rearrangement of the structural parts or elements, and changes or rearrangements in the plan configuration of walls and full-height partitions.

BUILDING STANDARD. Any guideline, regulation or code that may be applied to a qualified historical building or property.

CHARACTER-DEFINING FEATURE. Those visual aspects and physical elements that comprise the appearance of a historical building or property, and that are significant to its historical, architectural and cultural values, including the overall shape of the historical building or property, its materials, craftsmanship, decorative details, interior spaces and features, as well as the various aspects of its site and environment.

CULTURAL RESOURCE. Building, site, property, object or district evaluated as having significance in prehistory or history.

DISTINCT HAZARD. Any clear and evident condition that exists as an immediate danger to the safety of the occupants or public right of way. Conditions that do not meet the requirements of current regular codes and ordinances do not, of themselves, constitute a distinct hazard. Section 8-104.3, SHBC appeals, remains applicable.

ENFORCING AGENCY. Authority Having Jurisdiction, Local Agency with Jurisdiction. An entity with the responsibility for regulating, enforcing, reviewing or otherwise that exerts control of or administration over the process of gaining permits, approvals, decisions, variances, appeals for qualified historical buildings or properties.

EXIT LADDER DEVICE. An exit ladder device is a permanently installed, fixed, folding, retractable or hinged ladder intended for use as a means of emergency egress from areas of the second or third stories. Unless approved specifically for a longer length, the ladder shall be limited to 25 feet (7620 mm) in length. Exit ladders are permitted where the area served by the ladder has an occupant load less than 10 persons.

FIRE HAZARD. Any condition which increases or may contribute to an increase in the hazard or menace of fire to a greater degree than customarily recognized by the authority having jurisdiction, or any condition or act which could obstruct, delay, hinder or interfere with the operations of firefighting personnel or the egress of occupants in the event of fire. Section 8-104.3, SHBC appeals, remains applicable.

HISTORICAL FABRIC OR MATERIALS. Original and later-added historically significant construction materials, architectural finishes or elements in a particular pattern or configuration which form a qualified historical property, as determined by the authority having jurisdiction.

HISTORICAL SIGNIFICANCE. Importance for which a property has been evaluated and found to be historical, as determined by the authority having jurisdiction.

IMMINENT THREAT. Any condition within or affecting a qualified historical building or property which, in the opinion of the authority having jurisdiction, would cause a building or property as dangerous to the extent that the life, health, property or safety of the public, its occupants or those performing necessary repair, stabilization or shoring work are in immediate peril due to conditions affecting the building or property. Potential hazards to persons using, or improvements within, the right-of-way may not be construed to be "imminent threats" solely for that reason if the hazard can be mitigated by shoring, stabilization, barricades or temporary fences.

INTEGRITY. Authenticity of a building or property's historical identity, evidenced by the survival of physical characteristics that existed during the property's historical or prehistorical period of significance.

LIFE-SAFETY EVALUATION. An evaluation of the life-safety hazards of a qualified historical building or property based on procedures similar to those contained in NFPA 909, Standard for the Protection of Cultural Resources, Appendix B, Fire Risk Assessment in Heritage Premises.

LIFE SAFETY HAZARD. See Distinct Hazard.

PERIOD OF SIGNIFICANCE. The period of time when a qualified historical building or property was associated with important events, activities or persons, or attained characteristics for its listing or registration.

PREVENTION. The act or process of applying measures necessary to sustain the existing form, integrity and materials of a qualified historical building or property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical and plumbing systems and other code-related work to make properties functional is appropriate within a preservation project.
DEFINITIONS

QUALIFIED HISTORICAL BUILDING OR PROPERTY. As defined in Health and Safety Code Section 18955 as “Qualified Historical Building or Property.” Any building, site, object, place, location, district or collection of structures, and their associated sites, deemed of importance to the history, architecture or culture of an area by an appropriate local, state or federal governmental jurisdiction. This shall include historical buildings or properties on, or determined eligible for, national, state or local historical registers or inventories, such as the National Register of Historic Places, California Register of Historical Resources, State Historical Landmarks, State Points of Historical Interest, and city or county registers, inventories or surveys of historical or architecturally significant sites, places or landmarks.

RECONSTRUCTION. The act or process of depicting, by means of new construction, the form, features and detailing of a nonsurviving site, landscape, building, property or object for the purpose of replicating its appearance at a specific period of time.

REGULAR CODE. The adopted regulations that govern the design and construction or alteration of nonhistorical buildings and properties within the jurisdiction of the enforcing agency.

REHABILITATION. The act or process of making possible a compatible use for qualified historical building or property through repair, alterations and additions while preserving those portions or features which convey its qualified historical, cultural or architectural values.

RELOCATION. The act or process of moving any qualified historical building or property or a portion of a qualified historical building or property to a new site, or a different location on the same site.

REPAIR. Renewal, reconstruction or renovation of any portion of an existing property, site or building for the purpose of its continued use.

RESTORATION. The act or process of accurately depicting the form, features and character of a qualified building or property as it appeared at a particular period of time by the means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical and plumbing systems and other code-required work to make properties functional is appropriate within a restoration project.

STRUCTURE. That which is built or constructed, an edifice or a building of any kind, or any piece of work artificially built up or composed of parts joined together in some definite manner.

TREATMENT. An act of work to carry out preservation, restoration, stabilization, rehabilitation or reconstruction.
CHAPTER 8-3
USE AND OCCUPANCY

SECTION 8-301
PURPOSE AND SCOPE

8-301.1 Purpose. The purpose of the CHBC is to provide regulations for the determination of occupancy classifications and conditions of use for qualified historical buildings or properties.

8-301.2 Scope. Every qualified historical building or property for which a permit or approval has been requested shall be classified prior to permit issuance according to its use or the character of its occupancy in accordance with the regular code and applicable provisions of this chapter.

SECTION 8-302
GENERAL

8-302.1 Existing use. The use or character of occupancy of a qualified historical building or property, or portion thereof, shall be permitted to continue in use regardless of any period of time in which it may have remained unoccupied or in other uses, provided such building or property otherwise conforms to all applicable requirements of the CHBC.

8-302.2 Change in occupancy. The use or character of the occupancy of a qualified historical building or property may be changed from or returned to its historical use or character, provided the qualified historical building or property conforms to the requirements applicable to the new use or character of occupancy as set forth in the CHBC. Such change in occupancy shall not mandate conformance with new construction requirements as set forth in regular code.

8-302.3 Occupancy separations. Required occupancy separations of more than one hour may be reduced to one-hour fire-resistive construction with all openings protected by not less than three-fourths-hour fire-resistive assemblies of the self-closing or automatic-closing type when the building is provided with an automatic sprinkler system throughout the entire building in accordance with Section 8-410.4. Doors equipped with automatic-closing devices shall be of a type which will function upon activation of a device which responds to products of combustion other than heat.

Required occupancy separations of one hour may be omitted when the building is provided with an automatic sprinkler system throughout.

8-302.4 Maximum floor area. Regardless of the use or character of occupancy, the area of a one-story qualified historical building or property may have, but shall not exceed, a floor area of 15,000 square feet (1393.5 m²) unless such an increase is otherwise permitted in regular code. Multistory qualified historical buildings (including basements and cellars) shall be in accordance with regular code requirements.

Exception: Historical buildings may be unlimited in floor area without fire-resistive area separation walls:
1. When provided with an automatic sprinkler, or
2. Residential occupancies of two stories or less when provided with a complete fire alarm and annunciation system and where the exiting system conforms to regular code.

8-302.5 Maximum height. The maximum height and number of stories of a qualified historical building or property shall not be limited because of construction type, provided such height or number of stories does not exceed that of its historical design.

8-302.5.1 High-rise buildings. Occupancies B, F-1, F-2 or S in high-rise buildings with floors located more than 75 feet above the lowest floor level having building access may be permitted with only the stories over 75 feet provided with an automatic fire sprinkler system if:
1. The building construction type and the exits conform to regular code, and
2. A complete building fire alarm and annunciation system is installed, and
3. A fire barrier is provided between the sprinklered and nonsprinklered floors.

8-302.6 Fire-resistive construction. See Chapter 8-4.

8-302.7 Light and ventilation. Existing provisions for light and ventilation which do not, in the opinion of the enforcing agency, constitute a safety hazard may remain. See Section 8-303.6 for residential requirements. See Section 8-503 for Escape or Rescue Windows and Doors.

SECTION 8-303
RESIDENTIAL OCCUPANCIES

8-303.1 Purpose. The purpose of this section is to provide regulations for those buildings designated as qualified historical buildings or properties and classified as occupancies. The CHBC requires enforcing agencies to accept any reasonably equivalent to the regular code when dealing with qualified historical buildings and properties.

8-303.2 Intent. The intent of the CHBC is to preserve the integrity of qualified historical buildings and properties while maintaining a reasonable degree of protection of life, health and safety for the occupants.

8-303.3 Application and scope. The provisions of this section shall apply to all qualified historical buildings used for human habitation. Those dwelling units intended only for display, or public use with no residential use involved, need not comply with the requirements of this section.
8-303.4 **Fire escapes.** See Chapter 8-5.

8-303.5 **Room dimensions.** Rooms used for sleeping purposes may contain a minimum of 50 square feet (4.6 m²) floor area, provided there is maintained an average ceiling height of 7 feet (2134 mm). Other habitable rooms need only be of adequate size to be functional for the purpose intended.

8-303.6 **Light and ventilation.** Windows in habitable rooms shall have an area of 6 percent of the floor area, or 6 square feet (0.56 m²), whichever is greater. Windows in sleeping rooms shall be openable (see Section 8-503). Residential occupancies need not be provided with electrical lighting.

8-303.7 **Alteration and repair.** The alteration and repair of qualified historical buildings or properties may permit the replacement, retention and extension of original materials and the continued use of original methods of construction, provided a life-safety hazard is not created or continued. Alterations and repairs shall be consistent with the CHBC.

The amount of alterations and repairs is not limited, provided there is no nonhistorical increase in floor area, volume or size of the building or property.

8-303.8 **Exiting.** See Chapter 8-5.
CHAPTER 8-4
FIRE PROTECTION

SECTION 8-401
PURPOSE, INTENT AND SCOPE

8-401.1 Purpose. The purpose of this chapter is to provide for fire protection of qualified historical buildings or properties. The CHBC requires enforcing agencies to accept any reasonably equivalent to the regular code when dealing with qualified historical buildings or properties.

8-401.2 Intent. The intent of the CHBC is to preserve the integrity of qualified historical buildings or properties while maintaining a reasonable degree of fire protection based primarily on the life safety of the occupants and firefighting personnel.

8-401.3 Scope. This chapter shall apply when required by the provisions of Section 8-102.

SECTION 8-402
FIRE-RESISTIVE CONSTRUCTION

8-402.1 Exterior wall construction. The fire-resistance requirement for existing exterior walls and existing opening protection may be satisfied when an automatic sprinkler system designed for exposure protection is installed per the CHBC. The automatic sprinklers may be installed on the exterior with at least one sprinkler located over each opening required to be protected. Additional sprinklers shall also be distributed along combustible walls under the roof lines that do not meet the fire-resistive requirement due to relationship to property lines as required by regular code. Such sprinkler systems may be connected to the domestic water supply on the supply-main side of the building shut-off valve. A shut-off valve may be installed for the sprinkler system, provided it is locked in an open position.

8-402.2 One-hour construction. Upgrading an existing qualified historical building or property to one-hour fire-resistive construction and one-hour fire-resistive corridors shall not be required regardless of construction or occupancy when one of the following is provided:

1. An automatic sprinkler system throughout. See Section 8-410 for automatic sprinkler systems.
3. Other alternative measures as approved by the enforcing agency.

8-402.3 Openings in fire-rated systems. Historical glazing materials and solid wood unrated doors in interior walls required to have one-hour fire rating may be approved when operable windows and doors are provided with appropriate smoke seals and when the area affected is provided with an automatic sprinkler system. See Section 8-410 for automatic sprinkler systems.

SECTION 8-403
INTERIOR FINISH MATERIALS

New nonhistorical interior wall and ceiling finish shall conform to the provisions of the regular code. Existing nonconforming materials used for wood lath and plaster walls, see Section 8-404.

Exception: When an automatic sprinkler system is provided throughout the building, existing finishes shall be approved.

SECTION 8-404
WOOD LATH AND PLASTER

Wood lath and plaster walls may be considered in accordance with codes, standards and listings published prior to 1943 whereby a wood stud wall assembly with gypsum or lime plaster on hand split or sawn wooden lath obtains a one-half-hour fire-resistive rating. This rating may be increased for interior walls to as much as one hour by filling the wall with mineral fiber or glass fiber.

SECTION 8-405
OCCUPANCY SEPARATION

See Chapter 8-3.

SECTION 8-406
MAXIMUM FLOOR AREA

See Chapter 8-3.

SECTION 8-407
VERTICAL SHAFTS

Vertical shafts need not be enclosed when such shafts are blocked at every floor level by the installation of not less than 2 full inches (51 mm) of solid wood or equivalent construction installed so as to prevent the initial passage of smoke and flame. Automatic sprinkler systems or other solutions may be considered on a case-by-case basis, in lieu of enclosure of vertical shafts and stairwells.

SECTION 8-408
ROOF COVERING

Existing or original roofing materials may be repaired or reconstructed subject to the following requirements:

1. The original or historical roofing system shall be detailed or modified as necessary in order to be capable of providing shelter while preserving the historical materials and appearance of the roof.
2. Wooden roof materials may be utilized where fire resistance is required, provided they are treated with
FIRE PROTECTION

fire-retardant treatments to achieve a Class “B” roof covering rating. Wood roofing in state designated Urban Wildland and High Fire Zones shall be permitted when installed in class “A” assemblies.

3. Jurisdictions that prohibit wood roofing materials for application as roof coverings and roof assemblies shall submit documentation for the adoption. Express Terms, statement of reasons and minutes of the action by the adopting authority Health and Safety Code, Section 18959(f).

SECTION 8-409
FIRE ALARM SYSTEMS

Every qualified historical building or property shall be provided with fire alarm systems as required for the use or occupancy by the regular code or other approved alternative.

SECTION 8-410
AUTOMATIC SPRINKLER SYSTEMS

8-410.1 Every qualified historical building or property which cannot be made to conform to the construction requirements specified in the regular code for the occupancy or use, and which constitutes a distinct fire hazard (for definition of “distinct hazard,” see Chapter 8-2), shall be deemed to be in compliance if provided with an automatic sprinkler system or a life-safety system or other technologies as approved by the enforcing agency. (“Automatic” is defined in the regular code. Sprinkler System is defined in this section.)

8-410.2 When required by the CHBC, an automatic sprinkler system is defined by the following standards (for nonhazardous occupancies).

4. When the building is free standing or with property line separation, two floors and 1500 sf per floor or less, NFPA 13D, 2002 Edition.
5. For exterior wall and opening protection. As required by this section.

Exception: When the automatic sprinkler systems are used to reach compliance using this code, in three or more occasions, the system shall be NFPA standard 13D shall be increased to NFPA 13R Standard, or NFPA 13R standard shall be increased to a NFPA 13 standard.

8-410.3 Automatic sprinkler systems shall not be used to substitute for or act as an alternate to the required number of exits from any facility. (See Chapter 8-5 for exiting requirements.)

8-410.4 An automatic sprinkler system shall be provided in all detention facilities.

SECTION 8-411
OTHER TECHNOLOGIES

Fire alarm systems, smoke and heat detection systems, occupant notification and annunciation systems, smoke control systems and fire modeling, times egress analysis and modeling, as well as other engineering methods and technologies may be accepted by the enforcing agency to address areas of nonconformance.

SECTION 8-412
HIGH-RISE BUILDINGS

Qualified historical buildings having floors for human occupancy located more than 75 feet above the lowest floor level having building access shall conform to the provisions of the regular code for existing high-rise buildings as amended by the CHBC.
CHAPTER 8-5
MEANS OF EGRESS

SECTION 8-501
PURPOSE, INTENT AND SCOPE
8-501.1 Purpose. The purpose of this chapter is to establish minimum means of egress regulations for qualified historical buildings or properties. The CHBC requires enforcing agencies to accept reasonably equivalent alternatives to the means of egress requirements in the regular code.

8-501.2 Intent. The intent of these regulations is to provide an adequate means of egress.

8-501.3 Scope. Every qualified historical building or portion thereof shall be provided with exits as required by the CHBC when required by the provisions of Section 8-102.

SECTION 8-502
GENERAL
8-502.1 General. The enforcing agency shall grant reasonable exceptions to the specific provisions of applicable egress regulations where such exceptions will not adversely affect life safety.

8-502.2 Existing door openings and corridor widths of less than dimensions required by regular code shall be permitted where there is sufficient width and height for the occupants to pass through the opening or traverse the exit.

8-502.3 Stairs. Existing stairs having risers and treads or width at variance with the regular code are allowed if determined by the enforcing agency to not constitute a distinct hazard. Handrails with nonconforming grip size or extensions are allowed if determined by the enforcing agency to not constitute a distinct hazard.

8-502.4 Main entry doors. The front or main entry doors need not be rehung to swing in the direction of exit travel, provided other means or conditions of exiting, as necessary to serve the total occupant load, are provided.

8-502.5 Existing fire escapes. Existing previously approved fire escapes and fire escape ladders shall be acceptable as one of the required means of egress, provided they extend to the ground and are easily negotiated, adequately signed and in good working order. Access shall be by an opening having a minimum width of 29 inches (737 mm) when open with a sill no more than 30 inches (762 mm) above the adjacent floor, landing or approved step.

8-502.6 New fire escapes and fire escape ladders. New fire escapes and fire escape ladders which comply with this section shall be acceptable as one of the required means of egress. New fire escapes and new fire escape ladders shall comply with the following:

1. Access from a corridor shall not be through an intervening room.
2. All openings within 10 feet (3048 mm) shall be protected by three-fourths-hour fire assemblies. When located within a recess or vestibule, adjacent enclosure walls shall be of not less than one-hour fire-resistant construction.

3. Egress from the building shall be by a clear opening having a minimum dimension of not less than 29 inches (737 mm). Such openings shall be openable from the inside without the use of a key or special knowledge or effort. The sill of an opening giving access shall not be more than 30 inches (737 mm) above the floor, step or landing of the building or balcony.

4. Fire escape stairways and balconies shall support the dead load plus a live load of not less than 100 pounds per square foot (4.79 kN/m²) and shall be provided with a top and intermediate handrail on each side. The pitch of the stairway shall not exceed 72 degrees with a minimum width of 18 inches (457 mm). Treads shall not be less than 4 inches (102 mm) in width, and the rise between treads shall not exceed 10 inches (254 mm). All stair and balcony railings shall support a horizontal force of not less than 50 pounds per lineal foot (729.5 N/m²) of railing.

5. Balconies shall not be less than 44 inches (1118 mm) in width with no floor opening other than the stairway opening greater than 3/4 inch (19.1 mm) in width. Stairway openings in such balconies shall not be less than 22 inches by 44 inches (559 by 1118 mm). The balustrade of each balcony shall not be less than 36 inches (914 mm) high with not more than 9 inches (287 mm) between balusters.

6. Fire escapes shall extend to the roof or provide an approved gooseneck ladder between the top floor landing and the roof when serving buildings four or more stories in height having roofs with less than 4 units vertical in 12 units horizontal (33.3 percent slope). Fire escape ladders shall be designed and connected to the building to withstand a horizontal force of 100 pounds (445 N) placed anywhere on the rung. All ladders shall be at least 15 inches (381 mm) wide, located within 12 inches (305 mm) of the building. Ladder rungs shall be 3/4 inch (19.1 mm) in diameter and shall be located 12 inches (305 mm) on center. Openings for roof access ladders through cornices and similar projections shall have minimum dimensions of 30 inches by 33 inches (762 by 838 mm).

The length of fire escapes and exit ladder devices shall be limited to that approved by the building official based on products listed by a recognized testing laboratory.

7. The lowest balcony shall not be more than 18 feet (5486 mm) from the ground. Fire escapes shall extend to the ground or be provided with counterbalanced stairs reaching to the ground.
8. Fire escapes shall not take the place of stairways required by the codes under which the building was constructed.

9. Fire escapes shall be kept clear and unobstructed at all times and maintained in good working order.

SECTION 8-503
ESCAPE OR RESCUE WINDOWS AND DOORS
Basements in dwelling units and every sleeping room below the fourth floor shall have at least one openable window or door approved for emergency escape which shall open directly into a public street, public way, yard or exit court. Escape or rescue windows or doors shall have a minimum clear area of 3.3 square feet (0.31 m²) and a minimum width or height dimension of 18 inches (457 mm) and be operable from the inside to provide a full, clear opening without the use of special tools.

SECTION 8-504
RAILINGS AND GUARDRAILS
The height of railings and guard railings and the spacing of balusters may continue in their historical height and spacing unless a distinct hazard has been identified or created by a change in use or occupancy.
CHAPTER 8-6
ACCESSIBILITY

SECTION 8-601
PURPOSE, INTENT AND SCOPE

8-601.1 Purpose. The purpose of the CHBC is to provide alternative regulations to facilitate access and use by persons with disabilities to and throughout facilities designated as qualified historical buildings or properties. These regulations require enforcing agencies to accept alternatives to regular code when dealing with qualified historical buildings or properties.

8-601.2 Intent. The intent of this chapter is to preserve the integrity of qualified historical buildings and properties while providing access to and use by persons with disabilities.

8-601.3 Scope. The CHBC shall apply to every qualified historical building or property that is required to provide access to persons with disabilities.

1. Provisions of this chapter do not apply to new construction or reconstruction/replicas of historical buildings.

2. Where provisions of this chapter apply to alteration of qualified historical buildings or properties, alteration is defined in California Building Code (CBC), Chapter 2, Definitions and Abbreviations. 202—A. Alter or Alteration.

8-601.4 General application. The provisions in the CHBC apply to local, state and federal governments (Title II entities); alteration of commercial facilities and places of public accommodation (Title III entities); and barrier removal in commercial facilities and places of public accommodation (Title III entities). Except as noted in this chapter.

SECTION 8-602
BASIC PROVISIONS

8-602.1 Regular code. The regular code for access for people with disabilities (Title 24, Part 2, Vol. 1, Chapter lIB) shall be applied to qualified historical buildings or properties unless strict compliance with the regular code will threaten or destroy the historical significance or character-defining features of the building or property.

8-602.2 Alternative provisions. If the historical significance or character-defining features are threatened, alternative provisions for access may be applied pursuant to this chapter, provided the following conditions are met:

1. These provisions shall be applied only on an item-by-item or a case-by-case basis.

2. Documentation is provided, including meeting minutes or letters, stating the reasons for the application of the alternative provisions. Such documentation shall be retained in the permanent file of the enforcing agency.

SECTION 8-603
ALTERNATIVES

8-603.1 Alternative minimum standards. The alternative minimum standards for alterations of qualified historical buildings or facilities are contained in Section 4.1.7(3) of ADA Standards for Accessible Design, as incorporated and set forth in federal regulation 28 C.F.R. Pt. 36.

8-603.2 Entry. These alternatives do not allow exceptions for the requirement of level landings in front of doors, except as provided in Section 8-603.4.

1. Access to any entrance used by the general public and no further than 200 feet (60 960 mm) from the primary entrance.

2. Access at any entrance not used by the general public but open and unlocked with directional signs at the primary entrance and as close as possible to, but no further than 200 feet (60 960 mm) from, the primary entrance.

3. The accessible entrance shall have a notification system. Where security is a problem, remote monitoring may be used.

8-603.3 Doors. Alternatives listed in order of priority are:

1. Single-leaf door which provides a minimum 30 inches (762 mm) of clear opening.

2. Single-leaf door which provides a minimum 29 1/2 inches (749 mm) clear opening.

3. Double door, one leaf of which provides a minimum 29 1/2 inches (749 mm) clear opening.

4. Double doors operable with a power-assist device to provide a minimum 29 1/2 inches (749 mm) clear opening when both doors are in the open position.

8-603.4 Power-assisted doors. Power-assisted door or doors may be considered an equivalent alternative to level landings, strikeside clearance and door-opening forces required by the regular code.

8-603.5 Toilet rooms. In lieu of separate-gender toilet facilities as required in the regular code, an accessible unisex toilet facility may be designated.

8-603.6 Exterior and interior ramps and lifts. Alternatives listed in order of priority are:

1. A lift or a ramp of greater than standard slope but no greater than 1:10, for horizontal distances not to exceed 5 feet (1525 mm). Signs shall be posted at upper and lower levels to indicate steepness of the slope.

2. Access by ramps of 1:6 slope for horizontal distance not to exceed 13 inches (330 mm). Signs shall be posted at upper and lower levels to indicate steepness of the slope.
SECTION 8-604
EQUIVALENT FACILITATION

Use of other designs and technologies, or deviation from particular technical and scoping requirements, are permitted if the application of the alternative provisions contained in Section 8-603 would threaten or destroy the historical significance or character-defining features of the historical building or property.

1. Such alternatives shall be applied only on an item-by-item or a case-by-case basis.

2. Access provided by experiences, services, functions, materials and resources through methods including, but not limited to, maps, plans, videos, virtual reality and related equipment, at accessible levels. The alternative design and/or technologies used will provide substantially equivalent or greater accessibility to, and usability of, the facility.

3. The official charged with the enforcement of the standards shall document the reasons for the application of the design and/or technologies and their effect on the historical significance or character-defining features. Such documentation shall be in accordance with Section 8-602.2, Item 2, and shall include the opinion and comments of state or local accessibility officials, and the opinion and comments of representative local groups of people with disabilities. Such documentation shall be retained in the permanent file of the enforcing agency. Copies of the required documentation should be available at the facility upon request.

Note: For commercial facilities and places of public accommodation (Title III entities).

Equivalent facilitation for an element of a building or property when applied as a waiver of an ADA accessibility requirement will not be entitled to the Federal Department of Justice certification of this code as rebuttable evidence of compliance for that element.
CHAPTER 8-7
STRUCTURAL REGULATIONS

SECTION 8-701
PURPOSE, INTENT AND SCOPE

8-701.1 Purpose. The purpose of the CHBC is to provide alternative regulations for the structural safety of buildings designated as qualified historical buildings or properties. The CHBC requires enforcing agencies to accept any reasonably equivalent alternatives to the regular code when dealing with qualified historical buildings or properties.

8-701.2 Intent. The intent of the CHBC is to encourage the preservation of qualified historical buildings or properties while providing a reasonable level of structural safety for occupants and the public at large through the application of the CHBC.

8-701.3 Application. The alternative structural regulations provided by Section 8-705 are to be applied in conjunction with the regular code whenever a structural upgrade or reconstruction is undertaken for qualified historical buildings or properties.

SECTION 8-702
GENERAL

8-702.1 The CHBC shall not be construed to allow the enforcing agency to approve or permit a lower level of safety of structural design and construction than that which is reasonably equivalent to the regular code provisions in occupancies which are critical to the safety and welfare of the public at large, including, but not limited to, public and private schools, hospitals, municipal police and fire stations and essential services facilities.

8-702.2 Nothing in these regulations shall prevent voluntary and partial seismic upgrades when it is demonstrated that such upgrades will improve life safety and when a full upgrade would not otherwise be required.

SECTION 8-703
STRUCTURAL SURVEY

8-703.1 Scope. When a structure or portion of a structure is to be evaluated for structural capacity under the CHBC, it shall be surveyed for structural conditions by an architect or engineer knowledgeable in historical structures. The survey shall evaluate deterioration or signs of distress. The survey shall determine the details of the structural framing and the system for resistance of gravity and lateral loads. Details, reinforcement and anchorage of structural systems and veneers shall be determined and documented where these members are relied on for seismic resistance.

8-703.2 The results of the survey shall be utilized for evaluating the structural capacity and for designing modifications to the structural system to reach compliance with this code.

8-703.3 Historical records. Past historical records of the structure or similar structures may be used in the evaluation, including the effects of subsequent alterations.

SECTION 8-704
NONHISTORICAL ADDITIONS AND NONHISTORICAL ALTERATIONS

8-704.1 New nonhistorical additions and nonhistorical alterations which are structurally separated from an existing historical structure shall comply with regular code requirements.

8-704.2 New nonhistorical additions which impose vertical or lateral loads on an existing structure shall not be permitted unless the affected part of the supporting structure is evaluated and strengthened, if necessary, to meet regular code requirements.

Note: For use of archaic materials, see Chapter 8-8.

SECTION 8-705
STRUCTURAL REGULATIONS

8-705.1 Gravity loads. The capacity of the structure to resist gravity loads shall be evaluated and the structure strengthened as necessary. The evaluation shall include all parts of the load path. Where no distress is evident, and a complete load path is present, the structure may be assumed adequate by having withstood the test of time if anticipated dead and live loads will not exceed those historically present.

8-705.2 Wind and seismic loads. The ability of the structure to resist wind and seismic loads shall be evaluated. The evaluation shall be based on the requirements of Section 8-706.

8-705.2.1 Any unsafe conditions in the lateral-load-resisting system shall be corrected, or alternative resistance shall be provided. Additional resistance shall be provided to meet the minimum requirements of this code.

8-705.2.2 The architect or engineer shall consider additional measures with minimal loss of, and impact to, historical materials which will reduce damage and needed repairs in future earthquakes to better preserve the historical structure in perpetuity. These additional measures shall be presented to the owner for consideration as part of the rehabilitation or restoration.

SECTION 8-706
LATERAL LOAD REGULATIONS

8-706.1 Lateral loads. The forces used to evaluate the structure for resistance to wind and seismic loads need not exceed 0.75 times the seismic forces prescribed by the 1995 edition of the California Building Code (CBC). The seismic forces may be computed based on the Rw values tabulated in the regular code for similar lateral-force-resisting systems. All deviations
of the detailing provisions of the lateral-force-resisting systems shall be evaluated for stability and the ability to maintain load-carrying capacity at increased lateral loads.

Unreinforced masonry bearing wall buildings shall comply with Appendix Chapter 1 of the Uniform Code for Building Conservation™ (UCBC™), 1994 edition, and as modified by this code. Reasonably equivalent standards may be used on a case-by-case basis when approved by the authority having jurisdiction.

8-706.2 Existing building performance. The seismic resistance may be based upon the ultimate capacity of the structure to perform, giving due consideration to ductility and reserve strength of the lateral-force-resisting system and materials while maintaining a reasonable factor of safety. Broad judgment may be exercised regarding the strength and performance of materials not recognized by regular code requirements. (See Chapter 8-8, Archaic Materials and Methods of Construction.)

8-706.2.1 All structural materials or members that do not comply with detailing and proportioning requirements of the regular code shall be evaluated for potential seismic performance and the consequence of noncompliance. All members which might fail and lead to possible collapse, or threaten life safety, when subjected to seismic demands in excess of those prescribed in Section 8-706.1, shall be judged unacceptable, and appropriate structural strengthening shall be developed. Anchorages for veneers and decorative ornamentation shall be included in this evaluation.

8-706.3 Load path. A complete and continuous load path, including connections, from every part or portion of the structure to the ground shall be provided for the required forces. It shall be verified that the structure is adequately tied together to perform as a unit when subjected to earthquake forces.

8-706.4 Parapets. Parapets and exterior decoration shall be investigated for conformance with regular code requirements for anchorage and ability to resist prescribed seismic forces.

An exception to regular code requirements shall be permitted for those parapets and decorations which are judged not to be a hazard to life safety.

8-706.5 Nonstructural features. Nonstructural features of historical structure, such as exterior veneer, cornices and decorations, which might fall and create a life-safety hazard in an earthquake, shall be investigated. Their ability to resist seismic forces shall be verified, or the feature shall be strengthened.

8-706.5.1 Partitions and ceilings of corridors and stairways serving an occupant load of 30 or more shall be investigated to determine their ability to remain in place when the building is subjected to earthquake forces.
CHAPTER 8-8

ARCHAIC MATERIALS AND METHODS OF CONSTRUCTION

SECTION 8-801
PURPOSE, INTENT AND SCOPE

8-801.1 Purpose. The purpose of the CHBC is to provide regulations for the use of historical methods and materials of construction that are at variance with regular code requirements or are not otherwise codified, in buildings or structures designated as qualified historical buildings or properties. The CHBC require enforcing agencies to accept any reasonably equivalent alternatives to the regular code when dealing with qualified historical buildings or properties.

8-801.2 Intent. It is the intent of the CHBC to provide for the use of historical methods and materials of construction that are at variance with specific code requirements or are not otherwise codified.

8-801.3 Scope. Any construction type or material that is, or was, part of the historical fabric of a structure is covered by this chapter. Archaic materials and methods of construction present in a historical structure may remain or be reinstalled or be installed with new materials of the same class to match existing conditions.

SECTION 8-802
GENERAL ENGINEERING APPROACHES

Allowable stresses or ultimate strengths for archaic materials shall be assigned based upon similar conventional codified materials, or on tests as hereinafter indicated. The archaic materials and methods of construction shall be thoroughly investigated for their details of construction in accordance with Section 8-703. Testing shall be performed when applicable to evaluate existing conditions. The architect or structural engineer in responsible charge of the project shall assign allowable stresses or ultimate strength values to archaic materials. Such assigned allowable stresses, or ultimate strength values, shall not be greater than those provided for in the following sections without adequate testing, and shall be subject to the concurrence of the enforcing agency.

SECTION 8-803
NONSTRUCTURAL ARCHAIC MATERIALS

Where nonstructural historical materials exist in uses which do not meet the requirements of the regular code, their continued use is allowed by this code, provided that any public health and life-safety hazards are mitigated subject to the concurrence of the enforcing agency.

SECTION 8-804
ALLOWABLE CONDITIONS FOR SPECIFIC MATERIALS

Archaic materials which exist and are to remain in historical structures shall be evaluated for their condition and for loads required by this code. The structural survey required in Section 8-703 of this code shall document existing conditions, reinforcement, anchorage, deterioration and other factors pertinent to establishing allowable stresses and adequacy of the archaic materials. The remaining portion of this chapter provides additional specific requirements for commonly encountered archaic materials.

SECTION 8-805
MASONRY

For adobe, see Section 8-806.

8-805.1 Existing solid masonry. Existing solid masonry walls of any type, except adobe, may be allowed, without testing, a maximum value of nine pounds per square inch (62.1 kPa) in shear where there is a qualifying statement by the architect or engineer that an inspection has been made, that mortar joints are filled and that both brick and mortar are reasonably good. The allowable shear stress above applies to unreinforced masonry, except adobe, where the maximum ratio of unsupported height or length to thickness does not exceed 12, and where minimum quality mortar is used or exists. Wall height or length is measured to supporting or resisting elements that are at least twice as stiff as the tributary wall. Stiffness is based on the gross section. Allowable shear stress may be increased by the addition of 10 percent of the axial direct stress due to the weight of the wall directly above. Higher-quality mortar may provide a greater shear value and shall be tested in accordance with UBC Standard 21-6.

8-805.2 Stone masonry.

8-805.2.1 Solid-backed stone masonry. Stone masonry solidly backed with brick masonry shall be treated as solid brick masonry as described in Section 8-805.1 and in the UCBC, provided representative testing and inspection verifies solid collar joints between stone and brick and that a reasonable number of stones lap with the brick wythes as headers or that steel anchors are present. Solid stone masonry where the wythes of stone effectively overlap to provide the equivalent header courses may also be treated as solid brick masonry.

8-805.2.2 Independent wythe stone masonry. Stone masonry with independent face wythes may be treated as solid brick masonry as described in Section 8-805.1 and the UCBC, provided representative testing and inspection verify that the core is essentially solid in the masonry wall and that steel ties are epoxyed in drilled holes between outer stone wythes at floors, roof and not to exceed 4 feet (1219 mm) on center in each direction, between floors and roof.

8-805.2.3 Testing of stone masonry. Testing of stone masonry shall be similar to UBC Standard 21-6, except that representative stones which are not interlocked shall be
pulled outward from the wall and shear area appropriately calculated after the test.

8-805.3 Reconstructed walls. Totally reconstructed walls utilizing original brick or masonry, constructed similar to original, shall be constructed in accordance with the regular code. Repairs or infills may be constructed in a similar manner to the original walls without conforming to the regular code.

SECTION 8-806
ADOBE

8-806.1 General. Unburned clay masonry may be constructed, reconstructed, stabilized or rehabilitated subject to this chapter. Alternative approaches which provide an equivalent or greater level of safety may be used, subject to the concurrence of the enforcing agency.

8-806.2 Protection. Provisions shall be made to protect adobe structures from moisture and deterioration. The unreinforced adobe shall be maintained in reasonably good condition. Particular attention shall be given to moisture content of adobe walls. Unmaintained or unstabilized walls or ruins shall be evaluated for safety based on their condition and stability. Additional safety measures may be required subject to the concurrence of the enforcing agency.

8-806.3 Requirements. Unreinforced new or existing adobe walls shall meet the following requirements. Existing sod or rammed earth walls shall be considered similar to the extent these provisions apply. Where existing dimensions do not meet these conditions, additional strengthening measures may be required.

1. One-story adobe load-bearing walls shall not exceed a height-to-thickness ratio of 6.

2. Two-story adobe buildings or structures’ height-to-thickness wall ratio shall not exceed 5 at the ground floor and 6 at the second floor, and shall be measured at floor-to-floor height when the second floor and attic ceiling/roof are connected to the wall as described below.

3. Nonload-bearing adobe partitions and gable end walls shall be evaluated for stability and anchored against out-of-plane failure.

4. A bond beam or equivalent structural element shall be provided at the top of all adobe walls, and for two-story buildings at the second floor. The size and configuration of the bond beam shall be designed in each case to meet the requirements of the existing conditions and provide an effective brace for the wall, to tie the building together and connect the wall to the floor or roof.

8-806.4 Repair or reconstruction. Repair or reconstruction of wall area may utilize unstabilized brick or adobe masonry designed to be compatible with the constituents of the existing adobe materials.

8-806.5 Shear values. Existing adobe may be allowed a maximum value of four pounds per square inch (27.6 kPa) for shear, with no increase for lateral forces.

8-806.6 Mortar. Mortar may be of the same soil composition as that used in the existing wall, or in new walls as necessary to be compatible with the adobe brick.

SECTION 8-807
WOOD

8-807.1 Existing wood diaphragms or walls. Existing wood diaphragms or walls of straight or diagonal sheathing shall be assigned shear resistance values appropriate with the fasteners and materials functioning in conjunction with the sheathing. The structural survey shall determine fastener details and spacings and verify a load path through floor construction. Shear values of Tables 8-8-A and 8-8-B.

8-807.2 Wood lath and plaster. Wood lath and plaster walls and ceilings may be utilized using the shear values referenced in Section 8-807.1.

8-807.3 Existing wood framing. Existing wood framing members may be assigned allowable stresses consistent with codes in effect at the time of construction. Existing or new replacement wood framing may be of archaic types originally used if properly researched, such as balloon and single wall. Wood joints such as dovetail and mortise and tenon types may be used structurally, provided they are well made. Lumber selected for use and type need not bear grade marks, and greater or lesser species such as low-level pine and fir, boxwood and indigenous hardwoods and other variations may be used for specific conditions where they were or would have been used.

Wood fasteners such as square or cut nails may be used with a maximum increase of 50 percent over wire nails for shear.

SECTION 8-808
CONCRETE

8-808.1 Materials. Natural cement concrete, unreinforced rubble concrete and similar materials may be utilized wherever that material is used historically. Concrete of low strength and with less reinforcement than required by the regular code may remain in place. The architect or engineer shall assign appropriate values of strength based on testing of samples of the materials. Bond and development lengths shall be determined based on historical information or tests.

8-808.2 Detailing. The architect or engineer shall carefully evaluate all detailing provisions of the regular code which are not met and shall consider the implications of these variations on the ultimate performance of the structure, giving due consideration to ductility and reserve strength.

SECTION 8-809
STEEL AND IRON

The hand-built, untested use of wrought or black iron, the use of cast iron or grey iron, and the myriad of joining methods that are not specifically allowed by code may be used wherever applicable and wherever they have proven their worth under the considerable span of years involved with most qualified historical structures. Uplift capacity should be evaluated and
strengthened where necessary. Fixed conditions or midheight lateral loads on cast iron columns that could cause failure should be taken into account. Existing structural wrought, forged steel or grey iron may be assigned the maximum working stress prevalent at the time of original construction.

SECTION 8-810
HOLLOW CLAY TILE
The historical performance of hollow clay tile in past earthquakes shall be carefully considered in evaluating walls of hollow clay tile construction. Hollow clay tile bearing walls shall be evaluated and strengthened as appropriate for lateral loads and their ability to maintain support of gravity loads. Suitable protective measures shall be provided to prevent blockage of exit stairways, stairway enclosures, exit ways and public ways as a result of an earthquake.

SECTION 8-811
VENEERS
8-811.1 Terra cotta and stone. Terra cotta, cast stone and natural stone veneers shall be investigated for the presence of suitable anchorage. Steel anchors shall be investigated for deterioration or corrosion. New or supplemental anchorage shall be provided as appropriate.

8-811.2 Anchorage. Brick veneer with mechanical anchorage at spacings greater than required by the regular code may remain, provided the anchorages have not corroded. Nail strength in withdrawal in wood sheathing may be utilized to its capacity in accordance with code values.

SECTION 8-812
GLASS AND GLAZING
8-812.1 Glazing subject to human impact. Historical glazing material located in areas subject to human impact may be approved subject to the concurrence of the enforcing agency when alternative protective measures are provided. These measures may include, but not be limited to, additional glazing panels, protective film, protective guards or systems, and devices or signs which would provide adequate public safety.

8-812.2 Glazing in fire-rated systems. See Section 8-402.3.

TABLE 8-8A
ALLOWABLE VALUES FOR EXISTING MATERIALS

<table>
<thead>
<tr>
<th>EXISTING MATERIALS OR CONFIGURATIONS OF MATERIALS</th>
<th>ALLOWABLE VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Horizontal diaphragms</td>
<td>14.594 for N/m</td>
</tr>
<tr>
<td>1.1 Roofs with straight sheathing and roofing applied directly to the sheathing</td>
<td>100 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>1.2 Roofs with diagonal sheathing and roofing applied directly to the sheathing</td>
<td>250 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>1.3 Floors with straight tongue-and-groove sheathing</td>
<td>100 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>1.4 Floors with straight sheathing and finished wood flooring with board edges offset or perpendicular</td>
<td>500 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>1.5 Floors with diagonal sheathing and finished</td>
<td>600 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>2. Crosswalls</td>
<td></td>
</tr>
<tr>
<td>2.1 Plaster on wood or metal lath</td>
<td>Per side: 200 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>2.2 Plaster on gypsum lath</td>
<td>175 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>2.3 Gypsum wallboard, unblocked edges</td>
<td>75 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>2.4 Gypsum wallboard, blocked edges</td>
<td>125 lbs per foot for seismic shear</td>
</tr>
<tr>
<td>Existing footings, wood framing, structural steel and reinforced steel</td>
<td>$f' = 1,500$ psi (10.34 MPa) unless otherwise shown by tests</td>
</tr>
<tr>
<td>3.1 Plain concrete footings</td>
<td>Allowable stress same as D.F. No. 1</td>
</tr>
<tr>
<td>3.2 Douglas fir wood</td>
<td>$f = 18,000$ lbs per square inch (124.1 N/mm²) maximum</td>
</tr>
<tr>
<td>3.3 Reinforcing steel</td>
<td>$f = 200.00$ lbs per square inch (137.9 N/mm²) maximum</td>
</tr>
<tr>
<td>3.4 Structural steel</td>
<td></td>
</tr>
</tbody>
</table>

1. Material must be sound and in good condition.
2. A one-third increase in allowable stress is not allowed.
3. Shear values of these materials may be combined, except the total combined value shall not exceed 300 pounds per foot (4380 N/m).
4. Stresses given may be increased for combinations of loads as specified in the regular code.
Table 8-8B

Allowable Values of New Materials Used in Connection with Existing Construction

<table>
<thead>
<tr>
<th>New Materials or Configurations of Materials</th>
<th>Allowable Valuesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Horizontal diaphragms</td>
<td></td>
</tr>
<tr>
<td>1.1 Plywood sheathing nailed directly over existing straight sheathing with ends of plywood sheets bearing on joists or rafters and edges of plywood located on center of individual sheathing boards</td>
<td>225 lbs per foot (3283 N/m)</td>
</tr>
<tr>
<td>1.2 Plywood sheathing nailed directly over existing diagonal sheathing with ends of plywood sheets bearing on joists or rafters</td>
<td>375 lbs per foot (5473 N/m)</td>
</tr>
<tr>
<td>1.3 Plywood sheathing nailed directly over existing straight or diagonal sheathing with ends of plywood sheets bearing on joists or rafters with edges of plywood located over new blocking and nailed to provide a minimum nail penetration into framing and blocking of 1(\frac{1}{2}) inch (41 mm)</td>
<td>75 percent of the values specified in the regular code</td>
</tr>
<tr>
<td>2. Shear walls: (general procedure)</td>
<td></td>
</tr>
<tr>
<td>Plywood sheathing applied directly over wood studs. No value shall be given to plywood applied over existing plaster or wood sheathing</td>
<td>100 percent of the value specified in the regular code for shear walls</td>
</tr>
<tr>
<td>3. Crosswalls: (special procedure only)</td>
<td></td>
</tr>
<tr>
<td>3.1 Plywood sheathing applied directly over wood studs. No value shall be given to plywood applied over existing plaster or wood sheathing</td>
<td>133 percent of the value specified in the regular code for shear walls</td>
</tr>
<tr>
<td>3.2 Drywall or plaster applied directly over wood studs</td>
<td>100 percent of the values in the regular code</td>
</tr>
<tr>
<td>3.3 Drywall or plaster applied to sheathing over existing wood studs</td>
<td>The values specified in the regular code reduced as noted.7 (UBC Table 25-1, Footnote 1)</td>
</tr>
<tr>
<td>4. Tension bolts</td>
<td></td>
</tr>
<tr>
<td>4.1 Bolts extending entirely through unreinforced masonry walls secured with bearing plates on far side of a three-wythe-minimum wall with at least 30 square inches (19350 mm2) of areaa</td>
<td>1,800 lbs (8006 N) per bolt</td>
</tr>
<tr>
<td>4.2 Bolts extending to the exterior face of the wall with a 2(\frac{1}{2})-inch (63.5 mm) round plate under the head and drilled at an angle of 22(\frac{1}{2}) degrees to the horizontal, installed as specified for shear bolts5, 7</td>
<td>900 lbs (4003 N) per bolt for two-wythe walls</td>
</tr>
<tr>
<td></td>
<td>1,200 lbs (5338 N) per bolt</td>
</tr>
<tr>
<td>5. Shear bolts</td>
<td></td>
</tr>
<tr>
<td>Bolts embedded a minimum of 8 inches (203 mm) into unreinforced masonry walls and centered in a 2(\frac{1}{2})-inch-diameter (63.5 mm) hole filled with dry-pack or nonshrink grout. Through bolts with first 8 inches (203 mm) as noted above and embedded bolts as noted in Item 4.2</td>
<td>1(\frac{1}{2}) inch (12.7 mm) diameter = 350 lbs (1557 N)</td>
</tr>
<tr>
<td></td>
<td>1(\frac{1}{2}) inch (15.9 mm) diameter = 500 lbs (2224 N)</td>
</tr>
<tr>
<td></td>
<td>1(\frac{3}{4}) inch (19 mm) diameter = 750 lbs (3336 N)</td>
</tr>
<tr>
<td>6. Infilled walls</td>
<td></td>
</tr>
<tr>
<td>Reinforced masonry infilled openings in existing unreinforced masonry walls. Provide keys or dowels to match reinforcing.</td>
<td>Same as values specified for unreinforced masonry walls</td>
</tr>
<tr>
<td>7. Reinforced masonry</td>
<td></td>
</tr>
<tr>
<td>Masonry piers and walls reinforced per the regular code</td>
<td>Same as values specified in the regular code</td>
</tr>
<tr>
<td>8. Reinforced concrete</td>
<td></td>
</tr>
<tr>
<td>Concrete footings, walls and piers reinforced as specified in the regular code and designed for tributary loads</td>
<td>Same values as specified in the regular code</td>
</tr>
</tbody>
</table>

1. A one-third increase in allowable stress is not allowed, except as noted.
2. Values and limitations are for nailed plywood. Higher values may be used for other fastening systems such as wood screws or staples when approved by the enforcing authority.
3. In addition to existing sheathing value.
4. Bolts to be 1\(\frac{1}{2}\)-inch (12.7 mm) minimum diameter.
5. Drilling for bolts and dowels shall be done with an electric rotary drill. Impact tools shall not be used for drilling holes or tightening anchors and shear bolt nuts.
6. Other bolt sizes, values and installation methods may be used, provided a testing program is conducted in accordance with regular code standards. Bolt spacing shall not exceed 6 feet (1830 mm) on center and shall not be less than 12 inches (305 mm) on center.
7. Embedded bolts to be tested as specified in regular code standards.
8. Stresses given may be increased for combinations of loads as specified in the regular code.
CHAPTER 8-9
MECHANICAL, PLUMBING AND ELECTRICAL REQUIREMENTS

SECTION 8-901
PURPOSE, INTENT AND SCOPE

8-901.1 Purpose. The purpose of the CHBC is to provide regulations for the mechanical, plumbing and electrical systems of buildings designated as qualified historical buildings or properties. The CHBC requires enforcing agencies to accept any reasonable equivalent solutions to the regular code when dealing with qualified historical buildings or properties.

8-901.2 Intent. The intent of the CHBC is to preserve the integrity of qualified historical buildings or properties while providing a reasonable level of protection from fire, health and life-safety hazards (hereinafter referred to as safety hazards) for the building occupants.

8-901.3 Scope. The CHBC shall be applied in conjunction with the regular code whenever compliance with the regular code is required for qualified historical buildings or properties.

8-901.4 Safety hazard. No person shall permit any safety hazard to exist on premises under their control, or fail to take immediate action to abate such hazard. Existing systems which constitute a safety hazard when operational may remain in place, provided they are completely and permanently rendered inoperative. Safety hazards created by inoperative systems shall not be permitted to exist. Requirements of the regular code concerning general regulations shall be complied with, except that the enforcing agency shall accept solutions which do not cause a safety hazard.

8-901.5 Energy conservation. Qualified historical buildings or properties covered by this part are exempted from compliance with energy conservation standards. When new nonhistorical lighting and space conditioning system components, devices, appliances and equipment are installed, they shall comply with the requirements of Title 24, Part 6, The California Energy Code, except where the historical significance or character-defining features are threatened.

8-902.1 General. Mechanical systems shall comply with the regular code unless otherwise modified by this chapter.

8-902.1.1 The provisions of the CHBC shall apply to the acceptance, location, installation, alteration, repair, relocation, replacement or addition of any heating, ventilating, air conditioning, domestic incinerators, kilns or miscellaneous heat-producing appliances or equipment within or attached to a historical building.

8-902.1.2 Existing systems which do not, in the opinion of the enforcing agency, constitute a safety hazard may remain in use.

8-902.1.3 The enforcing agency may approve any alternative to the CHBC which would achieve equivalent life safety.

8-902.2 Heating facilities. All dwelling-type occupancies covered under this chapter shall be provided with heating facilities. Wood-burning or pellet stoves or fireplaces may be acceptable as heating facilities.

8-902.3 Fuel oil piping and tanks. Fuel oil piping and tanks shall comply with regular code requirements except that the enforcing agency may waive such requirements where the lack of compliance does not create a safety or environmental hazard.

8-902.4 Heat-producing and cooling equipment. Heat-producing and cooling equipment shall comply with the regular code requirements governing equipment safety, except that the enforcing agency may accept alternatives which do not create a safety hazard.

8-902.5 Combustion air.

8-902.5.1 All fuel-burning appliances and equipment shall be provided a sufficient supply of air for proper fuel combustion, ventilation and draft hood dilution.

8-902.5.2 The enforcing agency may require operational tests for combustion air systems which do not comply with applicable requirements of the regular code.

8-902.6 Venting of appliances.

8-902.6.1 Every appliance required to be vented shall be connected to an approved venting system. Venting systems shall develop a positive flow adequate to convey all combustion products to the outside atmosphere.

8-902.6.2 Masonry chimneys in structurally sound condition may remain in use for all fuel-burning appliances, provided the flue is evaluated and documentation provided that the masonry and grout are in good condition. Terra cotta chimneys and Type C metallic vents installed in concealed spaces shall not remain in use unless otherwise mitigated and approved on a case-by-case basis.

8-902.6.3 The enforcing agency may require operational tests for venting systems which do not comply with applicable requirements of the regular code.

8-902.7 Ducts.

8-902.7.1 New ducts shall be constructed and installed in accordance with applicable requirements of the regular code.

8-902.7.2 Existing duct systems which do not comply with applicable requirements of the regular code and do not, in the opinion of the enforcing agency, constitute a safety or health hazard may remain in use.

8-902.8 Ventilating systems.
8-902.8.1 Ventilating systems shall be installed so that no safety hazard is created.

8-902.8.2 Grease hoods and grease hood exhaust systems shall be furnished and installed in accordance with applicable requirements of the regular code. Existing systems which are altered shall comply with the regular code.

8-902.9 Miscellaneous equipment requirements.

8-902.9.1 The following appliances and equipment shall be installed so that no safety hazard is created: warm air furnaces, space heating equipment, vented decorative appliances, floor furnaces, vented wall furnaces, unit heaters, room heaters, absorption units, refrigeration equipment, duct furnaces, infrared radiant heaters, domestic incinerators, miscellaneous heat-producing appliances and water heaters.

8-902.9.2 Storage-type water heaters shall be equipped with a temperature- and pressure-relief valve in accordance with applicable requirements of the regular code.

SECTION 8-903 PLUMBING

8-903.1 General. Plumbing systems shall comply with the regular code unless otherwise noted.

8-903.1.1 The provisions of the CHBC shall apply to the acceptance, location, installation, alteration, repair, relocation, replacement or addition of any plumbing system or equipment within or attached to a historical building.

8-903.1.2 Existing systems which do not, in the opinion of the enforcing agency, constitute a safety hazard may remain in use.

8-903.1.3 The enforcing agency may approve any alternative to these regulations which achieves reasonably equivalent life safety.

8-903.2 Residential occupancies.

8-903.2.1 Where toilet facilities are provided, alternative sewage disposal methods may be acceptable if approved by the local health department. In hotels, where private facilities are not provided, water closets at the ratio of one for each 15 rooms may be acceptable.

8-903.2.2 Toilet facilities are not required to be on the same floor or in the same building as sleeping rooms. Water-flush toilets may be located in a building immediately adjacent to the sleeping rooms. When alternative sewage disposal methods are utilized, they shall be located a minimum distance from the sleeping rooms or other locations as approved by the local health department.

8-903.2.3 Kitchen sinks shall be provided in all kitchens. The sink and countertop may be of any smooth nonabsorbent finish which can be maintained in a sanitary condition.

8-903.2.4 Hand washing facilities shall be provided for each dwelling unit and each hotel guest room. A basin and pitcher may be acceptable as adequate hand washing facilities.

8-903.2.5 Hot or cold running water is not required for each plumbing fixture, provided a sufficient amount of water is supplied to permit the fixture's normal operation.

8-903.2.6 Bathtubs and lavatories with filler spouts less than 1 inch (25.4 mm) above the fixture rim may remain in use, provided there is an acceptable overflow below the rim.

8-903.2.7 Original or salvage water closets, urinals and flushometer valves shall be permitted in qualified historical buildings or properties. Historically accurate reproduction, nonlow-consumption water closets, urinals and flushometer valves shall be permitted except where historically accurate fixtures that comply with the regular code are available.

8-903.3 Materials. New nonhistorical materials shall comply with the regular code requirements. The enforcing agency shall accept alternative materials which do not create a safety hazard where their use is necessary to maintain the historical integrity of the building.

8-903.4 Drainage and vent systems. Plumbing fixtures shall be connected to an adequate drainage and vent system. The enforcing agency may require operational tests for drainage and vent systems which do not comply with applicable requirements of the regular code. Vent terminations may be installed in any location which, in the opinion of the enforcing agency, does not create a safety hazard.

8-903.5 Indirect and special wastes. Indirect and special waste systems shall be installed so that no safety hazard is created. Chemical or industrial liquid wastes which may detrimentally affect the sanitary sewer system shall be pretreated to render them safe prior to discharge.

8-903.6 Traps and interceptors. Traps and interceptors shall comply with the regular code requirements except that the enforcing agency shall accept solutions which do not increase the safety hazard. Properly maintained "S" and drum traps may remain in use.

8-903.7 Joints and connections.

8-903.7.1 Joints and connections in new plumbing systems shall comply with applicable requirements of the regular code.

8-903.7.2 Joints and connections in existing or restored systems may be of any type that does not create a safety hazard.

8-903.8 Water distribution. Plumbing fixtures shall be connected to an adequate water distribution system. The enforcing agency may require operational tests for water distribution systems which do not comply with applicable requirements of the regular code. Prohibited (unlawful) connections and cross connections shall not be permitted.

8-903.9 Building sewers and private sewage disposal systems. New building sewers and new private sewage disposal systems shall comply with applicable requirements of the regular code.

8-903.10 Fuel-gas piping. Fuel-gas piping shall comply with the regular code requirements except that the enforcing agency shall accept solutions which do not increase the safety hazard.
SECTION 8-904
ELECTRICAL

8-904.1 General. Electrical systems shall comply with the regular code unless otherwise permitted by this code, or approved by the authority having jurisdiction.

8-904.1.1 The provisions of the CHBC shall apply to the acceptance, location, installation, alteration, repair, relocation, replacement or addition of any electrical system or portion thereof, the premise wiring, or equipment fixed in place as related to restoration within or attached to a qualified historical building or property.

8-904.1.2 Existing systems, wiring methods and electrical equipment which do not, in the opinion of the enforcing agency, constitute a safety hazard may remain in use.

8-904.1.3 The enforcing agency may approve any alternative to the CHBC which achieves equivalent safety.

8-904.1.4 Archaic methods that do not appear in present codes may remain and may be extended if, in the opinion of the enforcing agency, they constitute a safe installation.

8-904.2 Wiring methods.

8-904.2.1 Where existing branch circuits do not include an equipment grounding conductor and, in the opinion of the enforcing agency, it is impracticable to connect an equipment grounding conductor to the grounding electrode system, receptacle convenience outlets may remain the nongrounding type.

8-904.2.2 Ground fault circuit interrupter (GFCI) protected receptacles shall be installed where replacements are made at receptacle outlets that are required to be so protected by the regular code in effect at the time of replacement. Metallic face plates shall either be grounded to the grounded metal outlet box or be grounded to the grounding-type device when used with devices supplied by branch circuits without equipment grounding conductors.

8-904.2.3 Grounding-type receptacles shall not be used without a grounding means in an existing receptacle outlet unless GFCI protected. Existing nongrounding receptacles shall be permitted to be replaced with nongrounding or grounding-type receptacles where supplied through a ground fault circuit interrupter.

8-904.2.4 Extensions of existing branch circuits without equipment-grounding conductors shall be permitted to supply grounding-type devices only when the equipment grounding conductor of the new extension is grounded to any accessible point on the grounding electrode system.

8-904.2.5 Receptacle outlet spacing and other related distance requirements shall be waived or modified if determined to be impracticable by the enforcing agency.

8-904.2.6 For the replacement of lighting fixtures on an existing nongrounded lighting outlet, or when extending an existing nongrounding lighting outlet, the following shall apply:

1. The exposed conductive parts of lighting fixtures shall be connected to any acceptable point on the grounding electrode system, or
CHAPTER 8-10
QUALIFIED HISTORICAL DISTRICTS, SITES AND OPEN SPACES

SECTION 8-1001
PURPOSE AND SCOPE

8-1001.1 Purpose. The purpose of this chapter is to provide regulations for the preservation, rehabilitation, restoration and reconstruction of associated historical features of qualified historical buildings, properties or districts (as defined in Chapter 8-2), and for which Chapters 8-3 through 8-9 of the CHBC may not apply.

8-1001.2 Scope. This chapter applies to the associated historical features of qualified historical buildings or properties such as historical districts that are beyond the buildings themselves which include, but are not limited to, natural features and designed site and landscape plans with natural and man-made landscape elements that support their function and aesthetics. This may include, but will not be limited to:

1. Site plan layout configurations and relationships (pedestrian, equestrian and vehicular site circulation, topographical grades and drainage, and use areas).
2. Landscape elements (plant materials, site structures other than the qualified historical building, bridges and their associated structures, lighting, water features, art ornamentation, and pedestrian, equestrian and vehicular surfaces).
3. Functional elements (utility placement, erosion control and environmental mitigation measures).

SECTION 8-1002
APPLICATION

8-1002.1 The CHBC shall apply to all sites and districts and their features associated with qualified historical buildings or qualified historical districts as outlined in 8-1001.2 Scope.

8-1002.2 Where the application of regular code may impact the associated features of qualified historical properties beyond their footprints, by work performed secondarily, those impacts shall also be covered by the CHBC.

8-1002.3 This chapter shall be applied for all issues regarding code compliance or other standard or regulation as they affect the purpose of this chapter.

8-1002.4 The application of any code or building standard shall not unduly restrict the use of a qualified historical building or property that is otherwise permitted pursuant to Chapter 8-3 and the intent of the State Historical Building Code, Section 18956.

SECTION 8-1003
SITE RELATIONS

The relationship between a building or property and its site, or the associated features of a district (including qualified historical landscape), site, objects and their features are critical components that may be one of the criteria for these buildings and properties to be qualified under the CHBC. The CHBC recognizes the importance of these relationships. This chapter shall be used to provide context sensitive solutions for treatment of qualified historical buildings, properties, district or their associated historical features, or when work to be performed secondarily impacts the associated historical features of a qualified historical building or property.
APPENDIX A

CHAPTER 8-1

When modification must be made to qualified historical buildings and properties, the CHBC is intended to work in conjunction with the United States Secretary of Interior Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring and Reconstructing Historic Buildings and the Secretary of Interior’s Standards for the Treatment of Historic Properties with Guidelines for the Treatment of Cultural Landscapes.

CHAPTER 8-6

TABLE 1—PROVISION APPLICABILITY

<table>
<thead>
<tr>
<th>SECTION 8-601 PURPOSE, INTENT, SCOPE</th>
<th>Title II Public Entities</th>
<th>Title III Private Entities</th>
<th>Title III Barrier Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-601.1 Purpose. The purpose of the CHBC is to provide alternative regulations to facilitate access and use by persons with disabilities to and throughout facilities designated as qualified historical buildings or properties. These regulations require enforcing agencies to accept alternatives to regular code when dealing with qualified historical buildings or properties.</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>8-601.2 Intent. The intent of this chapter is to preserve the integrity of qualified historical buildings and properties while providing access to and use by people with disabilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-601.3 Scope. The CHBC shall apply to every qualified historical building or property that is required to provide access to people with disabilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Provisions of this chapter do not apply to new construction or reconstruction/replicas of historical buildings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Where provisions of this chapter apply to alteration of qualified historical buildings or properties, alteration is defined in California Building Code (CBC), Chapter 2, Definitions and Abbreviations. 202 - A. Alter or Alteration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-601.4 General application. The provisions in the CHBC apply to local, state and federal governments (Title II entities); alteration of commercial facilities and places of public accommodation (Title III entities); and barrier removal in commercial facilities and places of public accommodation (Title III entities). Except as noted in this chapter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION 8-602—BASIC PROVISIONS</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>8-602.1 Regular code. The regular code for access for people with disabilities (Title 24, Part 2, Vol.1, Chapter 11B) shall be applied to qualified historical buildings or properties unless strict compliance with the regular code will threaten or destroy the historical significance or character-defining features of the building or property.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-602.2 Alternative provisions. If the historical significance or character-defining features are threatened, alternative provisions for access may be applied pursuant to this chapter, provided the following conditions are met:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. These provisions shall be applied only on an item-by-item or case-by-case basis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Documentation is provided, including meeting minutes or letters, stating the reasons for the application of the alternative provisions. Such documentation shall be retained in the permanent file of the enforcing agency.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 1—Provision Applicability—continued

<table>
<thead>
<tr>
<th>SECTION 8-603 — Alternatives</th>
<th>Title II Public Entities</th>
<th>Title III Private Entities</th>
<th>Title III Barrier Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-603.1 Alternative Minimum Standards. The alternative minimum standards for alterations of qualified historical buildings or facilities are contained in Section 4.1.7(3) of ADA Standards for Accessible Design, as incorporated and set forth in federal regulation 28 C.F.R. Pt. 36.</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>8-603.2 Entry. These alternatives do not allow exceptions for the requirement of level landings in front of doors, except as provided in Section 8-603.4.</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>1. Access to any entrance used by the general public and no further than 200 feet (60 960 mm) from the primary entrance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Access at any entrance not used by the general public but open and unlocked with directional signs at the primary entrance and as close as possible to, but no further than 200 feet (60 960 mm) from, the primary entrance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The accessible entrance shall have a notification system. Where security is a problem, remote monitoring may be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-603.3 Doors. Alternatives listed in order of priority are:</td>
<td>Does not apply</td>
<td>Does not apply</td>
<td>Applies</td>
</tr>
<tr>
<td>1. Single-leaf door which provides a minimum 30 inches (762 mm) of clear opening.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Single-leaf door which provides a minimum $29\frac{1}{2}$ inches (749 mm) clear opening.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Double door, one leaf of which provides a minimum $29\frac{1}{2}$ inches (749 mm) clear opening.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Double doors operable with a power-assist device to provide a minimum $29\frac{1}{2}$ inches (749 mm) clear opening when both doors are in the open position.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exception: Alternatives in this section do not apply to alteration of commercial facilities and places of public accommodation (Title III entities).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-603.4 Power-assisted Doors. Power-assisted door or doors may be considered an equivalent alternative to level landings, strikeside clearance and door-opening forces required by regular code.</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>8-603.5 Toilet Rooms. In lieu of separate-gender toilet facilities as required in the regular code, an accessible unisex toilet may be designated.</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>8-603.6 Exterior and Interior Ramps and Lifts. Alternatives listed in order of priority are:</td>
<td>Applies</td>
<td>Applies</td>
<td>Applies</td>
</tr>
<tr>
<td>1. A lift or a ramp of greater than standard slope but no greater than 1:10, for horizontal distances not to exceed 5 feet (1525 mm). Signs shall be posted at upper and lower levels to indicate steepness of the slope.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Access by ramps of 1:6 slope for horizontal distance not to exceed 13 inches (330 mm). Signs shall be posted at upper and lower levels to indicate steepness of the slope.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SECTION 8-604 — EQUIVALENT FACILITATION</th>
<th>Title II Public Entities</th>
<th>Title III Private Entities</th>
<th>Title III Barrier Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of other designs and technologies, or deviation from particular technical and scoping requirements, are permitted if the application of the alternative provisions contained in Section 8-603 would threaten or destroy the historical significance or character-defining features of the qualified historical building or property.</td>
<td>Applies</td>
<td>Waivers</td>
<td>Applies</td>
</tr>
<tr>
<td>1. Such alternatives shall be applied only on an item-by-item or case-by-case basis.</td>
<td></td>
<td>If a builder applies for a waiver of an ADA accessibility requirement for an element of a building, he or she will not be entitled to certification’s rebuttable evidence of compliance for that element. This limitation on the certification determination should be noted in any publication of Chapter 8-6 if certification is granted.</td>
<td></td>
</tr>
<tr>
<td>2. Access provided by experiences, services, functions, materials and resources through methods including, but not limited to, maps, plans, videos, virtual reality and related equipment, at accessible levels. The alternative design and/or technologies used will provide substantially equivalent or greater accessibility to, and usability of, the facility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The official charged with the enforcement of the standards shall document the reasons for the application of the design and/or technologies and their effect on the historical significance or character-defining features. Such documentation shall be in accordance with Section 8-602.2, Item 2, and shall include the opinion and comments of state or local accessibility officials, and the opinion and comments of representative local groups of people with disabilities. Such documentation shall be retained in the permanent file of the enforcing agency. Copies of the required documentation should be available at the facility upon request.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: For commercial facilities and places of public accommodation (Title III entities).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalent facilitation for an element of a building or property when applied as a waiver of an ADA accessibility requirement will not be entitled to the Federal Department of Justice certification of this code as rebuttable evidence of compliance for that element.

Notes: The regular code for Chapter 8-6 is contained in Title 24, Part 2, Vol.1, Chapter 11, which contain standards for new construction. Provisions of this chapter may be used in conjunction with all other provisions of the regular code and ADA regulations.
HISTORY NOTE APPENDIX

CALIFORNIA HISTORICAL BUILDING CODE

(Title 24, Part 8, California Code of Regulations)

For prior history, see History Note Appendix to the California Historical Building Code, 2001 Triennial Edition, effective November 1, 2002.

2. Editorial correction to Chapter 8-8, Section 8-812, Tables 8-8A and 8-8B. Include missing tables in 2007 annual code adoption supplement.
California Code of Regulations
Title 24, Part 10
California Building Standards Commission
Based on the 2009 International Existing Building Code®

Effective Date: January 1, 2011
(For Errata and Supplements, see History Note Appendix)
TABLE OF CONTENTS

APPENDIX CHAPTER A1
SEISMIC STRENGTHENING PROVISIONS
FOR UNREINFORCED MASONRY
BEARING WALL BUILDINGS 3

- **Section**
 - A100 Application 3
 - A101 Purpose 3
 - A102 Scope 3
 - A103 Definitions 3
 - A104 Symbols and Notations 4
 - A105 General Requirements 5
 - A106 Materials Requirements 5
 - A107 Quality Control 7
 - A108 Design Strengths 8
 - A109 Analysis and Design Procedure 8
 - A110 General Procedure 8
 - A111 Special Procedure 9
 - A112 Analysis and Design 10
 - A113 Detailed System Design Requirements 11
 - A114 Walls of Unburned Clay,
 Adobe or Stone Masonry 12

REFERENCED STANDARDS 19

HISTORY NOTE APPENDIX 27

2010 CALIFORNIA EXISTING BUILDING CODE
APPENDIX CHAPTER A1 – SEISMIC STRENGTHENING PROVISIONS
FOR UNREINFORCED MASONRY BEARING WALL BUILDINGS

<table>
<thead>
<tr>
<th>Adopting Agency</th>
<th>BSC</th>
<th>HCD</th>
<th>DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt Entire Chapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adopt Entire Chapter as amended (amended sections listed below)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Adopt only those sections that are listed below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter / Section</td>
<td>Codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A100 BUILDING CODE</td>
<td>CA</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A103 BUILDING CODE</td>
<td>CA</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTES:
1. For essential services buildings, refer to Part 1, Chapter 4, Articles 1, 2 and 3, Title 24, C.C.R., for administrative regulations of the Division of the State Architect-Structural Safety Section.
2. For private schools, refer to Education Code section 39160-76, and Health and Safety Code section 18941.5.
3. For historical buildings, refer to Part 8, Title 24, C.C.R.
4. For application and enforcement authority, refer to Part 2, Chapter 1, sections 101, 102 and 108, Title 24, C.C.R.
5. For local jurisdiction exemption program, refer to Health and Safety Code section 18941.6.
APPENDIX CHAPTER A1

SEISMIC STRENGTHENING PROVISIONS
FOR UNREINFORCED MASONRY BEARING WALL BUILDINGS

SECTION A100
APPLICATION

A100.1 Vesting authority. When adopted by a state agency, the provisions of these regulations shall be enforced by the appropriate enforcing agency, but only to the extent of authority granted to such agency by the state legislature.

Following is a list of the state agencies that adopt building standards, the specific scope of application of the agency responsible for enforcement, and the specific statutory authority of each agency to adopt and enforce such provisions of building standards of this code, unless otherwise stated.

1. BSC—California Building Standards Commission.
 Application—Existing buildings as specified in Section A102 having at least one unreinforced masonry bearing wall, with the exception of buildings subject to building standards pursuant to Health and Safety Code, commencing with Section 17910.
 Enforcing Agency—State or local agency specified by the applicable provisions of the law.
 Authority Cited—Health and Safety Code Section 18934.6.
 Reference—Health and Safety Code Sections 18901 through 18949.

2. HCD 1—The Department of Housing and Community Development.
 Application—Hotels, motels, lodging houses, apartment houses, dwellings, employee housing and factory-built housing.
 Enforcing Agency—The local building department or the Department of Housing and Community Development.
 Authority Cited—Health and Safety Code Sections 17040, 17921, 17922, 19990.
 Reference—Health and Safety Code Sections 17000 through 17060, 17910 through 17990, 19960 through 19997; and Government Code Section 12955.1.

3. HCD 2—The Department of Housing and Community Development.
 Application—Permanent buildings and permanent accessory buildings or structures constructed within mobilehome parks and special occupancy parks.
 Enforcing Agency—The local building department or the Department of Housing and Community Development.
 Authority Cited—Health and Safety Code Sections 18300, 18620, 18640, 18865, 18873 and 18873.2.

Reference—Health and Safety Code Sections 18200 through 18700 and 18860 through 18874.

SECTION A101
PURPOSE

The purpose of this chapter is to promote public safety and welfare by reducing the risk of death or injury that may result from the effects of earthquakes on existing unreinforced masonry bearing wall buildings.

The provisions of this chapter are intended as minimum standards for structural seismic resistance, and are established primarily to reduce the risk of life loss or injury. Compliance with these provisions will not necessarily prevent loss of life or injury, or prevent earthquake damage to rehabilitated buildings.

SECTION A102
SCOPE

A102.1 General. The provisions of this chapter shall apply to all existing buildings having at least one unreinforced masonry bearing wall. The elements regulated by this chapter shall be determined in accordance with Table A1-A. Except as provided herein, other structural provisions of the building code shall apply. This chapter does not apply to the alteration of existing electrical, plumbing, mechanical or fire safety systems.

A102.2 Essential and hazardous facilities. The provisions of this chapter shall not apply to the strengthening of buildings or structures in Occupancy Category III when assigned to Seismic Design Category C, D, or E or buildings or structures in Occupancy Category IV. Such buildings or structures shall be strengthened to meet the requirements of the California Building Code for new buildings of the same occupancy category or other such criteria that have been established by the jurisdiction.

SECTION A103
DEFINITIONS

For the purpose of this chapter, the applicable definitions in the California Building Code as adopted by the California Building Standards Commission (BSC) shall also apply:

BUILDING CODE. The code currently adopted by the jurisdiction for new buildings. [BSC, HCD 1 and HCD 2] "Building Code" shall mean the most current edition of the California Building Code, Title 24, Part 2 as adopted by the California Building Standards Commission (BSC).

COLLAR JOINT. The vertical space between adjacent wythes. A collar joint may contain mortar or grout.
CROSSWALL. A new or existing wall that meets the requirements of Section A111.3 and the definition of Section A111.3. A crosswall is not a shear wall.

CROSSWALL SHEAR CAPACITY. The unit shear value times the length of the crosswall, \(v_L \).

DIAPHRAGM EDGE. The intersection of the horizontal diaphragm and a shear wall.

DIAPHRAGM SHEAR CAPACITY. The unit shear value times the depth of the diaphragm, \(vD \).

NORMAL WALL. A wall perpendicular to the direction of seismic forces.

OPEN FRONT. An exterior building wall line without vertical elements of the lateral-force-resisting system in one or more stories.

POINTING. The partial reconstruction of the bed joints of an unreinforced masonry wall as defined in UBC Standard 21-8.

RIGID DIAPHRAGM. A diaphragm of reinforced concrete construction supported by concrete beams and columns or by structural steel beams and columns.

UNREINFORCED MASONRY. Includes burned clay, concrete or sand-lime brick; hollow clay or concrete block; plain concrete; and hollow clay tile. These materials shall comply with the requirements of Section A106 as applicable.

UNREINFORCED MASONRY BEARING WALL. A URM wall that provides the vertical support for the reaction of floor or roof-framing members.

UNREINFORCED MASONRY (URM) WALL. A masonry wall that relies on the tensile strength of masonry units, mortar and grout in resisting design loads, and in which the area of reinforcement is less than 25 percent of the minimum ratio required by the building code for reinforced masonry.

YIELD STORY DRIFT. The lateral displacement of one level relative to the level above or below at which yield stress is first developed in a frame member.

SECTION A104
SYMBOLS AND NOTATIONS

For the purpose of this chapter, the following notations supplement the applicable symbols and notations in the building code.

\[a_s = \text{Diameter of core multiplied by its length or the area of the side of a square prism.} \]

\[A = \text{Cross-sectional area of unreinforced masonry pier or wall, square inches (10}^6 \text{ m}^2). \]

\[A_b = \text{Total area of the bed joints above and below the test specimen for each in-place shear test, square inches (10}^6 \text{ m}^2). \]

\[D = \text{In-plane width dimension of pier, inches (10}^3 \text{ m), or depth of diaphragm, feet (m).} \]

\[DCR = \text{Demand-capacity ratio specified in Section A111.4.2.} \]

\[f_m = \text{Compressive strength of masonry.} \]

\[f_{sp} = \text{Tensile-splitting strength of masonry.} \]

\[F_{wx} = \text{Force applied to a wall at level x, pounds (N).} \]

\[H = \text{Least clear height of opening on either side of a pier, inches (10}^3 \text{ m).} \]

\[h/t = \text{Height-to-thickness ratio of URM wall. Height, h, is measured between wall anchorage levels and/or slab-on-grade.} \]

\[L = \text{Span of diaphragm between shear walls, or span between shear wall and open front, feet (m).} \]

\[L_c = \text{Effective span for an open-front building specified in Section A111.8, feet (m).} \]

\[L_i = \text{Length of crosswall, feet (m).} \]

\[P = \text{Applied force as determined by standard test method of ASTM C 496 or ASTM E 519, pounds (N).} \]

\[P_D = \text{Superimposed dead load at the location under consideration, pounds (kN). For determination of the rocking shear capacity, dead load at the top of the pier under consideration shall be used.} \]

\[P_{D+L} = \text{Press resulting from the dead plus actual live load in place at the time of testing, pounds per square inch (kPa).} \]

\[P_w = \text{Weight of wall, pounds (N).} \]

\[R = \text{Response modification factor for Ordinary plain masonry shear walls in Bearing Wall System from Table 12.2-1 of ASCE 7, where R = 1.5.} \]

\[S_{DS} = \text{Design spectral acceleration at short period, in g units.} \]

\[S_{DI} = \text{Design spectral acceleration at 1-second period, in g units.} \]

\[v_a = \text{The shear strength of any URM pier, \(v_m A/1.5 \) pounds (N).} \]

\[v_c = \text{Unit shear capacity value for a crosswall sheathed with any of the materials given in Table A1-D or A1-E, pounds per foot (N/m).} \]

\[v_m = \text{Shear strength of unreinforced masonry, pounds per square inch (kPa).} \]

\[v_z = \text{The shear strength of any URM pier or wall, pounds (N).} \]

\[V_{cu} = \text{Total shear capacity of crosswalls in the direction of analysis immediately above the diaphragm level being investigated, \(v_L p \) pounds (N).} \]

\[V_{cb} = \text{Total shear capacity of crosswalls in the direction of analysis immediately below the diaphragm level being investigated, \(v_L p \) pounds (N).} \]

\[V_p = \text{Shear force assigned to a pier on the basis of its relative shear rigidity, pounds (N).} \]

\[V_r = \text{Pier rocking shear capacity of any URM wall or wall pier, pounds (N).} \]
SECTION A105
GENERAL REQUIREMENTS

A105.1 General. The seismic-force-resisting system specified in this chapter shall comply with the building code, except as modified herein.

A105.2 Alterations and repairs. Alterations and repairs required to meet the provisions of this chapter shall comply with applicable structural requirements of the building code unless specifically provided for in this chapter.

A105.3 Requirements for plans. The following construction information shall be included in the plans required by this chapter:

1. Dimensioned floor and roof plans showing existing walls and the size and spacing of floor and roof-framing members and sheathing materials. The plans shall indicate all existing and new crosswalls and shear walls and their materials of construction. The location of these walls and their openings shall be fully dimensioned and drawn to scale on the plans.

2. Dimensioned wall elevations showing openings, piers, wall classes as defined in Section A106.3.3.8, thickness, heights, wall shear test locations, cracks or damaged portions requiring repairs, the general condition of the mortar joints, and if and where pointing is required. Where

the exterior face is veneer, the type of veneer, its thickness and its bonding and/or ties to the structural wall masonry shall also be noted.

3. The type of interior wall and ceiling materials, and framing.

4. The extent and type of existing wall anchorage to floors and roof when used in the design.

5. The extent and type of parapet corrections that were previously performed, if any.

6. Repair details, if any, of cracked or damaged unreinforced masonry walls required to resist forces specified in this chapter.

7. All other plans, sections and details necessary to delineate required retrofit construction.

8. The design procedure used shall be stated on both the plans and the permit application.

9. Details of the anchor qualification program required by UBC Standard 21-7, if used, including location and results of all tests.

A105.4 Structural observation, testing and inspection.
Structural observation, in accordance with Section 1709 of the California Building Code, shall be required for all structures in which seismic retrofit is being performed in accordance with this chapter. Structural observation shall include visual observation of work for conformance with the approved construction documents and confirmation of existing conditions assumed during design.

Structural testing and inspection for new construction materials shall be in accordance with the California Building Code, except as modified by this chapter.

SECTION A106
MATERIALS REQUIREMENTS

A106.1 General. Materials permitted by this chapter, including their appropriate strength design values and those existing configurations of materials specified herein, may be used to meet the requirements of this chapter.

A106.2 Existing materials. Existing materials used as part of the required vertical-load-carrying or lateral-force-resisting system shall be in sound condition, or shall be repaired or removed and replaced with new materials. All other unreinforced masonry materials shall comply with the following requirements:

1. The lay-up of the masonry units shall comply with Section A106.3.2, and the quality of bond between the units has been verified to the satisfaction of the building official;

2. Concrete masonry units are verified to be load-bearing units complying with UBC Standard 21-4 or such other standard as is acceptable to the building official; and

3. The compressive strength of plain concrete walls shall be determined based on cores taken from each class of concrete wall. The location and number of tests shall be the same as those prescribed for tensile-splitting strength...
The use of materials not specified herein or in Section A108.1 shall be based on substantiating research data or engineering judgment, with the approval of the building official.

A106.3 Existing unreinforced masonry.

A106.3.1 General. Unreinforced masonry walls used to carry vertical loads or seismic forces parallel and perpendicular to the wall plane shall be tested as specified in this section. All masonry that does not meet the minimum standards established by this chapter shall be removed and replaced with new materials, or alternatively, shall have its structural functions replaced with new materials and shall be anchored to supporting elements.

A106.3.2 Lay-up of walls.

A106.3.2.1 Multiwythe solid brick. The facing and backing shall be bonded so that not less than 10 percent of the exposed face area is composed of solid headers extending not less than 4 inches (102 mm) into the backing. The clear distance between adjacent full-length headers shall not exceed 24 inches (610 mm) vertically or horizontally. Where the backing consists of two or more wythes, the headers shall extend not less than 4 inches (102 mm) into the most distant wythe, or the backing wythes shall be bonded together with separate headers with their area and spacing conforming to the foregoing. Wythes of walls not bonded as described above shall be considered veneer. Veneer wythes shall not be included in the effective thickness used in calculating the height-to-thickness ratio and the shear capacity of the wall.

Exception: Veneer wythes anchored as specified in the building code and made composite with backup masonry may be used for calculation of the effective thickness, where S_d exceeds 0.3.

A106.3.2.2 Grouted or ungrouted hollow concrete or clay block and structural hollow clay tile. Grouted or ungrouted hollow concrete or clay block and structural hollow clay tile shall be laid in a running bond pattern.

A106.3.2.3 Other lay-up patterns. Lay-up patterns other than those specified in Sections A106.3.2.1 and A106.3.2.2 above are allowed if their performance can be justified.

A106.3.3 Testing of masonry.

A106.3.3.1 Mortar tests. The quality of mortar in all masonry walls shall be determined by performing in-place shear tests in accordance with the following:

1. The bed joints of the outer wythe of the masonry should be tested in shear by laterally displacing a single brick relative to the adjacent bricks in the same wythe. The head joint opposite the loaded end of the test brick should be carefully excavated and cleared. The brick adjacent to the loaded end of the test brick should be carefully removed by sawing or drilling and excavating to provide space for a hydraulic ram and steel loading blocks. Steel blocks, the size of the end of the brick, should be used on each end of the ram to distribute the load to the brick. The blocks should not contact the mortar joints. The load should be applied horizontally, in the plane of the wythe. The load recorded at first movement of the test brick as indicated by spalling of the face of the mortar bed joints is V_{ast} in Equation (A1-3).

2. Alternative procedures for testing shall be used where in-place testing is not practical because of crushing or other failure mode of the masonry unit (see Section A106.3.3.2).

A106.3.3.2 Alternative procedures for testing masonry. The tensile-splitting strength of existing masonry, f_{sp} or the prism strength of existing masonry, f_m may be determined in accordance with one of the following procedures:

1. Wythes of solid masonry units shall be tested by sampling the masonry by drilled cores of not less than 8 inches (203 mm) in diameter. A bed joint intersection with a head joint shall be in the center of the core. The tensile-splitting strength of these cores should be determined by the standard test method of ASTM C 496. The core should be placed in the test apparatus with the bed joint 45 degrees from the horizontal. The tensile-splitting strength should be determined by the following equation:

$$ f_{sp} = \frac{2P}{\pi a_n} $$

(Equation A1-1)

2. Hollow unit masonry constructed of through-the-wall units shall be tested by sampling the masonry by a sawn square prism of not less than 18 inches square (11 613 mm²). The tensile-splitting strength should be determined by the standard test method of ASTM E 519. The diagonal of the prism should be placed in a vertical position. The tensile-splitting strength should be determined by the following equation:

$$ f_{sp} = \frac{0.494P}{a_n} $$

(Equation A1-2)

3. An alternative to material testing is estimation of the f_m of the existing masonry. This alternative should be limited to recently constructed masonry. The determination of f_m requires that the unit correspond to a specification of the unit by an ASTM standard and classification of the mortar by type.

A106.3.3.3 Location of tests. The shear tests shall be taken at locations representative of the mortar conditions throughout the entire building, taking into account variations in workmanship at different building height levels, variations in weathering of the exterior surfaces, and variations in the condition of the interior surfaces due to deterioration caused by leaks and condensation of water and/or by the deleterious effects of other substances con-
A106.3.3.4 Number of tests. The minimum number of tests per class shall be as follows:

1. At each of both the first and top stories, not less than two tests per wall or line of wall elements providing a common line of resistance to lateral forces.

2. At each of all other stories, not less than one test per wall or line of wall elements providing a common line of resistance to lateral forces.

3. In any case, not less than one test per 1,500 square feet (139.4 m²) of wall surface and not less than a total of eight tests.

A106.3.3.5 Minimum quality of mortar.

1. Mortar shear test values, v_{m} in pounds per square inch (kPa) shall be obtained for each in-place shear test in accordance with the following equation:

$$v_{m} = \left(\frac{V_{m}}{A_{w}}\right) \cdot p_{D} + L$$

(Equation A1-3)

2. Individual unreinforced masonry walls with v_{m} consistently less than 30 pounds per square inch (207 kPa) shall be entirely pointed prior to retesting.

3. The mortar shear strength, v_{m}, is the value in pounds per square inch (kPa) that is exceeded by 80 percent of the mortar shear test values, v_{m}.

4. Unreinforced masonry with mortar shear strength, v_{m}, less than 30 pounds per square inch (207 kPa) shall be removed, pointed and retested or shall have its structural function replaced, and shall be anchored to supporting elements in accordance with Sections A106.3.1 and A113.8. When existing mortar in any wythe is pointed to increase its shear strength and is retested, the condition of the mortar in the adjacent bed joints of the inner wythe or wythes and the opposite outer wythe shall be examined for extent of deterioration. The shear strength of any wall class shall be no greater than that of the weakest wythe of that class.

A106.3.3.6 Minimum quality of masonry.

1. The minimum average value of tensile-splitting strength determined by Equation (A1-1) or (A1-2) shall be 50 pounds per square inch (344.7 kPa). The minimum value of f_{m} determined by categorization of the masonry units and mortar should be 1,000 pounds per square inch (6895 kPa).

2. Individual unreinforced masonry walls with average tensile-splitting strength of less than 50 pounds per square inch (344.7 kPa) shall be entirely pointed prior to retesting.

3. Hollow unit unreinforced masonry walls with estimated prism compressive strength of less than 1,000 pounds per square inch (6895 kPa) shall be grouted to increase the average net area compressive strength.

A106.3.3.7 Collar joints. The collar joints shall be inspected at the test locations during each in-place shear test, and estimates of the percentage of adjacent wythe surfaces that are covered with mortar shall be reported along with the results of the in-place shear tests.

A106.3.3.8 Unreinforced masonry classes. Existing unreinforced masonry shall be categorized into one or more classes based on shear strength, quality of construction, state of repair, deterioration and weathering. A class shall be characterized by the allowable masonry shear stress determined in accordance with Section A108.2. Classes shall be defined for whole walls, not for small areas of masonry within a wall.

A106.3.3.9 Pointing. Deteriorated mortar joints in unreinforced masonry walls shall be pointed according to UBC Standard 21-8. Nothing shall prevent pointing of any deteriorated masonry wall joints before the tests are made, except as required in Section A107.1.

SECTION A107
QUALITY CONTROL

A107.1 Pointing. Preparation and mortar pointing shall be performed with special inspection.

Exception: At the discretion of the building official, incidental pointing may be performed without special inspection.

A107.2 Masonry shear tests. In-place masonry shear tests shall comply with Section A106.3.3.1. Testing of masonry for determination of tensile-splitting strength shall comply with Section A106.3.3.2.

A107.3 Existing wall anchors. Existing wall anchors used as all or part of the required tension anchors shall be tested in pull-out according to UBC Standard 21-7. The minimum number of anchors tested shall be four per floor, with two tests at walls with joists framing into the wall and two tests at walls with joists parallel to the wall, but not less than 10 percent of the total number of existing tension anchors at each level.

A107.4 New bolts. All new embedded bolts shall be subject to periodic special inspection in accordance with the building code, prior to placement of the bolt and grout or adhesive in the drilled hole. Five percent of all bolts that do not extend through the wall shall be subject to a direct-tension test, and an additional 20 percent shall be tested using a calibrated torque wrench. Testing shall be performed in accordance with UBC Standard 21-7. New bolts that extend through the wall with steel plates on the far side of the wall need not be tested.

Exception: Special inspection in accordance with the building code may be provided during installation of new anchors in lieu of testing.
All new embedded bolts resisting tension forces or a combination of tension and shear forces shall be subject to periodic special inspection in accordance with the building code, prior to placement of the bolt and grout or adhesive in the drilled hole. Five percent of all bolts resisting tension forces shall be tested using a calibrated torque wrench. Testing shall be performed in accordance with UBC Standard 21-7. New through-bolts need not be tested.

SECTION A108

DESIGN STRENGTHS

A108.1 Values.

1. Strength values for existing materials are given in Table A1-D and for new materials in Table A1-E.
2. Capacity reduction factors need not be used.
3. The use of new materials not specified herein shall be based on substantiating research data or engineering judgment, with the approval of the building official.

A108.2 Masonry shear strength. The unreinforced masonry shear strength, \(v_m \), shall be determined for each masonry class from one of the following equations:

1. The unreinforced masonry shear strength, \(v_m \), shall be determined by Equation (A1-4) when the mortar shear strength has been determined by Section A106.3.3.1.
 \[
 v_m = 0.56 v_t + \frac{0.75 P_a}{A} \quad (Equation \ A1-4)
 \]
 The mortar shear strength values, \(v_t \), shall be determined in accordance with Section 106.3.3.5 and shall not exceed 100 pounds per square inch (689.5 kPa) for the determination of \(v_m \).
2. The unreinforced masonry shear, \(v_m \), shall be determined by Equation (A1-5) when tensile-splitting strength has been determined in accordance with Section A106.3.3.2, Item 1 or 2.
 \[
 v_m = 0.8 f_m + 0.5 \frac{P_a}{A} \quad (Equation \ A1-5)
 \]
3. When \(f_m \) has been estimated by categorization of the units and mortar in accordance with Section 2105.2.2.1 of the California Building Code, the unreinforced masonry shear strength, \(v_m \), shall not exceed 200 pounds per square inch (1380 kPa) or the lesser of the following:
 a) \(2.5 \sqrt{f_m} \) or
 b) 200 psi or
 c) \(v + 0.75 \frac{P_a}{A} \) \hspace{1cm} (Equation A1-6)
 For SI: 1 psi = 6.895 kPa.
 where:
 \(v = 62.5 \) psi (430 kPa) for running bond masonry not grouted solid.

\[v = 100 \text{ psi} \ (690 \text{ kPa}) \text{ for running bond masonry grouted solid.} \]
\[v = 25 \text{ psi} \ (170 \text{ kPa}) \text{ for stack bond grouted solid.} \]

A108.3 Masonry compression. Where any increase in dead plus live compression stress occurs, the compression stress in unreinforced masonry shall not exceed 300 pounds per square inch (2070 kPa).

A108.4 Masonry tension. Unreinforced masonry shall be assumed to have no tensile capacity.

A108.5 Existing tension anchors. The resistance values of the existing anchors shall be the average of the tension tests of existing anchors having the same wall thickness and joint orientation.

A108.6 Foundations. For existing foundations, new total dead loads may be increased over the existing dead load by 25 percent. New total dead load plus live load plus seismic forces may be increased over the existing dead load plus live load by 50 percent. Higher values may be justified only in conjunction with a geotechnical investigation.

SECTION A109

ANALYSIS AND DESIGN PROCEDURE

A109.1 General. The elements of buildings hereby required to be analyzed are specified in Table A1-A.

A109.2 Selection of procedure. Buildings with rigid diaphragms shall be analyzed by the general procedure of Section A110, which is based on the building code. Buildings with flexible diaphragms shall be analyzed by the general procedure or, when applicable, may be analyzed by the special procedure of Section A111.

SECTION A110

GENERAL PROCEDURE

A110.1 Minimum design lateral forces. Buildings shall be analyzed to resist minimum lateral forces assumed to act non-concurrently in the direction of each of the main axes of the structure in accordance with the following:
\[
V = \frac{0.75 S_{dx} W}{R} \quad (Equation \ A1-7)
\]

A110.2 Lateral forces on elements of structures. Parts and portions of a structure not covered in Sections A110.3 shall be analyzed and designed per the current building code, using force levels defined in Section A110.1.

Exceptions:

1. Unreinforced masonry walls for which height-to-thickness ratios do not exceed ratios set forth in Table A1-B need not be analyzed for out-of-plane loading. Unreinforced masonry walls that exceed the allowable h/t ratios of Table A1-B shall be braced according to Section A113.5.
2. Parapets complying with Section A113.6 need not be analyzed for out-of-plane loading.
3. Walls shall be anchored to floor and roof diaphragms in accordance with Section A113.1.

A110.3 In-plane loading of URM shear walls and frames. Vertical lateral-load-resisting elements shall be analyzed in accordance with Section A112.

A110.4 Redundancy and overstrength factors. Any redundancy or overstrength factors contained in the building code may be taken as unity. The vertical component of earthquake load \((E_v)\) may be taken as zero.

SECTION A111
SPECIAL PROCEDURE

A111.1 Limits for the application of this procedure. The special procedures of this section may be applied only to buildings having the following characteristics:

1. Flexible diaphragms at all levels above the base of the structure.
2. Vertical elements of the lateral-force-resisting system consisting predominantly of masonry or concrete shear walls.
3. Except for single-story buildings with an open front on one side only, a minimum of two lines of vertical elements of the lateral-force-resisting system parallel to each axis of the building (see Section A111.8 for open-front buildings).

A111.2 Lateral forces on elements of structures. With the exception of the provisions in Sections A111.4 through A111.7, elements of structures shall comply with Sections A110.2 through A110.4.

A111.3 Crosswalls. Crosswalls shall meet the requirements of this section.

A111.3.1 Crosswall definition. A crosswall is a wood-framed wall sheathed with any of the materials described in Table A1-D or A1-E or other system as defined in Section A111.3.5. Crosswalls shall be spaced no more than 40 feet (12 192 mm) on center measured perpendicular to the direction of consideration, and shall be placed in each story of the building. Crosswalls shall extend the full story height between diaphragms.

Exceptions:

1. Crosswalls need not be provided at all levels when used in accordance with Section A111.4.2, Item 4.
2. Existing crosswalls need not be continuous below a wood diaphragm at or within 4 feet (1219 mm) of grade, provided:
 2.1 Shear connections and anchorage requirements of Section A111.5 are satisfied at all edges of the diaphragm.
 2.2 Crosswalls with total shear capacity of \(0.5S_{D} \Sigma W_{j} \) interconnect the diaphragm to the foundation.
 2.3 The demand-capacity ratio of the diaphragm between the crosswalls that are continuous to their foundations does not exceed 2.5, calculated as follows:

\[
DCR = \frac{(2.1S_{D})W_{d} + V_{ea})}{2v_{D}} \quad \text{(Equation A1-8)}
\]

A111.3.2 Crosswall shear capacity. Within any 40 feet (12 192 mm) measured along the span of the diaphragm, the sum of the crosswall shear capacities shall be at least 30 percent of the diaphragm shear capacity of the strongest diaphragm at or above the level under consideration.

A111.3.3 Existing crosswalls. Existing crosswalls shall have a maximum height-to-length ratio between openings of 1.5 to 1. Existing crosswall connections to diaphragms need not be investigated as long as the crosswall extends to the framing of the diaphragms above and below.

A111.3.4 New crosswalls. New crosswall connections to the diaphragm shall develop the crosswall shear capacity. New crosswalls shall have the capacity to resist an overturning moment equal to the crosswall shear capacity times the story height. Crosswall overturning moments need not be cumulative over more than two stories.

A111.3.5 Other crosswall systems. Other systems, such as moment-resisting frames, may be used as crosswalls provided that the yield story drift does not exceed 1 inch (25.4 mm) in any story.

A111.4 Wood diaphragms.

A111.4.1 Acceptable diaphragm span. A diaphragm is acceptable if the point \((L, DCR)\) on Figure A1-1 falls within Region 1, 2 or 3.

A111.4.2 Demand-capacity ratios. Demand-capacity ratios shall be calculated for the diaphragm at any level according to the following formulas:

1. For a diaphragm without qualifying crosswalls at levels immediately above or below:

\[
DCR = 2.1S_{D}W_{d}/(\Sigma v_{D}) \quad \text{(Equation A1-9)}
\]

2. For a diaphragm in a single-story building with qualifying crosswalls, or for a roof diaphragm coupled by crosswalls to the diaphragm directly below:

\[
DCR = 2.1S_{D}W_{d}/[(\Sigma v_{D} + V_{ea})] \quad \text{(Equation A1-10)}
\]

3. For diaphragms in a multistory building with qualifying crosswalls in all levels:

\[
DCR = 2.1S_{D}W_{d}/(\Sigma v_{D} + V_{ea}) \quad \text{(Equation A1-11)}
\]

DCR shall be calculated at each level for the set of diaphragms at and above the level under consideration. In addition, the roof diaphragm shall also meet the requirements of Equation (A1-10).

4. For a roof diaphragm and the diaphragm directly below, if coupled by crosswalls:

\[
DCR = 2.1S_{D}W_{d}/(\Sigma v_{D}) \quad \text{(Equation A1-12)}
\]

A111.4.3 Chords. An analysis for diaphragm flexure need not be made, and chords need not be provided.
A111.4.4 Collectors. An analysis of diaphragm collector forces shall be made for the transfer of diaphragm edge shears into vertical elements of the lateral-force-resisting system. Collector forces may be resisted by new or existing elements.

A111.4.5 Diaphragm openings.

1. Diaphragm forces at corners of openings shall be investigated and shall be developed into the diaphragm by new or existing materials.

2. In addition to the demand-capacity ratios of Section A111.4.2, the demand-capacity ratio of the portion of the diaphragm adjacent to an opening shall be calculated using the opening dimension as the span.

3. Where an opening occurs in the end quarter of the diaphragm span, the calculation of \(v_pD \) for the demand-capacity ratio shall be based on the net depth of the diaphragm.

A111.5 Diaphragm shear transfer. Diaphragms shall be connected to shear walls with connections capable of developing the diaphragm-loading tributary to the shear wall given by the following formulas:

\[
V = 1.2 S_D C_p W_d \quad \text{(Equation A1-13)}
\]

using the \(C_p \) values in Table A1-C, or

\[
V = v_D D \quad \text{(Equation A1-14)}
\]

A111.6 Shear walls (In-plane loading).

A111.6.1 Wall story force. The wall story force distributed to a shear wall at any diaphragm level shall be the lesser value calculated as:

\[
F_w = 0.8 S_D (W_w + W_d/2) \quad \text{(Equation A1-15)}
\]

but need not exceed

\[
F_w = 0.8 S_D W_w + v_p D \quad \text{(Equation A1-16)}
\]

A111.6.2 Wall story shear. The wall story shear shall be the sum of the wall story forces at and above the level of consideration.

\[
V_w = \sum F_w \quad \text{(Equation A1-17)}
\]

A111.6.3 Shear wall analysis. Shear walls shall comply with Section A112.

A111.6.4 Moment frames. Moment frames used in place of shear walls shall be designed as required by the building code, except that the forces shall be as specified in Section A111.6.1, and the story drift ratio shall be limited to 0.015, except as further limited by Section A112.4.2.

A111.7 Out-of-plane forces—unreinforced masonry walls.

A111.7.1 Allowable unreinforced masonry wall height-to-thickness ratios. The provisions of Section A110.2 are applicable, except the allowable height-to-thickness ratios given in Table A1-B shall be determined from Figure A1-1 as follows:

1. In Region 1, height-to-thickness ratios for buildings with crosswalls may be used if qualifying crosswalls are present in all stories.

2. In Region 2, height-to-thickness ratios for buildings with crosswalls may be used whether or not qualifying crosswalls are present.

3. In Region 3, height-to-thickness ratios for "all other buildings" shall be used whether or not qualifying crosswalls are present.

A111.7.2 Walls with diaphragms in different regions. When diaphragms above and below the wall under consideration have demand-capacity ratios in different regions of Figure A1-1, the lesser height-to-thickness ratio shall be used.

A111.8 Open-front design procedure. A single-story building with an open front on one side and crosswalls parallel to the open front may be designed by the following procedure:

1. Effective diaphragm span, \(L_t \), for use in Figure A1-1 shall be determined in accordance with the following formula:

\[
L_t = 2 [(W_w/W_d) L + L] \quad \text{(Equation A1-18)}
\]

2. Diaphragm demand-capacity ratio shall be calculated as:

\[
DCR = 2.12 S_D (W_d + W_w) / [(v_p D) + V_c] \quad \text{(Equation A1-19)}
\]

SECTION A112

ANALYSIS AND DESIGN

A112.1 General. The following requirements are applicable to both the general procedure and the special procedure for analyzing vertical elements of the lateral-force-resisting system.

A112.2 Existing unreinforced masonry walls.

A112.2.1 Flexural rigidity. Flexural components of deflection may be neglected in determining the rigidity of an unreinforced masonry wall.

A112.2.2 Shear walls with openings. Wall piers shall be analyzed according to the following procedure, which is diagramed in Figure A1-2.

1. For any pier,

1.1. The pier shear capacity shall be calculated as:

\[
V_p = v_p A/1.5 \quad \text{(Equation A1-20)}
\]

1.2. The pier rocking shear capacity shall be calculated as:

\[
V_r = 0.9 P_p D/H \quad \text{(Equation A1-21)}
\]

2. The wall piers at any level are acceptable if they comply with one of the following modes of behavior:

2.1. Rocking controlled mode. When the pier rocking shear capacity is less than the pier shear capacity, i.e., \(V_r < V_p \) for each pier in a level, forces in the wall at that level, \(V_w \), shall be distributed to each pier in proportion to \(P_p D/H \).

For the wall at that level:

\[
0.7 V_w < \sum V_r \quad \text{(Equation A1-22)}
\]
2.2. Shear controlled mode. Where the pier shear capacity is less than the pier rocking capacity, i.e., \(V_p < V_r \) in at least one pier in a level, forces in the wall at the level, \(V_{ewr} \) shall be distributed to each pier in proportion to \(D/H \).

For each pier at that level:
\[
V_p < V_r \quad \text{(Equation A1-23)}
\]
and
\[
V_p < V_r \quad \text{(Equation A1-24)}
\]

If \(V_p < V_r \) for each pier and \(V_p > V_r \) for one or more piers, such piers shall be omitted from the analysis, and the procedure shall be repeated for the remaining piers, unless the wall is strengthened and reanalyzed.

3. Masonry pier tension stress. Unreinforced masonry wall piers need not be analyzed for tension stress.

A112.2.3 Shear walls without openings. Shear walls without openings shall be analyzed the same as for walls with openings, except that \(V_r \) shall be calculated as follows:
\[
V_r = 0.9 (P_D + 0.5 P_w) D/H \quad \text{(Equation A1-25)}
\]

A112.3 Plywood-sheathed shear walls. Plywood-sheathed shear walls may be used to resist lateral forces for buildings with flexible diaphragms analyzed according to provisions of Section 1111. Plywood-sheathed shear walls may not be used to share lateral forces with other materials along the same line of resistance.

A112.4 Combinations of vertical elements.

A112.4.1 Lateral-force distribution. Lateral forces shall be distributed among the vertical-resisting elements in proportion to their relative rigidities, except that moment-resisting frames shall comply with Section A112.4.2.

A112.4.2 Moment-resisting frames. Moment-resisting frames shall not be used with an unreinforced masonry wall in a single line of resistance unless the wall has piers that have adequate shear capacity to sustain rocking in accordance with Section A112.2.2. The frames shall be designed in accordance with the building code to carry 100 percent of the lateral forces tributary to that line of resistance, as determined from Equation (A1-7). The story drift ratio shall be limited to 0.0075.

SECTION A113
DETAILED SYSTEM DESIGN REQUIREMENTS

A113.1 Wall anchorage.

A113.1.1 Anchor locations. Unreinforced masonry walls shall be anchored at the roof and floor levels as required in Section A110.2. Ceilings of plaster or similar materials, when not attached directly to roof or floor framing and where abutting masonry walls, shall either be anchored to the walls at a maximum spacing of 6 feet (1829 mm), or be removed.

A113.1.2 Anchor requirements. Anchors shall consist of bolts installed through the wall as specified in Table A1-E, or an approved equivalent at a maximum anchor spacing of 6 feet (1829 mm). All wall anchors shall be secured to the joists to develop the required forces.

A113.1.3 Minimum wall anchorage. Anchorage of masonry walls to each floor or roof shall resist a minimum force determined as 0.95 times the tributary weight or 200 pounds per linear foot (2920 N/m), whichever is greater, acting normal to the wall at the level of the floor or roof. Existing wall anchors, if used, must meet the requirements of this chapter or must be upgraded.

A113.1.4 Anchors at corners. At the roof and floor levels, both shear and tension anchors shall be provided within 2 feet (610 mm) horizontally from the inside of the corners of the walls.

A113.2 Diaphragm shear transfer. Bolts transmitting shear forces shall have a maximum bolt spacing of 6 feet (1829 mm) and shall have nuts installed over malleable iron or plate washers when bearing on wood, and heavy-cut washers when bearing on steel.

A113.3 Collectors. Collector elements shall be provided that are capable of transferring the seismic forces originating in other portions of the building to the element providing the resistance to those forces.

A113.4 Ties and continuity. Ties and continuity shall conform to the requirements of the building code.

A113.5 Wall bracing.

A113.5.1 General. Where a wall height-to-thickness ratio exceeds the specified limits, the wall may be laterally supported by vertical bracing members per Section A113.5.2 or by reducing the wall height by bracing per Section A113.5.3.

A113.5.2 Vertical bracing members. Vertical bracing members shall be attached to floor and roof construction for their design loads independently of required wall anchors. Horizontal spacing of vertical bracing members shall not exceed one-half of the unsupported height of the wall or 10 feet (3048 mm). Deflection of such bracing members at design loads shall not exceed one-tenth of the wall thickness.

A113.5.3 Intermediate wall bracing. The wall height may be reduced by bracing elements connected to the floor or roof. Horizontal spacing of the bracing elements and wall anchors shall be as required by design, but shall not exceed 6 feet (1829 mm) on center. Bracing elements shall be detailed to minimize the horizontal displacement of the wall by the vertical displacement of the floor or roof.

A113.6 Parapets. Parapets and exterior wall appendages not conforming to this chapter shall be removed, or stabilized or braced to ensure that the parapets and appendages remain in their original positions.

The maximum height of an unbraced unreinforced masonry parapet above the lower of either the level of tension anchors or the roof sheathing shall not exceed the height-to-thickness ratio shown in Table A1-F. If the required parapet height exceeds this maximum height, a bracing system designed for the forces determined in accordance with the building code
shall support the top of the parapet. Parapet corrective work must be performed in conjunction with the installation of tension roof anchors.

The minimum height of a parapet above any wall anchor shall be 12 inches (305 mm).

Exception: If a reinforced concrete beam is provided at the top of the wall, the minimum height above the wall anchor may be 6 inches (152 mm).

A113.7 Veneer

1. Veneer shall be anchored with approved anchor ties conforming to the required design capacity specified in the building code and shall be placed at a maximum spacing of 24 inches (610 mm) with a maximum supported area of 4 square feet (0.372 m²).

 Exception: Existing anchor ties for attaching brick veneer to brick backing may be acceptable, provided the ties are in good condition and conform to the following minimum size and material requirements.

 Existing veneer anchor ties may be considered adequate if they are of corrugated galvanized iron strips not less than 1 inch (25.4 mm) in width, 8 inches (203 mm) in length and 1/16 inch (1.6 mm) in thickness, or the equivalent.

2. The location and condition of existing veneer anchor ties shall be verified as follows:

 2.1. An approved testing laboratory shall verify the location and spacing of the ties and shall submit a report to the building official for approval as part of the structural analysis.

 2.2. The veneer in a selected area shall be removed to expose a representative sample of ties (not less than four) for inspection by the building official.

A113.8 Nonstructural masonry walls

Unreinforced masonry walls that carry no design vertical or lateral loads and that are not required by the design to be part of the lateral-force resisting system shall be adequately anchored to new or existing supporting elements. The anchors and elements shall be designed for the out-of-plane forces specified in the building code. The height- or length-to-thickness ratio between such supporting elements for such walls shall not exceed nine.

A113.9 Truss and beam supports

Where trusses and beams other than rafters or joists are supported on masonry, independent secondary columns shall be installed to support vertical loads of the roof or floor members.

Exception: Secondary supports are not required where \(S_{d1} \) is less than 0.3g.

A113.10 Adjacent buildings

Where elements of adjacent buildings do not have a separation of at least 5 inches (127 mm), the allowable height-to-thickness ratios for “all other buildings” per Table A1-B shall be used in the direction of consideration.
APPENDIX CHAPTER A1

TABLE A1-A—ELEMENTS REGULATED BY THIS CHAPTER

<table>
<thead>
<tr>
<th>BUILDING ELEMENTS</th>
<th>S_{pm}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0.067 < 0.133$</td>
</tr>
<tr>
<td>Parapets</td>
<td>X</td>
</tr>
<tr>
<td>Walls, anchorage</td>
<td>X</td>
</tr>
<tr>
<td>Walls, h/t ratios</td>
<td>X</td>
</tr>
<tr>
<td>Walls, in-plane shear</td>
<td>X</td>
</tr>
<tr>
<td>Diaphragms</td>
<td>X</td>
</tr>
<tr>
<td>Diaphragms, shear transfer b</td>
<td>X</td>
</tr>
<tr>
<td>Diaphragms, demand-capacity ratios b</td>
<td>X</td>
</tr>
</tbody>
</table>

a. Applies only to buildings designed according to the general procedures of Section A110.
b. Applies only to buildings designed according to the special procedures of Section A111.

TABLE A1-B—ALLOWABLE VALUE OF HEIGHT-TO-THICKNESS RATIO OF UNREINFORCED MASONRY WALLS

<table>
<thead>
<tr>
<th>WALL TYPES</th>
<th>$0.13 < S_{pm} < 0.25$</th>
<th>$0.25 \leq S_{pm} < 0.4$</th>
<th>$S_{pm} \geq 0.4$ BUILDINGS WITH CROSSWALLS b</th>
<th>$S_{pm} > 0.4$ ALL OTHER BUILDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls of one-story buildings</td>
<td>20</td>
<td>16</td>
<td>16b,c</td>
<td>13</td>
</tr>
<tr>
<td>First-story wall of multistory building</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Walls in top story of multistory building</td>
<td>14</td>
<td>14</td>
<td>14b,c</td>
<td>9</td>
</tr>
<tr>
<td>All other walls</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>13</td>
</tr>
</tbody>
</table>

a. Applies to the special procedures of Section A111 only. See Section A111.7 for other restrictions.
b. This value of height-to-thickness ratio may be used only where mortar shear tests establish a tested mortar shear strength, v_t, not less than 100 pounds per square inch (690 kPa). This value may also be used where the tested mortar shear strength is not less than 60 pounds per square inch (414 kPa), and where a visual examination of the collar joint indicates not less than 50-percent mortar coverage.
c. Where a visual examination of the collar joint indicates not less than 50-percent mortar coverage, and the tested mortar shear strength, v_t, is greater than 30 pounds per square inch (207 kPa) but less than 60 pounds per square inch (414 kPa), the allowable height-to-thickness ratio may be determined by linear interpolation between the larger and smaller ratios in direct proportion to the tested mortar shear strength.

TABLE A1-C—HORIZONTAL FORCE FACTOR, C_x

<table>
<thead>
<tr>
<th>CONFIGURATION OF MATERIALS</th>
<th>C_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roofs with straight or diagonal sheathing and roofing applied directly to the sheathing, or floors with straight tongue-and-groove sheathing.</td>
<td>0.50</td>
</tr>
<tr>
<td>Diaphragms with double or multiple layers of boards with edges offset, and blocked plywood systems.</td>
<td>0.75</td>
</tr>
<tr>
<td>Diaphragms of metal deck without topping:</td>
<td></td>
</tr>
<tr>
<td>- Minimal welding or mechanical attachment.</td>
<td>0.6</td>
</tr>
<tr>
<td>- Welded or mechanically attached for seismic resistance.</td>
<td>0.68</td>
</tr>
</tbody>
</table>

2010 CALIFORNIA EXISTING BUILDING CODE 13
TABLE A1-D—STRENGTH VALUES FOR EXISTING MATERIALS

<table>
<thead>
<tr>
<th>EXISTING MATERIALS OR CONFIGURATION OF MATERIALS<sup>a</sup></th>
<th>STRENGTH VALUES × 14.594 for N/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal diaphragms</td>
<td></td>
</tr>
<tr>
<td>Roofs with straight sheathing and roofing applied directly to the sheathing.</td>
<td>300 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Roofs with diagonal sheathing and roofing applied directly to the sheathing.</td>
<td>750 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Floors with straight tongue-and-groove sheathing.</td>
<td>300 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Floors with straight sheathing and finished wood flooring with board edges offset or perpendicular.</td>
<td>1,500 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Floors with diagonal sheathing and finished wood flooring.</td>
<td>1,800 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Metal deck welded with minimal welding.<sup>c</sup></td>
<td>1,800 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Metal deck welded for seismic resistance.<sup>d</sup></td>
<td>3,000 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Crosswalls<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Plaster on wood or metal lath.</td>
<td>600 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Plaster on gypsum lath.</td>
<td>550 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Gypsum wallboard, unblocked edges.</td>
<td>200 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Gypsum wallboard, blocked edges.</td>
<td>400 lbs. per ft. for seismic shear</td>
</tr>
<tr>
<td>Existing footing, wood framing, structural steel, reinforcing steel</td>
<td></td>
</tr>
<tr>
<td>Plain concrete footings.</td>
<td>$f'_c = 1,500$ psi (10.34 MPa) unless otherwise shown by tests</td>
</tr>
<tr>
<td>Douglas fir wood.</td>
<td>Same as D.F. No. 1</td>
</tr>
<tr>
<td>Reinforcing steel.</td>
<td>$F_y = 40,000$ psi (124.1 N/mm²) maximum</td>
</tr>
<tr>
<td>Structural steel.</td>
<td>$F_y = 33,000$ psi (137.9 N/mm²) maximum</td>
</tr>
</tbody>
</table>

^a Material must be sound and in good condition.

^b Shear values of these materials may be combined, except the total combined value should not exceed 900 pounds per foot (4380 N/m).

^c Minimum 22-gage steel deck with welds to supports satisfying the standards of the Steel Deck Institute.

^d Minimum 22-gage steel deck with 3/16" plug welds at an average spacing not exceeding 8 inches (203 mm) and with sideload welds appropriate for the deck span.
TABLE A1-E—STRENGTH VALUES OF NEW MATERIALS USED IN CONJUNCTION WITH EXISTING CONSTRUCTION

<table>
<thead>
<tr>
<th>NEW MATERIALS OR CONFIGURATION OF MATERIALS</th>
<th>STRENGTH VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal diaphragms</td>
<td></td>
</tr>
<tr>
<td>Plywood sheathing applied directly over existing straight sheathing with ends of plywood sheets bearing on joists or rafters and edges of plywood located on center of individual sheathing boards.</td>
<td>675 lbs. per ft.</td>
</tr>
<tr>
<td>Crosswalls</td>
<td></td>
</tr>
<tr>
<td>Plywood sheathing applied directly over wood studs; no value should be given to plywood applied over existing plaster or wood sheathing.</td>
<td>1.2 times the value specified in the current building code.</td>
</tr>
<tr>
<td>Drywall or plaster applied directly over wood studs.</td>
<td>The value specified in the current building code.</td>
</tr>
<tr>
<td>Drywall or plaster applied to sheathing over existing wood studs.</td>
<td>50 percent of the value specified in the current building code.</td>
</tr>
<tr>
<td>Tension bolts</td>
<td></td>
</tr>
<tr>
<td>Bolts extending entirely through unreinforced masonry wall secured with bearing plates on far side of a three-wythe- minimum wall with at least 30 square inches of area.</td>
<td>5,400 lbs. per bolt</td>
</tr>
<tr>
<td>Bolts embedded a minimum of 8 inches into unreinforced masonry walls; bolts should be centered in 2(\frac{1}{2})-inch-diameter holes with dry-pack or nonshrink grout around the circumference of the bolt.</td>
<td>2,700 lbs. for two-wythe walls</td>
</tr>
<tr>
<td>Shear bolts</td>
<td></td>
</tr>
<tr>
<td>Bolts embedded a minimum of 8 inches into unreinforced masonry walls; bolts should be centered in 2(\frac{1}{2})-inch-diameter holes with dry-pack or nonshrink grout around the circumference of the bolt.</td>
<td>The value for plain masonry specified for solid masonry in the current building code; no value larger than those given for (\frac{3}{4})-inch bolts should be used.</td>
</tr>
<tr>
<td>Combined tension and shear bolts</td>
<td></td>
</tr>
<tr>
<td>Through-bolts—bolts meeting the requirements for shear and for tension bolts.</td>
<td>Tension—same as for tension bolts</td>
</tr>
<tr>
<td>Embedded bolts—bolts extending to the exterior face of the wall with a 2(\frac{1}{2})-inch round plate under the head and drilled at an angle of 22(\frac{1}{2}) degrees to the horizontal; installed as specified for shear bolts.</td>
<td>Tension—same as for shear bolts</td>
</tr>
<tr>
<td>Infilled walls</td>
<td></td>
</tr>
<tr>
<td>Reinforced masonry infilled openings in existing unreinforced masonry walls; provide keys or dowels to match reinforcing.</td>
<td>Same as values specified for unreinforced masonry walls</td>
</tr>
<tr>
<td>Reinforced masonry</td>
<td></td>
</tr>
<tr>
<td>Masonry piers and walls reinforced per the current building code.</td>
<td>The value specified in the current building code for strength design.</td>
</tr>
<tr>
<td>Reinforced concrete</td>
<td></td>
</tr>
<tr>
<td>Concrete footings, walls and piers reinforced as specified in the current building code.</td>
<td>The value specified in the current building code for strength design.</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm², 1 pound = 4.4 N.

a. Embedded bolts to be tested as specified in Section A107.4.
b. Bolts to be \(\frac{1}{2}\) inch (12.7 mm) minimum in diameter.
c. Drilling for bolts and dowels shall be done with an electric rotary drill; impact tools should not be used for drilling holes or tightening anchors and shear bolt nuts.
d. No load factors or capacity reduction factor shall be used.
e. Other bolt sizes, values and installation methods may be used, provided a testing program is conducted in accordance with UBC Standard 21-7. The useable value shall be determined by multiplying the calculated allowable value, as determined by UBC Standard 21-7, by 3.0, and the useable value shall be limited to a maximum of 1.5 times the value given in the table. Bolt spacing shall not exceed 6 feet (1829 mm) on center and shall not be less than 12 inches (305 mm) on center.

TABLE A1-F—MAXIMUM ALLOWABLE HEIGHT-TO-THICKNESS RATIOS FOR PARAPETS

<table>
<thead>
<tr>
<th>(S_{pl})</th>
<th>Maximum allowable height-to-thickness ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13 (\leq S_{pl} < 0.25) & (S_p < 0.25)</td>
<td>2.5</td>
</tr>
<tr>
<td>0.25 (\leq S_{pl} < 0.4) & (S_p < 0.4)</td>
<td>2.5</td>
</tr>
<tr>
<td>(S_{pl} \geq 0.4) & (S_p \geq 0.4)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

TABLE A1-G—MAXIMUM HEIGHT-TO-THICKNESS RATIOS FOR ADOBE OR STONE WALLS

<table>
<thead>
<tr>
<th>(S_{pl})</th>
<th>One-story buildings</th>
<th>Two-story buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13 (\leq S_{pl} < 0.25) & (S_p < 0.25)</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>0.25 (\leq S_{pl} < 0.4) & (S_p < 0.4)</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>(S_{pl} \geq 0.4) & (S_p \geq 0.4)</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm², 1 pound = 4.4 N.

a. Embedded bolts to be tested as specified in Section A107.4.
b. Bolts to be \(\frac{1}{2}\) inch (12.7 mm) minimum in diameter.
c. Drilling for bolts and dowels shall be done with an electric rotary drill; impact tools should not be used for drilling holes or tightening anchors and shear bolt nuts.
d. No load factors or capacity reduction factor shall be used.
e. Other bolt sizes, values and installation methods may be used, provided a testing program is conducted in accordance with UBC Standard 21-7. The useable value shall be determined by multiplying the calculated allowable value, as determined by UBC Standard 21-7, by 3.0, and the useable value shall be limited to a maximum of 1.5 times the value given in the table. Bolt spacing shall not exceed 6 feet (1829 mm) on center and shall not be less than 12 inches (305 mm) on center.
1. Region of demand-capacity ratios where crosswalls may be used to increase h/t ratios.
2. Region of demand-capacity ratios where h/t ratios of "buildings with crosswalls" may be used, whether or not crosswalls are present.
3. Region of demand-capacity ratios where h/t ratios of "all other buildings" shall be used, whether or not crosswalls are present.

FIGURE A1-1
ACCEPTABLE DIAPHRAGM SPAN
$V_p = \text{Allowable shear strength of a pier.}$

$V_c = \text{Shear force assigned to a pier on the basis of a relative shear rigidity analysis.}$

$V_r = \text{Rocking shear capacity of pier.}$

$V_{\text{ex}} = \text{Total shear force resisted by the wall.}$

$\Sigma V_r = \text{Rocking shear capacity of all piers in the wall.}$

FIGURE A1-2

ANALYSIS OF URM WALL IN-PLANE SHEAR FORCES
REFERENCED STANDARDS

UNIFORM BUILDING CODE STANDARD 21–4
HOLLOW AND SOLID LOAD-BEARING
CONCRETE MASONRY UNITS

Based on Standard Specification C 90–95 of the ASTM International.
Extracted, with permission, from the Annual Book of ASTM Standards, copyright
ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428

Note: See Appendix Chapter 1, Section A106, California Existing Building Code

Section 21.401 — Scope
This standard covers solid (units with 75 percent or more net area) and hollow load-bearing concrete masonry units made from portland cement, water and mineral aggregates with or without the inclusion of other materials.

Section 21.402 — Classification
21.402.1 Types. Two types of concrete masonry units in each of two grades are covered as follows:

21.402.1.1 Type I, moisture-controlled units. Units designated as Type I shall conform to all requirements of this standard including the moisture content requirements of Table 21-4-A.

21.402.1.2 Type II, nonmoisture-controlled units. Units designated as Type II shall conform to all requirements of this standard except the moisture content requirements of Table 21-4-A.

21.402.2 Grades. Concrete masonry units manufactured in accordance with this standard shall conform to two grades as follows:

21.402.2.1 Grade N. Units having a weight classification of 85 pcf (1360 kg/m³) or greater, for general use such as in exterior walls below and above grade that may or may not be exposed to moisture penetration or the weather and for interior walls and backup.

21.402.2.2 Grade S. Units having a weight classification of less than 85 pcf (1360 kg/m³), for uses limited to above-grade installation in exterior walls with weather-protective coatings and in walls not exposed to the weather.

Section 21.403 — Materials
21.403.1 Cementitious materials. Materials shall conform to the following applicable standards:

1. Portland Cement—ASTM C 150 modified as follows:
 Limitation on insoluble residue—1.5 percent maximum.
 Limitation on air content of mortar,
 Volume percent—22 percent maximum.
 Limitation on loss on ignition—7 percent maximum.
 Limestone with a minimum 85 percent calcium carbonate (CaCO₃) content may be added to the cement, provided the requirements of ASTM C 150 as modified above are met.

21.403.2 Other constituents and aggregates. Air-entraining agents, coloring pigments, integral water repellents, finely ground silica, aggregates, and other constituents, shall be previously established as suitable for use in concrete or shall be shown by test or experience to not be detrimental to the durability of the concrete.

Section 21.404 — Physical Requirements
At the time of delivery to the work site, the units shall conform to the physical requirements prescribed in Table 21-4-B. The moisture content of Type I concrete masonry units at time of delivery shall conform to the requirements prescribed in Table 21-4-A.

At the time of delivery to the purchaser, the linear shrinkage of Type II units shall not exceed 0.065 percent.

Section 21.405 — Minimum Face-shell and Web Thicknesses
Face-shell (FST) and web (WT) thicknesses shall conform to the requirements listed in Table 21-4-C.

Section 21.406 — Permissible Variations in Dimensions
21.406.1 Precision units. For precision units, no overall dimension (width, height and length) shall differ by more than $\frac{1}{16}$ inch (3.2 mm) from the specified standard dimensions.

21.406.2 Particular feature units. For particular feature units, dimensions shall be in accordance with the following:

1. For molded face units, no overall dimension (width, height and length) shall differ by more than $\frac{1}{16}$ inch (3.2 mm) from the specified standard dimensions. Dimensions of molded features (ribs, scores, hex-shapes, patterns, etc.) shall be within $\frac{1}{16}$ inch (1.6 mm) of the specified standard dimensions and shall be within $\frac{1}{16}$ inch (1.6 mm) of the specified placement of the unit.

2. For split-faced units, all non-split overall dimensions (width, height and length) shall differ by no more than $\frac{1}{16}$
inch (3.2 mm) from the specified standard dimensions. On faces that are split, overall dimensions will vary. Local suppliers should be consulted to determine dimensional tolerances achievable.

3. For slumped units, no overall height dimension shall differ by more than 1/8 inch (3.2 mm) from the specified standard dimension. On faces that are slumped, overall dimensions will vary. Local suppliers should be consulted to determine dimension tolerances achievable.

Note: Standard dimensions of units are the manufacturer’s designated dimensions. Nominal dimensions of modular size units, except slumped units, are equal to the standard dimensions plus 3/8 inch (9.5 mm), the thickness of one standard mortar joint. Slumped units are equal to the standard dimensions plus 1/2 inch (13 mm), the thickness of one standard mortar joint. Nominal dimensions of nonmodular size units usually exceed the standard dimensions by 1/4 inch to 1/4 inch (3.2 mm to 6.4 mm).

Section 21.407 — Visual Inspection

All units shall be sound and free of cracks or other defects that would interfere with the proper placing of the unit or impair the strength or permanence of the construction. Units may have minor cracks incidental to the usual method of manufacture, or minor chipping resulting from customary methods of handling in shipment and delivery.

Units that are intended to serve as a base for plaster or stucco shall have a sufficiently rough surface to afford a good bond.

Where units are to be used in exposed wall construction, the face or faces that are to be exposed shall be free of chips, cracks or other imperfections when viewed from 20 feet (6100 mm), except that not more than 5 percent of a shipment may have slight cracks or small chips not larger than 1 inch (25.4 mm).

Section 21.408 — Methods of Sampling and Testing

The purchaser or authorized representative shall be accorded proper facilities to inspect and sample the units at the place of manufacture from the lots ready for delivery.

Sample and test units in accordance with ASTM C 140.

Total linear drying shrinkage shall be based on tests of concrete masonry units made with the same materials, concrete mix design, manufacturing process and curing method, conducted in accordance with ASTM C 426 and not more than 24 months prior to delivery.

Section 21.409 — Rejection

If the samples tested from a shipment fail to conform to the specified requirements, the manufacturer may sort it, and new specimens shall be selected by the purchaser from the retained lot and tested at the expense of the manufacturer. If the second set of specimens fails to conform to the specified requirements, the entire lot shall be rejected.

TABLE 21-4-A
MOISTURE CONTENT REQUIREMENTS FOR TYPE I UNITS

<table>
<thead>
<tr>
<th>LINEAR SHRINKAGE, PERCENT</th>
<th>MOISTURE CONTENT, MAX. PERCENT OF TOTAL ABSORPTION (Average of 3 Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Humid<sup>1</sup></td>
</tr>
<tr>
<td>0.03 or less</td>
<td>45</td>
</tr>
<tr>
<td>From 0.03 to 0.045</td>
<td>40</td>
</tr>
<tr>
<td>0.045 to 0.065, max.</td>
<td>35</td>
</tr>
</tbody>
</table>

¹Average annual relative humidity above 75 percent.

²Average annual relative humidity 50 to 75 percent.

³Average annual relative humidity less than 50 percent.

TABLE 21-4-B
STRENGTH AND ABSORPTION REQUIREMENTS

<table>
<thead>
<tr>
<th>COMPRESSIVE STRENGTH, MIN, psi (MPa)</th>
<th>WATER ABSORPTION, MAX, lb./ft. (kg/m) (Average of 3 Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Net Area</td>
<td>Weight Classification—Oven-dry Weight of Concrete, lb./ft. (kg/m)</td>
</tr>
<tr>
<td>Average of 3 Units</td>
<td>Individual Unit</td>
</tr>
<tr>
<td>1900 (13.1)</td>
<td>1700 (11.7)</td>
</tr>
</tbody>
</table>
TABLE 21-4-C

MINIMUM THICKNESS OF FACE-SHELLS AND WEBS

<table>
<thead>
<tr>
<th>NOMINAL WIDTH (W) OF UNIT (Inches)</th>
<th>FACE-SHELL THICKNESS (FST) MIN., (Inches)</th>
<th>WEB THICKNESS (WT)</th>
<th>Equivalent Web Thickness, Min., In/Lin. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x 25.4 for mm</td>
<td>Webs 1 Min., (Inches)</td>
<td>x 83 for mm/Lin. m</td>
</tr>
<tr>
<td>3 and 4</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{3}{4}$</td>
<td>$1\frac{5}{8}$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>$2\frac{1}{4}$</td>
</tr>
<tr>
<td>8</td>
<td>$1\frac{1}{4}$</td>
<td>1</td>
<td>$2\frac{1}{4}$</td>
</tr>
<tr>
<td>10</td>
<td>$1\frac{3}{8}$</td>
<td>$1\frac{1}{8}$</td>
<td>$2\frac{1}{2}$</td>
</tr>
<tr>
<td>12</td>
<td>$1\frac{1}{2}$</td>
<td>$1\frac{1}{8}$</td>
<td>$2\frac{1}{2}$</td>
</tr>
</tbody>
</table>

1Average of measurements on three units taken at the thinnest point.

2Sum of the measured thickness of all webs in the unit, multiplied by 12 (305 when using metric), and divided by the length of the unit. In the case of open-ended units where the open-ended portion is solid grouted, the length of that open-ended portion shall be deducted from the overall length of the unit.

3This face-shell thickness (FST) is applicable where allowable design load is reduced in proportion to the reduction in thicknesses shown, except that allowable design load on solid-grouted units shall not be reduced.

4For split-faced units, a maximum of 10 percent of a shipment may have face-shell thicknesses less than those shown, but in no case less than $\frac{3}{4}$ inch (19 mm).
SECTION 21.601 — SCOPE
This standard applies when the Uniform Code for Building Conservation (California Existing Building Code) requires in-place testing of the quality of masonry mortar.

SECTION 21.602 — PREPARATION OF SAMPLE
The bed joints of the outer wythe of the masonry shall be tested in shear by laterally displacing a single brick relative to the adjacent bricks in the same wythe. The head joint opposite the loaded end of the test brick shall be carefully excavated and cleared. The brick adjacent to the loaded end of the test brick shall be carefully removed by sawing or drilling and excavating to provide space for a hydraulic ram and steel loading blocks.

SECTION 21.603 — APPLICATION OF LOAD AND DETERMINATION OF RESULTS
Steel blocks, the size of the end of the brick, shall be used on each end of the ram to distribute the load to the brick. The blocks shall not contact the mortar joints. The load shall be applied horizontally, in the plane of the wythe, until either a crack can be seen or slip occurs. The strength of the mortar shall be calculated by dividing the load at the first cracking or movement of the test brick by the nominal gross area of the sum of the two bed joints.

SECTION 21.701 — SCOPE
Shear and tension anchors in existing masonry construction shall be tested in accordance with this standard when required by the Uniform Code for Building Conservation (California Existing Building Code).

SECTION 21.702 — DIRECT TENSION TESTING OF EXISTING ANCHORS AND NEW BOLTS
The test apparatus shall be supported by the masonry wall. The distance between the anchor and the test apparatus support shall not be less than one half the wall thickness for existing anchors and 75 percent of the embedment for new embedded bolts. Existing wall anchors shall be given a preload of 300 pounds (1335 N) prior to establishing a datum for recording elongation. The tension test load reported shall be recorded at 1/8 inch (3.2 mm) relative movement of the existing anchor and the adjacent masonry surface. New embedded tension bolts shall be subject to a direct tension load of not less than 2.5 times the design load but not less than 1,500 pounds (6672 N) for five minutes (10 percent deviation).

SECTION 21.703 — TORQUE TESTING OF NEW BOLTS
Bolts embedded in unreinforced masonry walls shall be tested using a torque-calibrated wrench to the following minimum torques:

- 1/2-inch-diameter (13 mm) bolts—40 foot pounds (54.2 N·m)
- 5/16-inch-diameter (16 mm) bolts—50 foot pounds (67.8 N·m)
- 3/4-inch-diameter (19 mm) bolts—60 foot pounds (81.3 N·m)

SECTION 21.704 — PREQUALIFICATION TEST FOR BOLTS AND OTHER TYPES OF ANCHORS
This section is applicable when it is desired to use tension or shear values for anchors greater than those permitted by Table A-1-E of the Uniform Code for Building Conservation (California Existing Building Code). The direct-tension test procedure set forth in Section 21.702 for existing anchors may be used to determine the allowable tension values for new embedded or through bolts, except that no preload is required. Bolts shall be installed in the same manner and using the same materials as will be used in the actual construction. A minimum of five tests for each bolt size and type shall be performed for each class of masonry in which they are proposed to be used. The allowable tension values for such anchors shall be the lesser of the average ultimate load divided by a factor of safety of 5.0 or the average load of which 1/8 inch (3.2 mm) elongation occurs for each size and type of bolt and class of masonry.

Shear bolts may be similarly prequalified. The test procedure shall comply with ASTM E 488-90 or another approved procedure.

The allowable values determined in this manner may exceed those set forth in Table A-1-E of the Uniform Code for Building Conservation (California Existing Building Code).

SECTION 21.705 — REPORTS
Results of all tests shall be reported. The report shall include the test results as related to anchor size and type, orientation of loading, details of the anchor installation and embedment, wall thickness, and joist orientation.
UNIFORM BUILDING CODE STANDARD 21-8
POINTING OF UNREINFORCED MASONRY WALLS

See Appendix Chapter 1, Section A1 06.3.3.2, Uniform Code for Building Conservation
Note: See Appendix Chapter A1, Section A103 and A106.3.3.9, California Existing Building Code.

SECTION 21.801 — SCOPE

Pointing of deteriorated mortar joints when required by the Uniform Code for Building Conservation (California Existing Building Code) shall be in accordance with this standard.

SECTION 21.802 — JOINT PREPARATION

The old or deteriorated mortar joint shall be cut out, by means of a toothing chisel or nonimpact power tool, to a uniform depth of 3/4 inch (19 mm) until sound mortar is reached. Care shall be taken not to damage the brick edges. After cutting is complete, all loose material shall be removed with a brush, air or water stream.

SECTION 21.803 — MORTAR PREPARATION

The mortar mix shall be Type N or Type S proportioned as required by the construction specifications. The pointing mortar shall be pre-hydrated by first thoroughly mixing all ingredients dry and then mixing again, adding only enough water to produce a damp unworkable mix which will retain its form when pressed into a ball. The mortar shall be kept in a damp condition for one and one-half hours; then sufficient water shall be added to bring it to a consistency that is somewhat drier than conventional masonry mortar.

SECTION 21.804 — PACKING

The joint into which the mortar is to be packed shall be damp but without freestanding water. The mortar shall be tightly packed into the joint in layers not exceeding 1/4 inch (6.4 mm) in depth until it is filled; then it shall be tooled to a smooth surface to match the original profile.
UNIFORM BUILDING CODE STANDARD 21-13
HYDRATED LIME FOR MASONRY PURPOSES

Extracted, with permission, from the Annual Book of ASTM Standards, copyright
ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428

See Section 2102.2, Item 3, Uniform Building Code
Note: See Referenced Standard UBC 21-4

Section 21.1301 — Scope
This standard covers four types of hydrated lime. Types N and S are suitable for use in mortar, in the scratch and brown coats of cement plaster, for stucco, and for addition to portland-cement concrete. Types NA and SA are air-entrained hydrated limes that are suitable for use in any of the above uses where the inherent properties of lime and air entrainment are desired. The four types of lime sold under this specification shall be designated as follows:

Type N—Normal hydrated lime for masonry purposes.
Type S—Special hydrated lime for masonry purposes.
Type NA—Normal air-entraining hydrated lime for masonry purposes.
Type SA—Special air-entraining hydrated lime for masonry purposes.

Note: Type S, special hydrated lime, and Type SA, special air-entraining hydrated lime, are differentiated from Type N, normal hydrated lime, and Type NA, normal air-entraining hydrated lime, principally by their ability to develop high, early plasticity and higher water retentivity and by a limitation on their unhydrated oxide content.

Section 21.1302 — Definition
HYDRATED LIME. The hydrated lime covered by Type N or S in this standard shall contain no additives for the purpose of entraining air. The air content of cement-lime mortars made with Type N or S shall not exceed 7 percent. Types NA and SA shall contain an air-entraining additive as specified by Section 21.1305. The air content of cement-lime mortars made with Type NA or SA shall have a minimum of 7 percent and a maximum of 14 percent.

Section 21.1303 — Additions
Types NA and SA hydrated lime covered by this standard shall contain additives for the purpose of entraining air.

Section 21.1304 — Manufacturer's Statement
Where required, the nature, amount and identity of the air-entraining agent used and of any processing addition that may have been used shall be provided, as well as test data showing compliance of such air-entraining addition.

Section 21.1305 — Chemical Requirements
Composition
Hydrated lime for masonry purposes shall conform to the requirements as to chemical composition set forth in Table 21-13-A.

Section 21.1306 — Residue, Popping and Pitting
The four types of hydrated lime for masonry purposes shall conform to one of the following requirements:
1. The residue retained on a No. 30 (600 μm) sieve shall not be more than 0.5 percent, or
2. If the residue retained on a No. 30 (600 μm) sieve is over 0.5 percent, the lime shall show no pops and pits when tested.

Section 21.1307 — Plasticity
The putty made from Type S, special hydrate, or Type SA, special air-entraining hydrate, shall have a plasticity figure of not less than 200 within 30 minutes after mixing with water, when tested.

Section 21.1308 — Water Retention
Hydrated lime mortar made with Type N, normal hydrated lime, or Type NA, normal air-entraining hydrated lime, after suction for 60 seconds, shall have a water-retention value of not less than 75 percent when tested in a standard mortar made from the dry hydrate or from putty made from the hydrate which has been soaked for a period of 16 to 24 hours.

Hydrated lime mortar made with Type S, special hydrated lime, or Type SA, special air-entraining hydrated lime, after suction for 60 seconds, shall have a water-retention value of not less than 85 percent when tested in a standard mortar made from the dry hydrate.

Section 21.1309 — Special Marking
When Type NA or SA air-entraining hydrated lime is delivered in packages, the type under this standard and the words “air-entraining” shall be plainly indicated thereon or, in case of bulk shipments, so indicated on shipping notices.
Section 21.1310 — Quality Control

Every 90 days, each lime producer shall retain an approved agency to obtain a random sample from a local point of supply in the market area served by the producer.

The agency shall test the lime for compliance with the physical requirements of Sections 21.1306, 21.1307 and 21.1308.

Upon request of the building official, the producer shall furnish (at no cost) test results to the building official, architect, structural engineer, general contractor and masonry contractor.

<table>
<thead>
<tr>
<th>TABLE 21-13-A—CHEMICAL REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRATE TYPES</td>
</tr>
<tr>
<td>Calcium and magnesium oxides (nonvolatile basis), min. percent</td>
</tr>
<tr>
<td>Carbon dioxide (as-received basis), max. percent</td>
</tr>
<tr>
<td>If sample is taken at place of manufacture</td>
</tr>
<tr>
<td>If sample is taken at any other place</td>
</tr>
<tr>
<td>Unhydrated oxides (as-received basis), max. percent</td>
</tr>
</tbody>
</table>

1. (BSC 06/09, HCD 06/09) Adoption of Appendix Chapter A1 of the 2009 International Existing Building Code with necessary California amendments, effective January 1, 2011.